Solving Constrained Horn Clauses by Property Directed Reachability

Arie Gurfinkel

HCVS 2017: 4th Workshop on Horn Clauses for Verification and Synthesis

Automated Verification

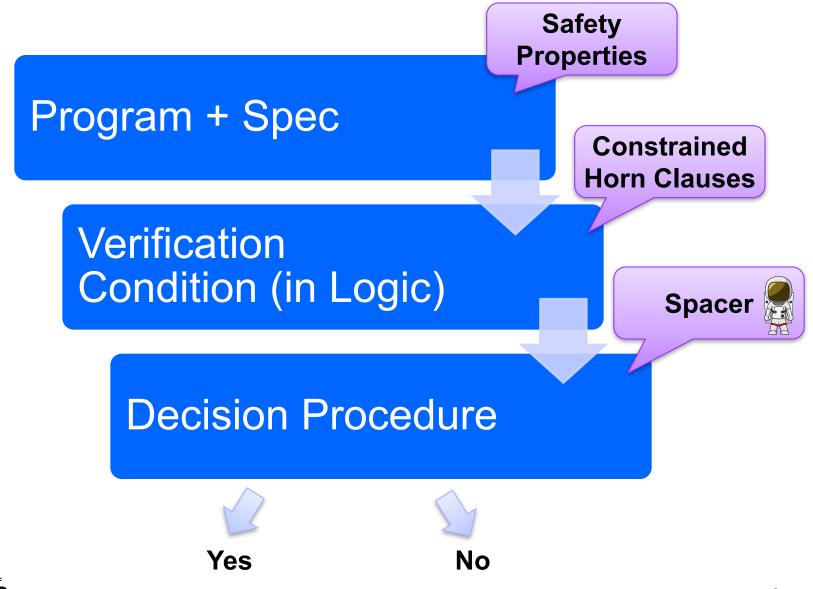
Deductive Verification

- A user provides a program and a verification certificate
 - e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
- A tool automatically checks validity of the certificate
 - this is not easy! (might even be undecidable)
- Verification is manual but machine certified

Algorithmic Verification (My research area)

- A user provides a program and a desired specification
 - e.g., program never writes outside of allocated memory
- A tool automatically checks validity of the specification
 - and generates a verification certificate if the program is correct
 - and generates a counterexample if the program is not correct
- Verification is completely automatic "push-button"

Algorithmic Logic-Based Verification



Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

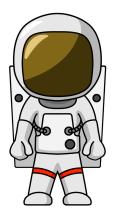
- now part of Z3
 - <u>https://github.com/Z3Prover/z3</u> since commit 72c4780
 - use option fixedpoint.engine=spacer
- development version at http://bitbucket.org/spacer/code

Supported SMT-Theories

- Best-effort support for many SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic
- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC

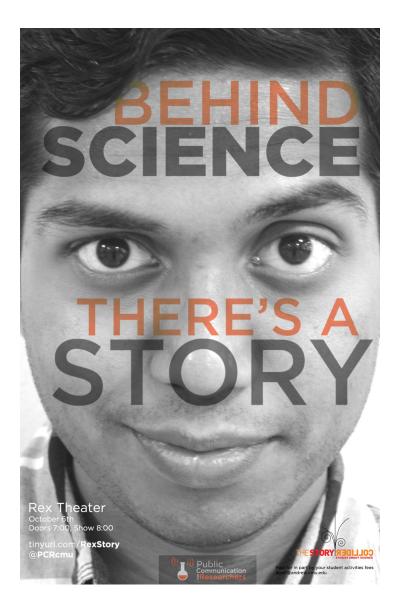
- for procedure summaries in inter-procedural verification conditions
- for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.



