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Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction

Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [5,6,12] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [7], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised



linearisability, appropriate for different situations: a general one, which does not make
any assumptions about the client or the parameter library, a notion appropriate for the
case when the parameter library is encapsulated, and up-to linearisability, which allows
making assumptions about the parameter library. These notions differ in subtle ways:
we find that there is a trade-off between the assumptions that parameterised libraries
make about their environment and the conditions that a notion of linearisability has to
impose on different types of interactions with it.

We prove that the proposed notions of parameterised linearisability are contextual
(§5), i.e., closed under parameter instantiation. This includes the case when the para-
meter library is itself parameterised. On the other hand, when the parameter is an or-
dinary ground library, this result allows us to derive the classical linearisability of the
instantiated library from our notion for the parameterised one. We also prove that para-
meterised linearisability is compositional (§5): if several non-interacting libraries are
linearisable, so is their composition. Finally, we show that parameterised linearisability
implies observational refinement (§6): the behaviours of any complete program using a
concrete parameterised library can be reproduced if the program uses a corresponding
abstract one instead. All these results allow modularising the reasoning about concur-
rent programs using parameterised libraries: contextuality and compositionality break
the reasoning about complex parameterised libraries into that about individual libraries
from which they are constructed; observational refinement then lifts this to complete
programs, including clients. The properties of parameterised linearisability we estab-
lish also serve to confirm the appropriateness of the proposed definitions.

We illustrate the applicability of our results by proving the up-to linearisability of
flat combining [5] (§4), a generic algorithm for converting hard-to-parallelise sequential
data structures into concurrent ones.

Due to space constraints, we defer the proofs of most theorems to §B.

2 Parameterised Libraries

We consider parameterised libraries (or simply libraries) L, which provide some pub-
lic methods to their clients. The latter are multi-threaded programs that can call the
methods in parallel. In §4 and §6 we introduce a particular syntax for libraries and cli-
ents; for now it suffices to treat them abstractly. Our libraries are called parameterised
because we allow their method implementations to call abstract methods, whose imple-
mentation is left unspecified. Abstract methods are meant to be implemented by another
library provided by L’s client, which we call the parameter library of L.

We identify methods by names from a set M, ranged over by m, and threads by
identifiers from a set T , ranged over by t. For the sake of simplicity, we assume that
methods take a single integer as a parameter and always return an integer. We annotate
libraries with types as in L : M → M ′, where M,M ′ ⊆ M give the sets of abstract
and public methods of L, respectively. If M = ∅ we call L a ground library. The sets
M and M ′ do not have to be disjoint: methods in M ∩M ′ may be called by L’s clients,
but their implementation is inherited from the one given by the parameter library.

Example: Flat Combining. Flat combining [5] is a recent synchronisation paradigm,
which can be viewed [13] as a parameterised library FC : {mi}ni=1 → {do mi}ni=1 for a
given set of methods {mi}ni=1. In Figure 1 we show a pseudocode of its implementation,
which simplifies the original one in ways orthogonal to our goals. FC takes a library,



whose methods mi are meant to be executed sequentially, and efficiently turns it into a
library with methods do mi that can be called concurrently.

LOCK lock;
struct{op,param,retval} requests[NThread];

do mi(int z):
requests[mytid()].op = i;
requests[mytid()].param = z;
requests[mytid()].retval = nil;
do:

if (lock.tryacquire()):
for (t = 0; t < NThread; t++):

if (requests[t].retval == nil):
int j = requests[t].op;
int w = requests[t].param;
requests[t].retval = mj(w);

lock.release();
while (requests[mytid()].retval == nil);
return requests[mytid()].retval;

Figure 1. Flat combining: implementation FC.

As usual, this is achieved by means
of mutual exclusion, implemented using a
lock, but in a way that is more sophistic-
ated than just acquiring it before calling
a method mi. A thread executing do mi

first publishes the operation it would like
to execute and its parameter in its entry
of the requests array. It then spins, try-
ing to acquire the global lock. Having ac-
quired a lock, the thread becomes a com-
biner: it performs the operations reques-
ted by all threads, stored in requests, by
calling methods mi of the parameter lib-
rary and writing the values returned into
the retval field of the corresponding entries
in requests. Each spinning thread period-
ically checks this field and stops if some
other thread has performed the operation it
requested (for simplicity, we assume that
nil is a special value that is never returned by any method). This algorithm benefits
from cache locality when the combiner executes several operations in sequence, and
thus yields good performance even for hard-to-parallelise data structures, such as stacks
and queues.

LOCK lock;
do mi(int z):

lock.acquire();
int retval = mi(z);
lock.release();
return retval;

Figure 2. Flat combin-
ing: specification FC].

In this paper, we develop a framework for specifying and
verifying parameterised concurrent libraries. For flat combin-
ing, our framework suggests using an abstract library FC] :
{mi}ni=1 → {do mi}ni=1 in Figure 2 as a specification for the
concrete library in Figure 1. FC] specifies the expected beha-
viour of flat combining by using the naive mutual exclusion.
Showing that the implementation satisfies this specification in
our framework amounts to proving that it is related to FC] by
parameterised linearisability, which we present next.

3 Histories and Parameterised Linearisability

Histories. Informally, for a concrete library (such as the one in Figure 1) to be correct
with respect to an abstract one (such as the one in Figure 2), the two should interact with
their environment—the client and the parameter library—in similar ways. In this paper,
we assume that different libraries and their clients access disjoint portions of memory,
and thus interactions between them are limited to passing parameters and return values
at method calls and returns. This is a standard assumption [7], which we believe can be
relaxed using existing techniques [4]; see §7 for discussion. We record interactions of a
parameterised library L : M → M ′ with its environment using histories (Definition 1
below), which are certain sequences of actions of the form

Act ::= (t, call?m′(z)) | (t, ret!m′(z)) | (t, call!m(z)) | (t, ret?m(z)),
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Figure 4. Illustration of histories and parameterised linearisability. A solid line represents a thread
executing the code of the parameterised library, and a dashed one, the parameter library.

where t ∈ T is the thread performing the action, m′ ∈ M ′ or m ∈ M is the method
involved, and z ∈ Z is the method parameter or a return value.

L′

L

client
call?m′(z) ret!m′(z)

call!m(z) ret?m(z)

callm′′(z) retm′′(z)

Figure 3. Interactions of a library
L with its client and parameter
library L′.

We illustrate the meaning of the actions in Fig-
ure 3: call? and ret! describe the client invoking public
methods m′ of the parameterised library L, and call!
and ret? the library L invoking implementations of ab-
stract methods m provided by a parameter library L′.
We denote the sets of actions corresponding to inter-
actions with these two entities by ClAct and AbsAct,
respectively. In the spirit of the opponent-proponent
distinction in game semantics [8,10], we annotate ac-
tions by ! or ? depending on whether the action was
initiated by L or by an external entity, and we denote
the corresponding sets of actions by Act! and Act?. We
also use sets ActCall?, ActRet!, ActCall! and ActRet?
with the expected meaning. Clients can also call meth-
ods m′′ ∈ M ∩ M ′ directly, as represented by the
dashed lines in the figure. Since such interactions do

not involve the library L, we do not include them into Act. Histories are finite sequences
of actions with invocations of abstract methods properly nested inside those of public
ones.

DEFINITION 1 (Histories) A history h : M → M ′ is a finite sequence of actions such
that for every t, the projection of h to t’s actions is a prefix of a sequence generated by
the grammar SHist below, where m ∈M and m′ ∈M ′:

SHist ::= ε | (t, call?m′(z)) IntSHist (t, ret!m′(z′)) | SHist SHist
IntSHist ::= ε | (t, call!m(z)) (t, ret?m(z′)) | IntSHist IntSHist

We denote the set of histories by Hist. See Figure 4 for examples. In this paper, we
focus on safety properties of libraries and thus let histories be finite. This assumption is
also taken by the classical notion of linearisability [7] and can be relaxed as described
in [3] (§7). For a history h and A ⊆ Act, we let h|A be the projection of h onto actions
in A and we denote the i-th action in h by h(i).



Parameterised Linearisability. We would like the notion of correctness of a concrete
library L : M → M ′ with respect to an abstract one L] : M → M ′ to imply obser-
vational refinement. Informally, this property means that L] can be used to replace L
in any program (consisting of a client, the library and an instantiation of the parameter
library) while keeping its observable behaviours reproducible; a formal definition is
given in §6. While this notion is intuitive, establishing it between two libraries directly
is challenging because of the quantification over all possible programs they can be used
by. We therefore set out to find a correctness criterion that compares the concrete and
abstract libraries in isolation and thus avoids this quantification. For ground libraries,
linearisability [7] formulates such a criterion by matching a history h1 of L with a his-
tory h2 of L] that yields the same client-observable behaviour. The following definition
generalises it to parameterised libraries.

DEFINITION 2 (Parameterised linearisability: general case) A history h1 : M →M ′ is
linearised by another one h2 : M →M ′, written h1 v h2, if there exists a permutation
π : N→ N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i) ∈ Act! ∧ h1(j) ∈ Act?)) =⇒ π(i) < π(j)).

For sets of histories H1, H2 we let H1 v H2 ⇐⇒ ∀h1 ∈ H1.∃h2 ∈ H2. h1 v h2.

In §4 we show how to generate all histories of a library in a particular language
and define linearisability on libraries by the v relation on their sets of histories. For
now we explain the above abstract definition. According to it, a history h1 is linearised
by a history h2 when the latter is a permutation of the former preserving the order of
actions within threads and the precedence relation between the actions initiated by the
library and those initiated by its environment. As we explain below, we have h1 v
h2 for the histories h1, h2 in Figure 4. Hence, parameterised linearisability is able to
match a history of a concurrent library with a simpler one where every contiguous block
of library execution (e.g., the one between (t1, call?m1(z1)) and (t1, call!ma(za))) is
executed without interleaving with other such blocks. On the other hand, h2 6v h1, since
(t1, call!ma(za)) precedes (t3, call?m3(z3)) in h2, but not in h1.

When h1, h2 : ∅ → M ′, i.e., these are histories of a ground library and thus con-
tain only call? and ret! actions, Definition 2 coincides with a variant of the classical
linearisability [7], which requires preserving the order between ret! and call? actions.
For example, Definition 2 requires preserving the order between (t2, ret!m2(z′2)) and
(t3, call?m4(z4)) in h1 from Figure 4 (shown by a diagonal arrow). This requirement
is needed for linearisability to imply observational refinement: informally, during the
interval of time between (t2, ret!m2(z′2)) and (t3, call?m4(z4)) in an execution of a
program producing h1, both threads t2 and t3 execute pieces of client code, which can
communicate via the client memory. To preserve the behaviour of the client when repla-
cing the concrete library in the program by an abstract one in observational refinement,
this communication must not be affected, and, for this, the abstract library has to admit
a history in which the order between the above actions is preserved.

When h1, h2 : M → M ′ correspond to a non-ground parameterised library, i.e.,
M 6= ∅, a similar situation arises with communication between the methods of the
parameter library executing in different threads. For this reason, our generalisation
of linearisability requires preserving the order between call! and ret? actions, such as



(t2, call!mb(zb)) and (t1, ret?ma(z′a)) in Figure 4; this requirement is dual to the one
considered in classical linearisability. It is not enough, however. Definition 2 also re-
quires preserving the order between call! and call?, as well as ret! and ret? actions, e.g.,
(t3, ret!m3(z′3)) and (t2, ret?mb(z

′
b)) in Figure 4. In the case when M ∩M ′ 6= ∅, this

is also required to validate observational refinement. For example, during the interval of
time between (t3, ret!m3(z′3) and (t2, ret?mb(z

′
b)) in an execution producing h1, the

client code in thread t3 can call a methodm′b ∈M∩M ′ of the parameter library (cf. the
dashed arrows in Figure 3). The code of the methodm′b executed by t3 can then commu-
nicate with that of the method mb executed by t2, and to preserve this communication,
we need to preserve the order between (t3, ret!m3(z′3)) and (t2, ret?mb(z

′
b)).

In §5 and §6 we prove that the above notion of linearisability indeed validates ob-
servational refinement. If the library L : M → M ′ producing the histories h1, h2 in
Definition 2 is such that M ∩M ′ = ∅, then the client cannot directly call methods of
its parameter library, and, as we show, parameterised linearisability can be weakened
without invalidating observational refinement.

DEFINITION 3 (Parameterised linearisability: encapsulated case) For h1, h2 : M →
M ′ with M ∩M ′ = ∅ we let h1ve h2 if there exists a permutation π : N→N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i), h1(j)) ∈ (ActRet!× ActCall?) ∪ (ActCall!× ActRet?)) =⇒ π(i) < π(j)).

Since this definition does not take into account the order between (t1, call!ma(za)) and
(t3, call?m3(z3)) in h2 from Figure 4, we have h2 ve h1 even though h2 6v h1.

Definitions 2 and 3 do not make any assumptions about the implementation of the
parameter library. However, sometimes the correctness of a parameterised library can
only be established under certain assumptions about the behaviour of its parameter. In
particular, this is the case for the flat combining library from §2. In its implementation
FC from Figure 1, a request by a thread t to execute a method mi of the parameter lib-
rary can be fulfilled by another thread t′ who happens to act as a combiner; in contrast,
the specification FC] in Figure 2 pretends that mi is executed in the requesting thread.
Thus, FC and FC] will behave differently if we supply as their parameter a library whose
methods depend on the identifiers of executing threads (e.g., with mi implemented as
“return mytid()”). As a consequence, FC does not simulate FC]. On the other hand,
this will be the case if we restrict ourselves to parameter libraries whose behaviour is
independent of thread identifiers. The following version of parameterised linearisabil-
ity allows us to use such assumptions, formulated as closure properties on histories of
interactions between a parameterised library and its parameter. Given a history h, let h
be the history obtained by swapping ! and ? actions in h.

DEFINITION 4 (Up-to linearisability) For h1, h2 : M → M ′ such that M ∩M ′ = ∅
and a binary relationR on histories of type ∅ →M , we say that h1 is linearised by h2
up toR, written h1 vR h2, if (h1|ClAct) v (h2|ClAct) and (h1|AbsAct) R (h2|AbsAct).

For flat combining, a suitable relation Rt relates two histories if one can be obtained
from the other by replacing thread identifiers of some pairs of a call and a corresponding
(if any) return action. There are other useful choices of R, such as equivalence up to
commuting abstract method invocations [6].

So far we have defined our notions of linearisability abstractly, on sets of histories.
We next introduce a language for parameterised libraries and show how to generate sets



of histories of a library in this language. This lets us lift the notion of linearisability to
libraries and prove that FC in Figure 1 is indeed linearised up toRt by FC] in Figure 2.

4 Lifting Linearisability to Libraries
Library Syntax. We use the following language to define libraries:

L ::= 〈public :B; private :B〉 B ::= ε | (m⇐ C);B | (abstract m);B
C ::= c | m() | C;C | if(E) then C else C | while(E) C

A parameterised library L is a collection of methods, some implemented by commands
C and others declared as abstract, meant to be implemented by a parameter library.
Methods can be public or private, with only the former made available to clients. In
§5 and §6 we extend the language to complete programs, consisting of a multithreaded
client using a parameterised library with its parameter instantiated. In particular, we
introduce private methods here to define parameter library instantiation in §5.

