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c© M. Cristiá, G. Rossi & C. Frydman
This work is licensed under the
Creative Commons Attribution License.

Using a Set Constraint Solver for Program Verification

Maximiliano Cristiá
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{log} is a constraint solver for an expressive theory of finite unbounded sets and binary relations.
It is a complete solver for an important fragment of formulas based on operators such as equality,
membership, union, domain, composition, etc. where terms are finite unbounded extensional sets
and binary relations. It is also a complete solver for formulas based on equality and membership
where terms are extensional and restricted intensional sets. As such {log} can automatically prove
a number of theorems of the theory of finite unbounded sets and relations. In turn, the theory of
finite sets and relations is known to be a very good specification language for many programs. In this
paper we show how {log} can be used as an effective tool for automatically discharging verification
conditions produced during the formal functional verification of imperative programs. A case study
shows the application of {log} to the verification of several list functions.

1 Introduction

{log} (pronounced ‘setlog’) is a freely available constraint solver for an expressive theory of finite un-
bounded sets and binary relations, implemented in Prolog [24]. With the constraint language supported
by {log} it is possible to write a large subset of the formulas that can be expressed in formal specification
languages such as Z [27] and B [1] (basically all set and relational operators, except for the transitive clo-
sure, are supported). Besides, {log} is a complete solver for a non-trivial fragment of its input language
(i.e. it can compute a finite representation of all the solutions of a given formula). As such it behaves as a
specialized SMT solver for a theory of finite sets and relations. Therefore, {log} is able to automatically
prove theorems of set theory and relation algebra.

Formal specification languages based on set theory, such as Z and B, have been proposed as ideal
vehicles for the formal specification of large classes of programs. The underlying idea is that set-based
specifications are concise and accurate abstractions of many program behaviors. Widespread used data
structures such as lists, arrays and maps can be easily described with sets and set operators.

Usually, these specifications give the pre- and post-conditions the implementation must verify. The
same language can be used to state loop invariants and program assertions in general, in a Hoare-Floyd-
like verification framework. As a consequence, the verification conditions (or proof obligations) derived
from such a framework will take the form of theorems of set theory. Observe that finite unbounded sets
and binary relations accurately represent the state of programs managing data structures such as lists,
because they are finite but unbounded (in the sense that the program can keep adding nodes to the list).

In this paper we show how {log} can be used as an effective tool to discharge such verification condi-
tions. In our framework, programs are written in an object-oriented abstract programming language and
specifications and loop invariants are written in a language similar to the base logics underlying Z and B.
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Programmers are assumed to provide specifications and loop invariants and to produce the verification
conditions; while {log} will automatically prove them. The automatic derivation of verification condi-
tions needs to be further investigated. The core of the paper is a case study where we use {log} to prove
the partial functional correctness of an abstract data type (ADT) encoding lists and of six subroutines
using instances of this ADT (such as list equality and membership, mapping a function over a list, etc.).

The original contribution of this paper is to show how the latest version of {log} (including binary
relations and restricted intensional sets [10, 11]) can be used as an effective tool to support set-based pro-
gram verification. We do not claim that our solution is somewhat “better” than other known solutions;
rather, we claim that using {log} represents a viable challenging alternative to other known approaches.
In particular, we show how set unification and set theory as supported by {log} allow to give precise
yet concise formulas capturing the semantics of several important instructions of imperative program-
ming languages. Furthermore, in the case of {log} these formulas fall inside the decision procedures
implemented by the tool thus making it possible to automatically discharge verification conditions.

Using set constraints for program analysis and verification can be traced back at least to the nineties
[20, 2, 22]. The differences between these proposals and {log} have been already analyzed [25, 16, 17].
Basically, we have chosen to use {log} because: (i) it provides general forms of set terms (e.g. nested
and partially specified sets) and a relatively rich collection of set-theoretical operations (including set
unification, and basic relational operators); (ii) all these features are provided as first-class citizens of
the language, all endowed with a precise set-theoretical semantics; (iii) a large fragment of the formulas
that can be expressed in {log} can be decided using {log}’s constraint solver; and (iv) when {log}
provides a decision procedure it actually provides a complete solver which is able to compute solutions,
i.e. assignments of values to the free variables of the input set formula.

Specifically, in this paper we apply {log} to programs accessing dynamic data structures, such as
linked lists. Separation logic [23] has been proposed and used with outstanding results to verify pro-
grams using dynamic data structures. There are several powerful tools implementing—in different ways
and for different purposes—a range of analysis based on separation logic. Some of them rest on first-
class theorem provers such as Coq [9, 6]; others implement some decision procedures or heuristics or
with extra input from the user require less user work during the proofs [4, 29]; and yet others perform
fully automatic analysis although their scope is limited to detect some specific errors (e.g. memory
safety) [8]. The kind of specifications that we use in our case study bear some relation to separation
logic as we predicate only about the state of the data structure being implemented (see Section 5.2).
However, our specifications are quantifier-free first order formulas over a theory of finite sets, and we
use general-purpose set and relational operators instead of the more specific separation logic connectives
(e.g. separating implication).

Other logics are used to verify program correctness even at the presence of dynamic data structures.
Zee et al. [30] use the Jahob system to prove full functional correctness of linked data structures. Ja-
hob specifications are based on classical higher-order logic including sets and relations. However, many
specifications fall inside of an undecidable fragment of higher-order logic. Hence, discharging some ver-
ification conditions require user help. Attempts to reduce the specification language fail because it would
not be possible to express some properties. As our case study suggests, {log}might overcome these lim-
itations by providing an expressive enough specification language whose formulas fall inside a decision
procedure. As proof back-end, Jahob relies on a range of first-order and SMT provers. Droos and Moy
[19] use the SPARK technology to automatically prove that an efficient imperative implementation is a
correct refinement of the abstract specification. In this setting, specifications are based on abstract data
structures such as sets and maps. As Jahob, the SPARK verifier also rests on automatic provers such as
Alt-Ergo, CVC4 and Z3. {log}’s input language bears some relation to relation algebra. Berghammer et
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al. [5] verify imperative programs implementing relation-based discrete structures by combining relation
algebra with automated theorem proving.

As can be seen, SMT solvers are routinely used for diverse forms of program verification [15]. For
example, VS3 [28] uses Z3 to discover program invariants. Lahiri and Qadeer [21] propose a logic, im-
plemented over Simplify and Z3, that facilitates precise, automated, and efficient reasoning about many
heap-intensive programs. The logic is based on bounded quantification over interpreted sets. Although
{log} does not directly support bounded quantification over interpreted sets, they can be encoded by
means of Restricted Intensional Sets (RIS) [11]. In general, SMT solvers do not directly support inter-
preted sets or if they do the admissible formulas are not as expressive as {log}’s (e.g., they do not support
dom, ran, etc., as in [3]).

Besides SMT solvers and general proof assistants, there are approaches to program verification based
on representing programs as Horn clauses. For example, solvers such as Duality, HSF, SeaHorn, and µZ,
are used to transform imperative programs into Horn clauses [7]. De Angelis et al. [14] use Constraint
Handling Rules to transform CLP programs that manipulate integer arrays for verifying properties of
imperative programs. All these proposals, however, do not exploit the high-level expressiveness power
of sets and set-based formulas.

2 Introduction to {log}

In this section we introduce the constraint language provided by {log} and show some examples of how
{log} can be used as a constraint solver for set theory formulas. Full and formal accounts of the tool and
the theory behind it can be found elsewhere [16, 10, 11].
{log} is a Constraint Logic Programming (CLP) language, whose constraint domain is that of hered-

itarily finite sets—i.e., finitely nested sets that are finite at each level of nesting. {log} allows sets to be
nested and partially specified—e.g., set elements can contain unbound variables, and it is possible to op-
erate with sets that have been only partially specified. {log} provides a collection of primitive constraint
predicates, sufficient to represent all the most commonly used set-theoretic and relation operations—e.g.,
union, intersection, domain, composition.
{log} admits the following set terms: variables; the empty set ( /0); and the extensional set constructor

({·t ·}). Sets are untyped, i.e. they can contain elements of any sort; in particular they can be numbers,
strings, ordered pairs, and set terms. Literals are formed by several set and relation operators including
equality (=), set membership (∈), set union (un(A,B,C) interpreted as C = A∪B), domain of a relation
(dom(R,A), i.e. domR = A), etc. The negation of each operator is also available: 6=, /∈, nun (negation of
un constraints), ndom (negation of dom constraints), and so forth. {log} constraint formulas are formed
by conjunctions (∧) and disjunctions (∨) of literals.

The first parameter of the extensional set constructor is a set element and the second parameter
(called set part) is a set term. Then, {a1t . . .{antA} . . .} is interpreted as {a1, . . . ,an}∪A. The term {a1t
. . .{an tA} . . .} is written concisely as {a1, . . . ,an tA} and when A is the empty set we write {a1, . . . ,an}.
Any set element and the set part can be variables. This implies that extensional sets in {log} are finite
but unbounded (because the set part can be a variable).