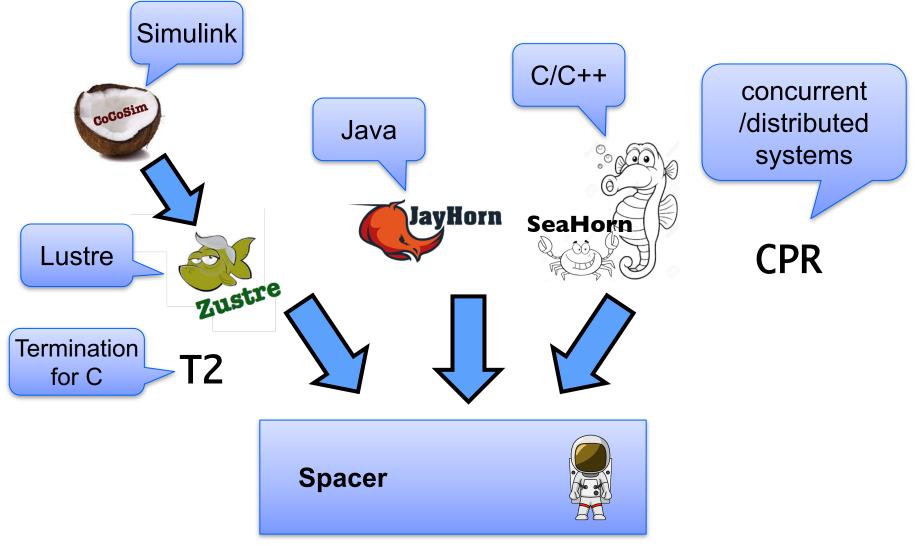
Contributors

Arie Gurfinkel Anvesh Komuravelli

Nikolaj Bjorner (Krystof Hoder) Yakir Vizel Bernhard Gleiss Matteo Marescotti



Logic-based Algorithmic Verification



Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of the form

 \forall V . (ϕ \wedge p₁[X₁] \wedge ... \wedge p_n[X_n] \rightarrow h[X]),

where

- A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- ϕ is a constrained in the background theory A
- p_1, \ldots, p_n , h are n-ary predicates
- p_i[X] is an application of a predicate to first-order terms

CHC Satisfiability

A **model** of a set of clauses Π is an interpretation of each predicate p_i that makes all clauses in Π valid

A set of clauses is **satisfiable** if it has a model, and is unsatisfiable otherwise

Given a theory A, a model M is **A-definable**, it each p_i in M is definable by a formula ψ_i in A

In the context of program verification

- a program satisfies a property iff corresponding CHCs are satisfiable
- verification certificates correspond to models
- counterexamples correspond to derivations of false

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

- A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS 2014
- J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

- Generalized Property Directed Reachability
- K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic

- fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
- A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

- simulating Numeric Abstract Interpretation with PDR
- N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

ArrayPDR: CHC with constraints over Airthmetic + Arrays

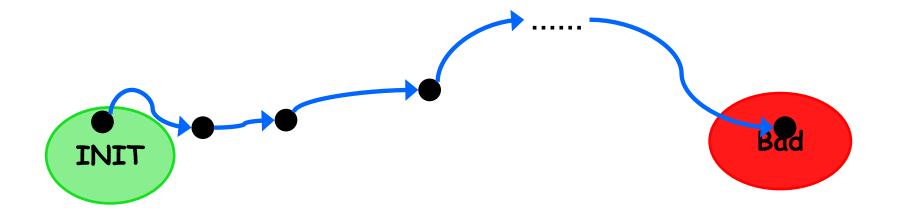
- Required to model heap manipulating programs
- A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

Safety Verification Problem

Is Bad reachable?

Safety Verification Problem

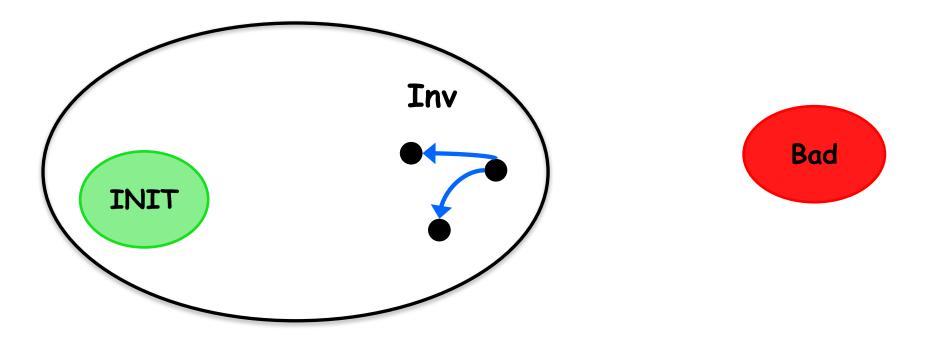
Is Bad reachable?



Yes. There is a counterexample!

Safety Verification Problem

Is Bad reachable?



No. There is an inductive invariant

Programs, Cexs, Invariants

A program P = (V, Init, Tr, Bad)• Notation: $\mathcal{F}(X) = \exists u . (X \land Tr) \lor Init$

P is UNSAFE if and only if there exists a number *N* s.t.

$$Init(X_0) \land \left(\bigwedge_{i=0}^{N-1} Tr(X_i, X_{i+1})\right) \land Bad(X_N) \not\Rightarrow \bot$$

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

$$Init \Rightarrow Inv
 Inv(X) \land Tr(X, X') \Rightarrow Inv(X')
 Inv(X')
 Inv \Rightarrow \neg Bad
 Safe$$

IC3/PDR Overview

bounded safety

Input: Safety problem $\langle Init(X), Tr(X, X'), Bad(X) \rangle$

 $F_0 \leftarrow Init; N \leftarrow 0$ repeat

 $\mathbf{G} \leftarrow \text{PdrMkSafe}([F_0, \dots, F_N], Bad)$

if $\mathbf{G} = []$ then return *Reachable*; $\forall 0 \leq i \leq N \cdot F_i \leftarrow \mathbf{G}[i]$