In commands, c ranges over primitive commands from a set PComm, and E over
expressions, whose set we leave unspecified. The command m() invokes the method
m; it does not mention its parameter or return value, since, as we explain below, these
are passed via dedicated thread-local memory locations. We consider only well-formed
libraries where a method is declared at most once and every method called is declared.
We identify libraries up to the order of method declarations and α-renaming of private
non-abstract methods. For a library L = 〈public :Bpub; private :Bpvt〉 we have L :
Abs(L)→ Pub(L), where Pub(L) is the set of methods declared in Bpub, and Abs(L)
of those declared as abstract in Bpub or Bpvt.

Linearisability on Libraries and the Semantics Idea. We now show how to generate
the set of histories JLK ∈ 2Hist of a library L. Then we let a library L1 be linearised by
a library L2, written L1 v L2, if JL1K v JL2K; similarly for ve and vR.

We actually generate all library traces, which, unlike histories, also record its in-
ternal actions. Let us extend the set of actions Act with elements of the forms (t, c)
for c ∈ PComm, (t, callm(z)) and (t, retm(z)), leading to a set TrAct. The latter two
kinds of actions correspond to calls and returns between methods implemented inside
the library. A trace τ is a finite sequence of elements in TrAct; we let Traces = TrAct∗.

The denotation JLK of a library L : M → M ′ includes the histories extracted from
traces that L produces in any possible environment, i.e., assuming that client threads
perform any sequences of calls to methods in M ′ with arbitrary parameter values and
that abstract methods in M return arbitrary values. The definition of JLK follows the
intuitive semantics of our programming language. An impatient reader can skip it on
first reading and jump directly to Theorem 1 at the end of this section.

Heaps and Primitive Command Semantics. Let Locs be the set of memory loca-
tions. As we noted in §3, we impose a standard restriction that different libraries and
their clients access different sets of memory locations, except the ones used for method
parameter passing. Formally, we assume that each library L is associated with a set of
its locations LocsL ⊆ Locs. The state of L is thus given by a heap σ ∈ LocsL → Z.
We assume a special subset of locations {argt}t∈T belonging to every LocsL, which
we use to pass parameters and return values for method invocations in thread t.

We assume that the execution of primitive commands and the evaluation of ex-
pressions are atomic. The semantics of a primitive command c ∈ PComm used by a



Traces of commands LCMt : (M×T → 2Traces)→ 2Traces

LcMtη = {(t, c)} LC1;C2Mtη = {τ1τ2 | τ1 ∈ LC1Mtη ∧ τ2 ∈ LC2Mtη}
Lif(E) then C1 else C2Mtη = (t, assume(E)) (LC1Mtη) ∪ (t, assume(!E))(LC2Mtη)
Lwhile(E) CMtη = ((t, assume(E))(JCKη))∗(t, assume(!E))

Lm()Mtη =

{
{(t, call!m(z)) τ (t, ret?m(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, if m ∈M
{(t, callm(z)) τ (t, retm(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, otherwise

Traces of library bodies
F : (M×T → 2Traces)→ (M×T → 2Traces) LBM :M×T → 2Traces

(F(η))(m, t) =


η(m, t) ∪ (LCMtη), if (m⇐ C) appears in L
{ε}, if m ∈M
∅, otherwise

LBpub;BpvtM = lfp(F)

Traces of libraries LL :M →M ′M : 2Traces

LLM = prefix

(⋃
k>0

∥∥k
t=1

(⋃
z,z′∈Z

m∈M′\M
(t, call?m(z)) (LBpub;BpvtM(m, t)) (t, ret!m(z′))

)∗)
Figure 5. Possible traces of a library L = 〈public : Bpub; private : Bpvt〉 : M → M ′. Here∥∥k
t=1

Tt denotes the set of all interleavings of traces from the sets T1, . . . , Tk.

σ  L
call m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ  L
ret m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ  L
call?m(z),t σ

′ iff σ′ = σ[argt 7→ z] σ  L
ret!m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ  L
call!m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ  L
ret?m(z),t σ

′ iff σ′ = σ[argt 7→ z]

Figure 6. Transformers for calls and returns to, from and inside a library L.

library L is defined by a family of transformers { L
c,t}t∈T , where L

c,t ⊆ (LocsL →
Z) × (LocsL → Z) describes how c affects the state of the library. The fact that the
transformers are defined on locations from LocsL formalises our assumption that L
accesses only these locations. We assume that the transformers satisfy some standard
properties [14], deferred to §A due to space constraints. To define the semantics of
expressions, we assume that for each E the set PComm contains a special command
assume(E), used only in defining the semantics, that allows the computation to proceed
only if E is non-zero: σ  L

assume(E),t σ
′ iff σ′ = σ and E is non-zero in σ.

Library Denotations. The set of traces of a library is generated in two stages. First,
we generate a superset LLM ⊆ 2Traces of traces produced by L, defined in Figure 5. If
we think of commands as control-flow graphs, these traces contain interleavings of all
possible paths through the control-flow graphs of L’s methods, invoked in an arbitrary
sequence. We then select those traces in LLM that correspond to valid executions starting
in a given heap using a predicate JτKL : (LocsL → Z)→ {true, false}. We define J·KL
by generalising to calls and returns as shown in Figure 6 and letting

JεKLσ= true; J(t, a) τKLσ = if (∃σ′. σ L
a,t σ

′ ∧ JτKLσ′= true) then true else false.

Finally, we let the set of histories JLK of a library L consist of those obtained from
traces representing its valid executions from a heap with all locations set to 0:

JLK = history({τ ∈ LLM | JτKL(λx ∈ LocsL. 0) = true}),

where history projects to actions in Act.



THEOREM 1 (Correctness of flat combining) For the libraries FC in Figure 1 and FC]

in Figure 2 and the relationRt from §3 we have FC vRt FC].

PROOF SKETCH. Consider h ∈ JFCK. In such a history, any invocation of an
abstract method (t, call!mi(zi)) (t, ret?mi(z

′
i)) happens within the execution of

the corresponding wrapper method (t′, call? do mi(zi)) (t′, ret! do mi(z
′
i)) (or just

(t′, call? do mi(zi)) if the execution of the method is uncompleted in h), though not
necessarily in the same thread. This correspondence is one-to-one, as different invoc-
ations of abstract methods correspond to different requests to perform them. Further-
more, abstract methods in h are executed sequentially. We then construct a history h′

by replacing every abstract method call (t, call!mi(zi)) (t, ret?mi(z
′
i)) in h|AbsAct by

(t′, call? do mi(zi)) (t′, call!mi(zi)) (t′, ret?mi(z
′
i)) (t′, ret! do mi(z

′
i)),

where t′ is the thread identifier of the corresponding wrapper method invocation (sim-
ilarly for uncompleted invocations). It is easy to see that (h|AbsAct) Rt (h′|AbsAct) and
h′ ∈ JFC]K. Since the execution of an abstract method in h happens within the execu-
tion of the corresponding wrapper method, we also have (h|ClAct) v (h′|ClAct). ut

5 Instantiating Library Parameters and Contextuality
We now define how library parameters are instantiated and show that our notions of
linearisability are preserved under such instantiations. To this end, we introduce a partial
operation ◦ on libraries of §4: informally, for L1 : M → M ′ and L2 : M ′ → M ′′ the
library L2 ◦ L1 : M → M ′′ is obtained by instantiating abstract methods in L2 with
their implementations from L1. Note that L1 can itself have abstract methodsM , which
are left unimplemented in L2 ◦ L1. Since we assume that different libraries operate in
disjoint address spaces, for ◦ to be defined we require that the sets of locations ofL1 and
L2 be disjoint, with the exception of those used for method parameter passing. To avoid
name clashes, we also require that public non-abstract methods of L2 not be declared as
abstract in L1 (private non-abstract methods are not an issue, since we identify libraries
up to their α-renaming); this also disallows recursion between L2 and L1.

DEFINITION 5 (Parameter library instantiation) Consider L1 : M → M ′ and L2 :
M ′ → M ′′ such that (M ′′ \ M ′) ∩M = ∅ and LocsL1 ∩ LocsL2 = {argt}t∈T . Then
L2 ◦ L1 : M → M ′′ is the library with LocsL2◦L1

= LocsL1
∪ LocsL2

obtained by
erasing the declarations for methods in M ′ from L2, reclassifying the methods from
M ′ \M ′′ in L1 as private, and concatenating the method declarations of the resulting
two libraries. We write (L2 ◦ L1)↓ when L2 ◦ L1 is defined.

We now show that the notions of parameterised linearisability we proposed are con-
textual, i.e., closed under library instantiations. This property is useful in that it allows
us to break the reasoning about a complex library into that about individual libraries
from which it is constructed. As we show in §6, contextuality also helps us establish
observational refinement.

THEOREM 2 (Contextuality of parameterised linearisability: general case) For
L1, L2 : M →M ′ such that L1 v L2:

(i) ∀L : M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L v L2 ◦ L.
(ii) ∀L : M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 v L ◦ L2.



THEOREM 3 (Contextuality of parameterised linearisability: encapsulated case) For
L1, L2 : M →M ′ such that M ∩M ′ = ∅ and L1 ve L2:

(i) ∀L : M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L ve L2 ◦ L.
(ii) ∀L : M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 ve L ◦ L2.

The restriction on method names in Definition 5 ensures that the library compositions
in Theorem 3 have no public abstract methods and can thus be compared by ve. Note
that if L is ground, then so are L1 ◦ L and L2 ◦ L. In this case, Theorems 2(i) and 3(i)
allow us to establish classical linearisability from parameterised one.

Stating the contextuality of vR is more subtle. The relationship L1 vR L2 allows
the use of abstract methods by L1 and L2 to differ according to R. As a consequence,
for a non-ground parameter library L, their use by L1 ◦ L and L2 ◦ L may also differ
according to another relation G. We now introduce a property of L ensuring that a
change in L’s interactions with its client according to R (the rely) leads to a change in
L’s interactions with its abstract methods according to G (the guarantee).

DEFINITION 6 (Rely-guarantee closure) Let R,G be relations between histories of
type ∅ → M ′ and ∅ → M , respectively. A library L : M → M ′ is

(R
G
)
-closed if

for all h ∈ JLK and h′ : ∅ →M ′ we have

(h|ClAct) R h′ =⇒ ∃h′′ ∈ JLK. (h′′|ClAct = h′) ∧ (h|AbsAct) G (h′′|AbsAct).

Due to space constraints, we state contextuality of vR only for the case in which lib-
rary parameters do not have public abstract methods. A more general statement which
relaxes this assumption is given in §B.

THEOREM 4 (Contextuality of linearisability up toR) For L1, L2 : M → M ′ such
that M ∩M ′ = ∅ and a relationR such that L1 vR L2:

(i) ∀L : M ′′ →M.∀G.M ′′ ∩M = ∅ ∧ (L is
(R
G
)
-closed) ∧

(L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L vG L2 ◦ L.
(ii) ∀L : M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 vR L ◦ L2.

When L in Theorem 4(i) is ground, G becomes irrelevant. In this case we say that
L is R-closed if it is

( R
{(ε,ε)}

)
-closed. Hence, from Theorems 1 and 4(i) we get that for

any Rt-closed (§3) library L we have FC ◦ L v FC] ◦ L: instantiating flat combining
with a library insensitive to thread identifiers, e.g., a sequential stack or a queue, yields
a concurrent library linearisable in the classical sense.

Given two libraries L1 : M1 → M ′1 and L2 : M2 → M ′2 that do not interact, i.e.,
(M1∪M ′1)∩ (M2∪M ′2) = ∅, we may wish to compose them by merging their method
declarations into a library L1 ] L2 : M1 ]M2 → M ′1 ]M ′2, as originally proposed
in [7]. Our notions of linearisability are also closed under this composition.

THEOREM 5 (Compositionality of parameterised linearisability) For L1, L
′
1 : M1 →

M ′1 and L2, L
′
2 : M2 →M ′2 such that (M1 ∪M ′1) ∩ (M2 ∪M ′2) = ∅:

(i) L1 v L′1 ∧ L2 v L′2 =⇒ L1 ] L2 v L′1 ] L′2.
(ii) L1 ve L

′
1 ∧ L2 ve L

′
2 =⇒ L1 ] L2 ve L

′
1 ] L′2.

(iii) ∀R,G. L1 vR L′1 ∧L2 vG L′2 =⇒ L1]L2 vR⊗G L′1]L′2, whereR⊗G relates
histories if their projections to M1 actions are related byR and the projections to
M2 actions are related by G.



6 Clients and Observational Refinement

A program P has the form let L in C1 ‖ . . . ‖ Cn, where L : ∅ → M is a ground
library and C1 ‖ . . . ‖ Cn is a client such that C1, . . . , Cn call only methods in M ,
written (C1 ‖ . . . ‖ Cn) : M . Using the contextuality results from §5, we now show
that our notions of linearisability imply observational refinement for such programs.

The semantics of a program P is given by the set of its traces JP K ∈ 2Traces, which
include actions (t, c) recording the execution of primitive commands c by client threads
Ct and the library L, as well as (t, callm(z)) and (t, retm(z)) actions corresponding to
the former invoking methods of the latter. The semantics JP K is defined similarly to that
of libraries in §4. In particular, we assume that client threads Ct access only locations
in a set Locsclient such that Locsclient ∩ LocsL = {argt}t∈T for any L. Due to space
constraints, we defer the definition of JP K to §A. We define the observable behaviour
obs(τ) of a trace τ ∈ JP K as its projection to client actions, i.e., those outside method
invocations, and lift obs to sets of traces as expected.

DEFINITION 7 (Observational refinement) For L1, L2 : M → M ′ we say that L1 ob-
servationally refines L2, written L1 vobs L2, if for any ground library L : ∅ →M and
client (C1 ‖ . . . ‖ Cn) : M ′ we have

obs(Jlet (L1 ◦ L) in C1 ‖ . . . ‖ CnK) ⊆ obs(Jlet (L2 ◦ L) in C1 ‖ . . . ‖ CnK).

For a binary relation R on histories we say that L1 observationally refines L2 up to
R, written L1 vRobs L2, if the above is true under the assumption that L isR-closed.

Thus, L1 vobs L2 means that L1 can be replaced by L2 in any program that uses it
while keeping observable behaviours reproducible. This allows us to check a property
of a program using L1 (e.g., the flat combining implementation in Figure 1) by check-
ing this property on a program with L1 replaced by a possibly simpler L2 (e.g., the
flat combining specification in Figure 2). Using Theorems 2–4, we can show that our
notions of linearisability validate observational refinement.

THEOREM 6 (Observational refinement) For any libraries L1, L2 : M →M ′:

(i) L1 v L2 =⇒ L1 vobs L2.
(ii) M ∩M ′ = ∅ ∧ L1 ve L2 =⇒ L1 vobs L2.

