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ABSTRACT
Computer-aided verification provides effective means of an-
alyzing the security of cryptographic primitives. However, it
has remained a challenge to achieve fully automated analyses
yielding guarantees that hold against computational (rather
than symbolic) attacks. This paper solves this challenge
for public-key encryption schemes built from trapdoor per-
mutations and hash functions. Using a novel methodology
to combine computational and symbolic cryptography, we
present proof systems for analyzing the chosen-plaintext and
chosen-ciphertext security of such schemes in the random or-
acle model, and a toolset that bundles together fully auto-
mated proof search and attack finding algorithms. Using the
toolset in batch mode, we build a comprehensive database
of encryption schemes that records attacks against insecure
schemes, and proofs with concrete bounds for secure ones.

Keywords
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1. INTRODUCTION
Two different models for analyzing the security of cryp-

tographic constructions have developed over the years and
coexist until today, each with its own advantages and disad-
vantages: the computational model and the symbolic model.

The computational model has its roots in the work of
Goldwasser and Micali [20] and views cryptographic primi-
tives as functions on bitstrings. Adversaries are modeled as
probabilistic algorithms and security is defined in terms of
their success probability and computational resources. Se-
curity proofs are reductions, showing how a successful attack
can be converted into an efficient algorithm that breaks the
security of primitives.

The symbolic model, which originates from the seminal
work of Dolev and Yao [17], views cryptographic primitives
as function symbols in an algebra of expressions. The prop-
erties of primitives and the capabilities of adversaries are
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modeled using equational theories. This model enables au-
tomated analysis, but can miss attacks that are possible in
the computational model.

A celebrated article by Abadi and Rogaway [2] bridges the
gap between the two models: it gives sufficient conditions
under which symbolic security implies computational secu-
rity; symbolic methods that exhibit this property are called
cryptographically sound. This result, originally proved for
symmetric encryption, has since been extended to richer the-
ories [15]. Cryptographic soundness opens the perspective of
combining the best of both worlds: fully automated proofs
of computational security. However, its applications have re-
mained confined to protocols. Developing cryptographically
sound symbolic methods for primitives remains a challenge.

A recent alternative to cryptographic soundness uses pro-
gramming language techniques for reasoning about the se-
curity of cryptographic constructions directly in the compu-
tational model. This alternative is embodied in tools like
CryptoVerif [11] and EasyCrypt [4], which have been used
to verify emblematic cryptographic constructions. Proofs
built using these tools yield reductions with concrete secu-
rity bounds. However, these tools are primarily interactive
and their use requires expert knowledge. Combining them
with fully automated methods that apply to large classes of
cryptographic primitives has remained an open problem.

A converse goal to proving security is finding attacks. Re-
cent work [3] explores the use of symbolic methods to find
attacks and estimate their success probability. Automating
attack finding can provide valuable feedback during crypto-
graphic design and be used to evaluate empirically the com-
pleteness of automated security analyses: how many con-
structions that may be secure cannot be proven so.

Contributions. We present new methods for automatically
analyzing the security of padding-based encryption schemes,
i.e. public-key encryption schemes built from hash functions
and trapdoor permutations, such as OAEP [10], OAEP+ [28],
SAEP [13], or PSS-E [? ]. These methods rest on two main
technical contributions.

First, we introduce specialized logics for proving chosen-
plaintext and chosen-ciphertext security. Proof rules have
a symbolic flavor and proof search can be automated, yet
one can extract concrete security bounds from valid deriva-
tions. This is achieved through a novel combination of sym-
bolic and computational methods; for instance, the logics
use symbolic deducibility relations for computing bounds of
the probability of events, and for checking the existence of
reductions to computational assumptions.
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Second, we propose fully automated methods for finding
attacks against chosen-plaintext and chosen-ciphertext se-
curity. Our methods are inspired by static equivalence [1],
and exploit algebraic properties of trapdoor permutations to
find attacks against realizations of schemes that are consis-
tent with computational assumptions.

We demonstrate the strengths of our methods by imple-
menting a toolset, called ZooCrypt, and by evaluating it ex-
tensively. The toolset can be used either in batch mode or
in interactive mode:
• The batch mode allows to take a census of padding-

based encryption schemes. We used it to build a database of
more than a million entries. The database records for each
scheme and set of assumptions on trapdoor permutations,
either an adversary that breaks the security of the scheme
or a formal derivation that proves its security.
• The interactive mode allows to build proofs or attacks

for a selected scheme, and forms the backbone of a crypto-
graphic tutor. The tutor guides users in building security
proofs or exhibiting attacks for a scheme chosen by the user
or selected from the database. In proof mode, the tutor pro-
vides the user with the set of applicable rules at each step of
the derivation; upon completion of the derivation, the tutor
outputs alternative derivations that deliver better bounds.

We stress that we focus on padding-based encryption pri-
marily for illustrative purposes. Padding-based schemes
include many practically relevant constructions, and pro-
vide an excellent testbed to evaluate the effectiveness of our
methods and illustrate their working. However, our methods
are applicable to other settings; see § 8 for a discussion.

Contents. § 2 provides background on public-key encryp-
tion schemes and their security; § 3 introduces symbolic
tools that are the base of our analyses; § 4 describes logics
for chosen-plaintext and chosen-ciphertext security, while § 5
covers attack finding techniques; § 6 reports on the imple-
mentation of ZooCrypt and on its evaluation. We conclude
with a survey of related work and directions for future work.

Anonymized supplemental material, including the source
code of the tool and a web interface for browsing results, is
available at

http://zoocrypt.no-ip.org/

2. CRYPTOGRAPHIC BACKGROUND
A public-key encryption scheme is a triple of probabilistic

algorithms (KG, E ,D):

Key Generation The key generation algorithm KG out-
puts a pair of keys (pk, sk); pk is a public-key used for
encryption, sk is a secret-key used for decryption;

Encryption Given a public-key pk and a message m,
Epk(m) outputs a ciphertext c;

Decryption Given a secret-key sk and a ciphertext c,
Dsk(c) outputs either message m or a distinguished
value ⊥ denoting failure.

We require that for pairs of keys (pk, sk) generated by KG,
Dsk(Epk(m)) = m holds for any message m.

We study public-key encryption schemes built from trap-
door permutations, hash functions and basic bitstring oper-
ations, such as bitwise exclusive-or (⊕), concatenation (‖)
and projection. We let {0, 1}n denote the set of bitstrings of

length n and [x]`n the bitstring obtained from x by dropping
its n most significant bits and taking the ` most significant
bits of the result.

Trapdoor permutations are functions that are easy to eval-
uate, but hard to invert without knowing a secret trapdoor.
Formally, a family of trapdoor permutations on {0, 1}n is a
triple of algorithms (KG, f, f−1) such that for any pair of
keys (pk, sk) output by KG, fpk and f−1

sk are permutations
on {0, 1}n and inverse of each other. The security of a fam-
ily of trapdoor permutations is measured by the probability
that an adversary (partially) inverts f on a random input.