When a formula is entered in {log} it attempts to find all its solutions. If the formula lays inside of
one of the implemented decision procedures, then the tool will return a compact representation of all its
possible solutions; if the formula is unsatisfiable, {log} will return false. In particular, {log} implements
set unification [18]. Specifically, {log} provides a form of E-unification, called (Ab)(Cl)-unification,
where (Ab) (Absorption) and (Cl) (Commutativity on the left) are the identities of the underlying equa-
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tional theory that capture the properties of the set constructor {· t ·}, i.e. the fact that the ordering and
repetitions of elements in a set are immaterial. (Ab)(Cl)-unification allows to compute a complete set of
E-unifiers for equalities involving general set terms of the form {a1, . . .an tA}.
Example 2.1 Given the equality {{x,1}tA}= {ytB}, where x, y, A and B are variables, {log} returns
the following four independent solutions that constitute the minimal complete set of E-unifiers for the
given unification problem: (i) y = {x,1},B = A; (ii) A = {{x,1} tB},y = {x,1}; (iii) y = {x,1},B =
{{x,1} tA}; (iv) A = {y tN},B = {{x,1} tN}, where N is a new fresh set variable. Note that if, for
instance, y 6= {x,1}∧ y 6∈ A is conjoined, then the answer of {log} is false.

{log} can be used as an effective automated theorem prover for (finite) set theory (including binary
relations). Given that {log} is a satisfiability solver, if you want to prove that a formula is a theorem, you
have to negate it and wait for a false answer.

Example 2.2 {log} can be used to prove that ∪ is commutative (i.e. A∪B = B∪A) whose negation in
{log} writes as un(A,B,C)∧nun(B,A,C) (for which it returns false). �

In {log} (finite) binary relations are just set of ordered pairs. Hence, binary relations and sets can
be freely combined. In particular, set operators can be applied to binary relations and there are relation
operators that take sets as parameters. This feature leverages the expressiveness of the language.

Example 2.3 The equality (ACR)[B] = R[A∩B] (where A and B are sets, R is a binary relation, C is
domain restriction, and ·[·] is relational image), is a known theorem of binary relations [26]. Its negation
can be written in {log} as follows:

dres(A,R,N1)∧ rimg(N1,B,N2)∧ inters(A,B,N3)∧nrimg(R,N3,N2) (1)

for which {log} answers false immediately. �

{log} can tell by itself when a set is a binary relation by looking at the constraints where it participates
in. However, if users want to force this constraint {log} offers the rel(R) literal which forces R to be a
binary relation (i.e. a set of ordered pairs). Besides, {log} offers the pfun( f ) constraint which forces f
to be a partial function (i.e. a set of ordered pairs where no first component is in more than one pair).

Note that the ASCII version of {log} input language somewhat differs from the notation used across
this paper. We do so because we think a more mathematical notation would help readers to better under-
stand our work.

Example 2.4 The ASCII of the formula un({(x, ‘hello world’)tA},b,c)∧ c 6= /0 is:

un({[X,hello_world] / A},B,C) & C neq {}

where variables must start with a capital letter while constants start with a lower letter, as in Prolog. �

3 The Programming Language

In this paper we show how {log} can be used as an effective tool for proving partial functional correctness
of imperative programs dealing with lists. We use an abstract programming language, simply called P ,
whose syntax and semantics will be given informally. Some sample programs can be found in Figures 2
and 4 and in Appendix A.1 and A.2.

In this programming language programmers can define ADTs by giving the subroutines in their
interfaces. The syntax for defining ADT’s is sketched in Appendix A.2 because is not needed here.
ADTs can be parameterized by a type (such as C++ templates). If T is an ADT or a primitive type, then
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add(T e) Adds e to the end of the list.
fst() The internal cursor is set to the left of the (possible) first element of the list.
T next() Returns the next element in the list, if the iterator has been initialized (i.e. fst() has

been called) and if there is such an element, and increments the internal cursor by one;
otherwise the behavior is not specified. The client is responsible for initializing the iterator
and for checking that there are more element ahead before calling next().

more() Returns true iff there are more elements in the list w.r.t. the current position of the internal
cursor; or if the list is not empty and the internal cursor has not been initialized yet (i.e.
fst() has not been called). When the list is empty it returns false.

rpl(T e) Replaces the last element returned by next(), if any, with e; otherwise it does nothing.
del() Deletes the list; i.e. it becomes the empty list.

Figure 1: Public interface of the List ADT

T x declares x as a variable of type T. If T is an ADT, then x needs to be bound to an instance of T
by means of an assignment statement and the instance creator: x :=new T. If f(. . .) is a subroutine in
the interface of T, depending on zero or more parameters, then x.f(. . .) has the same semantics given
by object-oriented languages. Variables whose type are ADTs are always treated as references (like in
Java). null is a value for any variable of an ADT type indicating that no instance has been bound to it.

Besides, the language has the following standard control and procedural abstractions: assignment
(:=), skip, if− then−else−end if (where the else part is optional), while−do−end while, function−
end function, procedure− end procedure and return, with their intuitive semantics. function blocks
are used to define subroutines that return a value of some type (either ADT or primitive) that is indicated
after this keyword and before the function’s name. The return keyword is allowed only inside a function
block. procedure blocks are used when the subroutine is not meant to return anything to the caller.

3.1 An ADT for lists

The ADT for lists that we will use is called List and it is assumed to be parameterized by some type
T which is the type of the elements stored in the list. Since the actual parameter does not play an
important role in relation with proving partial correctness of the programs using List, we will not mention
it explicitly whenever possible.

The (public) interface of List is constituted by the subroutines given in Figure 1. The formal spec-
ification of these subroutines is discussed in Section 5.2. fst(), next() and more() work together as a
sequential iterator. Internally, List maintains a cursor pointing to the left of the next element to be it-
erated over. Note that the client must call more() and fst() before calling next() for the first time, and
more() before successive calls to it; and that it must call next() before calling rpl(). In other words, a
typical correct usage of the iterator is: fst()→more()→ next()→more()→ next()→ . . . until more()
returns false, while calls to rpl() are also possible after the first call to next(); and fst() can be called at
any moment to reset the iterator. Otherwise the behavior of the caller could be erroneous.

When del() is called, more() will return false until add() is called. Whenever an assignment of the
form s :=new List is executed, an empty list is bound to s. When an instance of List is created, more()
returns false (and thus the behavior of next() is not specified).

As can be seen, the only way programmers have to scan a list is by means of the abstract iterator
defined by List. Since iterating over lists in the correct way is one of the main issues when proving
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correctness of programs dealing with them, we will discuss a simple but important property of iterators,
on which our correctness conditions will depend. When an iterator is used to iterate over a list, the
list can be divided into two parts: the leftmost one has already been iterated over and thus its elements
have already been processed, we call it the processed part; and the rightmost part whose elements are
(possibly) going to be iterated over, we call it the remaining part. In particular when fst() is called, the
processed part is empty and the remaining part equals the whole list; and when more() returns false, the
remaining part is empty and the processed part is equal to the list.

4 The Specification Language

As we have said, we aim at proving functional properties of programs using instances of List. We do it
by proving that programs verify their specifications. Specifications are given as formulas over the theory
of sets supported by {log}. Firstly, we write these formulas using the more or less standard language of
set theory and, secondly, we translate them into the constraint language of {log} (see several examples
of this translation in Section 5, Appendix A and in [13]). We do so because we assume readers are more
familiarized with the language of set theory. As we will see, this translation is straightforward.

More precisely, the atomic predicates of our specification language are set equality (=), set member-
ship (∈) and their negations ( 6= and /∈). In turn, set expressions are formed with variables; the empty set
( /0); extensional sets {a1, . . . ,an} and {a1, . . . ,an tA}, where A is a variable; set union (∪), intersection
(∩); domain (dom) and range (ran) of a binary relation, and so forth. If f is a set representing a partial
function, then f (x) denotes function application. Set elements can be ground elements, variables, or-
dered pairs (noted (·, ·) or · 7→ ·) and other finite sets. Sets are untyped; that is they can contain elements
of different sorts. Formulas in this specification language are formed as usual with the standard logical
symbols: negation (¬), conjunction (∧), disjunction (∨), implication ( =⇒ ) and equivalence (⇐⇒ ).
The language includes a special symbol (ret) denoting the value returned by functions when this value is
the result of evaluating the expression of a return statement.

Now we are going to explain how instances of List are modeled at specification level. In set theory a
list can be modeled as a partial function whose domain is an interval of natural numbers starting at 1.

Definition 4.1 Let N1 7→ X be the set of all partial functions from N1 , N \ {0} onto the set X. Then,
the set List defined as:

s ∈ List ⇐⇒ s ∈ N1 7→ X ∧∃n ∈ N : doms = [1,n] (2)

represents the set of all possible lists whose elements belong to X.