(iii) ∀R.M ∩M ′ = ∅ ∧ L1 vR L2 =⇒ L1 vRobs L2.

7 Related Work

Linearisability has recently been extended to handle liveness properties, ownership
transfer and weak memory models [3,4,9]. Most of these extensions have exploited the
connection between linearisability and observational refinement [1]. The same method-
ology is adopted in the present work, but for studying two previously unexplored topics:
parameterised libraries and the impact that common restrictions on their contexts have
on the definition of linearisability. We believe that our results are compatible with the
existing ones and can thus be extended to cover liveness and ownership transfer [3,4].

Our work shares techniques with game semantics of concurrent programming lan-
guages [11,2] and Jeffrey and Rathke’s semantics of concurrent objects [10] (in particu-
lar, we use the ? and ! notation from the latter). The proofs of our contextuality theorems
rely on the fact that library denotations satisfy certain closure properties related tov,ve



and vR, which are similar to those exploited in these prior works. However, there are
two important differences. First, prior work has not studied common restrictions on lib-
rary contexts (such as the encapsulation and closure conditions in Definitions 3 and 4)
and the induced stronger notions of refinement between libraries, the two key topics of
this paper. Second, prior works have considered all higher-order functions, while our
parameterised libraries are limited to second order. Our motivation for constraining the
setting in this way is to use a simple semantics and study the key issues involved in
linearisability of parameterised libraries without using sophisticated machinery from
game semantics, such as justification pointers and views [8], designed for accurately
modelling higher-order features. However, it is definitely a promising direction to look
for appropriate notions of linearisability for full higher-order concurrent libraries by
combining the ideas from this paper with those from game semantics.

Turon et al. proposed CaReSL [13], a logic that allows proving observational re-
finements between higher-order concurrent programs directly, without going via linear-
isability. Their work is complimentary to ours: it provides efficient proof techniques,
whereas we identify obligations to prove, independent of a particular proof system.

Acknowledgements. We thank Thomas Dinsdale-Young and Ilya Sergey for comments
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A Additional Semantic Definitions

Semantics of Programs. The semantics of programs is defined similarly to libraries, by
first defining a superset of traces LP M ∈ 2Traces and then checking each trace τ ∈ LP M for
feasibility. To define LP M, we first define LCMclientt η ∈ 2Traces for commands C similarly
to LCMtη in Figure 5, but by replacing the definition of Lm()Mtη by

Lm()Mclientt η = {(t, callm(z)) τ (t, retm(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}.

Then for L = 〈public :Bpub; private :Bpvt〉 we let

Llet L in C1 ‖ · · · ‖ CkM = prefix
(∥∥k

t=1
LCtMclientt LBpub;BpvtM

)
.

For a trace τ ∈ LP M, let client(τ) and lib(τ) be the projection of τ to client and
library actions respectively, i.e., those outside or inside method invocations (the corres-
ponding calls and returns included in both cases). We lift client and lib to sets of traces
as expected.

We write σ  client
c,t σ′ if σ  c,t σ

′ and dom(σ), dom(σ′) ⊆ Locsclient. We also let

σ  client
call m(z),t σ

′ iff σ′ = σ, σ(argt) = z;

σ  client
ret m(z),t σ

′ iff σ′ = σ[argt 7→ z];

Then for τ ∈ client(JP K) we define JτKclient : H → {true, false} as follows:

JεKclientσ = true;

J(t, a) τKclientσ = if (∃σ′. σ  client
a,t σ′ ∧ JτKclientσ′ = true) then true else false.

Let transform(τ) be the trace τ with call replaced by call? and ret replaced by ret!.
Finally, for

P = let L in C1 ‖ . . . ‖ Cn
we let

JP K = {τ ∈ LP M | Jclient(τ)Kclient(λx ∈ Locsclient. 0) = true ∧
Jtransform(lib(τ))KL(λx ∈ LocsL. 0) = true}.

Assumptions on Transformers. We state the properties we require of the transformers
 L
c,t and client

c,t . Let σ, σ′ ∈ Locs ⇀ Z be such that dom(σ) ∩ dom(σ′) = {argt}t∈T ,
and ∀t ∈ T . σ(argt) = σ′(argt). In this case we say that σ · σ′ is defined, denoted
(σ1 · σ2)↓, and let (σ · σ′)(x) = σ(x) if x ∈ dom(σ), and (σ · σ′)(x) = σ′(x)
otherwise. We require that any transformer L

c,t satisfy the following properties:

–

∀σ, σ′, t, t′, z. t′ 6= t ∧ σ  L
c,t σ

′ =⇒
σ′(argt′) = σ(argt′) ∧ σ[argt′ 7→ z] L

c,t σ
′[argt′ 7→ z].

– whenever (L2 ◦ L1)↓, then

σ2  
L2
c,t σ

′
2 =⇒

(∀σ1.dom(σ1) = LocsL1
∧ (σ2 · σ1)↓ =⇒

(σ2 · σ1) (L2◦L1)
c,t (σ′2 · σ1[argt 7→ σ′2(argt)]))



σ1  
L1
c,t σ

′
1 =⇒

(∀σ2.dom(σ2) = LocsL2
∧ (σ2 · σ1)↓ =⇒

(σ2 · σ1) (L2◦L1)
c,t (σ2[argt 7→ σ′1(argt)] · σ′1))

– whenever σ  L2◦L1
c,t σ′, then

∃.σ2, σ′2, σ′2, σ′1. (dom(σ2), dom(σ′2) = LocsL2
∧ dom(σ1), dom(σ′1) = LocsL1

∧
(σ2 · σ1) = σ, (σ′2 · σ′1) = σ′))∧(

(σ2  
L2
c,t σ

′
2 ∧ σ′1 = σ1[argt 7→ σ′2(argt)])∨

(σ1  
L1
c,t σ

′
1 ∧ σ′2 = σ2[argt 7→ σ′2(argt)])

)
We also require that the last two properties hold if the operator ◦ is replaced by ].

B Proofs

In this section we will state the lemmas needed to prove the results stated in the paper,
then giving an outline of the proofs for such results. Proofs of the presented lemmas
will be given in separate appendices.

When it will be more convenient, we will use different definitions of linearisability,
which can be esasily proven to be equivalent to those presented in the text. For general
linearisability, the alternative definition we will use is the following:

DEFINITION 8 Given two histories h1, h2, let h1 ' h2 ⇐⇒ ∀t ∈ T . h1|t = h2|t. We
say that h1 v h2 if and only if

(i) h1 ' h2, and
(ii) there exists a permutation π : N→ N such that

∀i. h1(i) = h2(π(i))∧(∀j. i < j∧((h1(i) ∈ Act!∧h1(j) ∈ Act?)) =⇒ π(i) < π(j)).

The definition for the encapsulated case is similar.
Often it will be convenient to consider a relationR between histories as the dual of

some other relationR′ between sequences of actions in Act, provided that the image of
the elements appearing in R′ under the operation · is a subset of Hist. That is, we let
R = R′, whereR′ is the smallest relation such that h1 R h2 implies h1 R′ h2.

Strong Linearisability Henceforth we will work with a stronger version of linearis-
ability. This takes into account call and returns of public abstract methods which can
be performed by clients, which are treated as both !-actions and ?-actions. However
we show that, in our language, strong linearisability and parameterised linearisability
coincide.

First, we extend the set of actions TrAct with actions from the set
{(t, ι), (t,ExtCallm(z)), (t,ExtRetm(z)) | m ∈ M, t ∈ T , z ∈ Z}, and we de-
note the resulting set as TrAct+. The set of traces generated by actions in such a set is
denoted as Traces+. Given a library L : M →M ′, we will use actions of the form (t, ι)
to denote thread t executing some primitive command outside library L (for example,
in the client or in the library parameter), t,ExtCallm(z) to denote the client calling the
methodm ∈M ∩M ′ in thread t, and t,ExtRetm(z) to denote a methodm ∈M ∩M ′,



previously called by the client in thread t, returning value z. The set of external calls and
returns is denoted as ExtAct. We let Act!+ = Act! ∪ ExtAct, Act?+ = Act? ∪ ExtAct.

For L = 〈public :Bpub; private :Bpvt〉, we let

LLM+ = prefix

⋃
k>0

k∥∥∥∥
t=1

(t, ι) ∪ ⋃
z,z′∈Z

m∈M ′\M

(t, call?m(z)) LBpub;BpvtM+(m, t) (t, ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(t,ExtCallm(z))(t, ι)∗(t,ExtRetm(z′))



∗

where LBpub;BpvtM+(m, t) is defined as the least fixpoint of a functional F+
L , defined

by replacing the clause (FLη)(m, t) = {ε} with (F+
L η)(m, t) = {(t, ι)}∗ in Figure

5; also, the clause (FLη)(m, t) = ∅ for those methods not appearing in the library is
replaced with (F+

L η)(m, t) = {(t, ι)}∗.
The interpretation J·K+L of traces in Traces+ is defined as in §4; however, we have

to define the transformers for the newly introduced actions. We let

σ  L
ExtCallm(z),t σ

′ iff σ′ = σ[argt 7→ z] σ  L
ExtRetm(z),t σ

′ iff σ′ = σ[argt 7→ z]

σ  L
ι,t σ

′ iff σ′ = σ[argt 7→ z]

It is important to note that transformers of ι-actions allow the argument value of
the thread executing the command to be changed. This is because, as we said, ι-actions
correspond to commands executed by some external entity, and we have to reflect the
fact that the location argt could be affected by the execution of such a command.

Finally, the set of Augmented Traces T (L)+ for a library L is defined as(
{τ ∈ LLM+(λl ∈ LocsL.0) | JτK+ = true}

)
while the set of its Augmented Histories is defined as

JLK+ = history+(T (L))

where history+(τ) denotes the projection of τ to elements in Act+ = Act ∪ ExtAct.

LEMMA 1 ∀L : M →M ′ :

(i) JLK ⊆ JLK+,
(ii) JLK+|Act⊆ JLK.

LEMMA 2 Let L : M →M ′, h ∈ JLK+:

(i) if h = (h1)(h2), h1|t is complete and h2|t= ε, then (h1)(t,ExtCallm(z))(h2) ∈
JLK+ for any m ∈M ∩M ′, z ∈ Z,

(ii) if h = (h1)(h2)(h3), h1|t is complete, h2|t= ε, then
(h1)(t,ExtCallm(z))(h2)(t,ExtRetm(z′))(h3) ∈ JLK+ for any m ∈ M ∩M ′,
and z, z′ ∈ Z.



We are now ready to state our notion of strong linearisability.

DEFINITION 9 Let h1, h2 be two augmented histories. We say that h1 v+ h2 if h1|t=
h2|t for any t ∈ T , and there exists a permutation π such that (∀i.h1(i)) = h2(π(i))∧
(∀j ≤ k(h(j) ∈ Act!+ ∧ h(k) ∈ Act?+) =⇒ π(k) < π(k)).

Strong linearisability is lifted to libraries in the usual way. L1 v+ L2 if ∀h1 ∈
JL1K+.∃h2 ∈ JL2K+.h1 v+ h2.

Strong linearisability takes into account external call and returns. However, in a
library L, external calls and returns happen independently from other activities, and can
be rearranged arbitrarily, as long as the thread-local behaviour of libraries is preserved.
Hence, they do not add any discriminating power to linearisability.

THEOREM 7 For any two libraries L1, L2 : M → M ′, L1 v+ L2 if and only if
L1 v L2.

Composition and Decomposition of Augmented Traces Let us fix two libraries L1 :
M → M ′ and L2 : M ′ → M ′′ such that (L2 ◦ L1)↓. Our aim is to decompose an
augmented trace τ ∈ T (L2 ◦ L1)+ in two traces τ⇑ ∈ T (L2)+ and τ⇓ ∈ T (L1)+;
these two traces reflect the behaviour described by τ from the point of view of L2, L1,
respectively. Also, given two traces τ ′′ ∈ T (L2)+, τ ′ ∈ T (L1)+ which describe the
behaviour of a trace τ ∈ T (L2◦L1)+, from the point of view ofL2 andL1, respectively,
we want the latter trace to be determined uniquely from τ ′′, τ ′. In other words, we want
to define an operator ◦ such that τ ′′ ◦ τ ′ = τ .

To accomplish this task, in Figure 7 we define a Constraint Automaton A. This
automaton uses two variables nc2, nc1, which store the number of pending call invoc-
ations of methods implemented in the libraries L2 and L1, respectively. The set of its
states is States = {Client, L2, L1,Param}; a configuration (s, v2, v1) for A consists of
a state s and two values v2, v1 for the two variables nc2, nc1. The actions performed
by A are triples of the form (α, β, γ), which describe how actions of a single threaded
program are seen from the point of view of L2, L1 and L2 ◦ L1, repsectively.

Whenever there exists a path (α1, β1, γ1) · · · (αn, βn, γn) which can be produced in
A, starting from the configuration (Client, 0, 0), then let ψ′′ = α1 ·αn, ψ′ = β1 ·βn and
ψ = γ1 ·γn. We define ψ⇑ = ψ′′, ψ⇓ = ψ′ and ψ′′ ◦ψ′ = ψ. Note that these operations
take into account unobservable activities, i.e. ι-actions. Later we will see how we can
reason on composition properties of traces that abstract from such actions.

LEMMA 3 The (partial) operators (·)⇑, (·)⇓, (·◦·) are well-defined. Also, for any string
of actions ψ such that a path (·, ·, ψ) can be produced from (Client, 0, 0) in A, then
ψ⇑ ◦ ψ⇓ = ψ.

The operators (·)⇑, (·)⇓ and (· ◦ ·) can be easily extended to augmented traces in
Traces+.

DEFINITION 10 Let τ ∈ Traces+ be such that τ |t⇑ (τ |t⇓ ) is defined for any t ∈ T .
Then τ⇑ (τ⇓ ) is defined as the unique trace such that

(i) (τ⇑)|t= (τ |t)⇑ ((τ⇓)|t= (τ |t)⇓ ) ,
(ii) for any t ∈ T , and for any i = 1, · · · , |τ , τ(i) = (t, ·) =⇒ (τ⇑)(i) = (t,−)

( (τ⇓)(i) = (t,−) ).
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Label Action in L2 Action in L1 Action in L2 ◦ L1 Constraint Call counters
a ι ι ι · ·
b call?m(z) ι call?m(z) m ∈ (M ′′ \M ′) nc2 := 1;nc2 := 0
c ExtCallm(z) call?m(z) call?m(z) m ∈ (M ′′ ∩M ′) \M nc2 := 0;nc1 := 1
d ExtCallm(z) ExtCallm(z) ExtCallm(z) m ∈M ′′ ∩M ′ ∩M nc2 := 0;nc1 := 0

e ret!m(z) ι ret!m(z) m ∈ (M ′′ \M ′)∧ nc2 := 0
∧nc2 = 1

f call!m(z) call?m(z) callm(z) m ∈M ′ \M nc2 ++;nc1 := 1
g1 c ι c · m /∈M ′
g2 callm(z) ι callm(z) m /∈M ′ nc2 ++
g3 retm(z) ι retm(z) (nc2 > 1) nc2 −−
h call!m(z) ExtCallm(z) call!m(z) m ∈M ′ ∩M nc2 ++

i ExtRetm(z) ret!m(z) ret!m(z) m ∈ (M ′′ ∩M ′) \M∧ nc1 := 0
∧nc2 = 0 ∧ nc1 = 1

j ret?m(z) ret!m(z) retm(z) m ∈M ′ \M∧ nc2 −−;nc1 := 0
∧nc2 > 1 ∧ nc1 = 1

k1 ι c c · ·
k2 ι callm(z) callm(z) m /∈M nc1 ++
k3 ι retm(z) retm(z) nc1 > 1 nc1 −−
l ι call!m(z) call!m(z) m ∈M nc1 ++;

m ret?m(z) ExtRetm(z) ret?m(z) m ∈M ′ ∩M∧ nc2 −−
∧nc2 > 1 ∧ nc1 = 0

n ι ret?m(z) ret?m(z) m ∈M∧ nc1 −−
∧nc1 > 1

o ExtRetm(z) ExtRetm(z) ExtRetm(z) m ∈M ′′ ∩M ′ ∩M∧
∧nc2 = 0 ∧ nc1 = 0 ·

p ι ι ι · ·

Figure 7. A constraint automaton representing how the entities executing code change.



