
CPM: A Declarative Package Manager
with Semantic Versioning

Michael Hanus

University of Kiel
Programming Languages and Compiler Construction

CICLOPS 2017

Joint work with Jonas Oberschweiber

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 1

Contemporary software systems are complex!

Software packages as building blocks
several modules with well-defined APIs
evolve over time (efficiency improvements, new functionality)
 versioning with version numbers (1.4.3)

Package dependencies
Package A depends on: package B version ≥ 1.2.5 ∧ < 2.0.0

package C version ≥ 2.3.7 ∧ < 4.0.0

Semantic versioning: <major>.<minor>.<patch>
Version numbers describe semantic properties:

alternative implementation increase <patch>
extend API increase <minor>
change API increase <major>

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 2

Semantic Versioning (www.semver.org)

Advantages
describe necessary dependencies
choose appropriate packages (package manager)
upgrade to newer versions without code breaks

Requirements
Packages with identical <major> must be semantically compatible

Semantic compatibility
important to support automatic upgrading
not checked in contemporary package managers

Our proposal:
check it automatically with property-based test tools

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 3

www.semver.org

Property-based Testing

Properties
tests parameterized over some arguments
no side effects repeatable tests
generate input values:

random (QuickCheck, PrologCheck, PropEr)
systematic enumeration (SmallCheck, GAST)
systematic (non-deterministic) guessing (EasyCheck, CurryCheck)

Here: Curry (Haskell syntax, logic features) + CurryCheck [LOPSTR’16]

List concatenation is associative

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

concIsAssociative xs ys zs = (xs++ys)++zs <˜> xs++(ys++zs)

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 4

Property-based Testing with CurryCheck

Non-deterministic list insertion

ins :: a → [a] → [a]
ins x ys = x : ys
ins x (y:ys) = y : ins x ys

> ins0[1,2] [0,1,2] ? [1,0,2] ? [1,2,0]

Property: insertion increments list length

insLength x xs = length (ins x xs) <˜> length xs + 1

Set-based interpretation relevant:

e1 <˜> e2 :⇔ e1 and e2 have identical sets of results

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 5

Semantic Versioning Checking

Idea:
f defined in module M of some package in versions v1 and v2:

1 create renamed modules M v1 and M v2

2 create new “comparison” module:
import qualified M v1
import qualified M v2

check_M_f x = M_v1.f x <˜> M_v2.f x

3 run CurryCheck on this module

Problems:
f defined on (package) local data types
 generate bijective type mapping, use it in check M f

f might not terminate: use termination analysis
 no check or specific check for productive operations

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 6

Productive Operations

Lazy languages supports infinite data structures:

ints :: Int → [Int] ints2 :: Int → [Int]
ints n = n : ints (n+1) ints2 n = n : ints2 (n+2)

ints 0 0 : 1 : 2 : . . . ints2 0 0 : 2 : 4 : . . .

-- Equivalence testing:
checkInts x = ints x <˜> ints2 x no counter example...

Non-terminating but productive operations
f productive⇔ no infinite reduction without producing root-constructors

ints, ints2: productive
loop n = loop (n+1) -- not productive

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 7

Checking Productive Operations

Limit the size of values

data Nat = Z | S Nat -- Peano numbers

limList :: Nat → [Int] → [Int]
limList Z _ = []
limList (S n) [] = []
limList (S n) (x:xs) = x : limList n xs

Checking with size limits

limCheckInts n x = limList n (ints x) <˜> limList n (ints2 x)

 CurryCheck finds counter-example: n=(S(S Z)) x=1

Proposition [ICLP’17]:
Limited equivalence checking is sound and complete (for total operations) for
equivalence checking.

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 8

CPM: Curry Package Manager

tool to distribute and install Curry software packages
central package index (currently: > 50 packages, > 400 modules)
package: Curry modules + package specification:

metadata in JSON format
standard fields: version number, author, name, synopsis,. . .
dependency constraints:
"B" : ">= 2.0.0, < 3.0.0 | | > 4.1.0"

 depends on package B with major version 2 or in a version greater than 4.1.0

Some CPM commands
cpm update download newest version of package index
cpm search search in package index
cpm install installs a package (resolve all dependency constraints) with

local copies of all required packages
cpm upgrade re-install with newer package versions

cpm test run CurryCheck on all source modules

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 9

CPM: Semantic Versioning Checking

cpm diff 1.2.4 check current package version against 1.2.4

Implementation of semantic versioning checking
rename modules with version numbers
generate comparison module
analyze each operation defined in two package versions:

terminating: use standard equivalence check
non-terminating but productive: use equivalence checks with limits
 generate limit operations for each data type
otherwise: no check, warning

program analysis implemented with CASS [PEPM’14]

Curry prelude: 126 operations
Analysis result: 112 terminating, 11 productive, 3 non-terminating

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 10

CPM: Semantic Versioning Checking

User annotations to override analysis results:

Annotate terminating operations

{-# TERMINATE -#}
mcCarthy n = if n<=100 then mcCarthy (mcCarthy (n+11))

else n-10

Annotate productive operations

{-# PRODUCTIVE -#}
primes = sieve (ints 2)
where sieve (p:xs) =

p : sieve (filter (λx → mod x p > 0) xs)

Annotate unchecked operations

{-# NOCOMPARE -#}
f . . . = . . . code with bug fixes. . .

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 11

Conclusions

CPM: Curry Package Manager
first package manager with semantic versioning checker
(Elm package manager: purely syntactic API comparison)

termination important for automatic tool program analysis

productivity: check also non-terminating operations (data generators)

supports specification-based software development
package n.0.0 contains specification [PADL’12]
newer package versions: better implementations

approach applicable to all kinds of declarative languages
functional (QuickCheck), logic (PrologCheck), functional-logic (CurryCheck), . . .

Future work:
better termination analysis
avoid testing:

check structural equivalence of source code
use theorem provers to proof equivalence

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 12