Note that the empty list is the empty set as n= 0 satisfies (2). In this way lists are sets of ordered pairs.
For example, the list 〈e1,e2,e3〉 corresponds to the set {(1,e1),(2,e2),(3,e3)}. In this representation of
lists, the first components of the ordered pairs are called indexes.

With this representation we can easily use all the set and relational operators defined in our speci-
fication language. For example, list equality becomes trivial as it is reduced down to set equality; list
membership becomes set membership as ( ,e) ∈ s or e ∈ rans; and so forth.

Besides, when specifying programs using instances of List we can assume that List’s interface is
correct (see Section 5.2) thus making modeling even easier. For example, the property that a list can be
divided into two parts as it is iterated over with the abstract iterator, can simply be modeled as s = sp∪ sr

(or s = {a1, . . . ,an t sr} when sp is known to be {a1, . . . ,an}, n ≥ 1), where sp represents the processed
part and sr the remaining part. At specification level it is not always necessary to precisely characterize
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PRE-CONDITION true
function Bool listEq(List s, t)

s.fst(); t.fst()
INVARIANT s ∈ 7→ ∧ t ∈ 7→ ∧ s = sp∪ sr ∧ sp ‖ sr ∧ t = tp∪ tr ∧ tp ‖ tr ∧ sp = tp

while s.more()∧ t.more()∧ s.next() = t.next() do
skip

end while
return ¬s.more()∧¬t.more()

end function
POST-CONDITION ret ⇐⇒ s = t

Figure 2: listEq returns true if and only if s and t are equal

those parts, if we work under the assumption that the interface is correct. In effect, under this assumption
we know for sure that the list can be divided into these two parts and that they have some properties. In
turn, if at specification level we do not need these properties (for instance to prove that some formula is a
loop invariant), then we do not write them down. These are some examples of List’s properties that users
may use when needed:

• s, sp and sr are partial functions.

• sp and sr are disjoint (i.e. sp ‖ sr and disj(sp,sr) in {log}).

• Assuming next() is correct, we do not need to characterize the next element to be processed. We
need to state that there is an element z to be processed (z ∈ sr or sr = {zt s1

r}) and, some times, we
need to identify its components ((x,y) ∈ sr or sr = {(x,y)t s1

r}).

5 {log} for Functional Program Verification: Case Study

In this section we show part of a case study we conducted in order to evaluate {log} as a program verifier
(the remaining part is in the Appendix). The case study includes the verification of all subroutines in
List’s interface (as described in Section 3.1) and six subroutines processing instances of List. All the
code is written in P (Section 3). The external subroutines include a while loop which iterates over one
or two lists by means of the abstract iterator provided by the List interface. For each subroutine we give
its specification in the form of pre- and post-conditions and the loop invariants, all in the specification
language outlined in Section 4. Then, assuming the implementation of List is correct, we prove that the
invariants are preserved and that the post-conditions are met. Secondly, we prove that the implementation
of each subroutine in the interface of List is correct, by following a similar methodology. All these proofs
are made by feeding {log} with the verification conditions.

5.1 List equality

One of the six subroutines making use of the List ADT is a function implementing list equality between
two instances of List (Figure 2). As can be seen, the pre- and post-conditions and the loop invariant
are given as formulas of our specification language (highlighted in gray). These are annotations to the
program. We will not discuss the code as we assume is straightforward. Instead we will discuss some
issues regarding the relation between the specification and the code.
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If v is a program variable then v is the abstraction of this variable at the specification level. As the
specification language is untyped, variables of type T are abstracted as variables without specifying any
sort for them; and variables of type List are abstracted as variables of sort set as discussed in Section 4.

Pre-condition Observe that since the programming language enforces a type system, a subroutine
cannot be called by passing to it an actual parameter of the wrong type. This makes unnecessary to
enforce those types at specification level in order to prove the functional correctness of these programs.
In other words, the correctness of these programs cannot be jeopardized by receiving a parameter of the
wrong type. Therefore, for example, in the pre-condition of listEq we do not need to state that s satisfies
(2) because it will, no matter what, since this is enforced by the compiler. Hence, in this example the
pre-condition is simply true.

Loop invariant The loop invariant uses the property yielded by the iterator discussed in Section 4.
That is, both s and t are divided into two parts which in this case verify that sp = tp. In effect, the
loop keeps running as long as the corresponding elements are equal, so the processed part of s, in each
iteration, must be equal to the processed part of t. In this case, however, we need to state that both s and
t are partial functions and that s and t are partitioned by sp,sr and tp, tr, respectively.

Post-condition The post-condition makes use of the special variable ret. The meaning of this variable
is equivalent to have assigned ¬s.more()∧¬t.more() to variable ret and then returning this variable
instead of the expression (i.e. return ret).

Verifying the specification Now we are going to explain how we prove that listEq verifies its specifi-
cation (in the context of partial correctness). In general we follow the Hoare-Floyd approach to proving
partial correctness. Then, we assert pre- and post-conditions for each statement and prove whether or
not pre-conditions imply post-conditions. In order to shorten the presentation we will do some simplifi-
cations when the assertions are simple and when proofs are trivial (in general we will focus on proving
invariant preservation and post-conditions after loop termination).

The post-condition after the first two calls to fst() is: s = sp∪ sr∧ sp = /0∧ t = tp∪ tr∧ tp = /0, which
trivially implies the loop invariant.

Next, we must prove that the loop invariant is preserved after each iteration if the loop condition
holds. In this case the loop condition is a little bit tricky because the clause s.next() = t.next() produces
a side-effect consisting in advancing both iterators (note that this clause is executed only when the first
two clauses hold). Therefore, the verification condition is as follows:

sr = {(x,y1)t s1
r}∧ tr = {(x,y2)t t1

r }∧ y1 = y2 [condition holds]

∧ s ∈ 7→ ∧ t ∈ 7→ ∧ s = sp∪ sr ∧ sp ‖ sr ∧ t = tp∪ tr ∧ tp ‖ tr ∧ sp = tp [inv. before]

=⇒ s ∈ 7→ ∧ s = {(x,y1)t sp}∪ s1
r ∧{(x,y1)t sp} ‖ s1

r [inv. after]

∧ t ∈ 7→ ∧ t = {(x,y2)t tp}∪ t1
r ∧{(x,y2)t tp} ‖ t1

r ∧{(x,y1)t sp}= {(x,y2)t tp}

(3)

If we want to use {log} to discharge this verification condition we need to translate its negation while
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writing the implication as a disjunction, resulting in:

sr = {(x,y1)t s1
r}∧ tr = {(x,y2)t t1

r }∧ y1 = y2

∧pfun(s)∧pfun(t)∧un(sp,sr,s)∧disj(sp,sr)∧un(tp, tr, t)∧disj(tp, tr)∧ sp = tp

∧ (npfun(s)∨nun({(x,y1)t sp},s1
r ,s)∨ndisj({(x,y1)t sp},s1

r )

∨npfun(t)∨nun({(x,y2)t tp}, t1
r , t)∨ndisj({(x,y2)t tp}, t1

r )∨{(x,y1)t sp} 6= {(x,y2)t tp})

(4)

which, when fed into {log}, makes it return false (i.e. (3) holds).
Finally, we must prove that upon termination of the loop its invariant implies the post-condition:

(sr = /0∨ tr = /0∨ sr = {(x,y1)t s1
r}∧ tr = {(x,y2)t t1

r }∧ y1 6= y2) [termination]

∧ s ∈ 7→ ∧ s = sp∪ sr ∧ sp ‖ sr ∧ t ∈ 7→ ∧ t = tp∪ tr ∧ tp ‖ tr ∧ sp = tp [invariant]

=⇒ ((sr = /0∧ tr = /0) ⇐⇒ s = t) [postcondition]

(5)

whose negation translated into {log} is:

(sr = /0∨ tr = /0∨ sr = {(x,y1)t s1
r}∧ tr = {(x,y2)t t1

r }∧ y1 6= y2)

∧pfun(s)∧un(sp,sr,s)∧disj(sp,sr)∧pfun(t)∧un(tp, tr, t)∧disj(tp, tr)∧ sp = tp

∧ (sr = /0∧ tr = /0∧ s 6= t ∨ s = t ∧ (sr 6= /0∨ tr 6= /0))

(6)

which again is found to be false by the tool.

5.2 Proving List’s Implementation is Correct

In this section we show how {log} can be used to prove the partial functional correctness of the imple-
mentation of the List ADT. Given that in this case the verification conditions are rather easy, the example
shows how the expressiveness of the constraint language supported by {log}, in particular set unification,
really helps to generate a simple, accurate and concise specification of the ADT.

Due to space restrictions, we focus the analysis on the add() subroutine (the rest can be found in Ap-
pendix A.2). Figure 4 shows the implementation of add() along with its specification and the assertions
generated as the result of a Hoare-Floyd-like verification. List has been implemented as a singly-linked
list. The nodes of this list are instances of an ADT called Node, whose interface is described in Figure
3 (and whose implementation and specification are given in Appendix A.2). List declares four internal
(member) variables of type Node: s, holding the first node of the list; f, holding the last node of the list
(to make add() to run in constant time); and c and p for the internal cursor.