Definition 1 (One-Way Trapdoor Permutation) Let
Θ = (KG, f, f−1) be a family of trapdoor permutations on
{0, 1}n and let k, ` be such that k + ` ≤ n. The probability
of an algorithm I in q-inverting Θ on bits [k+ 1 . . . k+ `] is

Succs-pd-OW
Θ (k, `, q, I)

def
= Pr

[
OW`

k : [s]`k ∈ S ∧ |S| ≤ q
]

where OW`
k is the experiment:

(pk, sk)← KG; s $← {0, 1}n; S ← I(fpk(s))

This definition generalizes the set partial-domain one-
wayness problem of Fujisaki et al. [18], which corresponds

to k = 0. We define Succs-pd-OW
Θ (k, `, q, t) as the maximal

success probability over all inverters executing in time t, and
omit the first parameter when it is 0. When q = 1, k = 0,
and ` = n, the experiment corresponds to the standard one-
wayness problem, and we note this quantity SuccOW

Θ (t).
We consider two security notions for public-key encryp-

tion: chosen-plaintext security, or IND-CPA, and adaptive
chosen-ciphertext security, or IND-CCA. Both can be de-
scribed succinctly using the following experiment, or game,
in which an adversary A represented as a pair of procedures
(A1,A2) interacts with a challenger:

(pk, sk)← KG;

(m0,m1, σ)← A ~H
1 (pk);

b $← {0, 1};
c? ← Epk(mb);

b̄← A ~H
2 (c?, σ)

The challenger first generates a fresh pair of keys (pk, sk)
and gives the public key pk to the adversary, which returns a
pair of messages (m0,m1) of its choice. The challenger then
samples uniformly a bit b, encrypts the messagemb and gives
the resulting ciphertext c? (the challenge) to the adversary.
Finally, the adversary outputs a guess b̄ for b. Note that A1

and A2 have oracle access to all hash functions ~H used in
the scheme and can communicate with each other through σ.
We call this basic experiment CPA; we define the experiment
CCA similarly, except that the adversary A is given access to
a decryption oracle Dsk(·), with the proviso that A2 cannot
ask for the decryption of the challenge ciphertext c?. In the
remainder, we note LH the list of queries that the adversary
makes to a hash oracle H in either experiment, and LD the
list of decryption queries that A2 makes during the second
phase of the CCA experiment.

Security is measured by the advantage of an adversary
playing against a CPA or CCA challenger.

Definition 2 (Adversary Advantage) The advantage of
A against the CPA and CCA security of an encryption

2



scheme Π = (KG, E ,D) is defined respectively as:

AdvCPA
Π (A)

def
= 2 Pr

[
CPA : b̄ = b

]
− 1

AdvCCA
Π (A)

def
= 2 Pr

[
CCA : b̄ = b

]
− 1

We define AdvCPA
Π (t, ~q) (resp. AdvCCA

Π (t, ~q)) as the max-
imal advantage over all adversaries A that execute within
time t and make at most qO queries to oracle O.

To define asymptotic security, we consider instead of a
single scheme, a family of schemes Πη indexed by a secu-
rity parameter η ∈ N. Probability quantities thus become
functions of η. We say that a scheme is secure if the advan-
tage of any adversary executing in time polynomial in η is a
negligible function ν of η, i.e. ∀c. ∃nc. ∀n > nc. ν(n) < n−c.

A security proof for a padding-based encryption scheme is
a reduction showing that any efficient adversary against the
security of the scheme can be turned into an efficient inverter
for the underlying trapdoor permutation. Security proofs
are typically in the random oracle model, where hash func-
tions are modeled as truly random functions. One seemingly
artificial property of the random oracle model is that reduc-
tions to computational assumptions are allowed to adap-
tively choose the responses of oracles modeling hash func-
tions; this property is called programmability. In contrast,
we only consider proofs in the non-programmable random
oracle model, where reductions are only allowed to observe
oracle queries and responses.

For illustrative purposes, we use OAEP [10] as a running
example. RSA-OAEP, which instantiates OAEP with RSA as
trapdoor permutation is recommended by several interna-
tional standards.

Definition 3 (OAEP) Let (KGf , f, f−1) be a family of
trapdoor permutations on {0, 1}n, ρ ∈ N, and let

G : {0, 1}k → {0, 1}` H : {0, 1}` → {0, 1}k

be two hash functions such that n = k+ ` and ρ < `. OAEP
is composed of the following triple of algorithms:

KG def
= (pk, sk)← KGf ; return (pk, sk)

Epk(m)
def
= r $← {0, 1}k; s← G(r)⊕ (m‖0ρ);

t← H(s)⊕ r; return fpk(s‖ t)
Dsk(c)

def
= s‖ t← f−1

sk (c); r ← t⊕H(s); m← s⊕G(r);

if [m]ρ`−ρ= 0ρ then return [m]`−ρ0 else return⊥

3. SYMBOLIC TOOLS
We introduce algebraic expressions to model padding-

based encryption schemes, and symbolic notions to model
the knowledge that either an adversary or an honest user
can derive from an expression.

3.1 Syntax and Semantics of Expressions
Expressions are built from a set R of random bitstrings

and a set X of variables, using bitstring operations, hash
functions drawn from a set H, and trapdoor permutations
drawn from a set F . The grammar of expressions is given in
Figure 1. For instance, the encryption algorithm of OAEP
may be represented as the expression:

f((G(r)⊕ (m‖0))‖H(G(r)⊕ (m‖0))⊕ r).

Expressions are typed using a size-base type system. A type
` ∈ S is either a size variable ı or the sum `+n of two types.

e ::= x variable
| r uniformly random bitstring
| 0n all-zero bitstring of length n
| f(e) permutation
| f−1(e) inverse permutation
| H(e) hash function
| e⊕ e exclusive-or
| e‖e concatenation
| [e]`n drop n bits then take ` bits

where x ∈ X , r ∈ R, n, ` ∈ S, f ∈ F , and H ∈ H.

Figure 1: Syntax of Expressions

(e1 ⊕ e2)⊕ e3 = e1 ⊕ (e2 ⊕ e3) e1 ⊕ e2 = e2 ⊕ e1

[e1 ⊕ e2]k+n` = [e1 ⊕ e2]k` ‖ [e1 ⊕ e2]n`+k [0k]n` = 0n

(e1 ‖e2)‖e3 = e1 ‖(e2 ‖e3) [e1 ‖e2]
|e1|
0 = e1

[e1 ‖e2]`|e1|+n = [e2]`n [e1 ⊕ e2]`n = [e1]`n ⊕ [e2]`n

[e]
|e|
0 = e [[e]`n]`

′
n′ = [e]`

′
n+n′ [e]`n ‖ [e]`

′
n+` = [e]`+`

′
n

e⊕ 0|e| = e e⊕ e = 0|e| f(f−1(e)) = e f−1(f(e)) = e

Figure 2: Equational theory of bitstrings

We note |e| the type of an expression e, which intuitively rep-
resents the length of the bitstring it denotes. For instance,
the type of e1 ‖ e2 is |e1| + |e2| and e1 ⊕ e2 is well-typed iff
|e1| = |e2|. In an asymptotic setting, we interpret size vari-
ables as functions that grow polynomially with the security
parameter.

We letR(e), X (e), F(e) andH(e) denote, respectively, the
sets of random bitstrings, variables, trapdoor permutation,
and hash function symbols occurring in an expression e. We
note e {~e1/~e0} the simultaneous substitution of ~e0 by ~e1 in
e and STH (e) the set of sub-expressions of e that are of
the form H(e′). Abusing notation, we write e.g. R(e1, e2)
instead of R(e1) ∪R(e2).

