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In this paper, we provide direct encodings into Horn sequents of Multiplicative Linear Logic for two
NP-complete problems, 3D MATCHING and PARTITION. Their correctness proofs are given by using
a characterization of multiplicative proof nets.

1 Introduction

Around early 1990s, Max Kanovich introduced several Horn fragments of Linear Logic (see [5]). In par-
ticular, the multiplicative Horn fragment (for short HMLL) is a rather restricted subsystem of Intuition-
istic Multiplicative Linear Logic. In [5], HMLL is shown to be NP-complete with regard to provability
through the encoding of the 3-PARTITION problem ([2]). Moreover Krantz and Mogbil [7] gave an-
other NP-completeness proof of HMLL through the encoding of the DIRECTED HAMILTONIAN CIRCUIT
problem ([2]).

In this paper, we go forward further along this promising direction. We give the direct encoding of
the 3D MATCHING problem as well as that of the PARTITION problem ([2]) into Horn sequents, which are
sequents of HMLL. It is well-known that an NP-complete problem can also solve any other NP-complete
problem through polynomial time transformations. But direct encodings are important because they
provide more efficient solvers for NP-complete problems than indirect encodings through polynomial
time transformations. In fact problem sizes encoded directly tend to be significantly smaller than those
encoded by polynomial time transformations from the viewpoint of a practical level, although both are
related by polynomials.

To solve NP-completeness problems is important: to obtain more optimized solutions of practical
optimization problems means to reduce tangible resources more drastically for systems constructed based
on these solutions. Recent progress of SAT solvers has enabled this at a practical level (for example, see
[8]). We would like to address this topic from another logical point of view, i.e, from Linear Logic. In
this approach we exploit provability of Linear Logic instead of satisfiability of classical logic. Although
combinatorial NP-complete problems can be encoded into SAT, such encodings are usually complicated
and difficult for humans to understand. On the other hand, the four direct encodings into Horn sequents
mentioned above are surprisingly simple and easy to understand. The existence of such natural direct
encodings seems to suggest that more complicated practical combinatorial problems can be solved using
a Linear Logic proof search engine efficiently instead of using a SAT solver.

In fact the software called Proof Net Calculator [9], which we have developed, includes an implemen-
tation of the 3D MATCHING problem as well as that of the DIRECTED HAMILTONIAN CIRCUIT problem,
using the encodings mentioned above. Although we have not exploited problem-specific optimizations
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yet, Proof Net Calculator can solve instances of these problems which average persons (like the author)
seem difficult to solve, where we utilize encoding-specific optimizations using ID-links dependency re-
lations. The technical details will be given elsewhere.

2 Intuitionistic Multiplicative Linear Logic, Horn sequents, and MLL

2.1 Intuitionistic Multiplicative Linear Logic and Horn sequents

In this section we introduce the system of Intuitionistic Multiplicative Linear Logic (for short IMLL) and
then Horn sequents in IMLL. Two NP-complete problems, 3D MATCHING and PARTITION are encoded
as Horn sequents as well as 3PARTITION in [5] and DIRECTED HAMILTONIAN CIRCUITS in [7]. Our
terminology and notation with regard to sequent calculi are standard, although we exclude the cut rule,
since we only deal with cut-free systems in this paper. For more technical details, for example, see [4].
We do not deal with the multiplicative Horn fragment of Linear Logic (for short HMLL) in [5]. HMLL
includes the cut rule in an essential way: the cut elimination theorem does not hold in HMLL. All we
need in this paper are cut-free systems.