At specification level, we introduce the following notions and notation.

Definition 5.1 The state of an instance of List is a triple 〈s,a,sm〉 where: s is a partial function rep-
resenting the part of the memory holding the list (i.e. the heap); a is the function that maps program
variables to the memory locations they are referencing (i.e. a stack-allocated variable store); and sm is a
set holding the memory locations of s whose nodes have been already iterated over. Moreover, the first
node of s coincides with the node referenced by s and the last node with that referenced by f.

Definition 5.2 Let s be the first component of the state of an instance of List. Then, the specification
variables exported by List, sp and sr, are defined as: sp = smC s and sr = s\ sp.

For s to represent a linked list we use the following representation.
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setElem(T e) e is the element stored in the node.
setNext(Node n) n is the next node.
T getElem() Returns the element stored in the node.
Node getNext() Returns the next node.

Figure 3: Public interface of the Node ADT

1: PRE-CONDITION true
2: procedure add(T e)
3: if s= null then . at specification level condition writes: s = /0
4: s :=new Node
5: s.setElem(e)
6: f := s
7: else . i.e. s 6= /0
8: ASSERTION s = {a(f) 7→ (y,z)t s1} . set unification singles out last element
9: Node n :=new Node

10: ASSERTION s′ = {c 7→ (null,null),a(f) 7→ (y,z)t s1}∧ c /∈ doms∧ c 6= null
11: n.setElem(e)
12: ASSERTION s′ = {c 7→ (null,e),a(f) 7→ (y,z)t s1} . n transient, not in a; c is used
13: f.setNext(n)
14: ASSERTION s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}
15: f :=n
16: ASSERTION a′ = a⊕{f 7→ c}
17: end if
18: end procedure
19: POST-CONDITION s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ c 6= null
20: ∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms∧ c 6= null
21: ∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}

Figure 4: add() appends e to the list

{P} v :=new T {P∧m′ = {c 7→ τ tm}∧a′ = a⊕{v 7→ c}∧ c /∈ domm∧ c 6= null} (7)

{P} v :=w {P∧m′ = m∧a′ = a⊕{v 7→ a(w)}}, if the type of v and w is an ADT (8)

{P} end procedure {P∧m′ = m∧a′ = {v1, . . . ,vn}−Ca}, v1, . . . ,vn all local variables (9)

{P} end function {P∧m′ = m∧a′ = {v1, . . . ,vn}−Ca}, v1, . . . ,vn all local variables (10)

Figure 5: Axioms for new, the assignment of ADT variables and end procedure and end function. P is
a predicate; τ is the abstraction of the T ADT.
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Definition 5.3 If {ci}i∈[1,n]∪{null} are n+1 different constant symbols, then

{c1 7→ (c2,e1),c2 7→ (c3,e2), . . . ,cn 7→ (null,en)} (11)

represents the list 〈e1,e2, . . . ,en〉.
In this representation, ci in ci 7→ (ci+1,ei) is the memory location of the Node (ci+1,ei); ci+1 points

to the next node of the list and ei is the element stored in this node. Note that such a set is indeed a
partial function as memory locations are unique. The main reason for choosing this representation is that
it allows to specify all properties of List with formulas inside the decision procedures implemented in
{log}.

Now we analyze with some detail the specification of add() and how it can be proved that the imple-
mentation verifies it. In particular we want to show how set unification and {log}’s constraint language
provide a suitable vehicle for this task. Part of this analysis depends on the axioms given in Figure 5
which complement the standard rules of the Hoare-Floyd framework. We will consider only the else
branch as the other one is trivial although we introduce some simplifications due to space reasons (see
the full account in Appendix A.2). In Figure 4, if v is a variable, v′ represents its value in the after state.
When a specification variable is not mentioned in the assertion following a statement it is assumed to
remain unchanged (i.e. v′ = v).

Initially (line 8) we know the list is not empty. Then we know that the last node belongs to it. We are
interested in the last node because it will be linked to the new node that is going to be appended. As the
last node is referenced by variable f, we know that a(f) is its location. Hence, we know that a(f) 7→ (y,z)
(for some variables y and z) belongs to s, which may have an unknown number of other nodes which is
represented by a set variable s1. So the initial assertion is s = {a(f) 7→ (y,z)t s1}, which shows how set
unification can be used to concisely express these facts. Now we apply a simplified version of the axiom
for the new instruction (7). When applied to Node, this rule states that a new instance of Node is added
to s, that the location of this instance (c) is not being used in s and is different from null. Again, we use
set unification and {log}’s constraints to state all this in line 10. In effect, c 7→ (null,null) is added to s
thus giving the value for s′ and c /∈ doms states that c is new w.r.t. s.

Next the program sets e as the element to be stored by n. The effect of this statement is given by the
post-condition of Node :: setElem() (shown in Appendix A.2) which states that the second component
of the node in c must be e. Then, we use set unification once more to state this fact in line 12. Note
that since n is a transient variable we do not store it in a in order to make the presentation shorter. Now
we must apply Node :: setNext() specification (Appendix A.2) which states that the first component of
the node pointed to by the Node variable on which the subroutine is called must be set to the address of
parameter n. Again, set unification comes handy because we can change y by c as we have identified the
node pointed to by f (line (14)).

Finally, f is pointed to the last node which is the one just appended to the list (line 15). Given that f
and n are two variables whose type is an ADT, axiom (8) is applied. That is, a statement such as f :=n
changes the location to which f points to—note that is not that f points to n but that f points to what n
is pointing to. Then, such a statement does not change s but just a. In this case we use the ⊕ operator
instead of set unification just to show that relational operators can be used, too. The ⊕ operator updates
the second component of an ordered pair in a partial function by looking up the first component. So after
line 15, a′ is equal to a except in f which now points to c.

As can be seen, set unification and set theory allow to give precise yet concise formulas capturing the
semantics of several important instructions of imperative programming languages. Further, in the case of
{log} these formulas fall inside the decision procedures implemented by the tool thus making it possible
to automatically discharge verification conditions.
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5.3 Proving state invariants

In the loop invariant of the listEq() function (Figure 2) we include predicates such as s ∈ 7→ , sp ‖ sr,
etc. Without these predicates, the correctness of listEq() cannot be proved. Hence, part of the verification
effort includes proving that these predicates are indeed consequences of the specification of the List
interface. {log} can be used to automatically prove such properties, too.

In particular, the predicates included in the loop invariant mentioned above are state invariants of the
specification of List’s interface. Therefore, in order to be able to use them as valid properties we must
prove that every subroutine specification preserves them.
Definition 5.4 Let Sm be the specification of subroutine m. Then the state predicate I is an invariant
of m iff the following verification condition holds:

I ∧Sm =⇒ I ′ (12)

where I ′ is the predicate resulting from substituting in I all the state variables by their primed coun-
terparts. I is an invariant of the M ADT iff I is an invariant for all subroutines in its interface.

As an example, we use {log} to prove that s ∈ 7→ is an invariant of add(). In this case (12) is:

s ∈ 7→
∧ (s = /0∧ c 6= null∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}
∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms∧ c 6= null

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c})
=⇒ s′ ∈ 7→

(13)

whose negation translates into {log} as:

pfun(s)

∧ (s = /0∧ c 6= null∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)
∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1∧ c 6= null

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′))

∧npfun(s′)

(14)

which again is found to be unsatisfiable by {log}.
The proofs of several different invariants for all the subroutines can be found in Appendix A.3.

5.4 Summary of the case study

We have formally verified the partial functional correctness of all the subroutines in List’s interface
plus six subroutines using this ADT. In verifying the subroutines in List’s interface we only proved 22
specification invariants because verification conditions arising from the application of Hoare-Floyd rules
are trivial. Instead when verifying the other six subroutines we only proved loop invariant preservation
and implication of post-condition. Besides, we proved the three properties used in the loop invariant
of Figure 2. Table 1 summarizes these results, where: VC is the number of verification conditions in
each group; TIME is the time spent by {log} in proving all the VC’s; and AVG is the average time (both
in milliseconds). {log} 494-13 was used for all the proofs. The ASCII version of the VC’s can be
downloaded from [12].

This case study provides concrete evidence that {log} is an appealing tool for program verification.
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GROUP VC TIME AVG

Loop invariant 6 1,639 ms 271 ms
Post-condition 6 37 ms 6 ms
Specification invariant 22 1,170 ms 53 ms
Other properties 3 6 ms 2 ms
TOTALS 37 2,843 ms 76 ms

Table 1: Summary of {log}’s performance

6 Conclusions

In this paper we have shown that {log}’s set constraint language permits to concisely and accurately
specify properties of object-oriented programs. Then, we have shown that {log} can automatically dis-
charge the proofs obligations generated when a Hoare-Floyd framework is applied to verify the functional
partial correctness of these programs. We have shown that it is possible to write high-level, set-based
specifications (similar to the logic underlying Z and B) that later can be translated into the constraint
language of {log}. As the case study shows, the specification methodology we have applied follows the
modularization of the software design. In effect, the specification of the interface of an ADT is used to
give the semantics and specifications of the components that use the ADT. The case study shows concrete
evidence that {log} can deal with classic verification problems.