Let τ2, τ1 ∈ Traces+ be such that |τ2| = |τ1|, (τ2|t) ◦ (τ1|t) is defined for any t ∈ T ,
and ∀i = 1, · · · , |τ2|.τ2(i) = (t, ·) =⇒ τ1(i) = (t,−). Then τ2 ◦ τ1 is defined as the
unique trace τ such that τ |t= (τ2|t) ◦ (τ1|t), and ∀i = 1, · · · , |τ2|.τ2(i) = (t, ·) =⇒
τ(i) = (t,−).

LEMMA 4 The operators (·)⇑, (·)⇓ and (· ◦ ·) are well defined for traces in Traces+.
Further, if τ⇑ and τ⇓ are defined, we obtain that (τ⇑ ◦ τ⇓) = τ .

The decomposition operators ⇑ and ⇓ are correct, in the sense that they project a
trace τ ∈ T (L2 ◦ L1)+ into traces of L2, L1, respectively.

LEMMA 5 For any τ ∈ T (L2 ◦ L1)+, τ⇑ ∈ T (L2)+ and τ⇓ ∈ T (L1)+.

For the operator ◦, the situation is slightly more complicated. In fact, this operator
is defined only for those traces τ2, τ1 which describe a possible behaviour of L2 ◦L1 as
seen from the point of view of L2 and L1. This definition, however, does not abstract
from unobservable activities or, in general, from actions which are not recorded into
augmented histories. However, for our purposes it is necessary to compose two traces
τ2, τ1 whenever their projections to augmented histories agree with two other traces
τ ′2, τ

′
1 for which τ ′2 ◦ τ ′1 is defined. Further, the composite traces also should agree on

their projection to augmented histories.

DEFINITION 11 Let τ, τ ′ be two augmented traces in Traces+. We say that τ ≈ τ ′ if
history+(τ) = history+(τ ′).

LEMMA 6 Let τ2 ∈ T (L2)+, τ1 ∈ T (L1)+. If τ = τ2 ◦ τ1 is defined, then τ ∈ T (L2 ◦
L1)+.

Also, let L′2 : M ′ → M ′′ be such that (L′2 ◦ L1)↓. For any τ ′2 ∈ T (L′2)+.τ ′2 ≈ τ2
there exists τ ′′2 ∈ T (L′2)+ and τ ′1 ∈ T (L1) such that (τ ′′2 ◦τ ′1) is defined, and (τ ′′2 ◦τ ′1) ≈
τ .

Contextuality of Linearisability The main property that we need to prove, to show
that parameterised linearisability is contextual, is that libraries are pre-linearisation
closed. Formally, this can be stated as follows:

LEMMA 7 Let L : M → M ′, and suppose that h ∈ JLK+. Then ∀h′ : h′ v+ h.h′ ∈
JLK+.

Proof of Theorem 2: We actually prove contextuality of v+; then the result follows
from Theorem 7. We only give the details for (i); the proof of (ii) can be performed in a
similar style.

Let h ∈ JL2 ◦ LK+. By definition there exists a trace τ ∈ T (L2 ◦ L)+ such that
history+(τ) = h. By Lemma 5 we have that τ⇑ ∈ T (L2)+, and τ⇓ ∈ T (L)+.

Let h2 = history+(τ ⇑). Since L2 v+ L1, we may find a history h1 ∈ JL1K+ such
that h2 v+ h1.

By Lemma 7 we also have that h2 ∈ JL1K+. That is, there exists a trace τ ′′ ∈
T (L1)+ such that history+(τ ′′) = h2 = history+(τ⇑). Therefore τ ′′ ≈ τ⇑.

By Lemma 6 we know that there exist τ ′ ≈ τ⇓ and τ ′′′ ≈ τ ′′ ≈ τ⇑ such that
τ ′′′ ∈ T (L1)+, τ ′ ∈ T (L)+ and τ ′′′ ◦ τ ′ ≈ τ ; that is, history+(τ ′′′ ◦ τ) = h. Now
note that (τ ′′′ ◦ τ ′) ∈ T (L1 ◦ L)+, hence h ∈ JL1 ◦ LK+. Now it is trivial to note that
h v+ h. �



For encapsulated linearisability and up-to linearisability, we assume that libraries
have type M → M ′, where M ′ ∩ M = ∅. One implication of this assumption is
that, even in the augmented semantics of libraries, there are no actions of the form
(t,ExtCallm(z)), or (t,ExtRetm(z)) in the sets JL2K+ and JL2 ◦L1K+ (note that such
actions can still appear in JL1K+); in general, for libraries of type L : M → M ′, with
M ∩M ′, we have that JLK = JLK+.

We first prove contextuality of up-to linearisability, then we show that contextuality
of encapsulated linearisability can be obtained as a special case of this result. The proof
differs in style from that of the previous theorems, as this time it will be necessary to
rearrange the abstract actions of a library, according to a relation R. The validity of
the theorem relies strongly on the assumption that the client interactions of the para-
meter library can also be rearranged according to the relation R̄, and that invocations
of public, abstract methods, do not depend on the behaviour of implemented methods
in a library.

DEFINITION 12 Let,H1, H2 be two sets of histories. We defineH1 on H2 as the largest
set such that, whenever h ∈ (H1 on H2) then

1. h is valid, meaning that for any t ∈ T , h|t can be generated by the grammar SHist
of Definition 1,

2. there exists two histories h1 ∈ H1, h2 ∈ H2 and two strictily monotone func-
tions f1 : {1, · · · , |h1|} → {1, · · · , |h|}, f2 : {1, · · · , |h2|} → {2, · · · , |h|}, with
img(f1) ∩ img(f2) = ∅, img(f1) ∪ img(f2) = {1, · · · , |h|}, such that for any
i = 1, · · · , |h1|, h1(i) = h(f1(i)) and for any i = 1, · · · , |h2|, h2(i) = h(f2(i)).

Definition 12 states that histories in H1 on H2 can be partitioned in two sub-
histories, one belonging to H1, the other belonging to H2.

DEFINITION 13 Given two relations R1, R2 between histories, we define R1 ⊕ R2

to be the largest relation such that, whenever h ∈(R1 ⊕R2) h′, then there exist
h1, h

′
1, h2, h

′
2 such that h ∈ {h1} on {h2}, h1 R1 h

′
1, h2 R2 h

′
2 and h′ ∈ {h′1} on

{h′2}.

Next, we define how in a library of the form L2 ◦L1, the interactions of L2 with its
library parameter have to agree with the interactions of L1 with its client library.

DEFINITION 14 For any action φ ∈ Act+, we define

1. φ↑ as the function such that φ↑ = φ if φ ∈ Act, (t,ExtCallm(z))↑ =
(t, call?m(z)) and (t,ExtRetm(z))↑ = (t, ret!m(z)).

2. φ↓ as the function such that φ↓ = φ if φ ∈ Act, (t,ExtCallm(z))↓ = (t, call!m(z))
and (t,ExtRetm(z))↓ = (t, ret?m(z)).

The operations h↑, h↓ for histories are defined by lifting the respective operations
for actions.

LEMMA 8 Let L1 : M → M ′, L2 : M ′ → M ′′ be such that M ′ ∩M ′′ = ∅, and
(L2 ◦ L1)↓. For any τ2 ∈ T (L2)+, τ1 ∈ T (L1)+ such that τ2 ◦ τ1 is defined, then
(τ2)|AbsAct = (τ1|ClAct+)↑.

Also, suppose that (τ2) ∈ T (L2)+, (τ1) ∈ T (L1)+ are such that (τ2)|AbsAct =
(τ1|ClAct+)↑. Then there exist τ ′2 ∈ T (L2)+, τ ′2 ≈ τ2, τ ′1 ∈ T (L1)+, τ ′1 ≈ τ1 such that
τ ′2 ◦ τ ′1 is defined, (τ ′2 ◦ τ ′1)|ClAct= τ ′2|ClAct and (τ ′2 ◦ τ ′1)|AbsAct= (τ ′1|AbsAct+)↓.



Below we prove a contextual property of up-to linearisability, which is more gen-
eral than the one stated in Theorem 4. Specifically, we relax the constraint that, in a
composite library, the inner component requires to have no abstract methods.

THEOREM 8 Let L1, L2 : M → M ′ be two libraries with M ∩ M ′ = ∅. Let also
L : M ′′ → M be such that (L1 ◦ L)↓, (L2 ◦ L)↓. Let ActM→M ′ be the set of actions
which can appear in histories of type M → M ′. Finally, let R+,R− be the smal-
lest relations such that h R h′ implies (h|Act∅→(M\M′′)) R

+ (h′|Act∅→(M\M′′)), and
(h|Act∅→(M∩M′′)) R

− (h|Act∅→(M∩M′′)).

Then, for any library library L which is
(R+

G
)
− closed, according to some relation

G, then L1 vR L2 implies that (L1 ◦ L) v(G⊕R−) (L2 ◦ L).

Proof. Note that the sets Act∅→(M\M ′′) and Act∅→(M∩M ′′) are disjoint, and they form
a partition of Act∅→M ; as a consequence, whenever h ∈ R then h ∈ R+ ⊕R−.

It is also trivial, from the definition of up-to linearisability, that whenever R ⊆ S ,
then L1 vR L2 implies L1 vS L2. In particular, we have that L1 v(R+⊕R−) L2.

Let now h ∈ JL1◦LK+; sinceM∩M ′ = ∅, and (L1◦L)↓, we also haveM ′′∩M ′ =
∅, which means that h ∈ JL1 ◦ LK (that is, h does not contain external calls or returns).

By definition, there exists τ ∈ T (L1 ◦ L)+ such that τ |Act+= h. By Lemma 5, we
can split τ in τ⇑ ∈ T (L1)+ and τ ⇓∈ T (L2)+, such that (τ⇑) ◦ (τ⇓) = τ .

By Lemma 8, we also know that τ⇑|AbsAct = (τ⇓|ClAct+)↑. Since L1 v(R+⊕R−)
L2, we know that there exists a trace τ2 ∈ T (L2)+ such that (τ⇑)|ClActv (τ2)|ClAct,
and (τ⇑)|AbsAct (R+ ⊕R−) (τ2)|AbsAct.

We let h+1 = (τ⇑)|AbsAct|Act∅→M\M′′ , h
−
1 = (τ⇑)|AbsAct|Act∅→(M∩M′′) ; similarly,

let h+2 = (τ2)|AbsAct|Act∅→(M\M′′) and h−2 = (τ2)|AbsAct|Act∅→(M∩M′′) . We have that
h+1 R+ h+2 , and h−1 R− h

−
2 .

Recall now that, for τ⇓, we have that (τ⇓|ClAct+)↑ = (τ⇑)|AbsAct. Using the facts
that (·)↑ only changes external calls and returns in a history, we get the following:

(τ⇓|ClAct+)↑ = (τ⇑)|AbsAct
(τ⇓|ClAct+)↑|Act∅→(M′\M′′) = [(τ⇑)|AbsAct]|Act∅→(M′\M′′)

(τ⇓)|ClAct = h+1

Similarly, one can show that (τ⇓|ExtAct)↑ = h−1 .
Recall that (τ⇓) ∈ T (L)+, so that by Lemma 1 we obtain that (τ⇓)|Act∈ JLK. Let

h′ = (τ⇓)|Act, h′′ = (τ⇓)|ExtAct. Since the library L is
(R+

G
)
-closed by hypothesis,

h′ ∈ JLK, h′|ClAct= h+1 , and h+1 R+ h+2 , there exists a trace τ ′ ∈ T (L)+ such that
τ ′|ClAct= h+2 , and (h′|AbsAct) G (τ ′|AbsAct).

By Lemma 2 we can extend the trace τ ′ to add external calls and returns arbitrarily,
provided that the resulting trace is still valid. In other words, we can find a trace τL ∈
T (L)+ such that τL|ClAct= h+2 , τL|AbsAct= τ ′|AbsAct and (τL|ExtAct)↑ = h−2 ; Note
that, since external calls and returns can be added arbitrarily, we can also require that
they match the calls and returns to abstract methods contained in τ2: (τL|ClAct+)↑ =

(τ2|AbsAct). At this point, we have the following:

h′|ClAct= h+1 R+ h+2 = τL|ClAct
(h′′)↑ = h−1 R− h

−
2 = (τL|ExtAct)↑



and τ⇓|Act= h′, τ⇓|ExtAct= h′′, we can infer that

τ⇓|Act+(R+ ⊕R−↑ τL|Act+ .

Here the relation R−↑ , is defined for histories of external actions, by letting h1 R−↑ h2
if and only if (h1)↑ R− (h2)↑.

Let us consider the traces (τL) ∈ T (L)+, and τ2 ∈ T (L2)+; the trace τL has been
constructed so that (τL|ClAct+)↑ = (τ2|AbsAct). By Lemma 8 we can find τ ′L ∈ T (L)+

and τ ′2 ∈ T (L2)+ such that τ ′L ≈ τL, τ ′2 ≈ τ2 and (τ ′2◦τ ′L) is defined and in T (L2◦L)+.
Finally, we compare the traces τ and τ ′2 ◦ τ ′L. For client actions, we have

τ |ClActv τ2|ClAct= τ ′2|ClAct= (τ ′2 ◦ τL)|ClAct

For abstract actions, we wish to prove that τ |AbsAct (G ⊕R−) (τ ′2 ◦ τ ′L)|AbsAct. Note
that τ |AbsAct= (τ⇓)|↓

AbsAct+
, so that we only need to show

(i)
τ⇓|AbsAct G τL|AbsAct

(ii)
(τ⇓|ExtAct)↓ R− (τL|ExtAct)↓

to conclude that τ |Actv(G⊕R−) (τ ′2 ◦ τ ′L)|Act).
For (i), we have that

τ⇓|AbsAct = h′|AbsAct G τ ′AbsAct = τL|AbsAct
so that there is nothing to prove. For (ii), we have showed that

(τ⇓)|↑ExtActR
− (τL|ExtAct)↑

But for any history h, which contains only external calls and returns, it is trivial to note
that h↑ = h↓. Therefore we have that

(τ⇓)|↓ExtAct R
− (τL|ExtAct)↓

as we wanted to prove. �

Proof of Theorem 4: This is now a straightforward application of Theorem 8. Let
L1, L2 : M → M ′, L : M ′′ → M be such that M ∩M ′ = ∅,M ′′ ∩M = ∅; suppose
that L is

(R
G
)

closed, and that both (L1 ◦ L)↓ , (L2 ◦ L)↓. Note that we can rewrite any
relation R between histories of type ∅ → M as R ⊕ {(ε, ε)}. Theorem 8 gives that
L1 vR L2 implies that (L1 ◦ L) v(G⊕{(ε,ε)}) (L2 ◦ L), which can be rewritten as
(L1 ◦ L) vG (L2 ◦ L). �

Next, we give a special closure property which is satisfied by any library.