$$F_0, \ldots, F_N \leftarrow \text{PdrPush}([F_0, \ldots, F_N])$$

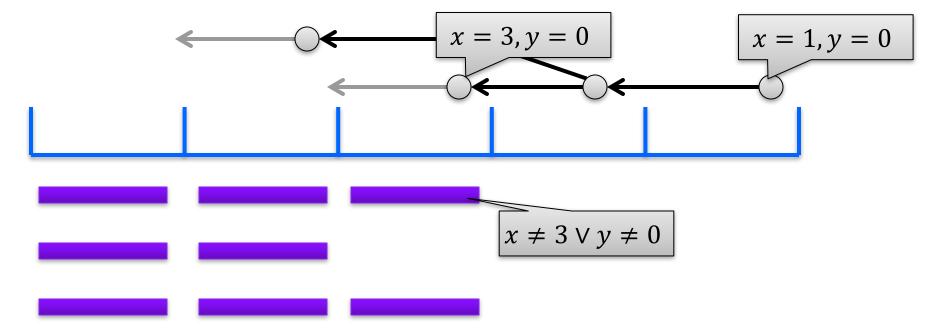
if
$$\exists 0 \leq i < N \cdot F_i = F_{i+1}$$
 then return Unreg hable;

$$| N \leftarrow N + 1; F_N \leftarrow \emptyset$$

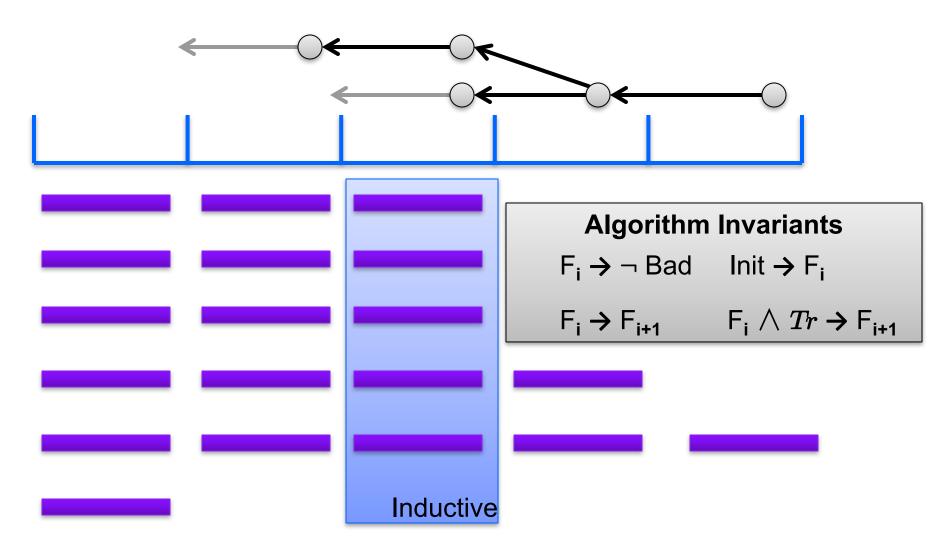
until ∞ ;

strengthen result

IC3/PDR In Pictures: MkSafe



IC3/PDR in Pictures: Push



IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

• terminate the algorithm when a solution is found

Unfold

• increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment ${\boldsymbol{s}}$ s.t. (s \wedge R_i \wedge Tr \wedge cex') is SAT

Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. L \Rightarrow ¬cex , Init \Rightarrow L , and L \land R_i \land Tr \Rightarrow L'

Induction

- propagate a lemma as far into the future as possible
- (optionally) strengthen by dropping literals

Decide Rule: Generalizing Predecessors

Decide If $\langle m, i+1 \rangle \in Q$ and there are m_0 and m_1 s.t. $m_1 \to m, m_0 \wedge m'_1$ is satisfiable, and $m_0 \wedge m'_1 \to F_i \wedge Tr \wedge m'$, then add $\langle m_0, i \rangle$ to Q.

Decide rule chooses a (generalized) predecessor m_0 of m that is consistent with the current frame

Simplest implementation is to extract a predecessor m_o from a satisfying assignment of M $\,^{}\models$ F $_i \wedge$ Tr \wedge m'

• m₀ cab be further generalized using ternary simulation by dropping literals and checking that m' remains forced

An alternative is to let m_0 be an implicant (not necessarily prime) of $F_i \wedge \exists \ X'.(Tr \wedge m')$

- finding a prime implicant is difficult because of the existential quantification
- we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Conflict Rule: Inductive Generalization

Conflict For $0 \leq i < N$: given a candidate model $\langle m, i+1 \rangle \in Q$ and clause φ , such that $\varphi \to \neg m$, if $Init \to \varphi$, and $\varphi \wedge F_i \wedge Tr \to \varphi'$, then add φ to F_j , for $j \leq i+1$.

A clause ϕ is inductive relative to F iff

• Init $\rightarrow \phi$ (Initialization) and $\phi \land F \land Tr \rightarrow \phi$ (Inductiveness)

Implemented by first letting $\phi = \neg m$ and generalizing ϕ by iteratively dropping literals while checking the inductiveness condition

Theorem: Let F_0 , F_1 , ..., F_N be a valid IC3 trace. If ϕ is inductive relative to F_i , $0 \cdot i < N$, then, for all $j \cdot i$, ϕ is inductive relative to F_i .