However, there are many open problems. One of the most important is to integrate {log} in a tool
chain where many of the steps that in this paper are manual become more automatic. Other line of work
is to evaluate {log} on proving total correctness.
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A Case Study: Complete Version

This appendix contains all the code, specifications and verification conditions of the case study based on
the List ADT and six subroutines processing instances of List.

A.1 Programs that use List

For all the following functions and procedures we give the verification conditions that guarantee that
the loop invariant is preserved and that upon termination of the loop the post-condition holds. These
verification conditions are given both in our specification language and in {log}.

A.1.1 List membership

listIn(s,x) returns true if and only if x is an element of s.
The specification of this example uses the relational operator that takes the range of a binary relation.

We use ran for the specification language and ran(R,A) in {log}, which corresponds to ranR = A.

PRE-CONDITION true
function Bool listIn(List s,T x)

Bool found := false
s.fst()
INVARIANT s = sp∪ sr ∧ (found = true ⇐⇒ x ∈ ransp)

while s.more()∧¬found do
if x := s.next() then

found := true
end if

end while
return found

end function
POST-CONDITION found = true ⇐⇒ x ∈ rans

Verification conditions in specification language
Loop invariant

sr = {(z,y)t s1
r}∧ found = false

∧ s = sp∪ sr ∧ (found = true ⇐⇒ x ∈ ransp)

∧ (x 6= y∧ found′ = found∨ x = y∧ found′ = true) [if post-condition]

=⇒ s = {(z,y)t sp}∪ s1
r ∧ (found′ = true ⇐⇒ x ∈ ran{(z,y)t sp})

(15)

Post-condition

(sr = /0∨ found = true)

∧ s = sp∪ sr ∧ (found = true ⇐⇒ x ∈ ransp)

=⇒ (found = true ⇐⇒ x ∈ rans)

(16)
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Verification conditions in {log}
Loop invariant

sr = {(z,y)t s1
r}∧ found = false

∧un(sp,sr,s)∧ ran(sp,m1)∧ (found = false∨ x ∈ m1)∧ (found = true∨ x /∈ m1)

∧ (x 6= y∧ found′ = found∨ x = y∧ found = true)

∧ ran({(z,y)t sp},m2)∧ (nun({(z,y)t sp},s1
r ,s)∨ found′∧ x /∈ m2∨ found = false∧ x ∈ m2)

(17)

Post-condition

(sr = /0∨ found = true)

∧un(sp,sr,s)∧ ran(sp,m1)∧ (found = false∨ x ∈ m1)∧ (found = true∨ x /∈ m1)

∧ ran(s,m2)∧ (found = true∧ x /∈ m2∨ found = false∧ x ∈ m2)

(18)

A.1.2 Map over a list

listMap(s,o) applies o.f to every element of list s returning the result in a new list t.

The specification of this function makes use of the restricted intensional sets (RIS) provided by
{log}. RIS are the core of [11] which is going to be presented at CADE 2017. A RIS term is noted
{e[~x] : D |Ψ•τ[~x]}, where e (control term) is a {log} term and~x, 〈x1, . . . ,xn〉, n> 0, are all the variables
occurring in it; D (domain) is a set term; Ψ (filter) is a {log} formula; and τ (pattern) is a {log} term
containing~x. When the filter is true or the pattern is the control term itself they can be omitted but at least
one must be present. The form of RIS terms is borrowed from the form of set comprehension expressions
available in Z.

A RIS term {e[~x] : D |Ψ[~x,~v]• τ[~x,~v]}, where~v is a vector of free variables, is interpreted as the set
{y : ∃~x(e[~x] ∈ D∧Ψ[~x,~v]∧ y = τ[~x,~v])}. Note that x1, . . . ,xn are bound variables whose scope is the RIS
itself.

If control terms and patterns bear some specific relations and if filters verify some conditions on
the variables they include, {log} provides a complete solver for formulas including this fragment of RIS
terms (see [11] for all the technical details). So far, RIS terms can participate in equality and membership
constraints and their negations.

This example is included in [11].

It would have been possible to specify a program where the mapping is done over the same input list.
However in order to discharge some verification conditions {log} would need to implement set union for
RIS terms, which is not implemented yet.

Note that in the specification and loop invariant we simply say f (y) instead of o. f (y) given that the
important thing here is that f is applied.



M. Cristiá, G. Rossi & C. Frydman 19

PRE-CONDITION true
function List listMap(List s,Object o)

List t :=new List
s.fst()
INVARIANT s = sp∪ sr ∧ t = {(x,y) : sp • (x, f (y))}

while s.more() do
t.add(o.f(s.next()))

end while
end function
POST-CONDITION t = {(x,y) : s• (x, f (y))}

Verification conditions in specification language
Loop invariant

sr = {(x,y)t s1
r}

∧ s = sp∪ sr ∧ t = {(v,w) ∈ sp • (v, f (w))}
=⇒ s = {(x,y)t sp}∪ s1

r ∧{(x, f (y))t t}= {(v,w) ∈ {(x,y)t sp}• (v, f (w))})
(19)

Post-condition

sr = /0

∧ s = sp∪ sr ∧ t = {(x,y) : sp • (x, f (y))}
=⇒ t = {(x,y) : s• (x, f (y))}

(20)

Verification conditions in {log}
Loop invariant

sr = {(x,y)t s1
r}

∧un(sp,sr,s)∧ t = {(v,w) ∈ sp • (v, f (w))}
∧ (nun({(x,y)t sp},s1

r ,s)∨{(x, f (y))t t} 6= {(v,w) ∈ {(x,y)t sp}• (v, f (w))})
(21)

Post-condition

sr = /0

∧un(sp,sr,s)∧ t = {(x,y) : sp • (x, f (y))}
∧ t 6= {(x,y) : s• (x, f (y))}

(22)

A.1.3 List to set

listToSet(s) stores all the elements of s in set c (so possible repeated elements in s are stored only once
in c), and c is returned.

For this example we assume the existence of an ADT called Set providing the concept of finite set
(i.e. no repetitions, no order). As List, Set is parameterized by type T. Set provides an abstract iterator
as List does; its interface includes (at least) the add() subroutine to add elements to the set. Note that is
Set :: add() who eliminates repetitions (i.e. is not the responsibility of listToSet() to check for them).
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In order to discharge the verification conditions of this example we need the negation of the ran
constraint, called nran.

PRE-CONDITION true
function Set listToSet(List s)

Set c :=new Set
s.fst()
INVARIANT s = sp∪ sr ∧ c = ransp

while s.more() do
c.add(s.next())

end while
return c

end function
POST-CONDITION c = rans

Verification conditions in specification language
Loop invariant

sr = {(x,y)t s1
r}

∧ s = sp∪ sr ∧ c = ransp

=⇒ s = {(x,y)t sp}∪ s1
r ∧{yt c}= ran({(x,y)t sp})

(23)

Post-condition

sr = /0

∧ s = sp∪ sr ∧ c = ransp

=⇒ c = rans

(24)

Verification conditions in {log}
Loop invariant

sr = {(x,y)t s1
r}

∧un(sp,sr,s)∧ ran(sp,c)

∧ (nun({(x,y)t sp},s1
r ,s)∨nran({(x,y)t sp},{yt c}))

(25)

Post-condition

sr = /0

∧un(sp,sr,s)∧ ran(sp,c)

∧nran(s,c)

(26)

A.1.4 List filtering

listFilter(s,elem) filters all the elements of s that belong to set elem and returns the resulting list in t.
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The specification of this example uses the relational operator know as range restriction, noted B. If
A is a set and R is a binary relation, then:

RBA = {(x,y) : R | y ∈ A}

In {log} it is noted rres(R,A,S) whose interpretation is S = RB A. In turn, its negation is noted
nrres(R,A,S).

PRE-CONDITION true
function List listFilter(List s,Set elem)

T x
List t :=new List
s.fst()
INVARIANT s = sr ∪ sp∧ t = spB elem

while s.more() do
x := s.next()
if elem.in(x) then

t.add(x)
end if

end while
return t

end function
POST-CONDITION t = sB elem

Verification conditions in specification language
Loop invariant

sr = {(x,y)t s1
r}

∧ s = sp∪ sr ∧ t = spB elem

∧ (x ∈ elem∧ t ′ = {(x,y)t t}∨ x /∈ elem∧ t ′ = t) [if post-condition]

=⇒ s = {(x,y)t sp}∪ s1
r ∧ t ′ = {(x,y)t sp}B elem

(27)

Post-condition

sr = /0

∧ s = sp∪ sr ∧ t = spB elem

=⇒ t = sB elem

(28)

Verification conditions in {log}
Loop invariant

sr = {(x,y)t s1
r}

∧un(sp,sr,s)∧ rres(sp,elem, t)

∧ (x ∈ elem∧ t ′ = {(x,y)t t}∨ x /∈ elem∧ t ′ = t)

∧ (un({(x,y)t sp},s1
r ,s)∨nrres({(x,y)t sp},elem, t ′))

(29)
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Post-condition

sr = /0

∧un(sp,sr,s)∧ rres(sp,elem, t)

∧nrres(s,elem, t)

(30)

A.1.5 Length of a list

listLen(s) returns the length of s (which is a value of type Nat).
For this example we assume s.next() is a legal statement of the language (i.e. although next() is a

function we do not assign its return value).
The specification of this problem requires the introduction of the cardinality operator symbolized |·|

in our specification language and size(A,n) in {log}, with the intuitive meaning.