Given values for size variables in |e| and trapdoor permu-
tations with adequate domains, we interpret a well-typed
expression e as a probabilistic algorithm LeM that calls or-
acles in H(e) and takes as parameters values for variables
in X (e). The algorithm is implicitly parametrized by public
and secret keys (if required) of the trapdoor permutations
that occur in e.

3.2 Equality and Deducibility
We model algebraic properties of bitstrings by the equa-

tional theory =E , defined as the smallest congruence relation
that contains all instances of the axioms of Figure 2. The
relation =E is sound [8] for all trapdoor permutations and
valid key pairs. This means that for all closed expressions
s and t, s =E t implies that LsM and LtM return the same
value when shared random bitstrings are jointly sampled;
formally,

Pr
[
y ← Ls‖ tM : [y]

|s|
0 = [y]

|t|
|s|

]
= 1.

We use the standard notion of deducibility from symbolic
cryptography to reason about adversarial knowledge. Infor-
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mally, an expression e′ is deducible from e if there exists an
efficient algorithm that computes e′ from e. We use con-
texts to describe such algorithms symbolically. A context
is an expression with a distinguished variable ∗. The appli-
cation C[e] of a context C to an expression e is defined by
substitution.

Definition 4 (Deducibility) An expression e′ is de-
ducible from another expression e, written e ` e′, if there
is a context C such that

1. C[e] is well-typed;
2. R(C) = ∅;
3. f−1 does not occur in C, and
4. C[e] =E e′.

We define `? analogously, but dropping restriction 3.

We prove that ` is sound in the following sense: e ` e′

implies that there is an efficient algorithm that computes e′

from e and the public keys of the trapdoor permutations in
e and e′. For `? we obtain an identical result, except that
the corresponding algorithm can also use the secret keys of
the trapdoor permutations. Note that we do not require `-
completeness, also known as 6`-soundness [8], since we never
use the deducibility relation to conclude that an expression
is not computable from another.

3.3 Inequality and Static Distinguishability
Static equivalence [1] models symbolic indistinguishabil-

ity of expressions. Informally, two expressions e0 and e1 are
statically equivalent if all tests of the form C[·] =E C′[·] suc-
ceed for e0 if and only if they succeed for e1. Since the com-
pleteness of =E with respect to the computational interpre-
tation of expressions is an open question, we use a relation
inspired by static equivalence to model distinguishability of
expressions. We call this relation static distinguishability,
and define it in terms of an apartness relation ] in place
of 6=E . The soundness of this relation implies that if s ] t
holds, then the probability that the results of LsM and LtM
coincide when shared random bitstrings are jointly sampled
is negligible. The inductive definition of ] comprises axioms
such as r ] 0 and r ] r′, and rules stating that s ] t implies
H(s) ] H(t), that C[s] ] C[t] implies s ] t, and that s ] t and
t =E u implies s ] u.

Definition 5 (Static Distinguishability) The relation
6≈ is the smallest symmetric relation between expressions
such that e0 6≈ e1 iff there are contexts C and C′ such that

1. C[e0], C′[e0], C[e1], and C′[e1] are well-typed;
2. R(C) = ∅;
3. f−1 does not occur in C, and
4. C[e0] =E C′[e0] and C[e1] ] C′[e1].

We use static distinguishability to find attacks on encryp-
tion schemes. For the attacks to be meaningful, we rely on
the soundness of 6≈, which follows from the soundness of =E

and ]. Informally, if e0 6≈ e1 holds, then there is an efficient
algorithm distinguish that when given as input the public
keys of trapdoor permutations and a value computed using
Le0M returns 0, but when given instead a value computed
using Le1M returns 1, except with negligible probability.

As an example, the expressions e0 = f(r) ‖ (r ⊕ 0) and
e1 = f(r) ‖ (r1 ⊕ r2) are statically distinguishable, because

for the contexts

C = [∗]|f(r)|0 and C′ = f
(

[∗]|r||f(r)|
)

it holds that C[e0] =E C′[e0] and C[e1] ] C′[e1]. A simple
distinguisher algorithm applies the algorithms correspond-
ing to C and C′ to its input and returns 0 if this yields equal
bitstrings and 1 otherwise.

4. PROOF SYSTEMS
This section introduces logics for proving chosen-plaintext

and chosen-ciphertext security of padding-based encryption
schemes by reduction to computational assumptions on the
underlying trapdoor permutations. For the sake of readabil-
ity, our presentation separates the derivation of valid judg-
ments (§ 4.1 and § 4.2) from the computation of concrete
security bounds from valid derivations (§ 4.3). The sound-
ness of the logics is stated in § 4.4.

4.1 Chosen-Plaintext Security
Judgments predicate over the probability of an event φ in

the CPA experiment where the challenge ciphertext is com-
puted using Lc?M, which we denote CPAc? . Events are drawn
from the grammar

φ ::= Guess | Ask(H, e) | φ ∧ φ

where Guess corresponds to the adversary correctly guessing
the hidden bit b, and Ask(H, e) corresponds to the adversary
asking the query H(e).

Judgments are of the form �p̂ c? : φ, where c? is a well-
typed expression with X (c?) = {m}, φ is an event, and
p̂ ∈ {0, 1/2} is a probability tag1. The CPA logic is designed
to ensure that if �p̂ c? : φ is derivable, then the probability
of φ in the experiment CPAc? is upper bounded by p̂ plus
a negligible term. In particular, if �1/2 c

? : Guess is deriv-
able, then any scheme Π with encryption algorithm Lc?M is
asymptotically secure against chosen-plaintext attacks.

Derivability in the logic is parametrized by a set Γ of com-
putational assumptions of the form (f, k, `), where f ∈ F and
k, ` ∈ S. Such assumptions state that it is hard to compute
[r]`k from f(r). There is no restriction on Γ: it may contain
assumptions for several permutations, and multiple assump-
tions for any given permutation.

Figure 3 presents the rules of the proof system. Note that
the terminal rules [Rnd] and [OW] are decorated with infor-
mation that is needed to compute concrete bounds (§ 4.3).

The rules [Opt], [Perm], [Merge], and [Split] correspond
to bridging steps in proofs and allow reformulating judg-
ments into equivalent forms. The rule [Opt] corresponds to
optimistic sampling, which allows substituting e ⊕ r by r
provided that r /∈ R(e). The rule [Perm] replaces all oc-
currences of f(r) by r. The rule [Merge] replaces the con-
catenation of two random bitstrings r1 and r2 with a fresh
random bitstring r. The rule [Split] performs the opposite
transformation; it replaces a random bitstring r with the
concatenation of two fresh random bitstrings r1 and r2.