We denote atomic formulas by p,q,r, . . .. Then we define IMLL formulas, which are denoted by
A,B,C, . . ., by the following grammar:

A ::= p | A−◦B | A⊗B

We denote multisets of IMLL formulas by Σ,Σ1,Σ2, . . .. An IMLL sequent is a pair (Σ,A). We write an
IMLL sequent (Σ,A) as Σ ` A. The inference rules of IMLL are as follows:

I A ` A

L−◦ Σ1 ` A B,Σ2 `C
Σ1,A−◦B,Σ2 `C R−◦ Σ,A ` B

Σ ` A−◦B

L⊗ Σ,A,B `C
Σ,A⊗B `C R⊗ Σ1 ` A Σ2 ` B

Σ1,Σ2 ` A⊗B

By a simple formula we mean a formula that consists of only atomic formulas and the ⊗ connective.
We denote simple formulas by X ,Y,Z, . . .. By a Horn implication we mean a formula that has the form
X−◦Y . A Horn sequent is an IMLL sequent that has the form X ,Σ ` Y , where each formula in Σ is a
Horn implication. We note that the Horn sequents are a rather restricted class of the IMLL sequents.

2.2 Multiplicative Linear Logic

Next we introduce the system of Multiplicative Linear Logic (for short MLL). We define MLL formulas,
which are denoted by F,G,H, . . ., by the following grammar:

F ::= p | p⊥ | F⊗G | FOG

The negation of F , which is denoted by F⊥ is defined as follows:

(p)⊥ = p⊥

(F⊗G)⊥ = G⊥OF⊥

(FOG)⊥ = G⊥⊗F⊥
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We denote multisets of MLL formulas by Λ,Λ1,Λ2, . . .. An MLL sequent is a multiset of MLL formulas
Λ. We write an MLL sequent Λ as ` Λ. The inference rules of MLL are as follows:

ID
` F⊥,F

⊗ ` Λ1,F ` Λ2,G
` Λ1,Λ2,F⊗G O ` Λ,F,G

` Λ,FOG

We define a translation from IMLL sequents to MLL sequents by

A1, . . . ,An ` B 7→ ` (A1)
−, . . . ,(An)

−,B+

where (−)− and (−)+ are defined inductively as follows:

(p)− = p⊥ (p)+ = p
(A−◦B)− = (B)−⊗ (A)+ (A−◦B)+ = (A)−O(B)+

(A⊗B)− = (B)−O(A)− (A⊗B)+ = (A)+⊗ (B)+

Proposition 2.1 A sequent A1, . . . ,An ` B is provable in IMLL if and only if ` (A1)
−, . . . ,(An)

−,B+ is
provable in MLL.

Proof: For example, see [10]. 2

By Proposition 2.1 we can discuss Horn sequent encodings of NP-complete problems in the framework
of MLL.

2.3 MLL proof nets

Next we introduce MLL proof nets. We use MLL proof nets in order to prove the correctness of our
encodings into Horn sequents.

Figure 1 shows the MLL links we use. Each MLL link has a few MLL formulas. Such an MLL
formula is a conclusion or a premise of the MLL link, which is specified as follows:

1. In an ID-link, each of F and F⊥ is called a conclusion of the link;

2. In an ⊗-link, each of F and G is called a premise of the link and F ⊗G is called a conclusion of
the link;

3. In an O-link, each of F and G is called a premise of the link and FOG is called a conclusion of
the link.

An MLL proof structure Θ is a set of MLL links that satisfies the following conditions:

1. For each link L in Θ, each conclusion of L can be a premise of at most one link other than L in Θ;

2. For each link L in Θ, each premise of L must be a conclusion of exactly one link other than L in Θ.

An MLL proof net is an MLL proof structure that is constructed by the rules in Figure 2. Note that each
rule in Figure 2 has the corresponding inference rule in the MLL sequent calculus. Any MLL proof
structure is not necessarily an MLL proof net.

Next we introduce a characterization of MLL proof nets using the notion of DR-switchings. A DR-
switching S for an MLL proof structure Θ is a function from the set of O-links in Θ to {0,1}. The
DR-graph S(Θ) for Θ and S is defined by the rules of Figure 3. Then the following characterization
holds.
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Figure 1: MLL Links

Figure 2: Definition of MLL Proof Nets
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Figure 3: Definition of DR graphs

Theorem 2.1 ([1]) An MLL proof structure Θ is an MLL proof net if and only if for any DR-switching S
for Θ, the DR-graph SΘ is acyclic and connected.

