
AVCLASS: A Tool for Massive Malware Labeling

Marcos Sebastián1, Richard Rivera12, Platon Kotzias12, and Juan Caballero1

1 IMDEA Software Institute
2 Universidad Politécnica de Madrid

Abstract. Labeling a malicious executable as a variant of a known family is
important for security applications such as triage, lineage, and for building refer-
ence datasets in turn used for evaluating malware clustering and training malware
classification approaches. Oftentimes, such labeling is based on labels output by
antivirus engines. While AV labels are well-known to be inconsistent, there is of-
ten no other information available for labeling, thus security analysts keep relying
on them. However, current approaches for extracting family information from AV
labels are manual and inaccurate. In this work, we describe AVCLASS, an auto-
matic labeling tool that given the AV labels for a, potentially massive, number
of samples outputs the most likely family names for each sample. AVCLASS im-
plements novel automatic techniques to address 3 key challenges: normalization,
removal of generic tokens, and alias detection. We have evaluated AVCLASS on
10 datasets comprising 8.9 M samples, larger than any dataset used by malware
clustering and classification works. AVCLASS leverages labels from any AV en-
gine, e.g., all 99 AV engines seen in VirusTotal, the largest engine set in the liter-
ature. AVCLASS’s clustering achieves F1 measures up to 93.9 on labeled datasets
and clusters are labeled with fine-grained family names commonly used by the
AV vendors. We release AVCLASS to the community.
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1 Introduction

Labeling a malicious executable as a variant of a known family is important for multiple
security applications such as identifying new threats (by filtering known ones), select-
ing disinfection mechanisms, attribution, and malware lineage. Such labeling can be
done manually by analysts, or automatically by malware classification approaches us-
ing supervised machine learning [8,28,29] (assuming the sample belongs to a family in
the training set), and also through malware clustering approaches [2,3,24,26] followed
by a manual labeling process to assign a known family name to each cluster.

Labeling executables is also important for building reference datasets that are used
by researchers for training those malware classification supervised approaches and for
evaluating malware clustering results. This creates a bit of a chicken-and-egg problem,
which prior work resolves by building reference datasets using AV labels [2, 3, 24, 28,
29]. However, AV labels are well-known to be inconsistent [2, 6, 18, 20]. In particular,
AV engines often disagree on whether the same sample is malicious or not, and the fam-
ily name that the label encodes may differ, among others, because of lack of a standard



naming convention (conventions such as CARO [7] and CME [4] are not widely used),
lack of interest (the main goal of an AV is detection rather than classification [5, 10]),
using heuristic or behavioral detections not specific to a family, and vendors assigning
different names (i.e., aliases) to the same family.

Still, despite their known inconsistencies, AV labels are arguably the most common
source for extracting malware labels. This likely happens because in many occasions
no other ground truth is available, and because, despite its noisy nature, AV labels often
contain the family name the analyst wants. Thus, extracting as accurate family informa-
tion as possible from AV labels is an important problem.

Several limitations affect the process in which prior work builds family name ground
truth from AV labels. First, some approaches use the full AV labels, which is inaccurate
because the family name comprises only a fraction of the full label. For example, an
AV engine may use different labels for samples in the same family, but still assign the
same family name in those labels, e.g., when using two different detection rules for the
family. Other works extract the family name in the labels through a manual process that
is not detailed, does not handle aliases between family names, and does not scale to
hundreds of thousands, or millions, of samples.

Second, it has been shown that no single AV engine detects all samples and that the
number of AV engines needed to achieve high correctness in the family name is higher
than for detection [20]. To address these issues, it is common to resort to majority voting
among a fixed set of selected AV vendors. But, this requires selecting some AV vendors
considered better at labeling, when prior work shows that some AV vendors may be
good at labeling one family, but poor with others [20]. In addition, a majority cannot be
reached in many cases, which means a family name cannot be chosen for those samples
and they cannot be added into the evaluation or training data [25]. And, focusing on
the samples where the majority agrees may bias results towards the easy cases [16].
Furthermore, prior work assumes the results of this process correspond to the ground
truth, without quantitatively evaluating their quality.

In this work, we describe AVCLASS, an automatic labeling tool that given the AV
labels for a, potentially massive, number of samples outputs the most likely family
names for each sample, ranking each candidate family name by the number of AV
engines assigning it to the sample. Selecting the top ranked family corresponds to a
plurality vote, i.e., family with most votes wins. AVCLASS implements novel automatic
techniques to address 3 main challenges: normalization, removal of generic tokens,
and alias detection. Using those techniques AVCLASS automatically extracts as precise
family information as possible from the input AV labels.

We envision AVCLASS being used in two main scenarios. In the first scenario, an
analyst does not have access to a state-of-the-art malware clustering system (e.g., [2,
3, 24, 26]). When faced with labeling a large amount of samples, the analyst uses AV-
CLASS to efficiently obtain the most likely families for each sample. Here, AVCLASS
acts as an efficient replacement for both clustering and labeling the resulting clusters.

In the second scenario, the analyst has access to an state-of-the-art malware cluster-
ing system and can use AVCLASS for 3 tasks. First, it can use AVCLASS to automat-
ically label the output clusters with the most likely family name used by AV vendors.



Second, AVCLASS’s output can be used to implement a feature based on AV labels
(e.g., whether two samples have the same family name) that can be added to the ex-
isting clustering. Thus, rather than assuming that the AV labels constitute the ground
truth, the analysts incorporates the AV labels knowledge into the clustering system.
Third, AVCLASS’s output can be used to build a reference clustering to evaluate the
clustering results. Since AVCLASS tags each candidate family name with a confidence
factor based on the number of AV engines using the name, the analyst can select a
threshold on the confidence factor for building the reference dataset, e.g., replacing the
default plurality vote with a more conservative (majority or else) vote.

The salient characteristics of AVCLASS are:

– Automatic. AVCLASS removes manual analysis limitations on the size of the input
dataset. We have evaluated AVCLASS on 8.9 M malicious samples, larger than any
dataset previously used by malware clustering and classification approaches.

– Vendor-agnostic. Prior work operates on the labels of a fixed subset of 1–48 AV
engines. In contrast, AVCLASS operates on the labels of any available set of AV
engines, which can vary from sample to sample. All labels are used towards the
output family name. AVCLASS has been tested on all 99 AV engines we observe in
VirusTotal [31], the largest AV engine set considered so far.

– Plurality vote. AVCLASS performs a plurality vote on the normalized family names
used by all input engines. A plurality vote outputs a family name more often than a
majority vote, since it is rare for more than half of the AV engines to agree.

– Cross-platform. AVCLASS can cluster samples for any platforms supported by the
AV engines. We evaluate AVCLASS on Windows and Android samples.

– Does not require executables. AV labels can be obtained from online services like
VirusTotal using a sample’s hash, even when the executable is not available.

– Quantified accuracy. The accuracy of AVCLASS has been evaluated on 5 publicly
available malware datasets with ground truth, showing that it can achieve an F1
score of up to 93.9.