Rule [Sub] can be used to weaken the event and replace
expressions in judgments with equivalent expressions. This

1Probability tags increase the readability of rules, and sup-
port a more uniform interpretation of judgments. However,
they are superfluous and can be deduced from the shape of
the event: for every valid judgment �p̂ c? : φ, the probability
tag p̂ is 1/2 iff Guess appears in φ.
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�p̂ c? : φ r /∈ R(e)

�p̂ c? {e⊕ r/r} : φ {e⊕ r/r} [Opt]
�p̂ c? : φ

�p̂ c? {f(r)/r} : φ {f(r)/r} [Perm]
�p̂ c? : φ r1, r2 /∈ R(c?, φ)

�p̂ c? {r1 ‖r2/r} : φ {r1 ‖r2/r}
[Merge]

�p̂ c? {r1 ‖r2/r} : φ {r1 ‖r2/r} r1, r2 /∈ R(c?, φ)

�p̂ c? : φ
[Split]

�p̂ c?2 : φ2 c?1 =E c?2 φ1 =⇒E φ2

�p̂ c?1 : φ1
[Sub]

�p̂ c? : φ �0 c
? : Ask(H, e) r /∈ R(e) STH (c?, φ) = ∅

�p̂ c? {H(e)/r} : φ {H(e)/r} [Fail1]

�p̂ c? : φ �0 c
? {H(e)/r} : φ {H(e)/r} ∧ Ask(H, e) r /∈ R(e) STH (c?, φ) = ∅

�p̂ c? {H(e)/r} : φ {H(e)/r} [Fail2]
X (c?) = ∅

�1/2 c
? : Guess

[Ind]

~e `? r r /∈ R(c?)

�0 c
? : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)

[Rnd(|r|, ~H)]
~e ‖r2 ‖m ` [r1]`k f(r1)‖r2 ‖m ` c? r1 6= r2 (f, k, `) ∈ Γ

�0 c
? : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)

[OW`
k(f, ~H)]

Figure 3: Proof rules of the CPA logic (=⇒E denotes implication in first-order logic with respect to =E)

rule is often needed to prepare the ground for the application
of another rule: e.g. rule [Opt] can be applied to a judgment
that contains H(r) to obtain H(e⊕ r) by first using [Sub] to
replace H(r) by H(e⊕ (e⊕ r)).

The rules [Fail1] and [Fail2], for equivalence up to fail-
ure, correspond to specialized forms of Shoup’s Fundamental
Lemma [29] and create two branches in a derivation. These
rules can be used to substitute an expression H(e) by a ran-
dom bitstring r, incurring a probability loss in the reduction
corresponding to the probability of the CPA adversary ask-
ing the query H(e). One can choose to analyze this proba-
bility either after (as in rule [Fail1]) or before applying the
substitution (as in rule [Fail2]).

Finally, the rules [Ind], [Rnd], and [OW] are terminal and
provide a means of directly bounding the probability of an
event. The first two rules are information-theoretic, whereas
the third formalizes a reduction to a computational assump-
tion. The rule [Ind] closes a branch when the challenge ci-
phertext no longer depends on a plaintext variable; in terms
of the CPA experiment, this means that the challenge is in-
dependent from the hidden bit b, and hence the probability
that an adversary guesses it is exactly 1/2. The rule [Rnd]
closes a branch in the case when the adversary must make
a number of oracle queries that would require guessing ran-
dom values that are independent from its view. The rule
[OW] closes a branch when it is possible to find a reduction
to the problem of partially inverting the underlying trapdoor
permutation: this is the case when the image of a random
element (the challenge of an inverter) can be embedded in
the challenge ciphertext of the CPA experiment in such a
way that its (partial) pre-image can be computed from the
oracle queries made by the CPA adversary. To apply this
rule, r1 is usually obtained by searching for applications of
f in c? and r2 is set to the concatenation of all random bit-
strings in R(c?) \ {r1}. Additionally, one must check that
the assumption (f, k, `) is an assumption in Γ.

4.2 Chosen-Ciphertext Security
Judgments are of the form �p̂ (c?, D) : φ, where p̂ is a

probability tag, c? is an expression, D is a decryption oracle,
and φ is an event. The challenge ciphertext c? and the tag
p̂ can take the same values as in the CPA logic, whereas the

decryption oracle is drawn from the following grammar

F ::= find x in LH , F | �
T ::= e = e′ | Ask(H, e) | T ∧ T
D ::= F : T � e

We assume that D does not contain random bitstrings and
that all variables in expressions in D are bound by find, ex-
cept for a distinguished parameter c denoting the ciphertext
queried to the oracle. The above grammar is sufficiently ex-
pressive to encode decryption algorithms of padding-based
schemes, as well as plaintext-simulators used in reductions.2

Informally, given as input a ciphertext c, an algorithm
F : T � e searches among the oracle queries made by an
adversary for values ~v satisfying T . If such values are found,
it returns the value of e {~v/~x}; otherwise, it returns ⊥. Con-
ditions in T are interpreted as equality checks on bitstrings
and membership tests in the lists of oracle queries made by
the adversary. If the sequence of find expressions is empty,
we just write T � e. We note LDM the interpretation of D as
an algorithm.

Events of the logic are as in the CPA logic or of the form
∃x ∈ LD. T (when x does not occur in T , we write just T ).
Events Guess and Ask(H, e) are defined as in the CPA logic
but for the CCA experiment. For ∃x ∈ LD. T , the quantified
variable ranges over the ciphertexts queried to the decryp-
tion oracle during the second phase of the CCA experiment;
tests are interpreted as above.

A judgment �p̂ (c?, D) : φ predicates over the probability
of φ in a CCA experiment where the challenge ciphertext is
computed using Lc?M and decryption queries are answered by
LDM. The judgment states that the probability of φ in this
experiment is upper bounded by p̂ plus a negligible term.

Figure 4 presents the rules of the logic. The rule [Bad] al-
lows to transform the decryption oracle so that it rejects
ciphertexts whose decryption requires oracle queries that
have not yet been made by the adversary. The resulting
decryption oracle no longer makes queries to the given or-
acle. It is therefore sufficient to consider two events that
can lead the adversary to distinguish between the original
and transformed oracles: 1. when the adversary makes a de-

2A plaintext-simulator is an algorithm that extracts the
plaintext from a ciphertext by reconstructing it from oracle
queries made by an adversary, without using the trapdoor to
the underlying permutation; a plaintext-simulator that does
not query any hash oracle is called a plaintext-extractor.
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�p̂ c? : φ Public(F : T � t)

�p̂ (c?, F : T � t) : φ
[Pub(F, T, t)]

�p̂ (c?, find x in LH , F : T ∧ x = e� t) : φ

�p̂ (c?, F : T {e/x} ∧ Ask(H, e) � t {e/x}) : φ
[Find]

r /∈ R(c?, e)

�0 c
? : e = r

[Eqs(|r|)]

�p̂ (c?2, F : T ′ � t′) : φ′ c?1 =E c?2 φ =⇒E φ′ T ⇐⇒E T ′ t =E t′

�p̂ (c?1, F : T � t) : φ
[Conv]

�0 (c?, D) : ∃x ∈ LD. x = c?
[False]

�p̂ c? : φ

�p̂ c? : ∃x ∈ LD. φ
[Exists]

STH (c?) = {H(e?)} STH (T, t) = {H(e)} φ′ = ∃c ∈ LD. T ∧ e? = e

�p̂ (c?, T ∧ Ask(H, e) � t) : φ �0 (c?, T ∧ Ask(H, e) � t) : φ′ � neglr(T {r/H(e)})
�p̂ (c?, T � t) : φ

[Bad]

� neglr(Ti)

� neglr(T1 ∧ T2)
[PAndi]

c‖e `? [r]`k r 6∈ R(e′)

� neglr(e = e′)
[PEqs(`)]

c‖e `? [r]`k

� neglr(Ask(H, e))
[PRnd(H, `)]

Figure 4: CCA logic: proof rules for CCA judgments, extended rules for CPA logic, and proof rules for tests

cryption query c such that T succeeds after making a query
H(e) that is also needed to compute the challenge cipher-
text; 2. when the test T succeeds, even though it gets a
random answer from H. The probability of this last event
can be proven negligible using the rules [PAnd], [PEqs], and
[PRnd] in Fig. 4.