PRE-CONDITION true
function Nat listLen(List s)

Nat n :=0
s.fst()
INVARIANT s = sp∪ sr ∧ sp ‖ sr ∧n = |sp|

while s.more() do
s.next()
n :=n+1

end while
return n

end function
POST-CONDITION n = |s|

Verification conditions in specification language
Loop invariant

sr = {et s1
r}

∧ s = sp∪ sr ∧ sp ‖ sr ∧n = |sp|
=⇒ s = {et sp}∪ s1

r ∧n = |{et sp}|
(31)

Post-condition

sr = /0

∧ s = sp∪ sr ∧n = |sp|
=⇒ n = |s|

(32)

Verification conditions in {log} Discharging the verification conditions generated in this example
shows some limitations of {log} when it comes to solve formulas including integer constraints. {log}
uses CLP(FD) as the integer arithmetics constraint solver, so it can solve the same formulas and with the
same limitations of CLP(FD). In particular, for some formulas, {log} needs that all integer variables be
bound to a finite domain. If the user does not establish these bindings and {log} really needs them, it
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will let the user know by printing a suitable message. The bindings are set by means of constraints of the
form n ∈ [c1,c2], where c1 and c2 are two integer constants. Hence, if {log} does no find a solution for
such a formula it does not mean the formula is unsatisfiable (because it might have a solution in a bigger
domain). On the other hand, specifying very large domains may cause unacceptable execution times
because the CLP(FD) solver may need to explore all values of the domain to detect the unsatisfiability.
In this example, only the first goal needs the cardinality of sp to be bound to a finite domain

Loop invariant

n ∈ [0,200]

∧ sr = {et s1
r}

∧un(sp,sr,s)∧disj(sp,sr)∧ size(sp,n)

∧ (nun({et sp},s1
r ,s)∨ k1 is n+1∧ size({et sp},k)∧ k 6= k1)

(33)

Post-condition

sr = /0

∧un(sp,sr,s)∧ size(sp,n)

∧ size(s,k)∧ k 6= n

(34)

A.2 List’s Implementation and Verification

In this section we show how {log} is used to prove the partial correctness of the subroutines in the
interface of List. Given that all verification conditions are trivial, except for those shown in Section 5.2,
we only provide the assertions after each statement. Note that none of these subroutines uses while or if
statements (except add() which is shown in Section 5.2).

A.2.1 Node specification

The implementation of List makes use of the Node ADT. For the sake of completeness we give its
definition below. Besides, we give the specification of each subroutine in its interface. We would like to
comment on these specifications briefly.

Any instance of Node lives in memory and (at least initially) it is referenced by some variable. Then,
when a Node subroutine is called it is so by telling which variable is referencing the instance. Since at
the ADT level we do not have the name of the variable used to make the call we will assume its name is
v. Now, the specification of Node is based on a partial function, called a, which represents the function
mapping program variables to the instances they are referencing (i.e. a is a stack-allocated variable
store)1; and a partial function, called m, representing the memory used by the program (i.e. the heap
or dynamically-allocated memory). In turn, an instance of Node is represented as an ordered pair (n,e),
where n corresponds to next and e to elem. So, if an instance of Node is in memory location x, then
m(x) = (n,e); if x is referenced by v, then a(v) = x; and then, m(a(v)) = (n,e).

Memory locations belong to M∪{null}, where M is some underspecified finite set. Actually we do
not need to use M in the specifications.

1Recall that variables whose type is an ADT are always references to their instances.
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When a state variable is not mentioned in the post-condition it is assumed to remain unchanged (i.e.
v′ = v).

adt Node(T)
private

T elem
Node next

end private
public

PRE-CONDITION true
procedure setElem(T e)

elem := e
end procedure
POST-CONDITION m′ = m⊕{a(v) 7→ (y,e)}∧m(a(v)) = (y, )

PRE-CONDITION a(n) = x . x can be null
procedure setNext(Node n)

next :=n
end procedure
POST-CONDITION m′ = m⊕{a(v) 7→ (x,z)}∧m(a(v)) = ( ,z)

PRE-CONDITION true
function T getElem()

return elem
end function
POST-CONDITION ret = z∧m(a(v)) = ( ,z)

PRE-CONDITION true
function Node getNext()

return next
end function
POST-CONDITION ret = y∧m(a(v)) = (y, )

end public
end adt

A.2.2 List specification

Now we give the skeletal definition of the List ADT. As can be seen, it declares four member variables
all of type Node: s, holding the first node of the list; f, holding the last node of the list2; c, holding the
next element to iterate over; and p, holding the last element returned by next().

2f is maintained to make add() to run in constant time.
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adt List(T)
private

Node s, f,c,p
ASSERTION a′ = {s 7→ null, f 7→ null,c 7→ null,p 7→ null}

end private
public

procedure List() . ADT’s constructor; called when new instance is created
. . .

end procedure
. . . . . .

the rest of the interface is given below
. . . . . .

end public
end adt

Below the reader can find the implementation and specification of each subroutine of List. For each
subroutine we also give all the assertions valid after each statement. In general these assertions are
obvious because there are no loops in these subroutines. However, in Section A.3 we show a number
of verification conditions that should be proved of the specifications and how {log} discharges them
automatically.

At specification level, the state of an instance of List is given by three sets: s, the partial function
representing the part of the memory holding the list; a, the function mapping variables to the memory
locations they are referencing; and sm, holding the memory locations of s whose nodes have been already
iterated over. Then, sp and sr (i.e. the specification variables exported by List), are defined as follows:
sp , smC s and sr , s\ sp. The first node of s coincides with the node referenced by s and the last node
with that referenced by f.

When a state variable is not mentioned in the assertion following a statement it is assumed to remain
unchanged (i.e. v′ = v); the same for the post-condition of subroutines.

add() appends e to the list The first subroutine is add(). We have introduced an error in one of the
assertions and in the post-condition to show how it becomes evident when some properties are proved
(see Section A.3.5).

Note that all the assertions are directly derived from Node’s specification and from the axioms of
Figure 6. For instance, in the then branch, when s.setElem(e) is executed, the second component of the
Node instance referenced by s is changed by e. That is, in this case variable v used in the specification
of Node becomes s because the call is made on it.

On the other hand, two assertions deserve some attention. Firstly, the semantics of new is that it stores
a new instance of an ADT (Node in this case) in the memory area of interest (s in this case). When it does
so, it stores the instance in an unused location. The formal semantic rule is given in axiom (35) in Figure
6. In the then branch a simplified version of (35) is applied because s is empty at beginning. Besides,
we avoid conjoining c 6= null because this is the error we want to later spot when some properties fail to
be proven. However, in the else branch we conjoin c /∈ doms although we do not update a because n is
a local transient variable which will be destroyed right after the end procedure instruction, so we keep
the presentation shorter. Nonetheless, note that axiom (37) can be applied right after end procedure,
yielding the same net result.
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{P} v :=new T {P∧m′ = {c 7→ τ tm}∧a′ = a⊕{v 7→ c}∧ c /∈ domm∧ c 6= null} (35)

{P} v :=w {P∧m′ = m∧a′ = a⊕{v 7→ a(w)}}, if the type of v and w is an ADT (36)

{P} end procedure {P∧m′ = m∧a′ = {v1, . . . ,vn}−Ca}, v1, . . . ,vn all local variables (37)

{P} end function {P∧m′ = m∧a′ = {v1, . . . ,vn}−Ca}, v1, . . . ,vn all local variables (38)

Figure 6: Axioms for new, the assignment of ADT variables and end procedure. P is a predicate; τ is
the abstraction of the T ADT.

Secondly, statements of the form v :=w (where both are variables whose type is an ADT) modify a
but not s. In effect, the semantics of such a statement is that v now references the same memory location
referenced by w. The formal axiom is given in equation (36). This can be seen, in the then branch, after
f := s (note that is not that f points to s but that f points to what s is pointing to).