• Follows from the monotonicity of the trace

$$-$$
 if j < i then $F_j \rightarrow F_i$

- if
$$F_j \rightarrow F_i$$
 then $(\phi \land F_i \land Tr \rightarrow \phi) \rightarrow (\phi \land F_j \land Tr \rightarrow \phi')$

From Propositional PDR to Solving CHC

Infinite Theories

- infinitely many satisfying assignments
- can't simply enumerate (in decide)
- can't block one assignment at a time (in conflict)

Non-Linear Horn Clauses

• multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that makes progress

• don't get stuck in a decidable fragment

PDR FOR ARITHMETIC CHC

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

• terminate the algorithm when a solution is found

Unfold

• increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment ${\boldsymbol{s}}$ s.t. (s \wedge R_i \wedge Tr \wedge cex') is SAT

Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. L \Rightarrow ¬cex , Init \Rightarrow L , and L \land R_i \land Tr \Rightarrow L'

Induction

- propagate a lemma as far into the future as possible
- (optionally) strengthen by dropping literals

Theory dependent

$((F_i \wedge Tr) \vee Init') \Rightarrow \varphi'$ $\varphi' \Rightarrow \neg c'$

Looking for φ' ARITHMETIC CONFLICT

Craig Interpolation Theorem

Theorem (Craig 1957) Let A and B be two First Order (FO) formulae such that $A \Rightarrow \neg B$, then there exists a FO formula I, denoted ITP(A, B), such that

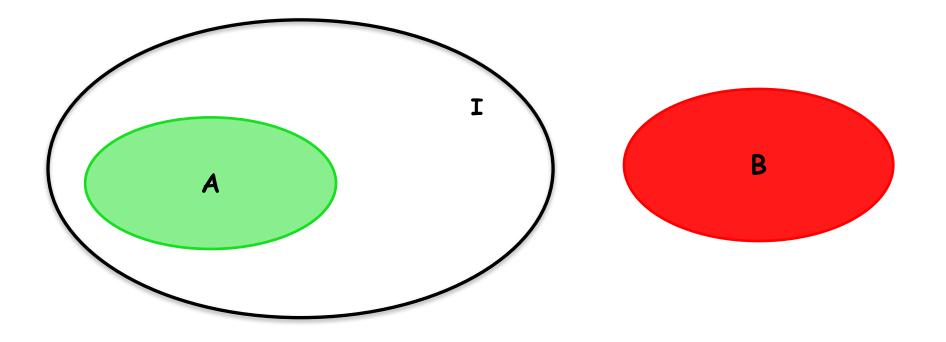
$\mathsf{A} \Rightarrow \mathsf{I} \qquad \mathsf{I} \Rightarrow \neg \mathsf{B}$

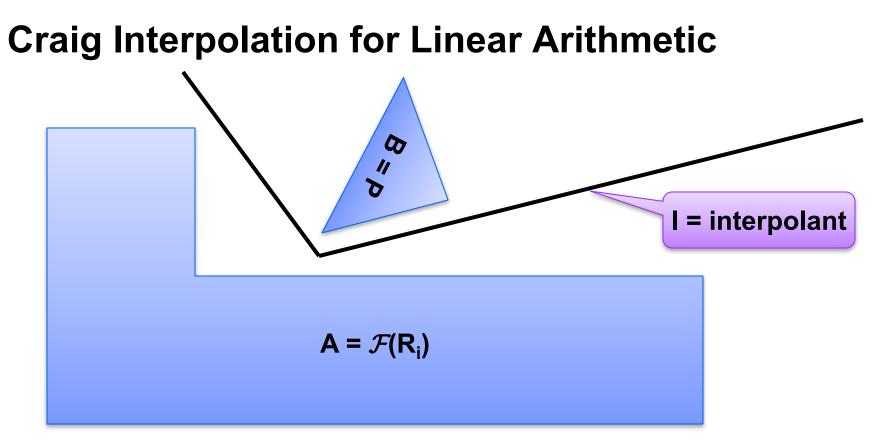
$atoms(I) \in atoms(A) \cap atoms(B)$

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of A \wedge B

In Model Checking, Craig Interpolation Theorem is used to safely overapproximate the set of (finitely) reachable states

Craig Interpolant





Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in ITP (A, B)$ then $\neg I \in ITP (B, A)$
- if A is syntactically convex (a monomial), then I is convex
- if B is syntactically convex, then I is co-convex (a clause)
- if A and B are syntactically convex, then I is a half-space

Arithmetic Conflict

Notation: $\mathcal{F}(A) = (A(X) \wedge Tr) \vee Init(X').$

Conflict For $0 \le i < N$, given a counterexample $\langle P, i+1 \rangle \in Q$ s.t. $\mathcal{F}(F_i) \land P'$ is unsatisfiable, add $P^{\uparrow} = \operatorname{ITP}(\mathcal{F}(F_i), P')$ to F_j for $j \le i+1$.