The rule [False] captures the fact that the adversary can-
not ask for the decryption of c? during the second phase
of the CCA experiment; the probability of this happening
is 0. Rule [Conv] allows switching between observationally
equivalent decryption oracles and weakening the event con-
sidered; it is usually used to transform a test that requires
f−1 into an equivalent test that only requires f.

The rule [Find] allows replacing an oracle that computes
a value explicitly by one that computes it from the oracle
queries made by the adversary.

The rule [Pub] links the CCA with the CPA logic, and
captures the intuition that an adversary does not gain any
advantage from getting access to a publicly simulatable de-
cryption oracle. Here, Public(D) holds if f−1 is not used
in D. Note that the second premise may be of the form
�p̂ c? : φ, where φ is an event of the CCA logic. This kind of
judgments are handled by the rules [Exists] and [Eqs] given
in Figure 4, which extend the CPA logic to the additional
events used in the CCA logic.

4.3 Concrete Bounds
In this section we show how to extract concrete security

bounds from derivations in our logics. Security bounds p are
drawn from the grammar

p ::= ε | 1
2

+ ε q ::= 1 | q × q | qH t ::= tA | q × tf | t+ t

ε ::= 2−k | Succs-pd-OW
Θf

(k, `, q, t) | q × ε | ε+ ε

where k, ` ∈ S, H ∈ H, tf is a worst-case bound for the time
required to evaluate f , and tA is the execution time of A.

Security bounds are computed from a derivation ∇ in the
CPA or CCA logic using a function B parametrized by the
computational resources of an adversary, namely, its execu-
tion time tA and the number of oracle queries it can make
to each oracle, ~q. The definition of the bound function B
is given in Figure 5 using the following conventions. We
omit the resource parameters when they remain unchanged.
Moreover, for a derivation ∇ with rule R at its root, we use
L∇ to refer to R’s label and ∇i to refer to the derivation of

B(tA,~q)(∇) =

B(∇1) + B(∇2) if L∇ = [Fail1,2]
B(∇1) + B(∇2) + qD×B(∇3) if L∇ = [Bad]
B(t′A,q

′
H1

,...,q′
Hn

)(∇1) if L∇ = [Pub(F, T, u)]
1/2 if L∇ = [Ind]
0 if L∇ = [False]

q ~H × 2−` if L∇ = [Rnd( ~H, `)]
qH × 2−` if L∇ = [PRnd(H, `)]
2−` if L∇ = [Eqs(`)]
2−` if L∇ = [PEqs(`)]

Succs-pd-OW
Θf

(k, `, q ~H , tA + q ~H) if L∇ = [OW`
k(f, ~H)]

B(∇1) otherwise

where q ~H =
∏
Hi∈ ~H qHi and

t′A = tA + qD × (T(u) + T(T )×
∏
Hj∈F

qHj )

q′Hi
= qHi + qD × (QF,T

i (u) + QF
i (T )×

∏
Hj∈F

qHj )

Figure 5: Function B for bound computation

the i-th premise of R.
For all bridging rules, the bound is inherited from their

single premise. For rules [Fail1] and [Fail2], the bound is
computed as p1 + p2 where p1 is the probability of the orig-
inal event in the transformed experiment and p2 bounds
the probability of failure. Rule [Bad] is similar except that
bounds come from the probability of two different failure
events; the second one can be triggered in any decryption
query and its bound must be multiplied by the factor qD.

The [Pub] case represents a reduction from CCA to CPA,
where a simulator S uses a CCA adversary A, to win in the
CPA experiment. We therefore have to compute bounds for
the computational resources (t′A, ~q

′) used by S in terms of
the resources of A and the plaintext-simulator F : T � u.
We first define a function T that computes a bound for the
time required to evaluate a test T or an expression u. Then,
t′A can be defined as tA + qD × tDec where tDec is the the
time required to evaluate the test T on each combination
of queries traversed by F plus the time required to evaluate
u once. Similarly, we define a function Qi that bounds the
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number of queries made to Hi during the simulation of the
decryption oracle, and use it to compute q′Hi

.
The rules [Ind] and [False], yield exact bounds that can

be readily used. The cases [Eqs], [PEqs], [Rnd], and [PRnd]
correspond to the probability of guessing a random bitstring
of length `, respectively in q ~H , qH , or just 1 tries. In the
case [OW], B directly returns the success probability for set
partial-domain one-wayness for the appropriate parameters.
If k = 0 and ` = |f |, we can use the standard reduction
from set one-wayness to one-wayness to obtain the bound
SuccOW

Θf
(tA+ q ~H + q ~H × tf ). Here, the adjusted time bound

accounts for the fact that the simulator may have to apply
f to every element in the set to find the pre-image.

4.4 Soundness
Let Π be a scheme with encryption algorithm Lc?M and

decryption algorithm LDM. Assume that the interpretations
of trapdoor permutations satisfy the assumptions in Γ.

Theorem 1 If ∇ is a derivation of � 1
2
c? : Guess then

AdvCPA
Π (tA, ~q) ≤ 2 B(tA,~q)(∇)− 1

Moreover, this bound is negligible in the security parameter.

Theorem 2 If ∇ is a derivation of � 1
2

(c?, D) : Guess then

AdvCCA
Π (tA, ~q) ≤ 2 B(tA,~q)(∇)− 1

Moreover, this bound is negligible in the security parameter.

The proofs of these theorems rest on showing the soundness
of each individual rule using game-based techniques.

4.5 Example
In this paragraph, we illustrate the use of the CPA logic

to prove the chosen-plaintext security of OAEP under one-
wayness (OW) and partial-domain one-wayness (PDOW) as-
sumptions on the underlying permutation. Additionally, we
show the concrete security bounds extracted from the corre-
sponding derivations. A similar illustration of the CCA logic
will appear in the full version of the paper.

The proofs under one-wayness and partial-domain one-
wayness share a common part, depicted at the bottom of
Figure 6. This first part proceeds by applying [Fail1] to
replace the expression G(r) with a fresh random bitstring
r′. To close the branch corresponding to the Guess event, we
apply optimistic sampling, replacing r′⊕(m‖0) by r′. In the
judgment thus obtained, the challenge ciphertext does not
depend on the plaintext, so we conclude by applying [Ind].
We continue with the branch corresponding to the failure
event Ask(G, r) applying optimistic sampling. At this point
there are two different ways to proceed, that yield proofs
w.r.t. different hypotheses.