– Reproducible. We describe AVCLASS in detail and release its source code.3

2 Related Work

Table 1 summarizes relevant works that have used AV labels. For each work, it first
presents the year of publication and the goal of the work, which can be malware detec-
tion, clustering, classification, combinations of those, cluster validity evaluation, as well
as the development of metrics to evaluate AV labels. Then, it describes the granularity
of the information extracted from the AV labels, which can be Boolean detection (i.e.,
existence or absence of the label), coarse-grained classification in particular if a sample
is a potentially unwanted program (PUP) or malware, and extracting the family name.
Next, it shows the number of labeled samples used in the evaluation and the number

3 https://github.com/malicialab/avclass

https://github.com/malicialab/avclass


Table 1: Related work that uses AV labels. The number of samples includes only those
labeled using AV results and for classification approaches only malicious samples.

Granularity
Work Year Goal Det. PUP Fam. Samples AV Eval Train Norm
Bailey et al. [2] 2007 Cluster X 7 X 8.2K 5 X 7 7

Rieck et al. [28] 2008 Classify X 7 X 10K 1 X X 7

McBoost [23] 2008 Detect X 7 7 5.5K 3 X X 7

Bayer et al. [3] 2009 Cluster X 7 X 75.7K 6 X 7 7

Perdisci et al. [24] 2010 Cluster+Detection X 7 X 25.7K 3 X 7 X
Malheur [29] 2011 Cluster+Classify X 7 X 3.1K 6 X X 7

BitShred [13] 2011 Cluster X 7 X 3.9K 40 X 7 X
Maggi et al. [18] 2011 Metrics X 7 X 98.8K 4 7 7 X
VAMO [25] 2012 Cluster Validity X 7 X 1.1M 4 X 7 X
Rajab et al. [27] 2013 Detect X 7 7 2.2K 45 X 7 7

Dahl et al. [8] 2013 Detect+Classify X 7 X 1.8M 1 X X 7

Drebin [1] 2014 Detect X X X 5.5K 10 X X X
AV-Meter [20] 2014 Metrics X 7 X 12 K 48 7 7 7

Malsign [15] 2015 Cluster X X 7 142K 11 X 7 7

Kantchelian et al. [14] 2015 Detect X 7 7 279K 34 X X 7

Miller et al. [19] 2016 Detect X 7 7 1.1M 32 X X 7

MtNet [11] 2016 Detect+Classify X 7 X 2.8M 1 X X 7

Hurier et al. [12] 2016 Metrics X X X 2.1M 66 7 7 7

AVCLASS 2016 Cluster+Label X X X 8.9M 99 X 7 X

of vendors those labels come from. For supervised approaches, the samples column in-
cludes only malicious samples in the training set. As far as we know the largest dataset
used previously for malware clustering or classification is by Huang and Stokes [11],
which comprises 6.5 M samples: 2.8 M malicious and 3.7 M benign. In contrast, we
evaluate AVCLASS on 8.9 M malicious samples, making it the largest so far. The next
two columns capture whether the AV labels are used to evaluate the results and for
training machine learning supervised approaches. Finally, the last column captures if
normalization is applied to the AV labels (X), or alternatively the full label is used (7).

Most works consider a sample malicious if at least a threshold of AV engines de-
tects it (i.e., returns a label) and weigh each AV engine equally in the decision. There is
no agreement in the threshold value, which can be a single AV engine [25,32], two [1],
four [15,19], or twenty [13]. Some works evaluate different thresholds [20,22] showing
that small threshold increases, quickly reduce the number of samples considered ma-
licious. Recently, Kantchelian et al. [14] propose techniques for weighing AV engines
differently. However, they assume AV labels are independent of each other, despite prior
work having found clusters of AV engines that copy the label of a leader [20], which
we also observe. In addition, an AV engine with poor overall labels may have highly
accurate signatures for some malware families. In our work we adjust the influence of
AV engines that copy labels and then weigh remaining labels equally.

Other works show that AVs may change their signatures over time, refining their
labels [9,14]. Recently, Miller et al. [19] argue that detection systems should be trained
not with the labels available at evaluation time (e.g., latest VT reports), but with the



labels available at training time. Otherwise, detection rate can be inflated by almost 20
percentage points. However, for evaluating clustering results, it makes sense to use the
most recent (and refined) labels.

AV label inconsistencies. Prior work has identified the problem of different AV engines
disagreeing on labels for the same sample [2, 6, 18, 20]. While such discrepancies are
problematic, security analysts keep coming back to AV labels for ground truth. Thus, we
believe the key question is how to automatically extract as much family information as
possible from those labels and to quantitatively evaluate the resulting reference dataset.
We propose an automatic labeling approach that addresses the most important causes
for discrepancies, namely different naming schemes, generic tokens, and aliases.

Li et al. [16] analyze the use of a reference clustering extracted from AV labels to
evaluate clustering results. They argue that using only a subset of samples, for which the
majority of AV engines agrees, biases the evaluation towards easy-to-cluster samples.
AVCLASS automatically extracts the most likely family names for a sample (even if
no majority agrees on it), helping to address this concern by enlarging the reference
dataset. Mohaisen and Alrawi [20] propose metrics for evaluating AV detections and
their labels. They show how multiple AVs are complementary in their detection and
also that engines with better detection rate do not necessarily have higher correctness
in their family names. Recently, Hurier et al. [12] propose further metrics to evaluate
ground truth datasets built using AV labels. One limitation of proposed metrics is that
they operate on the full AV labels without normalization.

Most related to our work is VAMO [25], which proposes an automated approach for
evaluating clustering results. VAMO normalizes the labels of 4 AV vendors to build an
AV graph (introduced in [24]) that captures the fraction of samples where labels, pos-
sibly from different engines, appear together. Our alias detection approach is related,
although VAMO does not output aliases as AVCLASS does. Furthermore,VAMO finds
the set of reference clusters from the AV labels that best agrees with a third-party clus-
tering, while AVCLASS labels samples without requiring third-party clustering results.

Naming conventions. There have been attempts at reducing confusion in malware la-
bels through naming conventions, but they have not gained much traction. A pioneering
effort was the 1991 CARO Virus Naming Convention [7]. More recently, the Common
Malware Enumeration (CME) Initiative [4] provides unique identifiers for referencing
the same malware across different names.

3 Approach

Figure 1 shows the architecture of AVCLASS. It comprises two phases: preparation and
labeling. During the preparation phase, an analyst runs the generic token detection and
alias detection modules on the AV labels of a large number of samples to produce lists
of generic tokens and aliases, which become inputs to the labeling phase. In particular,
the generic token detection takes as input the AV labels of samples for which their fam-
ily is known (e.g., from publicly available labeled datasets [1,21,29, 33]) and outputs a
list of generic tokens, i.e., tokens that appear in labels of samples from different fami-



Fig. 1: AVCLASS architecture.

lies. The alias detection module takes as input AV labels of a large number of unlabeled
samples and outputs pairs of family names that alias to each other.