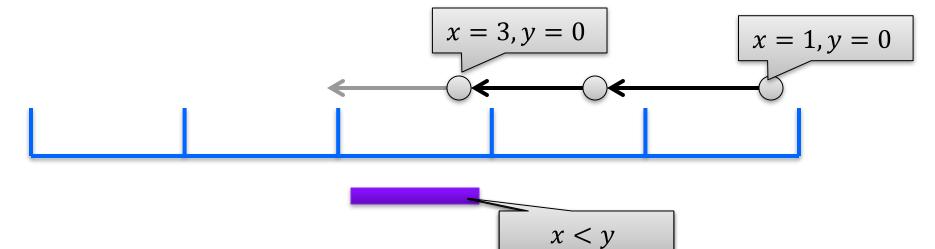
Counterexample is blocked using Craig Interpolation

• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive

- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem

IC3/PDR In Pictures: MkSafe



Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A \wedge B

- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver

- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form (\land B_i \Rightarrow \lor A_j)

Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)

- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations

$s \subseteq pre(c)$ $\equiv s \Rightarrow \exists X' . Tr \land c'$

Computing a predecessor *s* of a counterexample *c* **ARITHMETIC DECIDE**

Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a model of φ . Then ψ = MBP (U, M, φ) is a Model Based Projection of U, M and φ iff

- 1. ψ is a monomial
- 2. Vars(ψ) \subseteq Vars(ϕ) \setminus U
- **3.** M ⊧ ψ
- 4. $\psi \Rightarrow \exists U . \phi$

Model Based Projection under-approximates existential quantifier elimination relative to a given model (i.e., satisfying assignment)

Loos-Weispfenning Quantifier Elimination

 φ is LRA formula in Negation Normal Form E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms There are no other occurrences of x in φ [x]

$$\exists x.\varphi[x] \equiv \varphi[\infty] \lor \bigvee_{x=t \in E} \varphi[t] \lor \bigvee_{x < t \in U} \varphi[t - \epsilon]$$

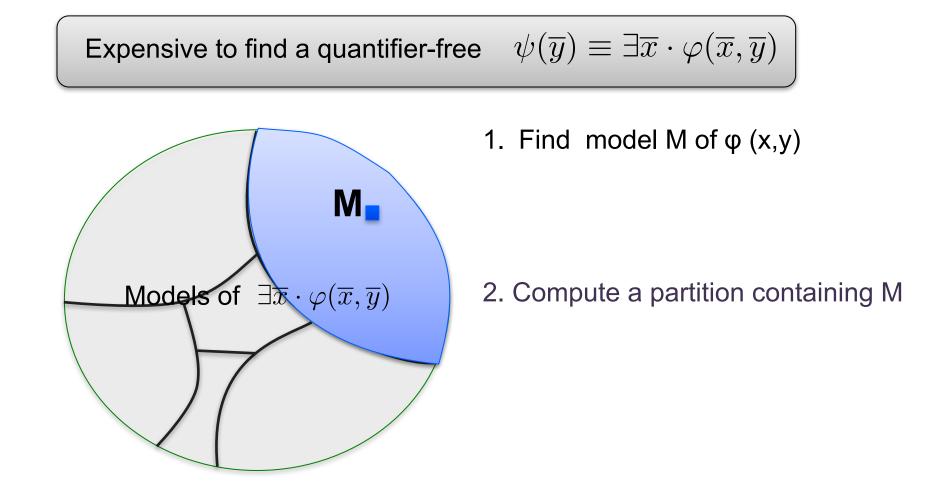
where

 $(x < t')[t - \epsilon] \equiv t \le t' \qquad (s < x)[t - \epsilon] \equiv s < t \qquad (x = e)[t - \epsilon] \equiv false$

The case of lower bounds is dual

• using $-\infty$ and t+ ϵ

Model Based Projection



MBP for Linear Rational Arithmetic

Compute a **single** disjunct from LW-QE that includes the model

• Use the Model to uniquely pick a substitution term for x

 $Mbp_{x}(M, x = s \land L) = L[x \leftarrow s]$ $Mbp_{x}(M, x \neq s \land L) = Mbp_{x}(M, s < x \land L) \text{ if } M(x) > M(s)$ $Mbp_{x}(M, x \neq s \land L) = Mbp_{x}(M, -s < -x \land L) \text{ if } M(x) < M(s)$

$$Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \le t_j \text{ where } M(t_0) \le M(t_i), \forall i$$

MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types

Arithmetic Decide

Notation: $\mathcal{F}(A) = (A(X) \land Tr(X, X') \lor Init(X').$

Decide If $\langle P, i+1 \rangle \in Q$ and there is a model m(X, X') s.t. $m \models \mathcal{F}(F_i) \land P'$, add $\langle P_{\downarrow}, i \rangle$ to Q, where $P_{\downarrow} = \text{MBP}(X', m, \mathcal{F}(F_i) \land P')$.

