CPM: A Declarative Package Manager

with Semantic Versioning

Michael Hanus (CAU Kiel)

Michael Hanus

University of Kiel
Programming Languages and Compiler Construction

CICLOPS 2017

Joint work with Jonas Oberschweiber

CPM: A Declarative Package Manager with Semantic Versioning

CICLOPS 2017

Contemporary software systems are complex!

Software packages as building blocks

@ several modules with well-defined APIs

@ evolve over time (efficiency improvements, new functionality)
~ versioning with version numbers (1.4 . 3)

Package dependencies

Package A depends on: package B version > 1.2.5 A < 2.0.0
package C version > 2.3.7 A < 4.0.0

Semantic versioning: <major>.<minor>.<patch>
Version numbers describe semantic properties:

@ alternative implementation ~ increase <patch>

@ extend API ~ increase <minor>

@ change API ~» increase <major>

CICLOPS 2017

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning

Semantic Versioning (www . semver.orq)

Advantages
@ describe necessary dependencies
@ choose appropriate packages (~ package manager)
@ upgrade to newer versions without code breaks

Requirements
Packages with identical <major> must be semantically compatible

Semantic compatibility
@ important to support automatic upgrading
@ not checked in contemporary package managers

Our proposal:
check it automatically with property-based test tools

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

www.semver.org

Property-based Testing

Properties
@ tests parameterized over some arguments
@ no side effects ~~ repeatable tests

@ generate input values:

e random (QuickCheck, PrologCheck, PropEr)
e systematic enumeration (SmallCheck, GAST)
e systematic (non-deterministic) guessing (EasyCheck, CurryCheck)

Here: Curry (Haskell syntax, logic features) + CurryCheck [LOPSTR’16]

List concatenation is associative

[] ++ ys = ys
(x:xs8) ++ ys = x : (xs ++ ys)
concIsAssociative xs ys zs = (xs++ys) ++zs <7> xs++ (ys++2zs)

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

Property-based Testing with CurryCheck

Non-deterministic list insertion

ins :: a — [a] — [a]

ins x ys =X ! ys

ins x (y:ys) =y : ins x ys

> ins0 [1, 2] ~ [0,1,2] 2 [1,0,2] ? [L1,2,0]

Property: insertion increments list length

inslLength x xs = length (ins x xs) <> length xs + 1

Set-based interpretation relevant:

e; <"> e & e;and e, have identical sets of results

CICLOPS 2017

CPM: A Declarative Package Manager with Semantic Versioning

Michael Hanus (CAU Kiel)

Semantic Versioning Checking

£ defined in module M of some package in versions vy and v»:
@ create renamed modules M_v; and M_v»
@ create new “comparison” module:

import qualified M_vq

import qualified M_VWo

check M f x =M Vi.f x <7> M W.f x

@ run CurryCheck on this module

Problems:

@ f defined on (package) local data types
~> generate bijective type mapping, use it in check M_f

@ £ might not terminate: use termination analysis
~> no check or specific check for productive operations

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

Productive Operations

Lazy languages supports infinite data structures:

ints :: Int — [Int] ints2 :: Int — [Int]
ints n = n : ints (n+1) ints2 n = n : ints2 (nt2)
ints 0 ~» 0:1:2:... ints2 0 ~» 0:2:4: ...

—— Equivalence testing:
checkInts x = ints x <> ints2 x ~» no counter example...

Non-terminating but productive operations
f productive < no infinite reduction without producing root-constructors

ints, ints2: productive
loop n = loop (ntl) —-- not productive

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

Checking Productive Operations

Limit the size of values

data Nat = 2 | S Nat —- Peano numbers
limList :: Nat — [Int] — [Int]
limList Z _ =[]

limList (S n) [] =[]

limList (S n) (x:x8) = x : limList n xs

Checking with size limits

limCheckInts n x = limList n (ints x) <> limList n (ints2 x)
~» CurryCheck finds counter-example: n= (S (S z)) x=1

Proposition

Limited equivalence checking is sound and complete (for total operations) for
equivalence checking.

A,

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

CPM: Curry Package Manager

@ tool to distribute and install Curry software packages
@ central package index (currently: > 50 packages, > 400 modules)
@ package: Curry modules + package specification:

e metadata in JSON format

e standard fields: version number, author, name, synopsis,. . .
@ dependency constraints:

"B" : ">= 2.0.0, < 3.0.0 || > 4.1.0"
~~ depends on package B with major version 2 or in a version greater than 4.1.0

Some CPM commands

cpm update download newest version of package index
cpm search search in package index

cpm install installs a package (resolve all dependency constraints) with
local copies of all required packages

cpm upgrade re-install with newer package versions
cpm test run CurryCheck on all source modules

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

CPM: Semantic Versioning Checking

cpm diff 1.2.4 check current package version against 1.2 .4)

Implementation of semantic versioning checking
@ rename modules with version numbers

@ generate comparison module
@ analyze each operation defined in two package versions:
e terminating: use standard equivalence check

e non-terminating but productive: use equivalence checks with limits
~~ generate limit operations for each data type

@ otherwise: no check, warning
@ program analysis implemented with CASS [PEPM'14]

Curry prelude: 126 operations
Analysis result: 112 terminating, 11 productive, 3 non-terminating

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

CPM: Semantic Versioning Checking

User annotations to override analysis results:

Annotate terminating operations

{—# TERMINATE —#}
mcCarthy n = 1if n<=100 then mcCarthy (mcCarthy (n+11))
else n-10

Annotate productive operations

| \

{—# PRODUCTIVE —#}
primes = sieve (ints 2)
where sieve (p:xs) =
p : sieve (filter (Ax — mod x p > 0) xs)

Annotate unchecked operations

{—# NOCOMPARE -—#}
f ... = ...code with bug fixes. ..

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

Conclusions

CPM: Curry Package Manager

@ first package manager with semantic versioning checker
(Elm package manager: purely syntactic APl comparison)
@ termination important for automatic tool ~~ program analysis
@ productivity: check also non-terminating operations (data generators)
@ supports specification-based software development

e package n. 0.0 contains specification [PADL'12]
@ newer package versions: better implementations

@ approach applicable to all kinds of declarative languages
functional (QuickCheck), logic (PrologCheck), functional-logic (CurryCheck), ...

@ better termination analysis
@ avoid festing:

e check structural equivalence of source code
@ use theorem provers to proof equivalence

Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017