The labeling phase is the core of AVCLASS and implements the label normalization
process. It takes as input the AV labels of a large number of samples to be labeled, a
list of generic tokens, a list of aliases, and optionally a list of AV engines to use. For
each sample to be labeled, it outputs a ranking of its most likely family names. The list
of generic tokens and aliases are the outputs of the preparation phase. By default, AV-
CLASS uses all AV engines in the set of AV labels for a sample. However, by providing
an AV engine list, the analyst can restrict the processing to labels from those engines.

AVCLASS implements both the preparation and labeling phases. But, we expect
that many analysts may not have large numbers of samples used for preparation. Thus,
AVCLASS also includes default lists of generic tokens and aliases obtained in this work,
so that an analyst can skip the preparation phase.

The remainder of this section first details the labeling phase (Section 3.1), and then
the generic token detection (Section 3.2) and alias detection (Section 3.3) preparation
modules. To illustrate the approach, we use the running example in Figure 2.

3.1 Labeling

The labeling phase takes as input the AV labels of a, potentially massive, number of
samples. For each sample, it returns a ranking of its most likely family names. This
Section describes the 8 steps used in labeling each sample.

AV selection (optional). By default, AVCLASS processes the labels of all AV engines
in the input set of a sample. The labels of each sample may come from a different set of
AV engines. This design decision was taken because selecting a fixed set of AV engines
(as done in prior work) is difficult since there is no real information about which engines
are better, and some engines may be good in a family but poor with others. Furthermore,
a fixed set of AV engines throws away information as certain AV vendors may have been
analyzed only by certain AV vendors. In particular, it is common to obtain AV labels
from VT, which has used different AV engines to scan uploaded files over time. Overall,
we observe 99 different AV engines in our VT reports, which are detailed in Table 11



1.VIPRE "Outbrowse (fs)"
2.K7GW "Unwanted-Program ( 0049365d1 )"
3.F-Prot "W32/Solimba.B!Eldorado"
4.Avira "PUA/Firseria.Gen"
5.Avast "Win32:Solimba-D [PUP]"
6.Kaspersky "not-virus:.Firseria.c"
7.BitDefender "Gen:Adware.Solimba.1"
8.Agnitum "Trojan.Adware!VIApHWnNQWk"
9.Emsisoft "Gen:Adware.Solimba.1 (B)"
10.AVG "Outbrowse.Q"

(a) AV labels

1.VIPRE "Outbrowse (fs)"
2.K7GW "Unwanted-Program ( 0049365d1 )"
3.F-Prot "W32/Solimba.B!Eldorado"
4.Avira "PUA/Firseria.Gen"
5.Avast "Win32:Solimba-D [PUP]"
6.Kaspersky "not-virus:MSIL.Firseria.c"
7.BitDefender "Gen:Adware.Solimba.1"
8.Agnitum "Trojan.Adware!VIApHWnNQWk"
10.AVG "Outbrowse.Q"

(b) After duplicate removal

1.VIPRE "Outbrowse","fs"
2.K7GW "Unwanted","Program","0049365d1"
3.F-Prot "W32","Solimba","B","Eldorado"
4.Avira "PUA","Firseria"
5.Avast "Win32","Solimba","D","PUP"
6.Kaspersky "not","virus","MSIL","Firseria"
7.BitDefender "Gen","Adware","Solimba","1"
8.Agnitum "Trojan","Adware"
10.AVG "Outbrowse"

(c) After suffix removal and tokenization

1.VIPRE "outbrowse"
2.K7GW "0049365d1"
3.F-Prot "solimba"
4.Avira "firseria"
5.Avast "solimba"
6.Kaspersky "firseria"
7.BitDefender "solimba"
10.AVG "outbrowse"

(d) After token filtering

1.VIPRE "outbrowse"
2.K7GW "0049365d1"
3.F-Prot "firseria"
4.Avira "firseria"
5.Avast "firseria"
6.Kaspersky "firseria"
7.BitDefender "firseria"
10.AVG "outbrowse"

(e) After alias detection

1.firseria 5
2.outbrowse 2

(f) After token ranking

Fig. 2: Running example.

in the Appendix. Some engines are only seen for a few days, while others have been
continually used by VT for nearly a decade.

Still, an analyst can optionally provide an input list of engines to AVCLASS. If
provided, labels from engines not in the input list are removed at this step and only
labels from the input set of AV engines are used for every sample. For brevity, our
running example in Figure 2 assumes the analyst provided an input list with 10 engines.
Figure 2a shows the input AV labels from the selected 10 engines for the same sample.

Duplicate removal. The same AV vendor may have multiple engines such as McAffee
and McAffee-GW-Edition, or TrendMicro and TrendMicro-HouseCall. Those engines
often copy labels from each other. While we could include only one engine per vendor,
the reality is that their detections often differ. In addition, we observe groups of AV
vendors that copy labels from each other, something also observed in prior work [20].
In both situations, the detection from these groups of engines are not independent (an
assumption of some prior works [14]).

To avoid giving too much weight on the selected family name to vendors with mul-
tiple engines, or whose labels are often copied, we leverage the observation that when
two AV engines output exactly the same label for a sample this very likely corresponds
to one of those two situations. This happens because each vendor structures its labels
differently and also uses slightly different keywords in their labels, so that two engines
producing exactly the same label is rare unless they are copying each other. Thus, at
this step, AVCLASS remove all duplicate labels. A special case is a vendor (Emsisoft)
that when copying labels adds to them the suffix “ (B)”. For this vendor, we first re-
move this suffix from its labels, and then check for duplicates. We have not observed



any other such cases. Figure 2b shows how the Emsisoft label is removed at this step as
a duplicate of the BitDefender label.

Suffix removal. We have empirically observed that most noise in AV labels is intro-
duced in the suffix, i.e., the part of the AV label after the family name, where AV ven-
dors may encode information such as rule numbers and hexadecimal strings that may
be hashes. In general, it is difficult to remove those suffixes for all engines as vendors
use different label structures, which may even change over time. Still, we have found 3
simple rules to truncate useless suffixes: (1) for 17 AV engines, truncate label after last
dot; (2) for AVG, truncate after last dot if the suffix only contains digits or uppercase
chars; and (3) for Agnitum, truncate after the last ’!’ character. Suffix removal is the
only engine-specific step in AVCLASS.

Tokenization. The next step is to split each label into tokens. We use a simple tok-
enization rule that splits the label on any sequence of consecutive non-alphanumeric
characters. Figure 2c shows the results of the suffix removal and tokenization steps. La-
bels 4, 6, 8, and 10 have been truncated by the suffix removal rules, and all labels have
been tokenized.