PRE-CONDITION true
procedure add(T e)

if s= null then . at specification level condition writes: s = /0
ASSERTION s = /0
s :=new Node
ASSERTION s′ = {c 7→ (null,null)}∧a′ = a⊕{s 7→ c}
s.setElem(e)
ASSERTION s′ = {a(s) 7→ (null,e)}∧ s(a(s)) = (null, )
f := s
ASSERTION a′ = a⊕{f 7→ a(s)}

else . i.e. s 6= /0
ASSERTION s = {a(f) 7→ (y,z)t s1} . set unification singles out last element
Node n :=new Node
ASSERTION s′ = {c 7→ (null,null),a(f) 7→ (y,z)t s1}∧ c /∈ doms . c unused location
n.setElem(e)
ASSERTION s′ = {c 7→ (null,e),a(f) 7→ (y,z)t s1} . n transient, not in a; c is used
f.setNext(n)
ASSERTION s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}
f :=n
ASSERTION a′ = a⊕{f 7→ c}

end if
end procedure
POST-CONDITION s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms
∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}

The remaining subroutines are simple, so we will not comment on them.

fst() initializes the iterator
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PRE-CONDITION true
procedure fst()

c := s
ASSERTION a′ = a⊕{c 7→ a(s)}∧ s′m = /0

end procedure
POST-CONDITION a′ = a⊕{c 7→ a(s)}∧ s′m = /0

next() returns the current element and moves the cursor one position ahead

PRE-CONDITION a(c) 6= null
function T next()

p := c
ASSERTION a′ = a⊕{p 7→ a(c)}
c := c.getNext()
ASSERTION a′ = a⊕{c 7→ n}∧ s(a(c)) = (n, )∧ s′m = {a(p)t sm}∧ s(a(p)) = (y,z)

return p.getElem()
ASSERTION ret = z∧ s(a(p)) = ( ,z)

end function
POST-CONDITION ret = z∧ s(a(c)) = (y,z)∧a′ = a⊕{p 7→ a(c),c 7→ y}

∧ s′m = {a(c)t sm}

more() returns true if and only if there are more element in the list

PRE-CONDITION true
procedure more()

return c 6= null
end procedure
POST-CONDITION ret ⇐⇒ a(c) 6= null

rpl() replaces the last element returned by next() with e

PRE-CONDITION a(p) 6= null
procedure rpl(T e)

p.setElem(e)
ASSERTION s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )

end procedure
POST-CONDITION s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )

del() empties the list



28 Using a Set Constraint Solver for Program Verification

PRE-CONDITION true
procedure del()

free(s)
ASSERTION s′ = s′m = /0∧a′ = a⊕{s 7→ null}
f := c :=p :=null
ASSERTION a′ = a⊕{f 7→ null,c 7→ null,p 7→ null}

end procedure
POST-CONDITION rana′ = {null}∧ s′ = s′m = /0

A.3 Proving Properties of List’s Specification

In this section we use the same technique shown in Section 5.3 to prove more properties of the List
specification. Some of these properties are necessary to establish some loop invariants and in general is
an standard verification activity to gain confidence in the correctness of the specification.

For each subroutine we show the verification condition in our specification language followed by the
negation written in {log}.

A.3.1 Invariant: s is a partial function

• add()

s ∈ 7→
∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ s′ ∈ 7→

(39)

pfun(s)

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧npfun(s′)

(40)

• fst()

s ∈ 7→
∧a′ = a⊕{c 7→ a(s)}∧ s′m = /0∧ s′ = s

=⇒ s′ ∈ 7→
(41)

pfun(s)

∧apply(a,s,m1)∧oplus(a,{(c,m1)},a′)∧ s′m = /0∧ s′ = s

∧npfun(s′)

(42)
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• next()

s ∈ 7→
∧a(c) 6= null∧ ret = z∧ s(a(c)) = (y,z)∧a′ = a⊕{p 7→ a(c),c 7→ y}
∧ s′m = {a(c)t sm}
=⇒ s′ ∈ 7→

(43)

pfun(s)

∧ ret = z∧apply(a,c,m1)∧m1 6= null∧apply(s,m1,(y,z))∧oplus(a,{(p,m1),(c,y)},a′)
∧ s′m = {m1 t sp}∧ s′ = s

∧npfun(s′)

(44)

• rpl()

s ∈ 7→
∧a(p) 6= null∧ s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )

=⇒ s′ ∈ 7→
(45)

pfun(s)

∧apply(a,p,m1)∧m1 6= null∧apply(s,m1,(y, ))

∧oplus(s,{m1 7→ (y,e)},s′)
∧npfun(s′)

(46)

• del()

s ∈ 7→
∧ rana′ = {null}∧ s′ = /0∧ s′m = /0

=⇒ s′ ∈ 7→
(47)

pfun(s)

∧ ran(a′,{null})∧ s′ = /0∧ s′m = /0

∧npfun(s′)

(48)

A.3.2 Invariant sm ⊆ doms

• add()

sm ⊆ doms

∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ s′m ⊆ doms′

(49)
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dom(s,m7)∧ subset(sm,m7)

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧dom(s′,m6)∧nsubset(s′m,m6)

(50)

• fst()

sm ⊆ doms

∧a′ = a⊕{c 7→ a(s)}∧ s′m = /0∧ s′ = s

=⇒ s′m ⊆ doms′
(51)

dom(s,m7)∧ subset(sm,m7)

∧apply(a,s,m1)∧oplus(a,{(c,m1)},a′)∧ s′m = /0∧ s′ = s

∧dom(s′,m6)∧nsubset(s′m,m6)

(52)

• next()

sm ⊆ doms

∧a(c) 6= null∧ ret = z∧ s(a(c)) = (y,z)∧a′ = a⊕{p 7→ a(c),c 7→ y}
∧ s′m = {a(c)t sm}
=⇒ s′m ⊆ doms′

(53)

dom(s,m7)∧ subset(sm,m7)

∧ ret = z∧apply(a,c,m1)∧m1 6= null∧apply(s,m1,(y,z))∧oplus(a,{(p,m1),(c,y)},a′)
∧ s′m = {m1 t sp}∧ s′ = s

∧dom(s′,m6)∧nsubset(s′m,m6)

(54)

• rpl()

sm ⊆ doms

∧a(p) 6= null∧ s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )∧ s′m = sm

=⇒ s′m ⊆ doms′
(55)

dom(s,m7)∧ subset(sm,m7)

∧apply(a,p,m1)∧m1 6= null∧apply(s,m1,(y, ))∧oplus(s,{m1 7→ (y,e)},s′)∧ s′m = sm

∧dom(s′,m6)∧nsubset(s′m,m6)

(56)
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• del()

sm ⊆ doms

∧ rana′ = {null}∧ s′ = /0∧ s′m = /0

=⇒ s′m ⊆ doms′
(57)

dom(s,m7)∧ subset(sm,m7)

∧ ran(a′,{null})∧ s′ = /0∧ s′m = /0

∧dom(s′,m6)∧nsubset(s′m,m6)

(58)

A.3.3 A well-formedness invariant

Now we prove that one of the many well-formedness properties of s is an invariant, namely:

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms (59)

That is, the node in s are chained through the first component of the image of each location. For example:

s = {c1 7→ (c2,e1),c2 7→ (c3,e2),c3 7→ (null,e3)}

Then, for instance, c3 is the first component of the image of one element of s and so it must be the
location of another node of s.

• add()

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms

∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ (w ∈ dom(rans′)∧w 6= null =⇒ w ∈ doms′)

(60)

ran(s,m5)∧dom(m5,m6)∧dom(s,m7)∧ (w /∈ m6∨w = null∨w ∈ m7)

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧ ran(s′,m8)∧dom(m8,m9)∧dom(s′,m0)∧w ∈ m9∧w 6= null∧w /∈ m0

(61)

• fst()

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms

∧a′ = a⊕{c 7→ a(s)}∧ s′m = /0∧ s′ = s

=⇒ (w ∈ dom(rans′)∧w 6= null =⇒ w ∈ doms′)

(62)

ran(s,m5)∧dom(m5,m6)∧dom(s,m7)∧ (w /∈ m6∨w = null∨w ∈ m7)

∧apply(a,s,m1)∧oplus(a,{(c,m1)},a′)∧ s′m = /0∧ s′ = s

∧ ran(s′,m8)∧dom(m8,m9)∧dom(s′,m0)∧w ∈ m9∧w 6= null∧w /∈ m0

(63)
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• next()

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms

∧a(c) 6= null∧ ret = z∧ s(a(c)) = (y,z)∧a′ = a⊕{p 7→ a(c),c 7→ y}
∧ s′m = {a(c)t sm}
=⇒ (w ∈ dom(rans′)∧w 6= null =⇒ w ∈ doms′)

(64)

ran(s,m5)∧dom(m5,m6)∧dom(s,m7)∧ (w /∈ m6∨w = null∨w ∈ m7)

∧ ret = z∧apply(a,c,m1)∧m1 6= null∧apply(s,m1,(y,z))∧oplus(a,{(p,m1),(c,y)},a′)
∧ s′m = {m1 t sp}∧ s′ = s

∧ ran(s′,m8)∧dom(m8,m9)∧dom(s′,m0)∧w ∈ m9∧w 6= null∧w /∈ m0

(65)