Next we introduce a few notions for MLL proof search based on MLL proof nets. An MLL proof
forest Θ0 is a set of MLL links obtained from an MLL proof structure Θ by deleting all ID-links in Θ. An
ID-links set π for an MLL proof forest Θ0 is a set of ID-links such that Θ0∪π is an MLL proof structure.
Then we write Θ0∪π as Θπ

0 . We say that an MLL proof forest Θ0 has an MLL proof net if there is an
ID-links set π for Θ0 such that Θπ

0 has an MLL proof net. An MLL formula A is a conclusion of an MLL
proof forest Θ0 if there is a link L in Θ0 such that A is a conclusion of L and there is no link L′ in Θ0 such
that A is a premise of L′.

Proposition 2.2 Let A1, . . . ,An ` B be an IMLL sequent and (A1)
−, . . . ,(An)

−,B+ be the conclusions of
an MLL forest Θ0. Then A1, . . . ,An ` B is provable in IMLL if and only if Θ0 has an MLL proof net.

Proof: By Proposition 2.1, A1, . . . ,An ` B is provable in IMLL if and only if ` (A1)
−, . . . ,(An)

−,B+ is
provable in MLL. Moreover, ` (A1)

−, . . . ,(An)
−,B+ is provable in MLL if and only if the MLL proof

forest with the conclusions (A1)
−, . . . ,(An)

−,B+ has an MLL proof net. 2

3 The Encoding of 3D MATCHING

3.1 Preliminaries

Notation 1 Let S be a set. Let L be the set of all lists over S such that each list in L has the same length.
Then we define an equivalence relation Perm over L as follows: (`1, `2) is in Perm if for each s ∈ S, the
number of occurrences of s in `1 is the same as that of `2. Each equivalence class over Perm is a multiset.
When ` is a list over S, let `/Perm be the multiset that includes `.
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Definition 3.1 (3D MATCHING [6]) Let A,B,C be finite sets such that |A|= |B|= |C|= n. 3D MATCHING

is the problem that when a given set T ⊆ A×B×C, decides whether or not there is a subset T0 of T such
that |T0|= n and

A = {a ∈ A |∃b ∈ B.∃c ∈C.〈a,b,c〉 ∈ T0}
B = {b ∈ B |∃a ∈ A.∃c ∈C.〈a,b,c〉 ∈ T0}
C = {c ∈C |∃a ∈ A.∃b ∈ b.〈a,b,c〉 ∈ T0} .

We suppose |T |= n+m, where m≥ 0. We assume that the elements of T are ordered and the list is

〈ai1 ,b j1 ,ck1〉, . . . ,〈ain ,b jn ,ckn〉,〈ain+1 ,b jn+1 ,ckn+1〉, . . . ,〈ain+m ,b jn+m ,ckn+m〉 .

Then we define three multisets AT ,BT ,CT by

AT = 〈ai1 , . . . ,ain ,ain+1 , . . . ,ain+m〉/Perm

BT = 〈b j1 , . . . ,b jn ,b jn+1 , . . . ,b jn+m〉/Perm

CT = 〈ck1 , . . . ,ckn ,ckn+1 , . . . ,ckn+m〉/Perm

Without loss of generality, we suppose the following conditions:

1. For each a ∈ A , there is `(1≤ `≤ n+m) such that a = ai` ;

2. For each b ∈ B , there is `(1≤ `≤ n+m) such that b = b j` ;

3. For each c ∈C , there is `(1≤ `≤ n+m) such that c = ck` .

Otherwise, we can determine that this instance has no solution. Moreover we define three multisets
Aco,Bco,Cco by

Aco = AT −Amul

Bco = BT −Bmul

Cco = CT −Cmul

where Amul,Bmul,Cmul are multisets that have the same elements as A,B,C respectively such that each
element occurs exactly once in Amul,Bmul,Cmul respectively. So, |Amul| = |Bmul| = |Cmul| = n. Then
without loss of generality, we can describe as