The derivation for PDOW is depicted in the middle of
Figure 6. The proof proceeds by applying rule [Fail1] to re-
place H(r′) by a fresh random bitstring r′′. The rule [Opt]
is then applied in both premises to eliminate r. The branch
corresponding to the event Ask(G, r) can be closed by apply-
ing rule [Rnd] because the challenge ciphertext does not de-
pend on r anymore. The branch corresponding to the event
Ask(H, r′) is closed by merging the random bitstrings r′ and
r as r and then reformulating the event as Ask(H, [r]`0). At

this point, it is clear that querying H on the ` most signifi-
cant bits of r amounts to inverting f in its ` most significant
bits, so we conclude applying [OW`

0(f, H)].
The derivation for OW is depicted at the top of Figure 6.

It proceeds by applying rule [Opt] to move the expression
H(r′) from the challenge expression to the event, that be-
comes Ask(G,H(r′) ⊕ r). We then apply [Fail2] to replace
H(r′) by a fresh random bitstring r′′. Note that this rule
performs a substitution only on one of the branches. The
branch corresponding to event Ask(G, r′′⊕r) is closed by per-
forming an optimistic sampling that replaces r′′ ⊕ r by r′′.
At this point, the event is no longer dependent on the chal-
lenge, so we conclude using [Rnd]. Finally, the last branch
is closed by merging r′ ‖r into a fresh random bitstring r′′.
We adapt the event accordingly and obtain

Ask(H, [r′′]`0) ∧ Ask(G,H([r′′]`0)⊕ [r′′]k` ).

If the adversary manages to query [r′′]
|r′|
0 to H and

H([r′′]`0)⊕ [r′′]k` to G, it can easily obtain r′′: the first part
is directly queried to H, the second can be obtained by tak-
ing the first part, hashing it with H and computing the
exclusive-or with the value queried to G. Hence, the adver-
sary can completely invert function f and we conclude by
applying [OW0

|r′′|(f, H,G)].
Applying the bound function B(tA,(qG,qH )) to the deriva-

tion ∇OAEP,∇PDOW returns

1/2 + qG × 2−|r| + Succs-pd-OW
Θ (`, qH , tA + qH).

Applying the bound function B(tA,(qG,qH )) to the derivation
∇OAEP,∇OW returns (after applying the standard reduction
from set one-wayness to one-wayness)

1/2 + qG × 2−|r| + SuccOW
Θ (tA + qH × qG + qH × qG × tf ).

5. ATTACKS
We present our approach for finding attacks against

chosen-plaintext and chosen-ciphertext security of padding-
based encryption schemes. Since our logics are incomplete,
we use attack finding to obtain negative results and addi-
tional data points to evaluate schemes for which we cannot
obtain proofs.

We distinguish between universal attacks and existential
attacks relative to a set of one-wayness assumptions. An
attack is universal if it works against every possible instan-
tiation of the trapdoor permutations used by a scheme. An
attack is existential if it relies on specific properties of the
employed trapdoor permutation.

5.1 Universal attacks
To find universal attacks against CPA security of an en-

cryption algorithm e, we search for closed expressions m0

and m1 that do not contain symbols of the form f−1 such
that e {m0/m} 6≈ e {m1/m}. By soundness of 6≈, there ex-
ists an efficient algorithm distinguish that returns 0 for in-
put Lm0M and 1 for input Lm1M with overwhelming prob-
ability. To mount an attack against CPA security us-
ing this algorithm, an adversary chooses plaintexts Lm0M
and Lm1M, receives the challenge ciphertext c?, and returns
distinguish(c?).

To analyze the CCA security of schemes, we search for
malleability attacks using deducibility. More precisely, we
search for closed expressions m0 and ∆ 6= 0n such that
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∇OW : [Rnd(k,G)]
�0 f(r′ ‖r) : Ask(G, r′′)

[Opt]
�0 f(r′ ‖r) : Ask(G, (r′′ ⊕ r))

[OWn
0 (f, (H,G))]

�0 f(r′′) : Ask(H, [r′′]`0) ∧ Ask(G,H([r′′]`0)⊕ [r′′]k` )
[Merge]

�0 f(r′ ‖r) : Ask(H, r′) ∧ Ask(G,H(r′)⊕ r)
[Fail2]

�0 f(r′ ‖r) : Ask(G, (H(r′)⊕ r))
[Opt]

�0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

∇PDOW :

[Rnd(k,G)]
�0 f(r′ ‖r′′) : Ask(G, r)

[Opt]
�0 f(r′ ‖r′′ ⊕ r) : Ask(G, r)

[OW`
0(f, H)]

�0 f(r) : Ask(H, [r]`0)
[Merge]

�0 f(r′ ‖r) : Ask(H, r′)
[Opt]

�0 f(r′ ‖r′′ ⊕ r) : Ask(H, r′)
[Fail1]

�0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

∇OAEP :
[Ind]

�1/2 f(r′ ‖H(r′)⊕ r) : Guess
[Opt]

�1/2 f(r′ ⊕ (m‖0)‖H(r′ ⊕ (m‖0))⊕ r) : Guess

∇
�0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

[Opt]
�0 f(r′ ⊕ (m‖0)‖H(r′ ⊕ (m‖0))⊕ r) : Ask(G, r)

[Fail1]
�1/2 f((G(r)⊕ (m‖0))‖H(G(r)⊕ (m‖0))⊕ r) : Guess

Figure 6: Derivations for CPA security of OAEP.

e {m0/m} ` e {m0 ⊕∆/m}; denote maul the correspond-
ing algorithm. This would imply an effective attack against
IND-CCA: first choose plaintexts m0 and m1 6= m0 and
obtain the challenge c?; then query the decryption oracle
on maul(pk, c?), xor the result with ∆, and return 0 if it
equals Lm0M and 1 otherwise. An example of a scheme
vulnerable to a universal attack of this form is the Zheng-
Seberry scheme [31], whose encryption algorithm is given by
e = f(r)‖(G(r)⊕m)‖H(m). The adversary can use the dis-

tinguisher corresponding to C = [∗]|H(m)|
|r|+|m| and C′ = H(0|m|)

to tell appart e {0/m} from e {1/m}.

5.2 Existential attacks
To find existential attacks against an encryption algorithm

e w.r.t. a set of assumptions Γ, we find universal attacks
against a modified e′ of it. An example can elucidate better
the point.

Consider the encryption algorithm of ZAEP [7], e = f(r ‖
G(r)⊕m). To show that there is no blackbox reduction from
the CPA security of ZAEP to the assumption (f, 0, |f|), we
use the instantiation f(a ‖ b) = a ‖ f2(b) for f. If f2 is a one-
way permutation, the permutation f satisfies the assumption
(f, 0, |f|). Using static distinguishability, we find an attack
on e′ = r‖ f2(G(r)⊕m) given by the contexts

C = [∗]|m||r| and C′ = f2
(
G
(

[∗]|0||m|
))

which can be used to distinguish e {0/m} and e {1/m}. To
show that there is no blackbox reduction of the CCA security
of ZAEP to an arbitrary Γ, we use the instantiation

f(a) = f′
(

[a]
|a|−c
0

)∥∥∥ [a]c|a|−c

Assuming f′ satisfies the assumptions Γ (accounting for the
size reduction by c), this instance of f satisfies Γ. It is easy
to see that the resulting e′ is malleable.