Token filtering. The goal of this step is to remove tokens that are not family names.
Each token goes through five substeps: (1) convert to lowercase; (2) remove digits at
the end of the token; (3) remove token if short, i.e., less than 4 characters; (4) remove
token if present in the input list of generic tokens; and (5) remove token if it is a prefix
of the sample’s hash4. Figure 2d shows the results of token filtering where label 8 was
removed as a result of not having any tokens left.

Alias replacement. Different vendors may use different names for the same family, i.e.,
aliases. If a token shows in the input list of aliases as being an alias for another family
name, the token is replaced by the family name it aliases. The alias detection process is
detailed in Section 3.3. Figure 2d shows the results after alias replacement, where token
solimba has been identified as an alias for the firseria family.

Token ranking. Next, tokens are ranked by decreasing number of engines that include
the token in their label. Tokens that appear in at most one AV engine are removed. This
allows removing random tokens that earlier steps may have missed, as the likelihood
is low that a random token appears in labels from multiple AV engines that did not
copy their labels. At this point, the ranking captures the candidate family names for the
sample and the number of AV engines that use each token can be seen as a confidence
score. Figure 2f shows the final token ranking for our running example where token
0049365d1 have been removed because it appears in only one label.

Family selection. AVCLASS chooses the most common token (top of the ranking) as
the family name for the sample. This corresponds to a plurality vote on the candidate
family names. AVCLASS also has a verbose option to output the complete ranking,
which is useful to identify samples with multiple candidate family names with close
scores, which may deserve detailed attention by the analyst. In our running example,
the selected family is firseria, which outscores 5 to 2 the other possible family name.

4 We check the sample’s MD5, SHA1, and SHA256 hashes.



Table 2: Categories in the manual generic token list.
Category Tokens Example Tokens
Architecture 14 android, linux, unix
Behavior: download 29 download, downware, dropped
Behavior: homepage modification 2 homepage, startpage
Behavior: injection 5 inject, injected, injector
Behavior: kill 5 antifw, avkill, blocker
Behavior: signed 2 fakems, signed
Behavior: other 3 autorun, proxy, servstart
Corrupted 2 corrupt, damaged
Exploit 2 expl, exploit
File types 15 html, text, script
Generic families 13 agent, artemis, eldorado
Heuristic detection 12 generic, genmalicius, heuristic
Macro 11 badmacro, macro, x2km
Malicious software 5 malagent, malicious, malware
Malware classes 53 spyware, trojan, virus
Misc 9 access, hack, password
Packed 17 malpack, obfuscated, packed
Packer 6 cryptor, encoder, obfuscator
Patch 3 patched, patchfile, pepatch
Program 5 application, program, software
PUP 29 adware, pup, unwanted
Suspicious 13 suspected, suspicious, variant
Test 2 test, testvirus
Tools 8 fraudtool, tool, virtool
Unclassified 3 unclassifiedmalware, undef, unknown

3.2 Generic Token Detection

AV labels typically contain multiple generic tokens not specific to a family. For exam-
ple, the labels in Figure 2 include generic tokens indicating, among others, the sample’s
architecture (e.g., Win32, Android), that a sample is unwanted (e.g., Unwanted, Adware,
PUP), generic malware classes (e.g., Trojan), and generic families used with heuristic
rules (e.g., Eldorado, Artemis). The generic token detection module is used during the
preparation phase to automatically build a list of generic tokens used as input to the
labeling phase in Section 3.1.

The intuition behind our technique for identifying generic tokens is that tokens ap-
pearing in the labels of samples known to be of different families cannot be specific
to a family, and thus are generic. For example, an AV engine may output the label
Gen:Adware.Firseria.1 for a sample known to be of the Firseria adware family and the
label Gen:Adware.Outbrowse.2 for a sample known to be of the Outbrowse adware fam-
ily. Here, tokens Gen and Adware are likely generic because they are used with samples
of different families, and thus are not specific to the Firseria or Outbrowse families.

The generic token detection module takes as input samples for which their family
name is known. It iterates on the list of input samples. For each sample, it builds a
sample token list, by iterating on the set of AV labels for the sample. For each label, it



tokenizes the label on non-alphanumeric characters, converts tokens to lowercase, re-
moves digits at the end of the token, removes tokens less than 4 characters, and appends
the remaining tokens to the sample token list. Once all labels are processed, it removes
duplicate tokens from the sample token list. The sample token list for the sample in Fig-
ure 2 would be: outbrowse, unwanted, program, 0049365d1, solimba, eldorado, firse-
ria, virus, msil, adware, and trojan. Then, it iterates on the tokens in the sample token
list updating a token family map, which maps each unique token to the list of families
of the samples where the token appears in their labels.

After all samples have been processed, it iterates on the token family map. Each
token that does not match a family name and has a count larger than Tgen is considered
generic. The default Tgen > 8 threshold is chosen empirically in Section 4.3. For ex-
ample, tokens firseria and solimba may have appeared only in labels of samples from
the Firseria family and thus are not generic, but token eldorado may have appeared in
labels from samples of 9 different families and is identified as generic.

We have applied this approach to automatically generate a list of generic tokens.
One author has also manually generated a list of generic tokens. Our experiments in
Section 4.3 show that the automatically generated generic token list performs similarly
in most cases, and even outperforms the manually generated lists in some cases, while
scaling and being independent of an analyst’s expertise.

Table 2 shows the 15 categories of generic tokens in the manually built generic token
list. For each category, it shows the number of tokens in the category and some example
tokens. The categories show the wealth of information that AV vendors encode in their
labels. They include, among others, architectures; behaviors like homepage modifica-
tion, code injection, downloading, and disabling security measures; file types; heuristic
detections; macro types; malware classes; encrypted code; and keywords for potentially
unwanted programs. The categories with more generic tokens are malware classes with
53 tokens (e.g., trojan, virus, worm, spyware), download behavior with 29 (e.g., down-
load, dload, downl, downware), and potentially unwanted programs with 29 (e.g., pup,
adware, unwanted).

3.3 Alias Detection

Different vendors may assign different names (i.e., aliases) for the same family. For
example, some vendors may use zeus and others zbot as aliases for the same malware
family. The alias detection module is used during the preparation phase to automatically
build a list of aliases used as input to the labeling phase in Section 3.1.

The intuition behind our technique for automatically detecting aliases is that if two
family names are aliases, they will consistently appear in the labels of the same sam-
ples. Alias detection takes as input the AV labels of a large set of samples, for which
their family does not need to be known, and a generic token list. Thus, alias detection
runs after the generic token detection, which prevents generic tokens to be detected as
aliases. Alias detection outputs a list of (ti, tj) token pairs where ti is an alias for tj .
This indicates that ti can be replaced with tj in the alias detection step in Section 3.1.