Amul = 〈a1, . . . ,an〉/Perm Aco = 〈ai′1
, . . . ,ai′m〉/Perm

Bmul = 〈b1, . . . ,bn〉/Perm Bco = 〈b j′1
, . . . ,b j′m〉/Perm

Cmul = 〈c1, . . . ,cn〉/Perm Cco = 〈ck′1
, . . . ,ck′m〉/Perm

3.2 The encoding into a Horn sequent

In this section we give our encoding of 3D MATCHING problem into a Horn sequent. We need a few
auxiliary formulas. For each `(1≤ `≤ n+m), we define

FT ` = (b j`⊗ ck`)−◦ai`
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Moreover we define

FAco = ai′1
⊗·· ·⊗ai′m

FBco = bi′1
⊗·· ·⊗b j′m

FCco = ck′1
⊗·· ·⊗bk′m

Finally we define

FI = FAco−◦((b1⊗·· ·⊗bn)⊗ (c1⊗·· ·⊗ cn))

Then we define a sequent as

Γ3DMATCHING = FBco⊗FCco,FI,FT 1, . . . ,FT n,FT n+1, . . . ,FT n+m ` a1⊗·· ·⊗an

It is obvious that Γ3DMATCHING is a Horn sequent and the encoding is a polynomial reduction.

3.3 The correctness proof

In order to prove the correctness of the encoding, we exploit the characterization of MLL proof nets
(Theorem 2.1). We construct an MLL proof forest, which corresponds to the Horn sequent Γ3DMATCHING.

For each `(1 ≤ ` ≤ n+m), the forest Θ` corresponding to FT ` is shown in Figure 4. The forest ΘI

Figure 4: Triple device Θ`

corresponding to FI is shown in Figure 5. Then the forest ΘF corresponding to the rest in Γ3DMATCHING is

Figure 5: I-device ΘI

shown in Figure 6. Then we define an MLL proof forest Θ0 as

Θ0 = ΘI∪
⋃

1≤`≤n+m

Θ`∪ΘF

Then if we note that `∆,AOB is provable in MLL if and only if `∆,A,B is provable in MLL, then we can
easily see that Γ3DMATCHING is provable in IMLL if and only if Θ0 has an MLL proof net by Proposition 2.2.
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Figure 6: F-device ΘF

Theorem 3.1 An instance of 3D MATCHING has a solution if and only if there is an ID-links set π for the
corresponding MLL proof forest Θ0 such that Θπ

0 is an MLL proof net.

Proof: We assume that we have a solution T0 ⊆ A×B×C. Then without loss of generality we can
write as

T0 = {〈ai1 ,b j1 ,ck1〉, . . . ,〈ain ,b jn ,ckn〉} .

Moreover we have

A = {ai1 , . . . ,ain}
B = {b j1 , . . . ,b jn}
C = {ck1 , . . . ,ckn} .

Then for each `(1≤ `≤ n), there is exactly one triple device Θq` corresponding to 〈ai` ,b j` ,ck`〉 in T0
where 1≤ q` ≤ n+m. Let

T0 = {Θq1 , . . . ,Θqn}

Moreover we can write the set of the triple devices that do not appear in T0 as

T1 = {Θqn+1 , . . . ,Θqn+m}

We construct an ID-links set π for Θ0 as follows:

(1) For each `(1≤ `≤ n) π includes the ID-link that connects the literal a⊥i` in the triple device Θq`
to ai` in the I-device ΘI.

(2) For each `(1≤ `≤ n) π includes the ID-link that connects the literal b j` in the triple device Θq`
to b⊥j` in the F-device ΘF.

(3) For each `(1≤ `≤ n) π includes the ID-link in π that connects the literal ck` in the triple device
Θq` to c⊥k` in the F-device ΘF.

(4) For each `(n+1≤ `≤ n+m) π includes an ID-link that connects the literal a⊥i` in the triple
device Θq` to a literal ai` in the F-device ΘF.

(5) For each `(n+1≤ `≤ n+m) π includes an ID-link that connects the literal b j` in the triple
device Θq` to a literal b⊥j` in the I-device ΘI.
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(6) For each `(n+1≤ `≤ n+m) π includes an ID-link that connects the literal ck` in the triple
device Θq` to a literal c⊥k` in the I-device ΘI.