LEMMA 9 Any library L : M →M ′ is
(v
v

)
-closed.

This property alone is not sufficient to prove the contextuality of encapsulated lin-
earisability. We also need to show that, under the hypothesis that M ′ ∩M ′′ = ∅ in a
library of the form L2 ◦L1, if a call to abstract methods invoked by L1 is followed by a
return of an abstract method previously invoked by L2 in a history of L2◦L1, then these
two actions can be swapped and the resulting history is still included in L2 ◦L1. This is
a consequence of the fact that the order of execution of primitive commands executed
by L2 and L1, in two different threads, can be swapped. Formally:



LEMMA 10 Whenever σ2  L2
c2,t2 σ

′
2, σ1  L1

c1,t1 σ
′
1, t1 6= t2 and (σ2 · σ1)↓ then we

have both (σ2 · σ1) L2◦L1
c2,t2  

L2◦L1
c1,t1 σ′2 · σ′), and (σ2 ·σ1 L2◦L1

c1,t1  
L2◦L1
c2,t2 σ′2 · σ′).

Proof. An immediate consequence of the fact that dom(σ1) ∩ dom(σ2) ⊆ {argt}t∈T ,
and t1 6= t2. �

Proof of Theorem 3 (Outline):
(i) This is a direct consequence of Theorem 4, Lemma 9, and Lemma 10. In fact, note

that encapsulated linearisability can be obtained from up-to linearisabilityvR, by
instantiating the the relation R to be exactly v. That is, for L1, L2 : M → M ′

such that M ∩M ′ = ∅, L1 ve L2 if and only if L1 v(v) L2. From theorem

4 and the fact that every library L is
((v)
(v)

)
-closed, Lemma 9, it follows that if

L1 v(v) L2, then (L1 ◦ L) v
(v⊕v) (L2 ◦ L).

More specifically, we have that whenever τ |Act∈ JL1 ◦ LK, there exists τ ′ ∈
T+(L2 ◦ L) such that

(i) τ |ClAct= τ⇑|ClActv τ ′⇑|ClAct= τ ′|ClAct,
(ii) τ |AbsAct ((v)⊕ (v)) τ ′|AbsAct.

Note that in general, the sequencesτ |AbsAct, τ ′|AbsAct may not be histories; how-
ever, we commit an abuse of notation and rewrite condition (ii) as

τ |AbsAct(v ⊕ v) τ ′|AbsAct
Also, we will refer to τ |AbsAct, τ ′|AbsAct as histories, rather than sequences of ac-
tions.
Condition (ii) alone does not guarantee that τ |AbsActv τ ′|AbsAct, which together
with condition (i) would lead to τ |Actve τ ′|Act. Rather, it states that
(a) the histories τ |AbsAct can be split into two sub-histories, corresponding to the

contribution of the libraries L1, L to τ |AbsAct, respectively; these sub-histories
are (τ⇑)|∅→(M∩M ′) (the calls that library L1 performs to methods which are
abstract inL1◦L) and (τ⇓)|AbsAct (the calls thatL performs to methods which
are abstract in L2 ◦ L,

(b) similarly, τ ′|AbsAct can be split in two sub-histories (τ ′⇑)|∅→(M∩M ′) and
(τ ′⇓)|AbsAct,

(c) for such histories, we have that

(τ⇑)|∅→(M∩M ′)v (τ ′⇑)|∅→(M∩M ′)
(τ⇓)|AbsActv (τ ′⇓)|AbsAct

Thus it is possible that in τ , an action of the form (t1, call!m1(z1)), wherem1 has
been invoked by the library L2, precedes an action of the form (t2, ret?m2(z2)),
where the method m2 has been previously invoked by L1. However, the preced-
ence order of such actions is not preserved in τ ′.
Without loss of generality, let us suppose that

τ |Act = h1(t1, call!m1(z1))(t2, ret?m2(z2))h2
τ ′|Act = h′1(t2, ret?m2(z2))(t1, call!m1(z1))h′2

Using Lemma 10 and Corollary 1, presented later, we can construct a trace τ ′′ ∈
T+(L2◦L) such that τ ′′|Act= h′1(t1, call!m1(z1))(t2, ret?m2(z2))h′2 (intuitively,



this is because we can rearrange the order of execution of primitive commands
executed after m2 has been returned and before m1 is being called).
In general, in τ ′|AbsAct, calls to and returns of abstract methods performed by the
library L2, and calls to and returns of abstract methods performed by L1, can be
arbitrarily rearranged, and the resulting history would still be in JL2 ◦ L1K|AbsAct.
That is, we can find a trace τ ′′ ∈ T+(L2 ◦ L1) which satisfies (i)-(iii) above, and
which also preserves the order of calls to abstract methods performed by L2 (L1)
and returns of abstract methods previously invoked by L1 (L2), with respect to τ .
That is, τ |Actve τ ′′|act

.
(ii) This part of the Theorem follows directly from Theorem 4 (ii), by instantiatingR

with (v). �

Compositionality of Linearisability. Next, we turn our attention to proving that the
our notions of linearisability are also compositional. First, a simple result concerning
the decomposition and recomposition of traces, with respect to the operator ]. For a
given library L, we let T (L) = {τ | JτK(λl ∈ LocsL.0) = true}.

LEMMA 11 Let h1 ∈ JL1K, h2 ∈ JL2K, where L1 : M1 → M ′1, L2 : M2 → M ′2 are
two libraries such that (L1]L2)↓. Whenever h ∈ ({h1} on {h2}), then h ∈ JL1]L2K.

Whenever h ∈ JL1 ] L2K, then h|ActM1→M′1
∈ JL1K, h|ActM2→M′2

∈ JL2K. that h1 ∈
JL1K, h2 ∈ JL2K.

Proof of Theorem 5: Given a library L : M → M ′, let Act!M→M ′ be the set of
actions of the form (t, call!m(z)),m ∈ M and (t, ret!m′(z)),m′ ∈ M ′. The sets
Act?M→M ′ is defined similarly. We only give the details for (i); details for the other
cases are similar.

Let L1, L2 : M → M ′ L : ML → M ′L be such that (L1 ] L)↓, (L2 ] L)↓. First,
we prove that L1 v L2 =⇒ (L1 ] L) v (L2 ] L).

Let h ∈ JL1 ] LK). By Lemma 11 we can find two histories h1 ∈ JL1K, hL ∈
JLK, and such that h ∈ {h1} on {hL}. That is, we can assume two strictly monotone
mappings f : {1, · · · , |h1|} → {1, · · · , |h|} and g : {1, · · · , |hL|} → {1, · · · , |h|},
with disjoint images, such that h1(i) = h(f(i)), h2(j) = h(g(j)) for an i ≤ |h1|, j ≤
|hL|.

Since we are assuming that L1 v L2, there exists a history h2 ∈ JL2K.h1 v h2.
By definition, there exists a permutation π : N → N such that h2(i) = (h1(π(i)),
if i < j, h1(i) = (t, ·), h1(j) = (t,−) then π(i) < π(j), and whenever i < j,
h1(i) ∈ Act!M→M ′ , h2(i) ∈ Act?M→M ′ , then π(i) < π(j).

Any trace h′ ∈ {h2} on {hL} is uniquely defined by two strictly monotone func-
tions f ′ : {1, · · · , |h2|} → {1, · · · , |h|} and g′ : {1, · · · |hL|} → {1, · · · , |h|}, with
disjoint images, such that h2(i) = h′(f(i)), hL(j) = h′(g(j)) for an i ≤ |h2|, j ≤
|hL|.

In particular, we consider a trace h′ ∈ {h2} on {hL} such that, for any i, j with
f(i) < g(j), h1(i) ∈ Act! and h2(j) ∈ Act?, then f ′(π(i)) < g′(j). Similarly, if i, j
are such that g(i) < f(j), h2(i) ∈ Act! and h1(j) ∈ Act?, then h(i) < h(j). Intuit-
ively, this property states that the histories h2 and hL are combined so that the preced-
ence order of pairs in the set Act!M→M ′×Act?ML→M ′L in h is preserved in h′; similarly
for pairs in the set Act!ML→M ′L ×Act?M→M ′ . Also, we require that the precedence or-
der of actions performed by the same thread in h is preserved in h′. Note that, since



h′ ∈ {h2} on {hL}, we have that h′|ActM2→M ′2∈ JL2K; similarly, h′|ActML→M′
L

∈ JLK.
By Lemma 11, it is ensured that h′ ∈ JL2 ] LK.

Let π′ be the permutation defined as

π′(i) =

{
f ′(π(f−1(i))) if h(i) ∈ ActM→M ′

g′(g−1(i)) if h(i) ∈ ActML→M ′L

Note that if π′(i) = π′(j) then i = j, since f−1, f ′, π, g−1, g′ are injective (in practice
f−1, g−1 are also partial, though we use them only on elements for which they are
defined). Also, note that for any i = 1, · · · , |h|, h(i) = h′(π′(i)). To prove this, suppose
first that i is such that h(i) ∈ HM→M ′ . In this case f−1(i) is defined, and we get that

h(i) = h1(f−1(i)) = h2(π(f−1(i)) = h′(f ′(π(f−1(i))).

A similar argument follows for the case h(i) ∈ HML→M ′ . It remains to notice that the
functions f ′, g′ have been chosen so that the induced permutation π′ preserves thread
local histories, and the precedence order of pairs in (Act! × Act?) with respect to h.
That is, π′ is a witness permutation to show that h v h′.

We have proved that, whenever L1 v L, (L1 ] L)↓ and (L2 ] L)↓, then (L1 ]
L) v (L2 ] L). Simmetrically, we also have that in this case we also have that if
(L1 v L2), (L ] L1)↓ and (L ] L2)↓, then (L1 ] L2)↓. This is because of ] being
associative.

Now, let L1 v L′1, L2 v L′2, and suppose that both (L1 ] L2)↓, (L′1 ] L′2)↓. From
the statements above, we can conclude that (L1 ] L2) v (L′1 ] L2) v (L′1 ] L′2), as
we wanted to prove. �

Soundness With Respect To Observational Refinement It remains to prove that our
notions of linearisability imply observational refinement. The key lemma to this lies in
readapting the result from [1] to ground libraries of the form L : ∅ →M .

Theorem 1. For any two ground libraries L1, L2 : ∅ → M , L1 Θ L2 =⇒ L1 vobs

L2, where Θ ∈ {v,ve,v{(ε,ε)}}.

Proof. Note that, for ground libraries, the three notions of linearisability considered are
equivalent to classical linearisability, as defined in [1]. The result follows then from a
direct application of Corollary 40 in [1]. �

Proof of Theorem 6: We only prove statement (iii); the proofs for statements (i) and
(ii) are analogous, using theorems 2 and 3 in lieu of Theorem 4.

Let L1, L2 : M → M ′ be two libraries. Suppose that L1 vR L2, for some binary
relation R; then, for any library R-closed ground library L : ∅ → M such that (L1 ◦
L)↓, Theorem 4 ensures that (L1 ◦ L) v{(ε,ε)} (L2 ◦ L). Note that the latter can be
rewritten as (L1◦L) v (L2◦L). The libraries (L1◦L), (L2◦L) are both ground libraries
of type ∅ → M ′, so that by Theorem 1 we know that, for any client (C1 ‖ . . . ‖Cn),
then

obs(Jlet (L1 ◦ L) in C1 ‖ . . . ‖ CnK) ⊆ obs(Jlet (L2 ◦ L) in C1 ‖ . . . ‖ CnK).

Since the library parameter L has been chosen to be an arbitrary R-closed library, and
the client (C1 ‖ . . . ‖ Cn) has also been chosen arbitrarily, we may conclude that
L1 vRobs L2. �



B.1 Linearisability Coincides with Strong Linearisability

LEMMA 12 Let L : M →M ′; then

(i) LLM ⊆ LLM+,
(ii) LLM+ |Act⊆ LLM.

Proof. Follows immediately from the definition of L·M+. �

LEMMA 13 For any L : M →M ′,

(i) ∀τ ∈ LLM+, σ ∈ H.JτK+Lσ = Jτ |TrActKLσ,
(ii) ∀τ ∈ LLM, τ ′ ∈ LLM+.τ ′|TrAct= τ =⇒ ∀σ ∈ H.JτKLσ = Jτ ′K+Lσ.

Proof (Outline).

(i) It suffices to note that, if τ ∈ LLM+, then actions of the form (t, α), with α ∈
{ι,ExtCallm(z),ExtRetm(z) | m ∈ M ′, z, z′ ∈ Z} never happen within two
actions (t, ·) ∈ Act? and (t, ·) ∈ Act!.
whenever σ  L

α,t σ
′, then σ′ = σ[argt 7→ z], for some z ∈ Z. Then we can show

that whenever
σ0  

L
α1,t σ1  

L
α2,t · · · 

L
αn,t σn

where αi ∈ {ι,ExtCallm(z),ExtRetm(z) | m ∈ M ′, z, z′ ∈ Z}, then σn =
σ0[argtN → z]. This fact can be used to prove that σ  L

call?m(z),t σ
′ if and only

if σ  L
α1,t σ1  

L
α2,t · · ·  

L
αn,t σ  

L
call?m(z),t σ

′. Similarly, σ  L
ret!m(z),t σ

′ if
and only if σ  L

ret!m(z),t σ0  
L
α1,t · · · 

L
αn,t σn = σ′. In both cases we assume

that αi ∈ {ι,ExtCallm(z),ExtRetm(z) | m ∈ M ′, z, z′ ∈ Z}. Thus, actions
ι,ExtCallm(z),ExtRetm(z) in a trace τ ∈ JLK+ do not affect the evaluation
function; that is, JτK+L = Jτ |ActKL.

(ii) This follows immediately from the statement above. �

Proof of Lemma 1: This is a direct consequence of lemmas 12 and 13. In fact, for any
τ ∈ JLK we have that τ ∈ LLM, hence τ ∈ LLM+. Now

JτK+L(λl ∈ LocsL.0) = Jτ |ActKL(λl ∈ LocsL.0) = JτKL(λl ∈ LocsL.0) = true

hence τ ∈ JLK+L . Also, for any τ ∈ JLK+, we have that τ ∈ LLM+, which gives τ |Act∈
LLM. Also, Jτ |ActKL = JτK+L = true, hence τ |Act∈ JLK. �.