Table 3: Top 10 families by number of aliases.
Family Aliases Example Aliases
wapomi 12 pikor, otwycal, protil
firseria 10 firser, popeler, solimba
vobfus 9 changeup, meredrop, vbobfus
virut 8 angryangel, madangel, virtob
gamarue 7 debris, lilu, wauchos
hotbar 7 clickpotato, rugo, zango
bandoo 6 ilivid, seasuite, searchsuite,
gamevance 6 arcadeweb, gvance, rivalgame
loadmoney 6 ldmon, odyssey, plocust
zeroaccess 6 maxplus, sirefef, zaccess

Alias detection iterates on the list of input samples. For each sample, it builds the
sample token list in the same manner as described in the generic token detection in Sec-
tion 3.2, except that tokens in the generic token list are also removed. Then, it iterates
on the tokens in the sample token list updating two maps. It first increases the token
count map, which stores for each unique token the number of samples where the token
has been observed in at least one label. Then, for each pair of tokens in the sample token
list it increases the pair count map that stores for each token pair the number of samples
in which those two tokens have been observed in their labels.

We define the function alias(ti, tj) =
|(ti,tj)|
|ti| , which captures the fraction of times

that the pair of tokens (ti, tj) appears in the same samples. The numerator can be ob-
tained from the pair count map and the denominator from the token count map. Note
that alias(ti, tj) 6= alias(tj , ti).

Once all samples have been processed, the alias detection iterates on the pair count
map. For each pair that has a count larger than nalias, it computes both alias(ti, tj) and
alias(tj , ti). If alias(ti, tj) > Talias then ti is an alias for tj . If alias(tj , ti) > Talias

then tj is an alias for ti. If both alias(ti, tj) > Talias and alias(tj , ti) > Talias then
the less common token is an alias for the most common one.

The two parameters are empirically selected in Section 4.4 to have default values
nalias = 20 and Talias = 0.94. nalias is used to remove pairs of tokens that have not
been seen enough times, so that a decision on whether they are aliases would have low
confidence. Talias controls the percentage of times the two tokens appear together. For
tj to be an alias for ti, tj should appear in almost the same samples where ti appears,
but Talias is less than one to account for naming errors.

Table 3 shows the Top 10 families by number of aliases. For each alias, it shows
the chosen family name, the total number of aliases for that family, and some example
aliases that appear both in the automatically and manually generated alias lists.



Table 4: Datasets used in evaluation.
Dataset Platform Lab. Samples EXE Collection Period
University Windows 7 7,252,810 7 01/2011 - 08/2015
Miller et al. [19] Windows 7 1,079,783 7 01/2012 - 06/2014
Andrubis [17] Android 7 422,826 7 06/2012 - 06/2014
Malsign [15] Windows X 142,513 7 06/2012 - 02/2015
VirusShare 20140324 [30] Android 7 24,317 X 05/2013 - 05/2014
VirusShare 20130506 [30] Android 7 11,080 X 06/2012 - 05/2013
Malicia [21] Windows X 9,908 X 03/2012 - 02/2013
Drebin [1] Android X 5,560 X 08/2010 - 10/2012
Malheur Reference [29] Windows X 3,131 7 08/2009 - 08/2009
MalGenome [33] Android X 1,260 X 08/2008 - 10/2010

4 Evaluation

4.1 Datasets

We evaluate AVCLASS using 10 datasets summarized in Table 4. The table shows the
architecture (5 Windows, 5 Android), whether the samples are labeled with their known
family name, the number of samples in the dataset, whether the binaries are publicly
available (otherwise we only have their hashes), and the collection period. In total, the
datasets contain 8.9 M distinct samples collected during 7 years (08/2008 - 08/2015).
Some of the datasets overlap, most notably the Drebin [1] dataset is a superset of
MalGenome [33]. We do not remove duplicate samples because this way it is easier
for readers to map our results to publicly available datasets.

Labeled datasets. All 5 labeled datasets come from prior works [1, 15, 21, 29, 33].
Among the 3 labeled Windows datasets, Malheur and Malicia contain only malware
samples. In contrast, the Malsign dataset [15] contains majoritarily PUP. Each of the
labeled datasets went through 2 processes: clustering and labeling. Samples may have
been clustered manually (MalGenome), using AV labels (Drebin), or with automatic
approaches (Malheur, Malicia, Malsign). For labeling the output clusters, the authors
may have used AV labels (Drebin), manual work (MalGenome), the most common
feature value in the cluster (Malsign), or a combination of popular features values and
information from public sources (Malicia). Drebin [1] is a detection approach and the
family classification was done separately using AV labels. Because of this we later
observe best results of AVCLASS on this dataset.

Drebin, MalGenome, Malheur, and Malicia datasets are publicly available. Thus,
AV vendors could have refined their detection labels using the dataset clustering results
after they became public. In contrast, the Malsign dataset and thus its clustering results
(i.e., labels) are not publicly available.

Unlabeled datasets. For the unlabeled datasets, we do not know the family of the sam-
ples and in some cases we only have access to the hashes of the samples, but not their bi-
naries. The University dataset contains malware hashes collected from different sources
including a commercial feed. It is our largest dataset with 7.2 M samples. The Andru-
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Fig. 3: Parameter selection for generic token detection.

bis dataset [17] contains hashes of samples submitted by users to be analyzed by the
Andrubis online service. The two VirusShare [30] and the Miller et al. [19] datasets are
publicly available.

For all samples in the 10 datasets we were able to collect a VT report. The VT report
collection started on September 2015 and took several months. Overall, we observe 99
AV engines in the VT reports.

4.2 Metrics

To evaluate the accuracy of AVCLASS, we use an external clustering validation ap-
proach that compares AVCLASS’s clustering results with a reference clustering from
one of the datasets in Table 4 for which we have ground truth. Note that the external val-
idation evaluates if both clusterings group the samples similarly. It does not matter if the
family names assigned to the equivalent cluster in both clustering differ. If AVCLASS is
not able to find a family name for a sample (e.g., because all its labels are generic), the
sample is placed in a singleton cluster. Similar to prior work [3, 15, 21, 25, 29] we use
the precision, recall, and F1 measure metrics, which we define next.

Let M be a malware dataset, R = {R1, ..., Rs} be the set of s reference clusters
from the dataset’s ground truth, and C = {C1, ..., Cn} be the set of n clusters output
by AVCLASS over M . In this setting, precision, recall, and F1 measure are defined as

– Precision. Prec = 1/n ·
∑n

j=1 maxk=1,...,s(|Cj

⋂
Rk|)

– Recall. Rec = 1/s
∑s

k=1 maxj=1,...,n(|Cj

⋂
Rk|)

– F-measure Index. F1 = 2 Prec·Rec
Prec+Rec

4.3 Generic Token Detection

The generic token detection, detailed in Section 3.2, takes as input the AV labels for
samples with family name and counts the number of families associated to each re-
maining token after normalization. Tokens that appear in more than Tgen families are



considered generic. To select the default threshold, we produce generic token lists for
different Tgen values and evaluate the accuracy of the labeling phase using those generic
token lists. Figure 3 shows the F1 measure as Tgen increases for datasets with ground
truth. Based on Figure 3 results, we select Tgen > 8 as the default threshold. The rest
of experiments use, unless otherwise noted, the automatically generated generic token
list with this default threshold, which contains 288 generic tokens. In comparison the
generic token list manually generated by one author contains 240 generic tokens.
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4.4 Alias Detection

The alias detection module, detailed in Section 3.3, requires two parameters: nalias and
Talias. To select their default values, we first produce alias lists for different combina-
tions of those parameters using as input the 5 datasets with unlabeled samples. Then,
we evaluate the accuracy of the labeling phase using those alias lists. Figure 4 shows
the F1 measure for different combinations of parameter values on the Drebin and Mal-
heur datasets. The parameter values that maximize the mean value in both surfaces are
nalias = 20 and Talias = 0.94. The rest of experiments use, unless otherwise noted,
the automatically generated alias list with these default values, which contains 4,332
alias pairs. In comparison, the alias list manually generated by one author contains 133
alias pairs.