Then we can easily see that Θπ
0 is an MLL proof net.

Conversely we assume that we do not have any solution T0 ⊆ A×B×C. In this case we can not find the
ID-links set π for Θ0 described above. So any ID-links set π for Θ0 must have the following property:
There is some `(1≤ `≤ n+m) such that

(1) the literal a⊥i` in Θ` connects to ai` of the F-device ΘF in π , and

(2) the literal b j` in Θ` connects to b⊥j` of the F-device ΘF in π or

(2’) the literal ck` in Θ` connects to c⊥k` of the F-device ΘF in π .

Then we can find a DR-switching S for Θπ
0 such that the DR-graph S(Θπ

0 ) has a cycle that passes
through a⊥i` ,ai` and b⊥j` ,b j` , or a⊥i` ,ai` and c⊥k` ,ck` . 2

Corollary 3.1 An instance of 3D MATCHING has a solution if and only if the sequent Γ3DMATCHING for the
instance is provable in MLL.

We note that this result can be easily extended to the n-D MATCHING problem for any n(n≥ 2).

4 The Encoding of PARTITION

4.1 Preliminaries

Definition 4.1 (PARTITION [6]) Let A be a finite set and s be a function from A to Z+. PARTITION is
the problem that decide whether or not there is a subset A′ ⊆ A such that

∑
s∈A′

s(a) = ∑
a∈A−A′

s(a) .

The problem is different from 3-PARTITION used in [5] and an NP-complete problem ([2]). In particular
our encoding below cannot be derived from the 3-PARTITION encoding in [5] directly.

We assume that the elements of A are ordered and the list is

a1,a2, . . . ,ak

Let
t = ∑

1≤i≤k
s(ai) .

Note that for any subset A′ ⊆ A,
t = ∑

s∈A′
s(a)+ ∑

a∈A−A′
s(a) .

If A′ is a solution, then the following equation must hold:

t = 2 ∑
s∈A′

s(a) .

Then t must be even. So without loss of generality, we can assume t is even.
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4.2 The encoding into a Horn sequent

In this section we give our encoding of the PARTITION problem into a Horn sequent. We need a few
auxiliary formulas.

For each i(1≤ i≤ k), we define Fonei and Fanoi as

Fonei = ai−◦

s(ai)︷ ︸︸ ︷
b⊥⊗b⊥⊗·· ·b⊥

Fanoi = ai−◦

s(ai)︷ ︸︸ ︷
c⊥⊗ c⊥⊗·· ·c⊥

Let Fbc be

Fbc = (

t/2︷ ︸︸ ︷
b⊗b⊗·· ·⊗b)⊗ (

t/2︷ ︸︸ ︷
c⊗ c⊗·· ·⊗ c)

We define F1st and F2nd as

F1st = Fbc−◦a1⊗a2⊗·· ·⊗ak

F2nd = Fbc−◦e

Then we define a sequent as

ΓPARTITION = a1⊗a2⊗·· ·⊗ak,Fone1, . . . ,Fonek,Fano1, . . . ,Fanok,F1st,F2nd ` e

It is obvious that ΓPARTITION is a Horn sequent and the encoding is a polynomial reduction.
We give an informal meaning for these formulas as follows:
• The formula a1⊗a2⊗·· ·⊗ak gives the multiset of all items.

• The formula Fonei gives the weight for the item ai.

• The formula Fanoi also gives the weight for the item ai.

• The role of F1st is a balance. If we are able to partition the set A of the items into two disjoint
sets A′ and A−A′ such that the sum of weights of A′ is equal to that A−A′, then again we get the
multiset of all items a1⊗a2⊗·· ·⊗ak.

• The role of F2nd is also a balance. If we succeed in the partition mentioned above, then we get the
final formula e.

4.3 The correctness proof

In order to prove the correctness of the encoding, we exploit the characterization of MLL proof nets
(Theorem 2.1). We construct an MLL proof forest, which corresponds to the Horn sequent ΓPARTITION.