Proof of Lemma 2: This is a direct consequence of Lemma 1. We give the details
only for the second statement, as the first is easier to prove. If h = (h1)(h2)(h3),
then there exists a trace τ1, τ2, τ3 such that (τ1)(τ2)(τ3) ∈ LLM+, J(τ1)(τ2)(τ3)K(λl ∈
LocsL.0) = true and history+((τ1)(τ2)(τ3)) = (h1)(h2)(h3). Also, since h1|t is
complete, so is τ1|t, so that τ1(ExtCallm(z)) ∈ LLM+. Now, since τ1|t is complete,
τ2 immediately follows τ1 in (τ1)(τ2)(τ3), and τ2|t= ε, we have that τ2 ⊆ (t, ι∗).
This gives that (τ1)(t,ExtCallm(z))(τ2)(t,ExtRetm(z′)) ∈ LLM+, from which
(τ1)(t,ExtCallm(z))(τ2)(t,ExtRetm(z′))(τ3) ∈ LLM+. Since J(τ1)(τ2)(τ3)KL(λl ∈
LocsL.0) = true, and [(τ1)(t,ExtCallm(z))(τ2)(t,ExtRetm(z′))(τ3)]|Act=
(τ1)(τ2)(τ3) we also have that J(τ1)(t,ExtCallm(z))(τ2)(t,ExtRetm(z′))(τ3)KL(λl ∈
LocsL.0) = true, hence history+((τ1)(t,ExtCallm(z))(τ2)(t,ExtRetm(z′))(τ3)) =
(h1)(t,ExtCallm(z))(h2)(t,ExtRetm(z′))(h3) ∈ JLK+. �



Proof of Theorem 7:

(v+) implies (v): Let us first show that strong linearisability implies linearisability.
Let L1, L2 : M →M ′ be such that L1 v+ L2. Suppose that h ∈ JL1K; we need to
show that there exists h2 ∈ JL2K such that h1 ⊆ h2. By Lemma 1(i) we know that
h1 ∈ JL1K+, so we can apply the hypothesis to infer a history h2 ∈ JL2K+ such that
h1 v+ h2. This constraint implies that h2|t= h1|t for all t ∈ T ; Since h1 ∈ JL1K,
it does not contain any action in ExtAct, nor does h2. That is, h2|Act= h2, and by
Lemma 1(ii) we have that h2 ∈ JLK. Finally, the permutation π used to prove that
the order of pairs of actions in Act!+ × Act?+ in h1 is preserved in h2, can also be
used to prove that the order of pairs of actions in Act!× Act? in h1 is preserved in
h2. That is, h1 v h2.

(v+) implies (v): Suppose that L1 v L2. Let h1 ∈ JL1K+; we need to find h2 ∈
JL2K+ such that h1 v+ h2. By Lemma 1(ii) we know that h′1 = h1|Act∈ JL1K.
Since h′1 := h1|Act, there exists a strictly monotone function f : {1, · · · , |h′1|} →
{1, · · · , |h1|} such that h1(f(i)) = h′1(i). Also, given hext := h1|ExtAct, we can
find a function g : {1, · · · , |hext|} → {1, · · · , |h1|} such that h1(g(i)) = hext(i);
further, the images of f and g are disjoint.
By the hypothesis L1 v L2 we can find h′2 ∈ JL2K such that h′1 v h′2. There-
fore, h′1|t= h′2|t for any thread t, and there exists a permutation π which pre-
serves the order of pairs in Act! × Act?, with respect to h′1, in h′2. Now, let
f ′ : {1, · · · , |h′2|} → {1, · · · , |h1|}, g′ : {1, · · · , |hext|} → {1, · · · , |h1|} be two
strictly monotone functions, with disjoint images, such that if
(i) if i, j are two indexes such that f(i) < g(j), and h1(f(i)) = (t, α), h2(g(j)) =

(t, β), then i < j,
(ii) if i, j are such that g(j) < f(i), and h2(g(j)) = (t, α), h2(f(i)) = (t, β), then

g′(j) < f ′(i),
(iii) if i, j are two indexes such that f(i) < g(j), and h1(f(i)) ∈ Act!, then

(f ′(π(i)) < g′(j),
(iv) if i, j are two indexes such that g(j) < f(i), and f(i) ∈ Act?, then g′(j) <

f ′(π(j)).
Consider the history h2 obtained by letting h2(f ′(i)) = h′2(i), h2(g′(j)) = hext(j).
The first two conditions state that h2 preserves the projections of h1 to thread-
local traces, while the last two conditions state that h2 preserves the order of pairs
in (Act! × ExtAct) ∪ (Act? × ExtAct), with respect to h1. Also, since h2 has
been constructed from a history which linearises h1|Act, preserving the order of its
actions, it also preserves the order of pairs of in (Act! × Act?). We may conclude
that h1 v+ h2.
It remains to show that the augmented history h2 we have constructed belongs to
JL2K+. To this end, we need to show that
(i) if h2 = (ha)(t,ExtCallm(z))(hb) then (ha)|t is complete, and either hb|t= ε

or hb|t= (ExtRetm(z′))(hc)

(ii) whenever h2 = (hb)(t,ExtRetm(z′))(hc) then hb|t= (ha)(t,ExtCallm(z)).
Then the result follows from iterated applications of Lemma 2 to the augmented
history h′2 ∈ JL2K. The proof of the two statements above is trivial, as h2|t= h1|t
for any thread t, and the two properties above are satisfied by h1|t. �



B.2 Decomposition and Composition of Histories

Throughout this section we will work extensively with the constraint automaton A,
defined in Figure 7. It is therefore convenient to introduce some notation. We remark
that we assume the library L1 : M ′′ → M ′, L2 : M ′ → M to be fixed, and that
(L2◦L1)↓. When these assumptions are dropped, the notation introduced in this section
has to be made parametric in the set of methods M ′, which cannot be inferred from the
type M →M ′′ of the composite library (L2 ◦ L1).

For a given configuration (s, v2, v1) of the automaton A, we write

(s, v2, v1)
(α,β,γ)
−−−−−−→ (s′, v′2, v

′
2) if in configuration (s, v2, v1) the action (α, β, γ)

is enabled, according to the transitions described in Figure 7, and such a transition

leads to the configuration (s′, v′2, v
′
2). Otherwise, we write (s, v2, v1)

(α,β,γ)
−−−−−−→6 .

Given a configuration (s0, v02 , v
0
1) and a triple of strings (ψ′′, ψ′, ψ) =

(α1 · · ·αn, β1 · · ·βn, γ1 · · · γn), we write (s0, v02 , v
0
1)

(ψ′′,ψ,ψ)
========⇒ (sn, vn0 , v

n
1 ) if and

only if

(s0, v02 , v
0
1)

(α1,β1,γ1)−−−−−−−−−→ (s1, v12 , v
1
1)

(α2,β2,γ2)−−−−−−−−−→ · · ·
(αn,βn,γn)−−−−−−−−−→ (sn, vn2 , v

n
1 )

In this case we say that the string (ψ′′, ψ′, ψ) is accepted by A(s,v02 ,v
0
1)

. We write

(s, v2, v1)
(ψ′′,ψ′,ψ)

========⇒ if there exists (s′, v′2, v
′
1) such that (s, v2, v1)

(ψ′′,ψ′,ψ)
========⇒

(s′, v′2, v
′
1).

We can now give the formal definition of the operators ⇑,⇓ and ◦, for sequences of
actions ψ = α1 · · ·αn.

DEFINITION 15 Given a triple of strings (ψ2, ψ1, ψ) such that (s, v2, v1)
(ψ2,ψ1,ψ)

========⇒,
we let ψ⇑(s,v2,v1) = ψ2 and ψ⇓(s,v2,v1) = ψ1. If (s, v2, v1) = (Client, 0, 0) then we
define ψ⇑ = ψ⇑(Client,0,0) and ψ⇓ = ψ⇓(Client,0,0).

Given a string (ψ′′, ψ′, ψ) such that (s, v2, v1)
(ψ′′,ψ′,ψ)

========⇒, we define ψ′′ ◦ψ′ = ψ.

PROPOSITION 1 If (s, v2, v1)
(α1,β1,γ)−−−−−−−−→ (s1, v

1
2 , v

1
1) and (s, v2, v1)

(α1,β1,γ)−−−−−−−−→
(s2, v

2
2 , v

2
1 , then (α1, β1) = (α2, β2) and (s1, v

1
2 , v

1
1) = s2, v

2
2 , v

2
1).

Proof. It suffices to perform a case analysis over the transitions defined for any
configuration(s, v2, v1) in Figure 7. Details are left to the reader. �

PROPOSITION 2 If (s, v2, v1)
(α,β,γ1)−−−−−−−→ (s1, v

1
2 , v

1
1) and (s′, v′2, v

′
1)

(α,β,γ2)−−−−−−−→
(s2, v

2
2 , v

2
1), then γ1 = γ2 and (s′, v′2, v

′
1) = (s, v2, v1) implies that (s2, v

2
2 , v

2
1) =

(s2, v
2
2 , v

2
1).

Proof. By a case analysis over the transitions defined for A in Figure 7. In partic-
ular, note that the only actions which agree in the first two components are (a) -
(Client, v2, v1) → (ι, ι, ι) - and (p) - (Param, v2, v1) → (ι, ι, ι) - which also agree
on the third one. �



Proof of Lemma 3: To prove that ⇑,⇓ are well defined, It suffices to prove that

whenever (s, v2, v1)
ψ′2,ψ

′
1,ψ)========⇒ (s′, v′2, v

′
1), and (s, v2, v1)

ψ′′2 ,ψ
′′
1 ,ψ)========⇒ (s′′, v′′2 , v

′′
1 ),

then ψ′′2 = ψ′2, and ψ′′1 = ψ′1. This can be done via a straightforward induction over |ψ|,
using Proposition 1.

To prove that ◦ is well defined, it suffices to show that whenever

(s′, v′2, v
′
1)

ψ2,ψ1,ψ
′)

========⇒ and (s′′, v′′2 , v
′′
1 )

(ψ2,ψ1,ψ
′′)

=========⇒, then ψ′′ = ψ′. This can be
proved by induction over |ψ|, using Proposition 2.

Finally, if ψ is such that ψ⇑, ψ⇓ are defined, then (Client, 0, 0)
(ψ⇑,ψ⇓,ψ)

=========⇒ by
definition. Also, by Definition of ◦, we get that (ψ⇑) ◦ (ψ⇓) = ψ. �

In the following, we let (t, ψ)⇑ = (t, ψ⇑), provided that the latter is defined. (t, ψ)⇓
and (t, ψ1) ◦ (t, ψ2) are defined similarly.

Proof of Lemma 4: This is a consequence of Lemma 3, and the definition of ⇑,⇓, · for
augmented traces. Suppose that τ1, τ2 satisfy the constraints required by the definition
of τ⇑. We need to show that τ1 = τ2. To this end, let i : 1 ≤ i ≤ |τ |. If τ1(i) = (t, α1),
then τ2(i) = (t, β1), by the definition of ⇑. Also, let f1, f2 : {1, · · · , |(τ |t)|} →
{1, · · · , |(τ)|} be the strictly monotone functions such that (τ1|t)(i) = τ1(f1(i))
and (τ2|t)(i) = τ2(f2(i)). By the definition of ⇑ for augmented traces, we have that
whenever τ1(j) = (t, ·) then τ2(j) = (t,−) for any j. This implies that f1 = f2. Also,
by Lemma 3, we have that τ1|t= (τ |t)(⇑) = (τ2)|t. Since τ1(i) = (t, α), τ2(t) = (t, β),
both f−11 (i) and f−12 (i) are defined. Further,

τ1(i) = (τ1)|t(f−11 (i)) = τ2|t(f−11 (i)) = τ2|t(f−12 (i)) = τ2(i)

A similar argument can be applied to show that τ ⇓ is well defined.
Next, let τ ′, τ ′′ be two augmented traces which satisfy the definition of τ1 ◦ τ2. We

need to show that τ ′ = τ ′′. Let then i ∈ {1, · · · , |τ ′|}. By definition of τ1 ◦ τ2 we
have that τ1(i) = (t, α) implies τ2(i) = (t, β) for some β, and τ ′(t) = (t, γ′), τ ′′(t) =
(t, γ′′) for some γ′, γ′′ such that γ′ = (α ◦ β), γ′′ = α ◦ β). Now it is immediate from
Lemma 3 to observe that (γ′ = γ′′).

It remains to prove that τ⇑◦τ⇓ = τ , provided that τ⇑, τ⇓ are defined. This is trivial,
as (τ⇑ ◦ τ⇓)|t= (τ |t)⇑ ◦ (τ |t)⇓ = τ|t , where the last equality has been obtained by
applying Lemma 3. Also, if τ(i) = (t, γ′), then (τ⇑(i) = (t, α), (τ⇓(i) = (t, β), which
means that (τ⇑ ◦ τ⇓)(i) = (t, γ′′). We can proceed as above to show that γ′ = γ′′. �

Proof of Lemma 5: We prove the following statements:

1. whenever τ ∈ LL2 ◦ L1M+, then τ⇑ ∈ LL2M+ and τ⇓ ∈ LL1M+,

2. if σ  L2◦L1
γ,t σ′ and (s, v2, v1)

(α,β,γ)
−−−−−−→, then σ  L2

α,t σ
′ and σ  L1

β,t σ
′.

Now suppose that τ ∈ T (L2◦L1)+. We have that τ ∈ LL2 ◦ L1M∗, and JτK+(L2◦L1)
(λl ∈

LocsL2◦L1
.0) = true Statement (i) ensures that τ⇑ ∈ LL2M+, τ⇓ ∈ LL1M+, while

Statement (ii) gives that Jτ⇑K+L2
(λl ∈ LocsL2

.0) = true, JτK⇑+L1
(λl ∈ LocsL1

.0) =

true. By definition, τ⇑ ∈ T (L2)+, τ⇓ ∈ T (L1)+, as we wanted to prove.
The second statement can be proved by a simple case analysis over the transitions

defined for the automaton A, in Figure 7, and by extensively using the properties of
transformers introduced in Appendix A. Details are left to the reader.



For the first statement, we let τ ∈ LL2 ◦ L1M+ and we show that for any ψ : τ |t=
(t, ψ) then (Client, 0, 0)

(ψ⇑,ψ⇓,ψ
========⇒. Further, (t, ψ⇑ ∈ LL2M+|t and (t, ψ⇓ ∈ LL1M+|t.

An immediate consequence of these two facts is that τ⇑, τ⇓ are defined and belong to
LL2M+, LL1M+, respectively.