Compute a predecessor using an under-approximation of quantifier elimination – called Model Based Projection

To ensure progress, Decide must be finite

• finitely many possible predecessors when all other arguments are fixed

Alternatives

- Completeness can follow from the **Conflict** rule only
 - for Linear Arithmetic this means using Fourier-Motzkin implicants
- Completeness can follow from an interaction of Decide and Conflict

PDR FOR NON-LINEAR CHC

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to satisfiability of THREE clauses of the form

$$Init(X) \to P(X)$$
$$P(X) \to !Bad(X)$$
$$P(X) \land P(X^{o}) \land Tr(X, X^{o}, X') \to P(X')$$

where, X' = {x' | $x \in X$ }, X^o = {x^o | $x \in X$ }, P a fresh predicate, and Init, Bad, and Tr are constraints

Generalized GPDR

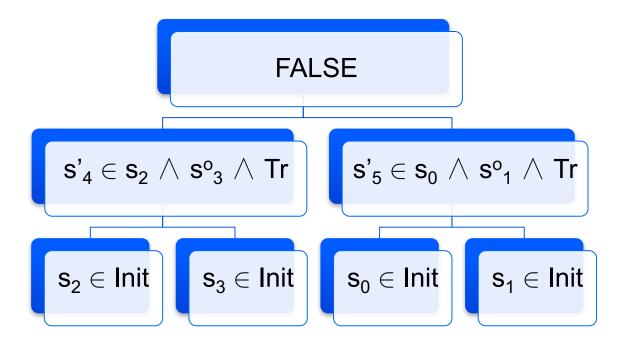
Input: A safety problem $(Init(X), Tr(X, X^o, X'), Bad(X))$. counterexample **Output**: Unreachable or Reachable **Data**: A cex queue Q, where a cex $\langle c_0, \ldots, c_k \rangle \in Q$ is a tuple, each is a tree $c_i = \langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level \overline{N} . A trace F_0, F_1, \ldots Notation: $\mathcal{F}(A, B) = Init(X') \lor (A(X) \land B(X^o) \land Tr)$, and $\mathcal{F}(A) = \mathcal{F}(A, A)$ **Initially:** $Q = \emptyset$, N = 0, $F_0 = Init$, $\forall i > 0 \cdot F_i = \emptyset$ **Require:** $Init \rightarrow \neg Bad$ repeat **Unreachable** If there is an i < N s.t. $F_i \subseteq F_{i+1}$ return Unreachable. **Reachable** if exists $t \in Q$ s.t. for all $\langle c, i \rangle \in t$, i = 0, return *Reachable*. **Unfold** If $F_N \to \neg Bad$, then set $N \leftarrow N + 1$ and $Q \leftarrow \emptyset$. two **Candidate** If for some $m, m \to F_N \land Bad$, then add $\langle \langle m, N \rangle \rangle$ to Q. predecessors **Decide** If there is a $t \in Q$, with $c = \langle m, i+1 \rangle \in t$, $m_1 \to m$, $l_0 \land m_0^o \land m_1'$ is satisfiable, and $l_0 \wedge m_0^o \wedge m_1' \to F_i \wedge F_i^o \wedge Tr \wedge m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, i \rangle$, and $\langle m_0, i \rangle$. theory-aware **Conflict** If there is a $t \in Q$ with $c = \langle m, i+1 \rangle \in t$, s.t. $\mathcal{F}(F_i) \wedge m'$ is unsatisfiable. Then, add $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$ to F_i , for all $0 \leq j \leq i+1$. Conflict **Leaf** If there is $t \in Q$ with $c = \langle m, i \rangle \in t$, 0 < i < N and $\mathcal{F}(F_{i-1}) \wedge m'$ is unsatisfiable, then add \hat{t} to Q, where \hat{t} is t with c replaced by $\langle m, i+1 \rangle$. **Induction** For $0 \le i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \notin F_{i+1}$, $\mathcal{F}(\phi \wedge F_i) \to \phi'$, then add φ to F_i , for all $j \leq i+1$. until ∞ ;

Counterexamples to non-linear CHC

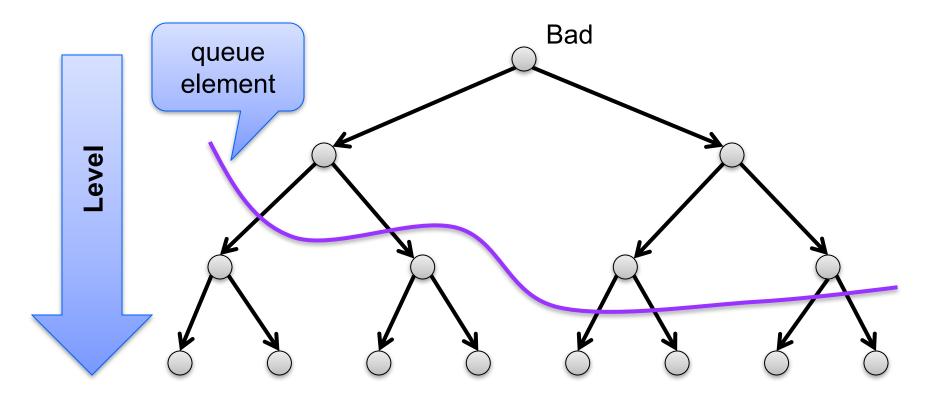
A set S of CHC is unsatisfiable iff S can derive FALSE

- we call such a derivation a counterexample
- For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree



GPDR Search Space



At each step, one CTI in the frontier is chosen and its two children are expanded

GPDR: Deciding predecessors

Decide If there is a $t \in Q$, with $c = \langle m, i+1 \rangle \in t$, $m_1 \to m$, $l_0 \wedge m_0^o \wedge m_1'$ is satisfiable, and $l_0 \wedge m_0^o \wedge m_1' \to F_i \wedge F_i^o \wedge Tr \wedge m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, i \rangle$, and $\langle m_0, i \rangle$.