More generally, to prove that there is no blackbox reduc-
tion for a fixed set of one-wayness assumptions Γ, we must
either find a universal attack or instantiations of the trap-
door permutations that yield attacks and are compatible
with all assumptions in Γ. For example, the instantiation
above is compatible with all one-wayness assumptions and
the instantiation we used for ZAEP is compatible with all

one-wayness assumptions except those of the form (f, k, `),
where 0 < ` and k + ` ≤ |a|. In addition to the aforemen-
tioned instantiations, we also use instantiations of the form

f(a‖b‖c) = f1(a)‖b⊕ a‖c

which allow us to find attacks if f is used in such a way that
part of its input are leaked or interdependent.

6. EXPERIMENTAL VALIDATION
We implemented the proof search and attack finding

methods described in § 4 and § 5 in a toolset that we coin
ZooCrypt. ZooCrypt can prove the CPA and CCA security of
a scheme under different assumptions on the trapdoor per-
mutations it uses, or attacks consistent that are consistent
with these assumptions.

6.1 Security Analysis
To analyze the security of a scheme with encryption algo-

rithm given by an expression c? under a set of assumptions
Γ, the toolset follows the workflow depicted in Figure 6.1:

1. Checks that c? is well-typed and that encryption is
invertible, i.e. c? `? m;

2. Searches for attacks against CPA security;
3. Searches for proofs of CPA security. If a proof is found,

computes the corresponding concrete security bound;
4. Searches for malleability attacks against CCA security;
5. If a CPA proof has been found, synthesizes a decryption

algorithm D and searches for a proof of CCA security. If a
proof is found, computes the corresponding security bound.

The results of this security analysis are an adversary for
each attack found, and derivations for all security proofs to-
gether with the set of assumptions effectively used and the
corresponding concrete security bound. Steps 3 and 5 im-
plement proof search algorithms for the logics. These algo-
rithms try to build a valid derivation bottom up, by applying
rules in a prescribed order. Simple heuristics allow to im-
prove the efficiency of the search and to ensure termination.

A crucial step in the above workflow is synthesizing a de-
cryption algorithm that reject as many invalid ciphertexts as
possible, with the aim of easing the construction of a plain-
text simulator during a CCA analysis. Indeed, an encryp-
tion algorithm typically admits several correct decryption
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Well-typed
and invertible?

Search for chosen-plaintext attacks

Attack found?

Search for proof of CPA security

Proof found?

Output CPA bound

Search for malleability attacks

Attack found?

Search for proof of CCA security

Proof found?

CPA secure, CCA undecided

No

Yes

No

No

Yes

Incorrect scheme
No

Output attack
Yes

Not CPA secure

Output attack
Yes CPA if proof found

Not CCA secure

Search for malleability attacks

Attack found? Security undecided
No

Yes

No

Output CCA bound
Yes

CCA secure

Figure 7: Security analysis workflow

algorithms, because the consistency condition gives com-
plete freedom of choice as to what should be the result of
decrypting an invalid ciphertext. The tool infers such algo-
rithms using a method inspired by [? ? ] to analyze the
redundancy built into ciphertexts. We exploit the fact that
our algorithm for checking static equivalence computes as
a sub-routine non-trivial equations that hold for an expres-
sion; when applied to an expression denoting an encryption
algorithm, this sub-routine yields tests for checking the va-
lidity of ciphertexts.

6.2 Practical Interpretation for RSA
Concrete security bounds can be used to guide the

choice of practical parameters for realizations of encryption
schemes based on RSA. In order to validate the quality of the
bounds output by our tool, we implemented a method based
on an extrapolation [24] of the estimated cost of factoring
the RSA-768 integer from the RSA Factoring Challenge [22],
and on the lattice basis reduction of set partial-domain one-
wayness to one-wayness for RSA [19].

Fixing a maximum number of queries to oracles and an
admissible advantage p, our tool estimates from the security
bound obtained from a derivation, the minimum RSA mod-
ulus length N such that no adversary executing within time
tA achieves either a CPA or CCA advantage greater than p.

For instance, a reasonable security target may be that
no CCA adversary executing in time 2128 and making at
most 260 hash queries and 230 decryption queries achieves
an advantage of more than 2−20. From these values, the

estimated cost of inverting RSA, and the bound found for
the CCA security of OAEP, our tool estimates a minimum
modulus length of 4864 bits, and a ciphertext overhead of
around 200 bits.

6.3 Generation of Encryption Schemes
Our tool also implements an algorithm that generates ex-

pressions denoting encryption algorithms within budget con-
straints specified as the number of concatenation, exclusive-
or, hash and trapdoor permutation constructors.

Candidate encryption schemes are generated following a
top-down approach that uses variables to represent holes in
partially specified expressions. Starting from a fully unspec-
ified expression, i.e. just a variable x, at each iterative step
the tool picks a hole and replaces it with either:
• An expression of the form f(x), H(x), x⊕ y or x‖y, for

fresh variables x and y, if the budget permits;
• A hole-free sub-expression of e or one of 0, m, r; this

does not consume the budget.
An incremental type-checker is used at each step to discard
partially specified expressions that do not have any well-
typed instance. For example, e ⊕ (e ‖ x) is immediately
discarded because e cannot be assigned a size regardless of
any substitution for the hole x.

We trim large parts of the search space by implementing
an early pruning strategy in the style of [26]. Concretely, we
apply some simple filters during generation. For instance,
given an expression e with holes, we check for the existence of
a substitution σ for holes respecting the budget constraints
such that eσ `? m, and that it is not the case that for all such
substitutions eσ ` m or eσ ‖m ` R(e). These filters can
be implemented efficiently using memoization to drastically
reduce their computational cost.

6.4 Experiments
We evaluate our tools on encryption schemes generated

under different budget constraints. Figure 1 summarizes
the results of the automated security analysis of §6.1. In the
figure, schemes are classified in rows by their size, measured
by the total number of operators used in the expression de-
noting their encryption algorithm.

The reported experiment has been conducted under two
classes of assumptions:

1. Γ1 = {(f, 0, |f|) | f ∈ F(c?)}, i.e. assuming that all
trapdoor permutations are one-way;

2. Γ2 = {(f, kf , nf ) | f ∈ F(c?)} such that 0 ≤ kf and
kf + nf ≤ |f| for all f ∈ F(c?), i.e. one arbitrary one-
wayness assumption for each trapdoor permutation;

The columns grouped under OW CPA report the results
obtained when analyzing CPA security under Γ1. Column
Proof indicates the number of schemes proved secure, col-
umn Attack the number of schemes for which some attack
(existential or universal) was found, and column Undecided
the number of schemes for which security could not be de-
cided. Similarly, the columns grouped under CPA and CCA
report the results when analyzing CPA and CCA security
under all assumptions of the form Γ2. In this case, column
Proof indicates the number of schemes proved secure un-
der some assumption of the form Γ2, column Attack the
number of schemes for which an attack was found for all as-
sumption of the form Γ2, and column Undecided the num-
ber of schemes for which security could not be decided. The
attack and proof search algorithms are extremely efficient,
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Size Total
OW CPA (% of Total) CPA (% of Total) CCA (% of CPA Proof + CPA Undecided)