4.5 Evaluation on Labeled Datasets

In this section we evaluate the accuracy of AVCLASS on the labeled datasets. We first
compare the reference clustering provided by the dataset labels with the clustering out-
put by AVCLASS (i.e., samples assigned the same label by AVCLASS are in the same
cluster) using the precision, recall, and F1 measure metrics introduced in Section 4.2.
Then, we examine the quality of the output labels.

Clustering accuracy. Table 5 summarizes the clustering accuracy results for 3 scenar-
ios. Full Label corresponds to not using AVCLASS but simply doing a plurality vote



Table 5: Accuracy evaluation. Full Label corresponds to using a plurality vote on all
labels without normalization. Manual corresponds to running AVCLASS with manually
generated generic token and alias lists. AVCLASS corresponds to running AVCLASS
with automatically generated generic token and alias lists. The MalGenome* row cor-
responds to grouping the 6 DroidKungFu variants in MalGenome into a single family.

AVCLASS Manual Full Label
Dataset Prec Rec F1 Prec Rec F1 Prec Rec F1
Drebin 95.2 92.5 93.9 95.4 88.4 91.8 92.9 40.7 56.6
Malicia 95.3 46.3 62.3 94.9 68.0 79.2 98.6 2.4 4.6
Malsign 96.3 67.0 79.0 90.4 90.7 90.5 88.7 15.9 26.9
MalGenome 67.5 98.8 80.2 68.3 93.3 78.8 99.5 79.4 88.3
MalGenome* 87.2 98.8 92.6 87.9 93.3 90.5 99.7 63.3 77.5
Malheur 89.3 93.8 91.5 90.4 98.3 94.2 96.3 74.8 84.2

on the full AV labels without normalization. Manual corresponds to running AVCLASS
with manually generated generic token and alias lists. AVCLASS corresponds to running
AVCLASS with automatically generated generic token and alias lists.

The results show that using AVCLASS increases the F1 measure compared to us-
ing the full label in 4 datasets (Drebin, Malicia, Malsign, and Malheur). The median F1
measure improvement is 37 F1 measure percentual points and can reach 13 times higher
(Malicia). The exception is the MalGenome dataset, whose F1 measure decreases. Man-
ual examination shows that the main problem is that the MalGenome dataset differen-
tiates 6 variants of the DroidKungFu family (DroidKungFu1, DroidKungFu2, Droid-
KungFu3, DroidKungFu4, DroidKungFuSapp, DroidKungFuUpdate). However, AV la-
bels do not capture version granularity and label all versions as the same family. If we
group all 6 DroidKungFu variants into a single family (MalGenome* row in Table 5),
the F1 measure using AVCLASS increases 12 points (from 80.2 to 92.6) and the full
label results decreases 11 points (from 88.3 to 77.5). This shows that AV labels are not
granular enough to identify specific family versions.

Comparing the Manual section of Table 5 with the AVCLASS section shows that
the automatically generated lists of generic tokens and aliases work better in 2 datasets
(MalGenome and Drebin) and worse in 3 (Malicia, Malsign, Malheur). For Malheur
the difference is small (2.7 F1 points), but for Malicia and Malsign it reaches 11-17 F1
points. Overall, the automatically generated lists have comparable accuracy to the man-
ual ones, although an analyst can improve results in some datasets. While the manual
list raises the worst F1 measure from 62.3 to 79.2, the automatic generation is faster,
more convenient, and does not depend on the analyst’s skill. To combine scalability
with accuracy, an analyst could first produce automatically the lists and then refine
them manually based on his expertise.

The final F1 measure for AVCLASS with automatically generated lists of generic
tokens and aliases ranges from 93.9 for Drebin down to 62.3 for Malicia. The higher
accuracy for Drebin is due to that dataset having been manually clustered using AV
labels. The lower accuracy for Malicia is largely due to smartfortress likely being an



Table 6: Labels for the top 5 clusters identified by AVCLASS in the Miller et al. dataset
and the most common full labels on the same dataset.

(a) AVCLASS.

# Label Samples
1 vobfus 58,385
2 domaiq 38,648
3 installrex 37,698
4 firseria 28,898
5 multiplug 26,927

(b) Full labels.

# Label Samples
1 Trojan.Win32.Generic!BT 42,944
2 Win32.Worm.Allaple.Gen 12,090
3 Gen:Variant.Adware.Graftor.30458 10,844
4 Gen:Adware.MPlug.1 10,332
5 Trojan.Generic.6761191 8,986

Table 7: Clustering results on unlabeled datasets.
Dataset Samples Clusters Singletons Unlab. Largest Runtime
University 7,252,810 1,465,901 1,456,375 19.2% 701,775 235 min. 33s
Miller et al. 1,079,783 187,733 183,804 16.6% 56,044 35 min. 42s
Andrubis 422,826 7,015 6,294 1.3% 102,176 12 min. 47s
VirusShare 20140324 24,317 2,068 1,844 6.9% 7,350 48s
VirusShare 20130506 11,080 568 446 3.3% 3,203 17s

(undetected) alias for the winwebsec family. Manually adding this alias improves the
F1 measure by 18 points. The reason for the large impact of this alias is that the Malicia
dataset is strongly biased towards this family (59% of samples are in family winwebsec).

Label quality. The clustering evaluation above focuses on whether samples are grouped
by AVCLASS similarly to the ground truth, but it does not evaluate the quality of the
family names AVCLASS outputs. Quantifying the quality of the family names output
by AVCLASS is challenging because the ground truth may contain manually selected
labels that do not exactly match the AV family names. Table 6 shows on the left the
labels assigned to the top 5 clusters in the Miller dataset by AVCLASS and on the right,
the labels for the top 5 clusters when the full AV labels are used. The table shows that
the cluster labels automatically produced by AVCLASS are more fine-grained thanks
to the generic token detection, and also assigned to a larger number of samples thanks
to the normalization and alias detection techniques. More examples of the final labels
output by AVCLASS are shown in Table 8, which is discussed in the next section.