Let then ψ : (t, ψ) ∈ LL2 ◦ L1M+|t, and suppose that (L2 ◦ L1) =
〈public :Bpub; private :Bpvt〉. By definition, ψ belongs to the set

S = prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M

(call?m(z)) Btm, (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

where ψ′ ∈ Btm if and only if (t, ψ′) ∈ LBpub;BpvtM+(m, t). We can rewrite this set as

S = prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z)) Btm, (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈(M ′′∩M ′)\M

(call?m(z)) Btm, (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

where we made an explicit distinction between calls to methods in M ′′ \M ′ and calls
to methods in (M ′′ ∩M ′) \M .

That means that either ψ = ε, in which case there is nothing to prove, or ψ =
ψ1 · · ·ψn for some n > 0 such that, for any i = 1, · · · , n− 1, either

(i) ψi = ι, or
(ii) ψi = (call?m(z))ψ′i(ret!m(z′)) for some m ∈M ′′ \M ′, ψ′i ∈ Btm,

(iii) ψi = (call?m(z))ψ′i(ret!m(z′)) for some m ∈ (M ′′ ∩M ′) \M , ψ′i ∈ Btm,
(iv) ψi ∈ (ExtCallm(z))(ι)∗(ExtRetm(z′)).

Further, ψn is a prefix of one of the kind of strings described above. For i =

1, · · · , n − 1, we show that (Client, 0, 0)
(·,·,ψi)

======⇒ (Client, 0, 0). This also given that

(Client, 0, 0)
(·,·,ψn)

======⇒, from which it follows that

(Client, 0, 0)
(·,·,ψ1)

======⇒ (Client, 0, 0)
(·,·,ψ2)

======⇒ · · · (·,·,ψn−1)
========⇒ (Client, 0, 0)

(·,·,ψn)
======⇒

as we wanted to prove.



which ψi takes either the form (ii) or (iii) described above. We only con-
sider the case (iii), and we leave (ii) to the reader. First, note that since
(ψi = (call?m(z))ψ′i(ret!m(z′)), m ∈ (M ′′ ∩ M ′) \ M,ψ′i ∈ Btm,

then we have that (Client, 0, 0)
(ExtCallm(z),call?m(z),call?m(z))
−−−−−−−−−−−−−−−−−−−−−−−−−→ (L1, 0, 1), and

(L1, 0, 1)
(ExtRetm(z′),ret!m(z′),ret!m(z′))
−−−−−−−−−−−−−−−−−−−−−−−−−→ (Client, 0, 0). Then we need to show that

(L1, 0, 1)
(·,·,ψ′1)======⇒ (L1, 0, 1).

In practice, we show a stronger statement: for any ψ′ ∈ Btm, where m ∈ (M ′′ ∩
M ′) \ M , then (L1, v2, v1)

(·,·,ψ′)
======⇒ (L1, v2, v1), provided that v1 > 0. From the

Definition of LBpub;;BpvtM+, we can infer that the set (Btm)+, which is recursively
defined as

B+
m =


( ⋃
c∈PComm

(c)

)
∪

 ⋃
z,z′∈Z
m′ /∈M

(callm′(z))(Btm′) + (retm′(z′))

∪
 ⋃

z,z′∈Z
m′∈M

(call!m′(z))(ι)∗(ret?m′(z′))



∗

is such that Btm ⊆ (Btm)+. Now we have that ψ′i ∈ Btm, hence ψ′i ∈ (Btm)+. Then
either ψ′i = ε, in which case there is nothing to prove, or ψ′i = ψ1

i ψ
k
i , where for any

j = 1, · · · , k either

(i) ψji = c for some c ∈ PComm, or

(ii) ψji = (callm′(z))ψ′′j (retm′(z′)) for some m′ /∈M, z′ and ψ′′j ∈ (Btm′)
+,

(iii) ψji ∈ (call!m′(z))(ι)∗(ret?m′(z′)) for some m′ ∈M, z′ ∈ Z.

We leave to the reader to check that, for any such ψji , we have that

(L1, v2, v1)
(·,·,ψj

i )======⇒ (L1, v2, v1), which in turn gives (L1, v2, v1)
·,·,ψ′i=====⇒

(L1, v2, v1). Note that, to prove case (ii), we need to perform an induction over |ψji |.

We have proved that whenever (t, ψ) ∈ LL2 ◦ L1M+|t, then ψ⇑, ψ⇓ are defined; as
a consequence, whenever τ ∈ LL2 ◦ L1M+|t then τ⇑ and τ⇓ are defined. It remains to
prove that τ⇑ ∈ LL2M+, τ⇓ ∈ LL1M+. We only prove that τ⇑ ∈ LL1M+, and we leave
the other statement to the reader. To this end, it suffices to prove that τ⇑|t∈ LL2M+|t for



any t ∈ T . Recall that whenever τ |t= (t, ψ), then ψ belongs to the set

S = prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z)) Btm, (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈(M ′′∩M ′)\M

(call?m(z)) Btm, (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

Now note that, whenever (Client, 0, 0)
(ψ2,ψ1,ψ)

========⇒, and ψ ∈ S, then ψ1 belongs to the
set S⇑ = {ψ⇑ | ψ ∈ S}, defined as

S⇑ = prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z)) (Btm)⇑(L2,1,0), (ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈(M ′′∩M ′)\M

(ExtCallm(z)) (Btm)⇑(L1,1,0), (callextmz
′)

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

where, for any given set of strings X , X⇑s,v2,v1 = {ψ2 | (s, v2, v1)
(ψ2,ψ1,ψ)

========⇒
, ψ ∈ X}. First, note that whenever m ∈ (M ′′ ∩ M ′) \ M , then Bm⇑ = ι∗, since
m ∈ Abs(L2). Therefore, we can rewrite S⇑ as

S⇑ = prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z)) (Btm)⇑(L2,1,0), (ret!m(z′))

∪

 ⋃

z,z′∈Z
m∈M(∩M ′)

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

Suppose that L2 = 〈public :B2
pub; private :B2

pvt〉.
It remains to prove that (t, (Btm)⇑(L2,1,0)) ⊆ LBpub2 ;B2

pvtM(m, t). If ψ′ ∈
(Btm)⇑ (L2, 1, 0), then it means that there exists an index k such that (t, ψ′) ∈



(F+
L2◦L1

)k. Here F+
L2◦L1

is the monotone functional such that lfp(F+
L2◦L1

) =

LBpub;BpvtM+, which exists by definition. Then, by induction over k, one can show that
(t, ψ′⇑ ∈ F+

L2
)k, form which it follows that (t, (Btm)⇑(L2,1,0)) ⊆ LBpub2 ;B2

pvtM(m, t).
�

LEMMA 14 Let τ2, τ1 be two traces such that (τ2 ◦ τ1)↓. If τ ′2 ≈ τ2, τ ′1 ≈ τ1 and
(τ ′2 ◦ τ ′1)↓, then (τ ′2 ◦ τ ′1) ≈ (τ ′2 ◦ τ ′1).

Proof. This is a direct consequence of the fact that, whenever (s, v2, v1)
(α,β,γ)
−−−−−−→ for

some (s, v2, v1) and (α, β, γ), then (·, α) ∈ Act+ ⇔ (·, β) ∈ Act+ ⇔ (·, γ) ∈ Act+.
�

Proof of Lemma 6 (Outline): Let τ1 ∈ T (L1)+, τ2 ∈ T (L2)+, and suppose
that τ1 ◦ τ2 is defined. One can show that τ1 ◦ τ2 ∈ LL2 ◦ L1M+ in the same way
we have done for the operators ⇑, ⇓ in Lemma 5. More specifically, suppose that
L1 = 〈public : B1

pub; private : Bpvt1〉, L2 = 〈public : B2
pub; private : Bpvt2〉. If

τ1 ∈ T (L1)+, τ2 ∈ T (L2)+, and τ1 ◦ τ2 is defined, then for any thread t consider the
pair (ψ1, ψ2) such that τ1|t= (t, ψ1), τ2|t= (t, ψ2); one can see that (ψ2, ψ1) belongs
to the following set:

S = prefix

(ι, ι) ∪


 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z), ι) (B′)tm)(ret!m(z′), ι)

∪
 ⋃

z,z′∈Z
m∈(M ′′∩M ′)\M

(ExtCallm(z), call?m(z)) (B′)tm)(ExtRetm(z)ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z),ExtCallm(z))(ι, ι)∗(ExtRetm(z′),ExtRetm(z′))



∗

where (ψ′2, ψ
′
1) ∈ (B′)tm if and only if (t, ψi) ∈ LB2

pub;B
2
pvtM+(m, t) for i = 1, 2, and

(ψ′2 ◦ ψ′1)↓.
Note that for m ∈ M ′′ \M ′, (ψ′2, ψ

′
1) ∈ (B′)tm implies that ψ′1 ∈ {ι}∗, while for

m ∈ (M ′′ ∩ M ′) \ M we have that (ψ′2, ψ
′
1) ∈ (B′)tm implies that ψ′2 ∈ {ι}∗. By

definition, (ψ′2, ψ
′
1) ∈ (B′)tm means (t, ψi) ∈ ((F+

Li
)nη)(m, t) for some n ≥ 0. One

can then show, by induction over n, that (t, ψ2 ◦ ψ1) ∈ ((F+
(L2◦L1)

)n)η)(m, t). If we
let (L2 ◦L1) = 〈public : Bpub; private : Bpvt, then we have that ψ2 ◦ψ1) ∈ Btm, where
the last is defined by letting ψ′′ ∈ Btm iff (t, ψ′′) ∈ LBpub;BpvtM+(m, t).

Consider now the set S′ = {(ψ′′′2 ◦ ψ′′′1 ) | (ψ′′′2 , ψ
′′′
1 ) ∈ S}. By performing all the

calculations, and using the fact that for any (ψ2, ψ1) ∈ Bm,ti implies that (ψ2 ◦ ψ1) ∈
Bm,ti , then we get



S′ ⊆ prefix

ι ∪

 ⋃

z,z′∈Z
m∈M ′′\M ′

(call?m(z)) (B)tm)(ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈(M ′′∩M ′)\M

(call?m(z)) (B)tm)(ret!m(z′))

∪
 ⋃

z,z′∈Z
m∈M

(ExtCallm(z))(ι)∗(ExtRetm(z′))



∗

In particular, since we assumed that (ψ2, ψ1) ∈ S, we have that (ψ2 ◦ ψ1) ∈ S′. Now
it is immediate to see that ψ ∈ S′ if and only if (t, ψ) ∈ LL2 ◦ L1M+|t, from which we
get that (t, ψ2 ◦ ψ1) ∈ LL2 ◦ L1M+|t.

We have shown that, for any thread identifier t, then (τ2|t) ◦ (τ1|t) ∈ LL2 ◦ L1M+|t.
By the definition of ◦ for augmented traces, and since we are assuming that (τ2 ◦ τ1)↓,
we obtain that τ2 ◦ τ1 ∈ LL2 ◦ L1M+.

Also, note that if JτiK+L2
(λl ∈ LocsL2

.0) = true, for i = 1, 2, then Jτ2K+L2◦L1
(λl ∈

LocsL2◦L1 .0) = true. This can be proved by simply showing that, whenever σ2  L2
α,t

σ′2 and σ1  L1

β,t σ
′
2 for some σ1, σ2, α, β such that both σ2 · σ1 and α ◦ β are defined,

then σ2 · σ1  L2◦L1

(α◦β),t σ
′
2 · σ′1.

Since (τ2 ◦ τ1) ∈ LL2 ◦ L1M+, and Jτ2 ◦ τ1K+L2◦L1
(λl ∈ LocsL2◦L1

.0) = true, we
obtain that τ2 ◦ τ1 ∈ T+(L2 ◦ L1), as we wanted to prove.

Let us prove the second part of the statement. We say that ψ′1 ≈ ψ′1 if (t, ψ1) ≈
(t, ψ′1), for any t ∈ T . Let L′2 : M → M ′ be a library such that (L′2 ◦ L1)↓. First we
prove the following statement: suppose that (t, ψ′2) ∈ T+(L′2)|t, (t, ψ′1) ∈ T+(L1)|t,
ψ′2 ≈ ψ2, ψ′1 ≈ ψ1 for some ψ2, ψ1 such that ψ2 ◦ ψ1 is defined (note that it is not ne-
cessary that (t, ψ2) ∈ T+(L′2)|t); then there exist ψ′′2 , ψ

′′
1 such that (t, ψ′′2 ) ∈ T+(L2)|t,

(t, ψ′′1 ) ∈ T+(L1)|t, (ψ′′2 ◦ ψ′′1 )↓ and (ψ′′2 ◦ ψ′′1 ) ≈ (ψ2 ◦ ψ1).
In order to prove this statement, we show how to construct the desired ψ′′2 , ψ

′′
1 .

Let ActA be the set of actions which can be performed in the automaton A, that is
ActA = {α | (t, α) ∈ Act+}. Define ψ0

i := ψ′i|ActA\{ι}, for i = 1, 2. Note that
ψ0
2 ≈ ψ′2, ψ0

1 ≈ ψ′1, ψ2
0 ∈ T+(L′2) and ψ1

0 ∈ T+(L1).
If (ψ2

0 ◦ ψ0
1)↓, then it is easy to see that (ψ2

0 ◦ ψ0
1) ≈ (ψ2 ◦ ψ1). Otherwise, for any

string ψ and integer k ≥ 0, denote (ψ)k as the prefix of ψ of length k, (ψ)k as the suffix
of ψ starting at the index k + 1; that is, ψ = (ψ)k(ψ)k.

We can choose the smallest integer k for which (Client, 0, 0)
((ψ0

2)k,(ψ
0
1)k,ψ

0)
=============⇒

(s, v2, v1), but (Client, 0, 0)
((ψ0

2)k+1,(ψ
0
1)k+1,·)

===============⇒6 . Such a k exists, and is strictly smal-
ler than min {|ψ0

2 |, |ψ0
1 |} because we are assuming that (ψ0

2 ◦ ψ0
1) is not defined. That

is, the strings (ψ0
2)k, (ψ0

1)k are non-empty.



Let α = (ψ0
2)k(1), β = (ψ0

1)k(1). We know that α ◦β is not defined. By inspecting
the possible transitions of A, knowing that α 6= ι, β 6= ι, we get different possible
cases; we only list some of them, and leave the rest to the reader:

1. α = call?m(z) for some m, z. In this case, we define (ψ1
2) = (ψ0

2), (ψ1
1) =

(ψ0
1)kι(ψ

1
1)k; note that in this case we know that either k = 0, or there exists an

index j < k such that ψ0
1(j) = ExtRetm′(z′), and for any j < j′ < k, ψ0

1(j′) 6=
ExtCallm′′(z′′), call?m′′(z′′). Since ψ1

1 is obtained by inserting a ι-action within
a return and a call statement, in ψ0

1 , it follows that (t, ψ1
1) ∈ T+(L1)|t.