Proof Attack Undecided Proof Attack Undecided Proof Attack NR Undecided

4 2
1 1 0 2 0 0 0 2 0 0

(50.00%) (50.00%) (0.00%) (100.00%) (0.00%) (0.00%) (0.00%) (100.00%) (0.00%) (0.00%)

5 44
8 36 0 12 32 0 0 13 0 0

(18.18%) (81.82%) (0.00%) (27.27%) (72.73%) (0.00%) (0.00%) (100.00%) (0.00%) (0.00%)

6 335
65 270 0 93 241 1 1 96 5 0

(19.40%) (80.60%) (0.00%) (27.76%) (71.94%) (0.30%) (0.98%) (94.12%) (4.90%) (0.00%)

7 3263
510 2735 18 750 2475 38 45 739 45 62

(15.63%) (83.82%) (0.55%) (22.98%) (75.85%) (1.16%) (5.05%) (82.94%) (5.05%) (6.96%)

8 32671
4430 27894 347 6718 25336 617 536 6531 306 1192

(13.56%) (85.38%) (1.06%) (20.56%) (77.55%) (1.89%) (6.26%) (76.25%) (3.57%) (13.92%)

9 350111
43556 301679 4876 66775 274813 8523 7279 62356 3035 16496

(12.44%) (86.17%) (1.39%) (19.07%) (78.49%) (2.43%) (8.16%) (69.93%) (3.40%) (18.50%)

10 644563
67863 569314 7386 133476 491189 19898 20140 112993 12794 32397

(10.53%) (88.33%) (1.15%) (20.71%) (76.20%) (3.09%) (11.29%) (63.36%) (7.17%) (18.17%)

Total 1030989
116433 901929 12627 207826 794086 29077 28001 182730 16185 50147

(11.29%) (87.48%) (1.22%) (20.16%) (77.02%) (2.82%) (10.11%) (65.95%) (5.84%) (18.10%)

Table 1: Evaluation of the tool on generated encryption schemes

e.g. proof search for schemes of size 7 takes on average 0.1ms
for CPA and 0.5ms for CCA on a modern workstation

Observe that the figures in the first two groups suggest
the separation between one-wayness and partial-domain one-
wayness: the stronger the assumption, the more schemes can
be proven secure and the less attacks can be found.

Finally, column NR in the CCA group counts the number
of schemes that are CPA secure but non-redundant, meaning
that all ciphertexts are valid. Non-redundant schemes can
be CCA secure [6, 23], but their proofs require random oracle
programmability, which is out of the scope of our logics.

Validation.
We also evaluated our automated proof search and attack

finding algorithms on a number of schemes from the litera-
ture, including the over one hundred variants of OAEP and
SAEP surveyed by Komano and Ohta [23]. In all cases, our
results are consistent with published results, and in most we
are able to prove security under exactly the same assump-
tions and obtain the same security bounds. As evidence of
the effectiveness of our methodology, we observe that our
analyses decide the CPA security of all 72 variants of OAEP
in the taxonomy of [23]. The results for CCA security are
more nuanced: for about 20% of schemes, we fail to find
proofs or attacks when they exist.

For CPA security our methods seem to achieve empiri-
cal completeness, which suggests that completeness may be
provable for some class of schemes or for some mild exten-
sion. A closer examination of the schemes on which our
CCA analysis is unable to decide security reveals that this
is either due to the fact that our approximation of inequal-
ity in rules [Eqs] and [PEqs] is too coarse, or because the
schemes are non-redundant. Non-redundancy complicates
enormously the task of simulating the decryption oracle in
CCA reductions, because a meaningful response must be re-
turned in all cases. Proving CCA security of non-redundant
schemes, requires programming random oracles in order to
maintain consistency during simulation, something that we
have intentionally avoided in our proof systems. Extending
our proof systems to embody some form of programmabil-
ity would reduce the number of schemes for which security
cannot be decided, and would be a step towards closing the
empirical completeness gap.

7. RELATED WORK

Our work lies at the intersection between symbolic and
computational cryptography, and draws on verification tech-
niques from both areas. We refer to [12, 15] for a recent
account of symbolic verification and focus on verification
tools and methods for the computational model, and cryp-
tographic soundness.

Since its inception [2], cryptographic soundness was ex-
tended to many settings [15]. Despite this success, crypto-
graphic soundness for constructions based on exclusive or
and one-way trapdoor permutations has remained elusive.
Negative results [30] show that soundness may indeed be
very difficult to achieve for the setting of this paper.

CryptoVerif [11] and EasyCrypt [4] support the construc-
tion and verification of cryptographic proofs in the compu-
tational model. Both CryptoVerif and EasyCrypt provide a
high level of automation, and CryptoVerif supports fully au-
tomated verification of many cryptographic protocols. In
addition, EasyCrypt has been applied to verify security of
several padding-based schemes. However, fully automated
proofs of padding-based schemes are out of reach of these
tools. [16] reports on a Hoare-like logic and an automated
tool for proving CPA security of padding-based schemes.
The tool can verify the security of several schemes, such
as BR [9] and REACT [25], but fails to verify most other
examples. In our view, the limitations of the approach are
inherited from using a Hoare logic, which favors local reason-
ing. In contrast, we use a more global approach in which one
reasons about the probability of an event in an experiment.

In addition, a number of formalisms have been developed
to reason about security of cryptographic primitives and
constructions in the computational model [5, 21]. However,
these systems reason about constructions described in math-
ematical vernacular, and are thus not readily amenable to
automation. Similar formalisms exist for cryptographic pro-
tocols [27], but these are not automated either.

Finally, the batch mode of ZooCrypt is similar in spirit
to the AVGI toolkit [26]. The toolkit allows users to state
security requirements, for instance authentication or secrecy,
and non-functional requirements such as message length and
available bandwidth. The AVGI toolkit is composed of a
protocol generator, that applies pruning techniques to curb
the state space explosion problem, and a protocol screener
that applies symbolic methods to verify whether generated
protocols comply with the desired properties.

8. CONCLUSION

10



We have defined, implemented and evaluated proof sys-
tems to reason about security of public-key encryption
schemes built from trapdoor permutations and hash func-
tions. Our work sets a new methodology for analyzing cryp-
tographic constructions in the computational model. Pre-
liminary investigations suggest that our methodology ex-
tends well to other settings, and we intend to apply it
for building a comprehensive database that includes clas-
sical cryptographic constructions such as digital signature
schemes, modes of operation, and message authentication
codes, and to build on top of ZooCrypt an online interactive
tutor that can generate exercises, help users finding an at-
tack or a security proof, and check that a solution input by
users is correct. Based on our experience with the interactive
mode of ZooCrypt, we are convinced that, if well-executed,
such a tutor could provide a very attractive vector for intro-
ducing students to cryptographic proofs!

We have also started to connect ZooCrypt with EasyCrypt,
and implemented a prototype mechanism that turns success-
ful derivations in our logics into EasyCrypt proofs. While
generation of EasyCrypt proofs provides independent evi-
dence of the soundness of the logics, our primary interest
for this connection is to increase automation in EasyCrypt
proofs. We expect that combining reflection3 and proof gen-
eration will deliver significant benefits for EasyCrypt.
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