4.6 Evaluation on Unlabeled Datasets

In this section we apply AVCLASS to label samples in datasets without ground truth.
Table 7 summarizes the clustering results of using AVCLASS with automatically gener-
ated lists on the 5 unlabeled datasets. For each dataset it shows: the number of samples
being clustered, the number of clusters created, the number of singleton clusters with
only one sample, the percentage of all samples that did not get any label, the size of the
largest cluster, and the labeling runtime. The results show that 78%–99% of the clusters



Table 8: Top 10 clusters on unlabeled datasets.

(a) University.

# Label Samples
1 vobfus 701,775
2 multiplug 669,596
3 softpulse 473,872
4 loadmoney 211,056
5 virut 206,526
6 toggle 108,356
7 flooder 96,571
8 zango 89,929
9 upatre 82,413

10 ibryte 80,923

(b) Miller.

# Label Samples
1 vobfus 58,385
2 domaiq 38,648
3 installrex 37,698
4 firseria 28,898
5 multiplug 26,927
6 sality 23,278
7 zango 21,910
8 solimba 21,305
9 ibryte 20,058

10 expiro 16,685

(c) Andrubis.

# Label Samples
1 opfake 88,723
2 fakeinst 84,485
3 smsagent 24,121
4 plankton 22,329
5 kuguo 19,497
6 smsreg 15,965
7 waps 12,055
8 utchi 7,949
9 droidkungfu 7,675

10 ginmaster 6,365

Table 9: University dataset clustering with 4, 10, 48, and all AVs.
AVs Clusters Singletons Unlabeled Largest
All 1,465,901 1,456,375 1,394,168 (19.2%) vobfus (701,775)
48 1,543,510 1,534,483 1,472,406 (20.3%) vobfus (701,719)
10 3,732,626 3,730,304 3,728,945 (51.4%) multiplug (637,787)
4 5,655,991 5,655,243 5,654,819 (77.9%) vobfus (539,306)

are singletons. However, these only represent 1.4%–20% of the samples. Thus, the vast
majority of samples are grouped with other samples. Singleton clusters can be samples
for which no label can be extracted as well as samples assigned a label not seen in other
samples. Overall, the percentage of unlabeled samples varies from 1.3% (Andrubis) up
to 19.2% (University). All AV labels for these samples are generic and AVCLASS could
not identify a family name in them.

Table 8 presents the top 10 clusters in the 3 largest unlabeled datasets (University,
Miller, Andrubis). The most common family in both Windows datasets is vobfus. Top
families in these two datasets are well known except perhaps flooder, which the author
building the manual lists thought it was generic, but the automatic generic token de-
tection does not identify as such. This is an example of tokens that may sound generic
to an analyst, but may be consistently used by AV vendors for the same family. In the
University dataset 6 of the top 10 families are malware (vobfus, multiplug, virut, tog-
gle, flooder, upatre) and 4 are PUP (softpulse, loadmoney, zango, ibryte). In the Miller
dataset 3 are malware (vobfus, zbot, sality) and 7 PUP (firseria, installerex, domaiq,
installcore, loadmoney, hotbar, ibryte). This matches observations in Malsign [15] that
large “malware” datasets actually do contain significant amounts of PUP. The Andrubis
top 10 contains 4 families that also sound generic (opfake, fakeinst, smsagent, smsreg).
However, these families are included as such in the ground truth of the labeled Android
datasets (MalGenome, Drebin). While these labels may be used specifically for a fam-
ily, we believe AV vendors should try choosing more specific family names to avoid one
vendor using a label for a family and another using it generically for a class of malware.



Number of AV vendors used. To evaluate the effect of using an increasing number
of AV vendors into the labeling process, we repeat the clustering of the University
dataset using the same fixed sets of AV vendors used in some prior work: VAMO (4
vendors), Drebin (10), and AV-meter (48). The results in Table 9 show that increasing
the number of AV vendors reduces the fraction of samples for which a label cannot be
obtained (Unlabeled column). This motivates the design choice of AVCLASS to include
AV labels from any available vendor.

5 Discussion

This section discusses AVCLASS limitations, usage, and areas for future work.

As good as the AV labels are. AVCLASS extracts family information AV vendors place
in their labels, despite noise in those labels. But, it cannot identify families not in the
labels. More specifically, it cannot label samples if at least 2 AV engines do not agree
on a non-generic family name. Results on our largest unlabeled dataset show that AV-
CLASS cannot label 19% of the samples, typically because those labels only contain
generic tokens. Thus, AVCLASS is not a panacea for malware labeling. If AV vendors
do not have a name for the sample, it cannot be named.

Clustering accuracy. AVCLASS is a malware labeling tool. While it can be used for
malware clustering, its evaluated precision is 87.2%–95.3%. This is below state-of-the-
art malware clustering tools using static and dynamic features, which can reach 98%–
99% precision. As shown in Appendix Table 10, when comparing F1 measure, tools
like Malheur [29] (F1= 95%), BitShred [13] (F1=93.2%), and FIRMA [26] (F1=98.8%)
outperform AVCLASS. Thus, AVCLASS should only be used for clustering when a state-
of-the-art clustering system is not available and implementing one is not worth the effort
(despite improved accuracy).

Building reference datasets. When using AVCLASS to build reference datasets, there
will be a fraction of samples (up to 19% in our evaluation) for which AVCLASS cannot
extract a label and others for which the confidence (i.e., number of AV engines using
the chosen family name) is low. While those can be removed from the reference dataset,
this introduces selection bias by removing the harder to label samples [16].

AV label granularity. Our evaluation shows that AV labels are not granular enough
to differentiate family versions, e.g., DroidKungFu1 from DroidKungFu2. Thus, when
releasing labeled datasets, researchers should clearly differentiate the family name from
the family version (if available), enabling users to decide which granularity to use.

Validation with real ground truth. To evaluate AVCLASS, we have assumed that the
labels of publicly available datasets are perfectly accurate and have compared accuracy
to those. However, those labels may contain inaccuracies, which would affect our results
either positively or negatively. This can only be resolved by using real ground truth
datasets. How to obtain such real ground truth is an important area for future work.

Generic token detection. Our generic token detection requires labeled samples. This
creates a bit of a chicken-and-egg problem, which we resolve by using publicly avail-



able labeled datasets. We also release a file with the generic tokens we identified so
that users can skip this step. We leave the development of techniques to identify generic
tokens that do not require ground truth for future work.

6 Conclusion

In this work we have described AVCLASS, an automatic labeling tool that given the AV
labels for a potentially massive number of malware samples, outputs the most likely
family names for each sample. AVCLASS implements novel techniques to address 3
key challenges: normalization, removal of generic tokens, and alias detection.

We have evaluated AVCLASS over 10 datasets, comprising 8.9 M samples, larger
than any previous dataset used for malware clustering or classification. The results show
that the fully automated approach used by AVCLASS can achieve clustering accuracy
between 93.9 and 62.3 depending on the dataset. We have compared the generic token
and aliases lists automatically produced by AVCLASS with the manual ones produced
by an analysts observing that the achieve comparable accuracy in most datasets. We
have shown that an increasing number of AV vendors reduces the percentage of samples
for which a (non-generic) family name cannot be extracted, thus validating the design
choice of using all AV engines. We have also observed that AV labels are not fine-
grained enough to distinguish different versions of the same family.

Finally, we have released AVCLASS’s source code to the community, along with
precompiled lists of alias and generic tokens.
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A Additional Results

Table 10: Accuracy numbers reported by prior clustering works.
Work Metrics
Bailey et al. [2] Consistency=100%
Rieck et al. [28] Labels prediction=70%
McBoost [23] Accuracy=87.3%, AUC=0.977.
Bayer et al. [3] Quality(Prec*Rec)=95.9
Malheur [29] F1= 95%
BitShred [13] Prec=94.2%, Rec=92.2%
VAMO [25] F1=85.1%
Malsign [15] Prec=98.6%, Rec=33.2%, F1=49.7%
AVCLASS Prec=95.2%, Rec=92.5%, F1=93.9%
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Table 11: AV engines found in our datasets and their lifetime in days.
Engine First Scan Last Scan Days
Ikarus 22/05/2006 29/03/2016 3599
TheHacker 22/05/2006 29/03/2016 3599
F-Prot 22/05/2006 29/03/2016 3599
Fortinet 22/05/2006 29/03/2016 3599
BitDefender 22/05/2006 29/03/2016 3599
CAT-QuickHeal 22/05/2006 29/03/2016 3599
AVG 22/05/2006 29/03/2016 3599
Microsoft 22/05/2006 29/03/2016 3599
ClamAV 22/05/2006 29/03/2016 3599
Avast 22/05/2006 29/03/2016 3599
McAfee 22/05/2006 29/03/2016 3599
TrendMicro 22/05/2006 29/03/2016 3599
VBA32 22/05/2006 29/03/2016 3599
Symantec 22/05/2006 29/03/2016 3599
Kaspersky 22/05/2006 29/03/2016 3599
Panda 22/05/2006 29/03/2016 3599
DrWeb 22/05/2006 29/03/2016 3599
Sophos 22/05/2006 29/03/2016 3599
F-Secure 07/02/2007 29/03/2016 3338
AhnLab-V3 14/03/2007 29/03/2016 3303
Norman 22/05/2006 30/05/2015 3294
Rising 26/07/2007 29/03/2016 3169
AntiVir 22/05/2006 03/09/2014 3025
GData 12/05/2008 29/03/2016 2878
ViRobot 24/07/2008 29/03/2016 2805
K7AntiVirus 01/08/2008 29/03/2016 2797
Comodo 05/12/2008 29/03/2016 2671
nProtect 14/01/2009 29/03/2016 2631
McAfee-GW-Edition 19/03/2009 29/03/2016 2567
Antiy-AVL 24/03/2009 29/03/2016 2562
eSafe 16/11/2006 16/09/2013 2496
Jiangmin 16/06/2009 29/03/2016 2478
VirusBuster 13/06/2006 18/09/2012 2288
eTrust-Vet 22/05/2006 22/05/2012 2191
TrendMicro-HouseCall 04/05/2010 29/03/2016 2156
SUPERAntiSpyware 12/07/2010 29/03/2016 2087
Emsisoft 20/07/2010 29/03/2016 2079
VIPRE 17/11/2010 29/03/2016 1959
PCTools 21/07/2008 23/10/2013 1919
Authentium 22/05/2006 29/04/2011 1803
ByteHero 20/08/2011 29/03/2016 1683
Sunbelt 30/11/2006 29/04/2011 1611
TotalDefense 15/05/2012 29/03/2016 1414
NOD32 24/09/2008 19/07/2012 1394
ESET-NOD32 11/07/2012 29/03/2016 1357
Commtouch 18/01/2011 28/08/2014 1317
Agnitum 18/09/2012 29/03/2016 1288
Kingsoft 18/09/2012 29/03/2016 1288
MicroWorld-eScan 02/10/2012 29/03/2016 1274
NANO-Antivirus 28/11/2012 29/03/2016 1217

Engine First Scan Last Scan Days
Malwarebytes 30/11/2012 29/03/2016 1215
K7GW 15/04/2013 29/03/2016 1079
Prevx 13/05/2009 23/04/2012 1076
NOD32v2 22/05/2006 19/01/2009 973
Ewido 22/05/2006 20/01/2009 973
eTrust-InoculateIT 22/05/2006 15/01/2009 968
UNA 22/05/2006 15/01/2009 968
Baidu 02/09/2013 29/03/2016 939
Baidu-International 03/09/2013 29/03/2016 938
F-Prot4 30/06/2006 15/01/2009 929
Bkav 13/09/2013 29/03/2016 928
Antivir7 22/06/2006 05/01/2009 928
CMC 13/09/2013 29/03/2016 928
T3 14/07/2006 15/01/2009 915
Prevx1 15/11/2006 12/05/2009 909
Ad-Aware 26/11/2013 29/03/2016 854
SAVMail 03/10/2006 18/01/2009 838
Qihoo-360 21/01/2014 29/03/2016 798
AegisLab 29/01/2014 29/03/2016 790
McAfee+Artemis 21/11/2008 18/01/2011 787
PandaBeta 12/02/2007 10/02/2009 729
Zillya 29/04/2014 29/03/2016 700
FileAdvisor 19/02/2007 18/01/2009 699
Tencent 13/05/2014 29/03/2016 686
Zoner 22/05/2014 29/03/2016 677
Cyren 22/05/2014 29/03/2016 677
Avira 22/05/2014 29/03/2016 677
Webwasher-Gateway 20/03/2007 19/01/2009 671
AVware 28/07/2014 29/03/2016 610
a-squared 24/12/2008 28/07/2010 581
Avast5 03/03/2010 28/09/2011 573
McAfeeBeta 04/07/2007 18/01/2009 564
FortinetBeta 01/08/2007 18/01/2009 535
PandaBeta2 07/09/2007 16/01/2009 496
ALYac 26/11/2014 29/03/2016 489
AhnLab 14/03/2007 03/07/2008 477
Alibaba 12/01/2015 29/03/2016 442
NOD32Beta 24/09/2008 16/08/2009 325
Arcabit 02/06/2015 29/03/2016 301
SecureWeb-Gateway 26/09/2008 14/04/2009 200
VIRobot 23/07/2008 17/01/2009 177
Command 17/11/2010 29/04/2011 163
PandaB3 04/09/2008 19/01/2009 136
eScan 25/09/2012 15/10/2012 19
DrWebSE 18/01/2015 03/02/2015 15
ESET NOD32 26/06/2012 26/06/2012 0
Yandex 29/03/2016 29/03/2016 0
TotalDefense2 16/04/2015 16/04/2015 0
SymCloud 11/08/2015 11/08/2015 0