2. α = ExtCallm(z); this case is not possible, in fact, since ψ0
2 ≈ ψ2, ψ0

1 ≈ ψ1,
(ψ2◦ψ1)↓ and the assumption that β 6= ι, it necessarily has to be β = ExtCallm(z),
contradicting the assumption that (α ◦ β) is not defined

3. α = callm(z), then we let (ψ1
2) = (ψ0

2), (ψ1
1) = (ψ0

1)kι(ψ
1
1)k. In this case, note

that there exists an index j < k such that ψ0
1(j) = ExtCallm′′(z′′), or ψ0

1(j) =
ret!m′′(z′′), and for any j′ : j < j′ < k we get that j′ 6= ExtRetm(z), call?m(z).
This ensures that (t, ψ1

1) ∈ T+(L1)|t,
4. β = c ∈ PComm; in this case we let ψ1

2 = (ψ0
2)kι(ψ

0
2)k, ψ1

1 = ψ0
1 . Note that the ι-

action in ψ1
2 is never inserted within the execution of some method m ∈M ′′ \M ′,

so that we obtain that (t, ψ1
2) ∈ T+(L′2)|t,

5. β = ret?m(z); again, we let ψ1
2 = (ψ0

2)kι, (ψ0
1)kι, and we obtain that (t, ψ1

2) ∈
T+(L′2)|t.

If (ψ1
2 ◦ ψ1

1)↓, then we let ψ′′2 = ψ1
2 , ψ

′′ + 1 = ψ1
2 . It is easy to see that, since ψ2 ≈

ψ′2 ≈ ψ1
2 , and ψ′1 ≈ ψ′2 ≈ ψ1

2 , then (ψ1
2 ◦ ψ1

1) ≈ (ψ2 ◦ ψ1). If (ψ1
2 ◦ ψ1

1) is not defined,
we iterate the procedure above, until reaching an index n for which (ψn2 ◦ ψn1 )↓. Note
that, in the worst case, we need to insert a ι-action in ψ0

2 to match any action of ψ0
1 , and

vice-versa; that is, the procedure described above terminates after at most (|ψ0
2 |+ |ψ0

1 |)
iterations.

Now, let τ2 ∈ T+(L2), τ1 ∈ T+(L1), τ ′2 ∈ T+(L′2), and suppose that τ2 ◦ τ1↓.
We can construct two traces τ ′′2 , τ ′1, by applying the procedure described to each ψt2, ψ

t
1

such that (t, ψt2) = τ ′2|t, (t, ψt1) = τ1|t, which preserve the order in which visible
actions (that is, including primitive commands) are executed in τ ′2, τ1, and for which
τ ′′2 (i) = (t, ·) implies τ ′1(i) = (t,−). These last constraint can be satisfied because we
know that |(τ ′′2 |t)| = |(τ ′1|t)| for any t ∈ T . We hace that (τ ′′2 ◦ τ ′1)↓; further, since
τ ′′2 ≈ τ ′2 ≈ τ2 and τ ′1 ≈ τ1, we also have that (τ ′′2 ◦ τ ′1) ≈ (τ2 ◦ τ1). �

Proof of Lemma 8 (Outline): Suppose that L1 : M → M ′, L2 : M ′ → M ′′ are such
that (L2 ◦ L1)↓, M ∩M ′ = ∅ and M ′ ∩M ′′ = ∅. By the definition of ◦ for libraries,
we also have that M ′′ ∩M = ∅. In particular, this means that for such libraries in the
automaton A, the transitions marked as (c), (d), (m) and (o) can never happen.

Suppose that τ2 ◦τ1 is defined for τ2 ∈ T+(L2), τ1 ∈ T+(L1). Then for any ψt2, ψ
t
1

such that τi|t = (t, ψti), where i = 1, 2, we have that ψt2 ◦ ψt1 is defined.
Let us fix a thread identifier t ∈ T . This means that, for any index j = 1, · · · , |ψt2|,

ψt2(j) ◦ ψt1(i) is defined; by looking at the transitions defined for A, knowing that (c),
(d), (m) and (o) are not possible, it is easy to note that if (t, ψt1(j)) ∈ ClAct+, then
ψt2(j) = (ψt2)↑. If we also have that (t, ψt1(j)) ∈ AbsAct+, then ψt2(j)◦ψt1(j) = (ψt2)↓,
while if (t, ψt2(j)) ∈ ClAct+ then ψt2(j) ◦ ψt1(j) = ψt2(j)).

Then, for any thread t ∈ T , we have that if ψt2 ◦ ψt1 then (t, ψt2)|AbsAct+=
((t, ψt2)|ClAct+)↑, (t, ψt2 ◦ ψt1)|ClAct+= (t, ψt2)|ClAct+ , and (t, ψt2 ◦ ψt1)|AbsAct+=



((t, ψt1)|AbsAct+)↓. Also, the definition of ◦ for traces ensures that these properties are
preserved by the composition τ2 ◦ τ1.

Now suppose that τ2 ∈ T (L2)+, τ1 ∈ T (L1)+ be such that τ2|AbsAct+=
(τ1|ClAct+)↑. We can proceed as in Lemma 6 to construct two τ ′2 ∈ T (L2)+, τ ′1 ∈ T (L1)
such that τ ′2 ≈ τ2, τ ′1 ≈ τ ′1 and τ ′2 ◦ τ ′2 is defined. Also, by inspecting each action in
τ ′2, τ

′
1, it is easy to see that

1. whenever τ ′2(i) ∈ ClAct+ for some i > 0, then (τ ′2 ◦ τ ′1)(i) = τ ′2(i) (recall that we
are assuming that L2 : M ′ →M ′′ is such that M ′′ ∩M ′ = ∅, so that τ ′2(i) cannot
be an action in ExtAct,

2. whenever τ ′1(i) ∈ AbsAct+ for some i > 0, then (τ ′2 ◦ τ ′1)(i) = (τ ′2)(i)↓

At this point it is immediate to show that (τ ′2 ◦ τ ′1)|ClAct+= (τ ′2)
lvertClAct+ , and (τ ′2 ◦ τ ′1)|AbsAct+= ((τ ′1)|AbsAct+)↓. �

B.3 Closure Properties of Histories

LEMMA 15 Let L : M → M ′ be a library; whenever σ  L
α1,t1 σ1  

L
α2,t2 σ2 such

that t1 6= t2, and either α1 /∈ PComm or α2 /∈ PComm, then σ  L
α2,t2 σ

′
1  

L
α1,t1 σ2.

Proof. Without loss of generality, suppose that α1 /∈ PComm. The proof in the case
β /∈ PComm is similar. In this case we have that σ  L

α1,t1 σ1 implies that σ1 =
σ[argt1 7→ z1] for some z1 ∈ Z. Since t2 6= t1, by hypothesis, and by the properties
of transformers introduced in Appendix A, σ1  L

α2,t2 σ2 implies that σ1[argt1 7→
σ(argt1)] L

α2,t2 σ2[argt1 7→ σ(argt1)], and that σ2(argt1) = z1. Note that σ1[argt1 7→
σ(argt1)] = σ, so that the last transformation can be rewritten as σ  L

α2,t2 σ2[argt1 7→
σ(argt1)]. Now note that σ2[argt1 7→ σ(argt1)]  L

α1,t1 σ2[argt1 7→ z1] = σ2. We can
combine the last two transformations to obtain

σ  L
α2,t2 σ2[argt1 7→ σ(argt1)] α1,t1 σ2

as we wanted to prove. �

COROLLARY 1 Let R be the smallest relation such that h = h1(t1, α)(t2, β)h2, t1 6=
t2, where either α /∈ PComm or β /∈ PComm. Then hRh1(t2, β)(t1, α)h2. Let ≡R
be the equivalence relation induced by R. Whenever τ ∈ T (L)+, τ ≡R τ ′, then τ ′ ∈
T (L)+.

Proof. By Lemma 15 it is immediate to note that T (L)+ is closed with respect to R,
hence it is closed with respect to its transitive closure R+. Since R is both symmetric
and reflexive, we have thatR+ is exactly ≡R. �

Proof of Lemma 7 Let h1 ∈ JLK+, and suppose that h2 v h1. By definition, there
exists τ1 ∈ T (L)+ such that τ1|Act+= h1. We show that there exists τ2 such that
τ2|Act+= h2, and τ1 ≡R τ2. Then we also have that τ2 ∈ T (L)+, hence h2 ∈ JLK+.

Since h2 v h1, there exists a permutation π which preserves the order of thread
executions and of pairs of actions in Act!× Act? from h2 to h1. We can extend such a
function to π′ which transforms τ1 in τ2 according to π, leaving the order of execution
of primitive commands unchanged. By definition of τ2, τ2|Act+= h2.



It is important to note that the permutation π′ can be obtained as the composi-
tion of a finite number of transpositions between adjacent numbersπ1, · · · , πn3 that
is πi = [ji 7→ ji + 1, ji + 1 7→ j] for some index j; in particular, let given
τ (0) = τ1, τ

(1) = π1(τ (0)), · · · , τ (n) = πn(τ (n−1)). Then τ2 = τ (n). Also, we can
choose the permutations πi so that, given τ (i−1)(ji) = (t, α), τ (i−1)(ji + 1) = (t′, β),
then t 6= t′ and either α /∈ PComm or β /∈ PComm. This is because the action of
the composite permutation π′ over τ1 preserves the order of execution of threads and
primitive commands.

For any i = 1, · · · , n, τ (i−1) R τ (i), which gives τ1 = τ (0) ≡R τ (n) = τ2, as we
wanted to prove. �

LEMMA 16 For any two given histories h1, h2, we have that h1 (v) h2 if and only if
h2 v h1.

Proof. We only prove that h1 (v) h2 implies h2 v h1. The proof for the opposite
implication is analogous.

If h1(v)h2, by definition h1|t= h2|t for any thread identidier t ∈ T . Further, there
exists a permutation π such that

(i) for any i ∈ {1, · · · , |h1|}, h1(i) = h2(π(i)),
(ii) for any i, j ∈ {1, · · · , |h1|}, if i < j, h1(i) ∈ Act? and h1(j) ∈ Act!, then

π(i) < π(j).

Clearly we have that, for any t ∈ T , h2|t= h1|t. Further, consider the inverse
permutation of π, denoted as π−1; we have that

(i) for any i = {1, · · · , |h2|}, h2(i) = h2(π(π−1(i))) = h1(π−1(i)),
(ii) for any i, j ∈ {1, · · · , |h2|}, if h2(i) ∈ Act! and h2(j) ∈ Act?, then π−1(i) <

π−1(j). In fact, if it were π−1(j) < π−1(i), since h1(π−1(j)) = h2(j) ∈ Act?,
h1(π−1(i)) = h2(i) ∈ Act!, then it would follow that j = π(π−1(j)) <
π(π−1(i)) = i, contradicting the hypothesis that i < j.

�

Proof of Lemma 9 (Outline): We actually prove that any library L is
(w
w
)
-closed. The

result follows then from Lemma 16.
First, let Rclient be a binary relation between histories such that whenever

h = h1(t1, α)(t2, β)h2, where either α ∈ ClAct or β ∈ ClAct, then
h1(t1, α)(t2, β)h2 Rclient h1(t2, β)(t1, α)h2. That is, Rclient is the restriction of the
binary relation R used in the proof of Lemma 15 to client actions; therefore, by the
same Lemma, we get that if h ∈ JLK and h RClient h

′, then h′ ∈ JLK.
We can proceed as in Lemma 7 to show that if h ∈ JLK, and h ≡Rclient

h′, then
h′ ∈ JLK. Here ≡Rclient

is the equivalence relation induced byRclient.
Note that, for how Rclient has been defined, we have that whenever h ≡Rclient

h′,
then h|AbsAct= h′|AbsAct.

Let h1 ∈ JLK; we have to show that, whenever h′ is such that h1|ClAct(w)h′, then
there exists h2 ∈ JLK such that h2|ClAct= h′, and h1|AbsAct w h2|AbsAct; with an

3 It is well known, from group theory, that (1) every permutation can be written as a finite
composition of transpositions, and (2) every transposition can be written as a finite composition
of transpositions between adjacent numbers.



abuse of notation, we can rewrite this statement as h1|AbsActv h2|AbsAct. Intuitively,
h1|ClActw h′ states that whenever two (or more) threads are executing some methods
m1, · · · ,mk concurrently in h1, they are also executing concurrently in h′. Therefore,
we can construct h2 so that its abstract actions agree with those of h1. One can em-
ploy the same technique used in Lemma 7 to show that the history h2 can be gen-
erated by a trace τ2. imposed by h1. That is, h1|AbsActv h2|AbsAct, or equivalently
h1|AbsAct (v) h2|AbsAct. �

B.4 Compositionality of Linearisability

LEMMA 17 Whenever (L1 ] L2)↓ is defined, σ1  L1
α,t1 σ′1, σ2  L2

β,t2
σ′2 for some

σ1, σ2, σ
′
1, σ
′
2, t1, t2, such that (σ1 · σ2)↓, (σ′1 · σ′2)↓ and t1 6= t2, then (σ1 ·

σ2) (L1]L2)
α,t1  (L1]L2)

β,t2
(σ′1 · σ′2).

Proof. This is an immediate consequence of the fact that dom(σ1) ∩ dom(σ2) =
{argt}t∈T and the assumption t2 6= t1. �

Proof of Lemma 11 (Outline): The first part of the statements follows directly from
Lemma 17. Suppose that h ∈ {h1} on {h2} is a valid history for some h1 ∈ JL1K, h2 ∈
JL2K. Then there exist τ1, τ2, τ such that history(τi) = hi, i = 1, 2, τ ∈ {τ1} on {τ2}
such that τ ∈ T (L1 ] L2) and history(τ) = h. It suffices to show that JτKL1]L2

(λl ∈
LocsL1]L2

.0) = true. This is true because τ preserves the thread executions of τ1, τ2;
further, the order in which primitive commands executed by L1 and L2 are interleaved
does not affect the result of the interpretation function (Lemma 17).

The second part of the Lemma is trivial. Suppose that L1 : M1 →M ′1, L2 : M2 →
M ′2, and (L1 ] L2)↓. Given h ∈ L1 ] L2 there exists a trace τ ∈ T (L1 ] L2). We can
easily construct two traces τ1 ∈ LL1M, τ2 ∈ LL2M such that τ ∈ {τ1} on {τ2}. In fact, we
can construct τ1 by choosing the subtrace of τ which contains method invocations and
returns in M1 ∪M ′1, and the relative primitive commands executed within an execution
of such methods. The trace τ2 can be constructed similarly, this time selecting method
invocaitons and returns in M2 ∪M ′2. The fact that (M1 ∪M ′1) ∩ (M2 ∪M ′2) = ∅, by
hypothesis, ensures that τ ∈ {τ1} on {τ2}.

The properties stated for transformers in Appendix A ensure that both JτiKLi(λl ∈
LocsLi.0) = true, for i = 1, 2; it follows that τi ∈ T (Li), i = 1, 2. Now, since
τ ∈ {τ1} ‖ {τ2}, and since (M1∪M ′1)∩ (M2∪M ′2) = ∅, it follows that all the actions
recorded in h which contains an occurrence of a method m1 ∈ M1 ∪M ′1, appear in
τ1; the same is true for actions with occurrences of methods m2 ∈ M2 ∪M ′2 and the
trace τ2. Now it is trivial to observe that history(τ1) = h|ActM1→M′1

, history(τ2) =

h|ActM2→M′2
. �


