
Higher-Order
Constrained Horn Clauses

(and Refinement Types)
Toby Cathcart Burn, Luke Ong and Steven Ramsay

University of Oxford

let add x y = x + y

let rec iter f m n =

if n ≤ 0 then m else f n (iter f m (n-1))

in fun n assert (n ≤ iter add 0 n)

𝑧 = 𝑥 + 𝑦 𝑨𝒅𝒅 𝑥 𝑦 𝑧

𝑛 ≤ 0 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 𝑚

𝑛 > 0 ∧ 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 − 1 𝑝 ∧ 𝑓 𝑛 𝑝 𝑟 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 𝑟

𝑰𝒕𝒆𝒓 𝑨𝒅𝒅 0 𝑛 𝑟 𝑛 ≤ 𝑟

∀𝒙𝒚𝒛.

∀𝒇𝒎𝒏.

∀𝒇𝒎𝒏𝒓𝒑.

∀𝒏𝒓.

let add x y = x + y

let rec iter f m n =

if n ≤ 0 then m else f n (iter f m (n-1))

in fun n assert (n ≤ iter add 0 n)

Higher-order “unknown” relations:
𝐼𝑡𝑒𝑟 ∶ int → int → int → bool → int → int → int → bool

Quantification at higher-sorts:
∀ at sort int → int → int → bool

Literals headed by variables:
𝑓 𝑛 𝑝 𝑟 ∶ bool

𝑧 = 𝑥 + 𝑦 𝑨𝒅𝒅 𝑥 𝑦 𝑧

𝑛 ≤ 0 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 𝑚

𝑛 > 0 ∧ 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 − 1 𝑝 ∧ 𝑓 𝑛 𝑝 𝑟 𝑰𝒕𝒆𝒓 𝑓 𝑚 𝑛 𝑟

𝑰𝒕𝒆𝒓 𝑨𝒅𝒅 0 𝑛 𝑟 𝑛 ≤ 𝑟

∀𝒙𝒚𝒛.

∀𝒇𝒎𝒏.

∀𝒇𝒎𝒏𝒓𝒑.

∀𝒏𝒓.

Standard
semantics of sorts

𝑆 𝜎 → 𝜏 All functions from 𝑆 𝜎 to 𝑆 𝜏

𝑆 bool Two truth values, 𝐹 ⊆ 𝑇

𝑆 int All of the integers

ℳ ⊨𝑆 ∃𝑥: int → bool → bool. 𝐺

There is some predicate on
sets of integers that makes 𝐺 true in ℳ

and the monotone semantics
Least models

Theorem
Satisfiable systems of higher-order constrained Horn
clauses do not necessarily possess least models.
(Least with respect to inclusion of relations)

Theorem
Satisfiable systems of higher-order constrained Horn
clauses do not necessarily possess least models.
(Least with respect to inclusion of relations)

𝑆 one = ⋆

𝑷 ∶ one → bool → bool → bool

𝑸 ∶ one → bool

∀𝑥. 𝑥 𝑸 ⇒ 𝑷 𝑥

𝑆 one = ⋆

𝑆 one → bool =

0 1

𝑆 one → bool → bool =

𝟎 𝐹

𝟏 𝑇

𝟎 𝐹

𝟏 𝑇

𝟎 𝐹

𝟏 𝑇

𝟎 𝐹

𝟏 𝑇

(⋆ 𝐹) (⋆ 𝑇)

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹 𝛼 𝑷

𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛼 𝑸 = 𝟎

𝑷 ∶ one → bool → bool → bool

𝑸 ∶ one → bool
∀𝑥. 𝑥 𝑸 ⇒ 𝑷 𝑥

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹 𝛽 𝑷

𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛽 𝑸 = 𝟏

𝑷 ∶ one → bool → bool → bool

𝑸 ∶ one → bool
∀𝑥. 𝑥 𝑸 ⇒ 𝑷 𝑥

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛽 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛽 𝑸 = 𝟏𝛼 𝑸 = 𝟎

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝐹

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

𝛼 𝑷
𝟎 𝐹

𝟏 𝑇
= 𝑇

∀𝑥. 𝑥 𝑸 ⇒ 𝑷 𝑥

𝑥 𝑄

𝟎 𝐹

𝟏 𝑇
𝟎 = 𝑇

𝟎 𝐹

𝟏 𝑇
𝟏 = 𝐹

⊆ ⊈

Monotone
semantics of sorts

𝑀 𝜎 → 𝜏 All monotone functions from 𝑀 𝜎 to 𝑀 𝜏

𝑀 bool Two truth values, 𝐹 ⊆ 𝑇

𝑀 int All of the integers, ordered discretely

ℳ ⊨𝑀 ∃𝑥: int → bool → bool. 𝐺

There is some monotone predicate on
sets of integers that makes 𝐺 true in ℳ

∃𝑦𝑧. 𝑥 𝑦 ∧ 𝑦 𝑧𝑥 ↦ 1

𝑀 int → bool All sets of integers

𝑀 int → bool → bool All upward closed sets of
sets of integers

𝑀 int → bool → bool → bool
All upward closed sets of
upward closed sets of sets
of integers

⊭

Standard
semantics

Completely standard
satisfiability problem
(modulo background theory)
in higher-order logic.

Bespoke satisfiability
problem with highly
restricted class of models.

No least model Least model arising in the
usual way

Monotone
semantics

Given set of higher-order constrained horn clauses H:
o For each (standard) model 𝛽 of the standard semantics

of H there is a (monotone) model 𝑈(𝛽) of the monotone
semantics of H.

o For each (monotone) model 𝛼 of the monotone
semantics of H, there is a (standard) model 𝐼(𝛼) of the
standard semantics of H.

Theorem

Mapping models means mapping relations:

𝑀 int → bool → bool → bool

𝑆 int → bool → bool → bool

Mapping models means mapping relations:

𝑀 int → bool → bool → bool

From monotone to standard: inclusion?

𝛼 ⊨𝑀 ∀𝑥: int → bool → bool. 𝑡𝑟𝑢𝑒 ⇒ 𝑷 𝑥

𝛼 𝑷 = {𝑋 ∈ 𝒫 𝒫 ℤ ∶ X upward closed }

𝛼 ⊭𝑆 ∀𝑥: int → bool → bool. 𝑡𝑟𝑢𝑒 ⇒ 𝑷 𝑥

𝑆 int → bool → bool → bool

Inclusion: constructs relations that are typically too small

𝐽 𝑟 𝑡 = ቊ
𝑟(𝑡) 𝑖𝑓 𝑡 ∈ 𝑀 int → bool → bool
𝐹 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀 int → bool → bool → bool

𝑆 int → bool → bool → bool

𝑆 int → bool → bool

𝑆 int → bool → bool → bool

𝐽

Complementary inclusion: constructs relations that are typically too large

𝐽𝑐 𝑟 𝑡 = ቊ
𝑟(𝑡) 𝑖𝑓 𝑡 ∈ 𝑀 int → bool → bool
𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀 int → bool → bool → bool

𝑆 int → bool → bool → bool

𝑆 int → bool → bool

𝑆 int → bool → bool → bool

𝐽𝑐

Determine the value of standard relation 𝐽(𝑟) on non-(hereditarily)
monotone input 𝑡 by considering the value of 𝑟 on:

The largest (hereditarily) monotone relation of at most 𝑡

The smallest (hereditarily) monotone relation of at least 𝑡

𝐼 𝑟 1 = 𝑟 1 , 1,2 , 1,2,3 ,…

𝐽 𝑟 1 = 𝑟 ∅

𝑀 𝜌 𝑆 𝜌𝑆 𝜌

𝐼𝜌 𝑈𝜌

𝐿𝜌 𝐽𝜌

The uniquely
determined upper
adjoint of 𝐽𝜌

The uniquely
determined lower

adjoint of 𝐼𝜌

𝐼𝑏𝑜𝑜𝑙(𝑏)

𝐼𝑖𝑛𝑡→𝜌(𝑟)

𝐼𝜌1→𝜌2(𝑟)

𝑏

𝐼𝜌 ∘ 𝑟

𝐼𝜌2 ∘ 𝑟 ∘ 𝐿𝜌1

=

=

=

𝐽𝑏𝑜𝑜𝑙(𝑏)

𝐽𝑖𝑛𝑡→𝜌(𝑟)

𝐽𝜌1→𝜌2(𝑟)

𝑏

𝐽𝜌 ∘ 𝑟

𝐽𝜌2 ∘ 𝑟 ∘ 𝑈𝜌1

=

=

=

For each sort of relations 𝜌:

Given set of higher-order constrained horn clauses H:
o For each (standard) model 𝛽 of the standard

interpretation of H there is a (monotone) model 𝑈(𝛽) of
the monotone interpretation of H.

o For each (monotone) model 𝛼 of the monotone
interpretation of H, there is a (standard) model 𝐼(𝛼) of
the standard interpretation of H.

𝑀 𝜌 𝑆 𝜌𝑆 𝜌

𝐼𝜌 𝑈𝜌

𝐿𝜌 𝐽𝜌

Theorem

in the rest of the paper
Refinement Types

A refinement type system for solving the monotone satisfiability problem:

Γ ⊢ 𝐺 ∶ 𝑏𝑜𝑜𝑙 𝜙In models
satisfying Γ … … the truth of goal 𝐺 …

… is bounded above
by constraint 𝜙

Typability reduces to first-order constrained Horn clause solving

Given any refinement type 𝑇 and any goal term 𝐺, 𝐺 ∶ 𝑇 can be expressed as a
higher-order constrained Horn clause.

work
Future

Higher-order program
safety problem

Higher-order
constrained Horn
clause problem

First-order constrained
Horn clause problem

𝑖𝑛𝑡 refined by 𝑃 ∶ 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙

𝐿𝑖𝑠𝑡 refined by 𝑃 ∶ 𝛼 → 𝑏𝑜𝑜𝑙 → 𝐿𝑖𝑠𝑡 𝛼 → 𝑏𝑜𝑜𝑙

relative completeness? problem reduction?

Refinements of type constructors:

Thanks.

𝐷 ∷= 𝑡𝑟𝑢𝑒 𝐺 ⇒ 𝑋𝑦1…𝑦𝑘 𝐷 ∧ 𝐷 | ∀𝑥: 𝜎. 𝐷

𝐺 ∷= 𝐴 𝐺 ∧ 𝐺 𝐺 ∨ 𝐺 𝜙 ∃𝑥: 𝜎. 𝐺

Constraint
e.g. x > 3

Atom
e.g. Iter f m (n-1) p
e.g. f n p r

Relational “unknown”
e.g. Iter

At 𝑏𝑜𝑜𝑙: 𝑀 𝑏𝑜𝑜𝑙 = 𝑆 𝑏𝑜𝑜𝑙

𝐽𝑏𝑜𝑜𝑙 is the identity with upper adjoint 𝑈𝑏𝑜𝑜𝑙 also the identity

At 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙: 𝑀 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 = 𝑆 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙

𝐽𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 𝑟 = 𝐽𝑏𝑜𝑜𝑙 ∘ 𝑟 = 𝑟 is the identity
with upper adjoint 𝑈𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 also the identity

At 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙: 𝑀 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙 ⊆ 𝑆 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙

𝐽 𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 →𝑏𝑜𝑜𝑙 𝑟 = 𝐽𝑏𝑜𝑜𝑙 ∘ 𝑟 ∘ 𝑈𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 = 𝑟 is an inclusion

𝑈 𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 →𝑏𝑜𝑜𝑙 𝑠 =ራ 𝑡 ∈ 𝑀 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙 𝐽 𝑖𝑛𝑡→𝑏𝑜𝑜𝑙 →𝑏𝑜𝑜𝑙 𝑡 ⊆ 𝑠

𝐽𝑏𝑜𝑜𝑙(𝑏)

𝐽𝑖𝑛𝑡→𝜌(𝑟)

𝐽𝜌1→𝜌2(𝑟)

𝑏

𝐽𝜌 ∘ 𝑟

𝐽𝜌2 ∘ 𝑟 ∘ 𝑈𝜌1

=

=

=

=ራ 𝑡 ∈ 𝑀 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙 𝑡 ⊆ 𝑠