• rpl()

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms

∧a(p) 6= null∧ s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )∧ s′m = sm

=⇒ (w ∈ dom(rans′)∧w 6= null =⇒ w ∈ doms′)

(66)

ran(s,m5)∧dom(m5,m6)∧dom(s,m7)∧ (w /∈ m6∨w = null∨w ∈ m7)

∧apply(a,p,m1)∧m1 6= null∧apply(s,m1,(y, ))∧oplus(s,{m1 7→ (y,e)},s′)∧ s′m = sm

∧ ran(s′,m8)∧dom(m8,m9)∧dom(s′,m0)∧w ∈ m9∧w 6= null∧w /∈ m0

(67)

• del()

w ∈ dom(rans)∧w 6= null =⇒ w ∈ doms

∧ rana′ = {null}∧ s′ = /0∧ s′m = /0

=⇒ (w ∈ dom(rans′)∧w 6= null =⇒ w ∈ doms′)

(68)

ran(s,m5)∧dom(m5,m6)∧dom(s,m7)∧ (w /∈ m6∨w = null∨w ∈ m7)

∧ ran(a′,{null})∧ s′ = /0∧ s′m = /0

∧ ran(s′,m8)∧dom(m8,m9)∧dom(s′,m0)∧w ∈ m9∧w 6= null∧w /∈ m0

(69)

A.3.4 Invariant: a(f) ∈ doms

Actually the invariant is a little bit more complex:

s 6= /0∧a(f) ∈ doms∨ s = /0∧a(f) = null (70)

Then, we have the following proof obligations.
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• add()

(s 6= /0∧a(f) ∈ doms∨ s = /0∧a(f) = null)

∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ (s′ 6= /0∧a′(f) ∈ doms′∨ s′ = /0∧a′(f) = null)

(71)

(s 6= /0∧apply(a, f,m6)∧dom(s,m7)∧m6 ∈ m7∨ s = /0∧apply(a, f,null))

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧ (s′ = /0∨apply(a′, f,m8)∧dom(s′,m9)∧m8 /∈ m9)

∧ (s′ 6= /0∨napply(a′, f,null))

(72)

• fst()

(s 6= /0∧a(f) ∈ doms∨ s = /0∧a(f) = null)

∧a′ = a⊕{c 7→ a(s)}∧ s′m = /0∧ s′ = s

=⇒ (s′ 6= /0∧a′(f) ∈ doms′∨ s′ = /0∧a′(f) = null)

(73)

(s 6= /0∧apply(a, f,m6)∧dom(s,m7)∧m6 ∈ m7∨ s = /0∧apply(a, f,null))

∧apply(a,s,m1)∧oplus(a,{(c,m1)},a′)∧ s′m = /0∧ s′ = s

∧ (s′ = /0∨apply(a′, f,m8)∧dom(s′,m9)∧m8 /∈ m9)

∧ (s′ 6= /0∨napply(a′, f,null))

(74)

• next()

(s 6= /0∧a(f) ∈ doms∨ s = /0∧a(f) = null)

∧a(c) 6= null∧ ret = z∧ s(a(c)) = (y,z)∧a′ = a⊕{p 7→ a(c),c 7→ y}
∧ s′m = {a(c)t sm}
=⇒ (s′ 6= /0∧a′(f) ∈ doms′∨ s′ = /0∧a′(f) = null)

(75)

(s 6= /0∧apply(a, f,m6)∧dom(s,m7)∧m6 ∈ m7∨ s = /0∧apply(a, f,null))

∧ ret = z∧apply(a,c,m1)∧m1 6= null∧apply(s,m1,(y,z))∧oplus(a,{(p,m1),(c,y)},a′)
∧ s′m = {m1 t sp}∧ s′ = s

∧ (s′ = /0∨apply(a′, f,m8)∧dom(s′,m9)∧m8 /∈ m9)

∧ (s′ 6= /0∨napply(a′, f,null))

(76)
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• rpl()

(s 6= /0∧apply(a, f,m6)∧dom(s,m7)∧m6 ∈ m7∨ s = /0∧apply(a, f,null))

∧a(p) 6= null∧ s′ = s⊕{a(p) 7→ (y,e)}∧ s(a(p)) = (y, )∧ s′m = sm

=⇒ (s′ 6= /0∧a′(f) ∈ doms′∨ s′ = /0∧a′(f) = null)

(77)

dom(s,m7)∧ subset(sm,m7)

∧apply(a,p,m1)∧m1 6= null∧apply(s,m1,(y, ))∧oplus(s,{m1 7→ (y,e)},s′)∧ s′m = sm

∧ (s′ = /0∨apply(a′, f,m8)∧dom(s′,m9)∧m8 /∈ m9)

∧ (s′ 6= /0∨napply(a′, f,null))

(78)

• del()

(s 6= /0∧apply(a, f,m6)∧dom(s,m7)∧m6 ∈ m7∨ s = /0∧apply(a, f,null))

∧ rana′ = {null}∧ s′ = /0∧ s′m = /0

=⇒ (s′ 6= /0∧a′(f) ∈ doms′∨ s′ = /0∧a′(f) = null)

(79)

dom(s,m7)∧ subset(sm,m7)

∧ ran(a′,{null})∧ s′ = /0∧ s′m = /0

∧ (s′ = /0∨apply(a′, f,m8)∧dom(s′,m9)∧m8 /∈ m9)

∧ (s′ 6= /0∨napply(a′, f,null))

(80)

A.3.5 Other properties

Three very simple sets properties to confirm that sp ‖ sr, s = sp ∪ sr and sp,sr ∈ 7→ . Recall that we
define sp , smC s and sr , s \ sp. As always written first in our specification language followed by the
negation in {log}.

sp = smC s∧ sr = s\ sp =⇒ sp ‖ sr (81)

dres(sm,s,sp)∧diff (s,sp,sr)∧ndisj(sp,sr) (82)

sp = smC s∧ sr = s\ sp =⇒ s = sp∪ sr (83)

dres(sm,s,sp)∧diff (s,sp,sr)∧nun(sp,sr,s) (84)

Given that we have already proved that s is a partial function, we can assume this to prove that sp and
sr are also partial functions.

sp = smC s∧ sr = s\ sp∧ s ∈ 7→ =⇒ sp ∈ 7→ ∧ sr ∈ 7→ (85)
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dres(sm,s,sp)∧diff (s,sp,sr)∧pfun(s)∧ (npfun(sp)∨npfun(sr)) (86)

This is another well-formedness invariant on s but we prove it just for add() because is the only
subroutine that modifies s in a non-trivial way. The invariant goes as follows: in a non-empty list, null is
the first component of the image of the last node.

(w ∈ dom(rans)∧w /∈ doms =⇒ w = null)

∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ (w ∈ dom(rans′)∧w /∈ doms′ =⇒ w = null)

(87)

The negation in {log}:

(ran(s,m0)∧dom(m0,m9)∧dom(s,m5)∧ (w /∈ m9∨w ∈ m5∨w = null)

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧ ran(s′,m6)∧dom(m6,m7)∧dom(s′,m8)∧w ∈ m7∧w /∈ m8∧w 6= null

(88)

Another well-formedness invariant on s is that null does not belong to the domain of s (i.e. null never
points to a node). Again we prove it just for add().

null /∈ doms

∧ (s = /0∧ s′ = {c 7→ (null,e)}∧a′ = a⊕{f 7→ c}∧ s′m = sm

∨ s = {a(f) 7→ (y,z)t s1}∧ c /∈ doms

∧ s′ = {c 7→ (null,e),a(f) 7→ (c,z)t s1}∧a′ = a⊕{f 7→ c}∧ s′m = sm)

=⇒ null /∈ doms′

(89)

The negation in {log}:

dom(s,m0)∧null /∈ m0

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}
∧oplus(a,{(f,c)},a′)∧ s′m = sm)

∧dom(s′,m7)∧null ∈ m7

(90)

But the proof fails! Part of the answer returned by {log} is:

s = /0∧ s′ = {null 7→ (null,e)}
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that is, {log} finds that x, the location returned by new, can be null. Check add() assertions.
The reason is that we missed the fact that new always delivers non-null locations. By adding this fact

in the assertion following a new instruction, we can propagate it right through the post-condition of the
subroutine. In this case the {log} formula becomes:

dom(s,m0)∧null /∈ m0

∧ (s = /0∧ s′ = {(c,(null,e))}∧oplus(a,{(f,c)},a′)∧ s′m = sm∧ x 6= null

∨apply(a, f,m2)∧ s = {(m2,(y,z))t s1}∧dom(s,m1)∧ c /∈ m1

∧apply(a, f,m2)∧ s′ = {(c,(null,e)),(m2,(c,z))t s1}

∧oplus(a,{(f,c)},a′)∧ s′m = sm∧ x 6= null )

∧dom(s′,m7)∧null ∈ m7

(91)

which is solved by {log} in no time.
Observe that this change in add()’s post-condition requires to redo all the proofs involving this sub-

routine.
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