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

• e.g., BFS or DFS exploration order

Number of predecessors is unbounded

• incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

worst-case exponential for Boolean Push-Down Systems

Spacer

Same queue as in IC3/PDR

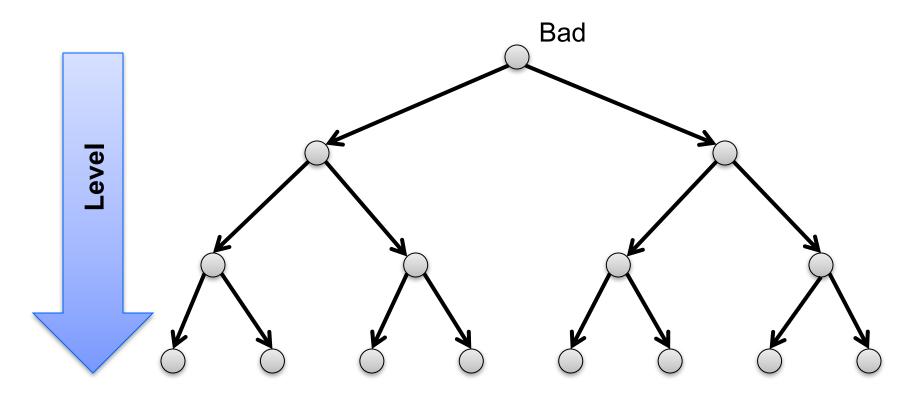
Cache Reachable states

Three variants of **Decide**

Same **Conflict** as in APDR/GPDR

Input: A safety problem $(Init(X), Tr(X, X^o, X'), Bad(X))$. **Output**: Unreachable or Reachable **Data**: A cex queue Q, where a cex $c \in Q$ is a pair $\langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level N. A set of reachable states REACH. A trace F_0, F_1, \ldots Notation: $\mathcal{F}(A, B) = Init(X') \lor (A(X) \land B(X^o) \land Tr)$, and $\mathcal{F}(A) = \mathcal{F}(A, A)$ **Initially:** $Q = \emptyset$, N = 0, $F_0 = Init$, $\forall i > 0 \cdot F_i = \emptyset$, REACH = Init **Require:** $Init \rightarrow \neg Bad$ repeat **Unreachable** If there is an i < N s.t. $F_i \subseteq F_{i+1}$ return Unreachable. **Reachable** If REACH \wedge *Bad* is satisfiable, return *Reachable*. **Unfold** If $F_N \to \neg Bad$, then set $N \leftarrow N + 1$ and $Q \leftarrow \emptyset$. **Candidate** If for some $m, m \to F_N \land Bad$, then add $\langle m, N \rangle$ to Q. **Successor** If there is $\langle m, i+1 \rangle \in Q$ and a model $M \mid M \models \psi$, where $\psi = \mathcal{F}(\forall \text{REACH}) \land m'$. Then, add s to REACH, where $s' \in MBP(\{X, X^o\}, \psi).$ **DecideMust** If there is $\langle m, i+1 \rangle \in Q$, and a model $M \mid M \models \psi$, where $\psi = \mathcal{F}(F_i, \forall \text{REACH}) \land m'$. Then, add s to Q, where $s \in MBP(\{X^o, X'\}, \psi).$ **DecideMay** If there is $\langle m, i+1 \rangle \in Q$ and a model $M \mid M \models \psi$, where $\psi = \mathcal{F}(F_i) \wedge m'$. Then, add s to Q, where $s^o \in \text{MBP}(\{X, X'\}, \psi)$. **Conflict** If there is an $(m, i+1) \in Q$, s.t. $\mathcal{F}(F_i) \wedge m'$ is unsatisfiable. Then, add $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$ to F_i , for all $0 \le j \le i+1$. **Leaf** If $\langle m, i \rangle \in Q$, 0 < i < N and $\mathcal{F}(F_{i-1}) \wedge m'$ is unsatisfiable, then add $\langle m, i+1 \rangle$ to Q. **Induction** For $0 \le i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \notin F_{i+1}$, $\mathcal{F}(\phi \wedge F_i) \to \phi'$, then add φ to F_i , for all $j \leq i+1$. until ∞ ;

SPACER Search Space



Unfold the derivation tree in a fixed depth-first order

• use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up

use MBP to propagate facts bottom up

Successor Rule: Computing Reachable States

Successor If there is $\langle m, i+1 \rangle \in Q$ and a model M $M \models \psi$, where $\psi = \mathcal{F}(\lor \text{REACH}) \land m'$. Then, add s to REACH, where $s' \in \text{MBP}(\{X, X^o\}, \psi)$.

