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let add x vy = x + y
let rec 7ter Fm n =

1fn<othenmelse £Fn (iter £ m (n-D)
in fun n» = assert (n < 7ter add o n




letadd x y = x + y
let rec 7ter Fm n =

ifn<othenmelse Fn (iter £ m (n-1))
in fun » = assert (n < 7ter add o0 n)

Z=x+y Add x y z

n<0 Iter f mnm

n>0AIterf m(n—1)p fnpr Iter f mnr

Iter Add Onr n<r




Higher-order “unknown” relations:
Iter : (int > int = int = bool) — int = int = int > bool

Z=x+Yy Add x vy z

n<0 Iter f mnm

n>0AIterf m(n—1)p fnpr Iter f mnr

Iter Add Onr n<r

Quantification at higher-sorts: Literals headed by variables:
vV atsort int — int - int = bool fnpr: bool



Standard

semantics of sorts

S[int]  All of the integers
S[bool]  Two truth values, F S T

Sllo = t] All functions from S[a] to S[[t]

M =g 3x: (int = bool) — bool. G

There is some predicate on
sets of integers that makes G true in M



Least models

and the monotone semantics



Theorem

Satisfiable systems of higher-order constrained Horn
clauses do not necessarily possess least models.
(Least with respect to inclusion of relations)



Theorem

Satisfiable systems of higher-order constrained Horn
clauses do not necessarily possess least models.
(Least with respect to inclusion of relations)

Slone] = {*}

Q : one = bool
P: ((one — bool) » bool) — bool

Vx.xQ = P x
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Q : one = bool

Vx.xQ = P x

P: ((one — bool) - bool) — bool




Q : one = bool

Vx.xQ = P x

P: ((one — bool) - bool) — bool










Monotone

semantics of sorts

M [lint] All of the integers, ordered discretely
M| bool] Two truth values, F € T

Mlloc = ] All monotone functions from M[a] to M[t]

M =, 3x: (int = bool) — bool. G

There is some monotone predicate on
sets of integers that makes G true in M




M[int = bool]]  All sets of integers

M[(int = bool) = bool] All upward closed sets of
sets of integers

All upward closed sets of
upward closed sets of sets
of integers

M[[((int — bool) — bool) — bool]]

x {{1}} |;é dyz. X YAy Z



Standard

semantics

g Completely standard

satisfiability problem
(modulo background theory)

in higher-order logic.

No least model

Monotone

semantics

Bespoke satisfiability
problem with highly
restricted class of models.

Least model arising in the
usual way



Theorem

Given set of higher-order constrained horn clauses H:

o For each (standard) model 8 of the standard semantics
of H there is a (monotone) model U(B) of the monotone
semantics of H.

o For each (monotone) model a of the monotone
semantics of H, there is a (standard) model I () of the
standard semantics of H.



Mapping models means mapping relations:

Mﬂ((int — bool) - bool) — bool]]

S[[((int — bool) - bool) — bool]]



Mapping models means mapping relations:

Mﬂ((int — bool) - bool) — bool]]

S[[((int — bool) - bool) — bool]]
From monotone to standard: inclusion?
a(P) ={X € IP(IP(Z)) : X upward closed }

a kE, Vx:(int > bool) - bool. true= Px

a s Vx:(int - bool) - bool. true= Px



M[[((int — bool) - bool) — bool]]

S[[((int — bool) - bool) — bool]]

Inclusion: constructs relations that are typically too small

s S[[((int — bool) - bool) — bool]]
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M[[((int — bool) - bool) — bool]]
]C
S[[((int — bool) - bool) — bool]]

Complementary inclusion: constructs relations that are typically too large

s S[[((int — bool) - bool) — bool]]
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Determine the value of standard relation J(7) on non-(hereditarily)
monotone input t by considering the value of  on:

The largest (hereditarily) monotone relation of at most t

J({{13}}) =7 (@)

The smallest (hereditarily) monotone relation of at least t

IM{{13}}) =r ({{13,{1,23,{1,2,3}, ...})



For each sort of relations p:

The uniquely
V/’_ determined upper
adjoint of |
Iy Up ’
Sle] == M[p] == SlpI
i Jo
The uniquely /4
determined lower =~
adjoint of
Ipoor(b) = b Jboor(b) = b
lingsp(r) = Iyor Jint-p(r) = Jpor
Ipi5p, (1) = lp,o10Ly Jo1-p, (1) = Jp, 0T

UP1



I, U,
Slel == M[p] == S[p]
Ly Jp
Theorem

Given set of higher-order constrained horn clauses H:

o For each (standard) model S of the standard
interpretation of H there is a (monotone) model U(f) of
the monotone interpretation of H.

o For each (monotone) model a of the monotone
interpretation of H, there is a (standard) model I () of
the standard interpretation of H.



Refinement Types

in the rest of the paper



A refinement type system for solving the monotone satisfiability problem:

In models F - G : b00l<¢> ... is bounded above

satisfying I ... ... the truth of goal G ... by constraint ¢

Typability reduces to first-order constrained Horn clause solving

Given any refinement type T and any goal term G, G : T can be expressed as a
higher-order constrained Horn clause.



Future

work



relative completeness? problem reduction?

7N TN

Higher-order program Higher-order First-order constrained
safety problem constrained Horn Horn clause problem
clause problem

Refinements of type constructors:

int refined by P : int — bool

List refined by P : (@ = bool) — List o = bool



Thanks.



Atom Constraint
e.g. lterfm(n-1)p e.g.x>3
eg.fnpr

G “=A|GAG|GVG|d|TAx:0.G
D ::=true|G=> Xy, ..Yx | DAD |Vx:0.D

k- Relational “unknown”

e.g. lter



Jpoot (D) = b
]int—>p (T)

]p1—>p2 (T') = ]PZ oie UP1
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At bool: M][bool] = S[bool]

JIpoor is the identity with upper adjoint Uy,,; also the identity

At int —» bool: M][int - bool] = S[int — bool]

Jint=boot () = Jpoor © T = 7 is the identity
with upper adjoint Uj,,+-poor alSO the identity

At (int — bool) —» bool: M][(int —» bool) — bool] € S[[(int - bool) — bool]

](int—>bool)—>bool(r) = Jboot °7 ° Uint—>poor = T is an inclusion

U(int—>bool)—>bool(5) = {t € M[(int — bool) — bool] |](int—>bool)—>bool(t) = S}

=| |t € M[(int » bool) - bool] | t € s}