Let the MLL forest shown in Figure 7 be ΘI. For each i(1 ≤ i ≤ k), let the MLL forest shown in
Figure 8 be Θonei. For each i(1 ≤ i ≤ k), let the MLL forest shown in Figure 9 be Θanoi. Let the MLL
forest shown in Figure 10 be Θ1st. Let the MLL forest shown in Figure 11 be Θ2nd. Finally let the MLL
forest shown in Figure 12 be ΘF. Then we define an MLL proof forest Θ0 as

Θ0 = ΘI∪
⋃

1≤i≤k

Θonei∪
⋃

1≤i≤k

Θanoi∪Θ1st∪Θ2nd∪ΘF

Then by Proposition 2.2 ΓPARTITION is provable in IMLL if and only if Θ0 has an MLL proof net.
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Figure 7: I-device ΘI

Figure 8: One Side device Θonei

Figure 9: Another Side device Θanoi

Figure 10: The First Matching Device Θ1st
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Figure 11: The Second Matching Device Θ2nd

Figure 12: F-Device ΘF

Theorem 4.1 An instance of PARTITION has a solution if and only if there is an ID-links set π for the
corresponding MLL proof forest Θ0 such that Θπ

0 is an MLL proof net.

Proof: We assume that we have a solution A′ ⊆ A. Then without loss of generality we can write as

A′ = {a1, . . . ,ak0}
A−A′ = {ak0+1, . . . ,ak}

Since A′ is a solution, as mentioned above, we can write as

t/2 = ∑
s∈A′

s(a) = ∑
s∈A−A′

s(a) .

Then we construct an ID-links set π for Θ0 as follows:

(1) For each i(1≤ i≤ k0), a⊥i in ΘI is connected to ai in Θonei and each of b⊥ in Θonei is connected to
b in Θ1st.

(2) For each i(1≤ i≤ k0), a⊥i in Θ1sti is connected to ai in Θanoi and each of c⊥ in Θanoi is connected
to c in Θ2nd.

(3) For each i(k0 +1≤ i≤ k), a⊥i in ΘI is connected to ai in Θanoi and each of c⊥ in Θanoi is
connected to c in Θ1st.

(4) For each i(k0 +1≤ i≤ k), a⊥i in Θ1st is connected to ai in Θonei and each of b⊥ in Θonei is
connected to b in Θ2nd.

(5) The literal e⊥ in Θ2nd is connected to e in ΘF.

It is obvious that Θπ
0 is an MLL proof net.

Conversely, we assume that we do not have any solution A′ ⊆ A. This means that for any subset A′ ⊆ A,

t/2 6= ∑
s∈A′

s(a) 6= ∑
s∈A−A′

s(a) 6= t/2 .

Then any ID-links set π for Θ0 must have the following property:
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There is some i(1≤ i≤ k) such that

(1) the literal a⊥i in Θ1st is connected to the literal ai in Θonei;
(2) a literal b in Θ1st is connected to a literal b⊥ in Θonei,

or

(1’) the literal a⊥i in Θ1st is connected to the literal ai in Θanoi;
(2’) a literal c in Θ1st is connected to a literal c⊥ in Θanoi.

Then there is a DR-switching S for Θπ
0 such that S(Θπ

0 ) has a cycle including all literals mentioned in
(1) and (2), or (1’) and (2’). 2

Corollary 4.1 An instance of PARTITION has a solution if and only if the sequent ΓPARTITION for the
instance is provable in MLL.

5 Concluding Remarks

In this paper we showed that Horn sequents of Linear Logic are extremely useful for formalizing com-
binatorial NP-completeness problems. This suggests that more complicated practical combinatorial NP-
complete problems can be directly encoded into these sequents. Although Horn sequents of Linear Logic
has not received much attention, we believe that the research direction is promising.

In addition, The 3SAT problem can be encoded into the 3D MATCHING problem in a standard way (for
example, see [2]). So we can obtain a SAT solver through MLL proof search in this way.
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