Computing new reachable states by under-approximating forward image using MBP

• since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

- orthogonal to the use of MBP in Decide
- REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded

- complexity is polynomial in the number of states
- same as reachability in Push Down Systems

Decide Rule: Must and May refinement

DecideMust If there is $\langle m, i+1 \rangle \in Q$, and a model M $M \models \psi$, where $\psi = \mathcal{F}(F_i, \forall \text{REACH}) \land m'$. Then, add s to Q, where $s \in \text{MBP}(\{X^o, X'\}, \psi)$.

DecideMay If there is $\langle m, i+1 \rangle \in Q$ and a model $M \mid = \psi$, where $\psi = \mathcal{F}(F_i) \wedge m'$. Then, add s to Q, where $s^o \in \text{MBP}(\{X, X'\}, \psi)$.

DecideMust

• use computed summary to skip over a call site

DecideMay

- use over-approximation of a calling context to guess an approximation of the call-site
- the call-site either refutes the approximation (Conflict) or refines it with a witness (Successor)

Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories

- extends IC3/PDR from SAT to SMT
- interpolation to over-approximate a possible model
- model-based projection to summarize derivations

The curse of interpolation

- interpolation is fantastic at quickly discovering good lemmas
- BUT it is highly unstable: small changes to input (or code) drastically change what is discovered
- what is easy today might be difficult tomorrow $\ensuremath{\mathfrak{S}}$

Harnessing the power of parallelism (see FMCAD'17)

- Spacer is highly non-deterministic: many sound choices for bounded exploration and lemma generation
- Lemmas (invariants) are easy to share between multiple instances
- Problems are naturally partitioned in Decide rule

?

?

?

Farkas Lemma

Let $M = t_1 \ge b_1 \land \ldots \land t_n \ge b_n$, where t_i are linear terms and b_i are constants M is *unsatisfiable* iff $0 \ge 1$ is derivable from M by resolution

M is *unsatisfiable* iff $M \vdash 0 \ge 1$

• e.g., x + y > 10, -x > 5, $-y > 3 \vdash (x+y-x-y) > (10 + 5 + 3) \vdash 0 > 18$

M is unsatisfiable iff there exist *Farkas* coefficients $g_1, ..., g_n$ such that

- $g_i \ge 0$
- $g_1 \times t_1 + \dots + g_n \times t_n = 0$
- $g_1 \times b_1$ + ... + $g_n \times b_n \ge 1$

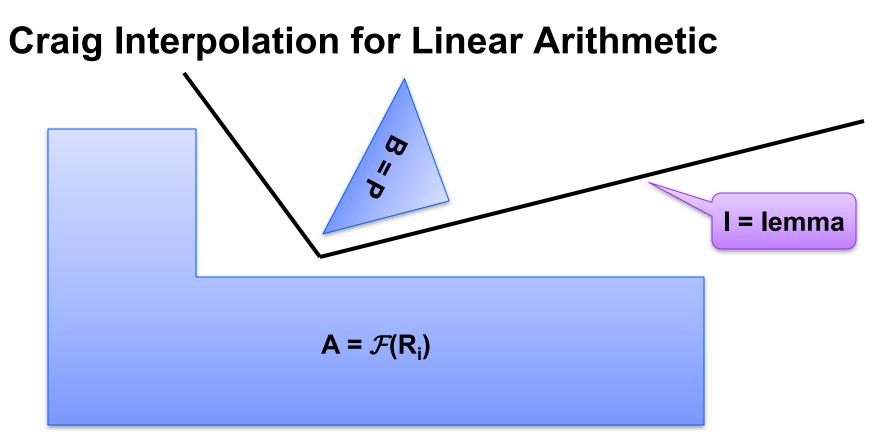
Interpolation for Linear Real Arithmetic

Let $M = A \land B$ be UNSAT, where • $A = t_1 \ge b_1 \land \dots \land t_i \ge b_i$, and • $B = t_{i+1} \ge b_i \land \dots \land t_n \ge b_n$

Let g_1, \ldots, g_n be the Farkas coefficients witnessing UNSAT

Then

- $g_1 \times (t_1 \ge b_1)$ + ... + $g_i \times (t_i \ge b_i)$ is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \ge b_i)$ + ... + $g_n \times (t_n \ge b_n)$ is an interpolant between B and A
- $g_1 \times t_1 + \ldots + g_i \times t_i = -(g_{i+1} \times t_{i+1} + \ldots + g_n \times t_n)$
- $\neg(g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n))$ is an interpolant between A and B



Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in ITP (A, B)$ then $\neg I \in ITP (B, A)$
- if A is syntactically convex (a monomial), then I is convex
- if B is syntactically convex, then I is co-convex (a clause)
- if A and B are syntactically convex, then I is a half-space

