
Using a Set Constraint Solver for Program
Verification

Maximiliano Cristiá Universidad Nacional de Rosario – Argentina

Gianfranco Rossi Università degli Studi di Parma – Italy

Claudia Frydman Aix-Marseille Université – France

4th HCVS August 2017 Gothenburg - Sweden

{log}: a constraint solver for set theory

{log} is a complete solver for a fragment of set theory
Prolog program based on set unification and CLP

Rossi et al. 1991; Rossi & Cristiá since 2013

satisfiability solver
returns a finite representation of all solutions of a given formula

solution→ assignment of values to the free variables of the formula

declarative programming language

sets in {log} are
first-class entities
finite, unbounded, untyped, nested, partially specified

1

{log}: some examples

set equality
{1, 2 t A} = {1, x, 3}

{1, 2 t A} is interpreted as {1, 2} ∪ A
{log} returns four solutions

x = 2 ∧ A = {3} x = 2 ∧ A = {2, 3}
x = 2 ∧ A = {1, 3} x = 2 ∧ A = {1, 2, 3}

set equality (unsatisfiable)
{1, 2 t A} = {1, x, 3} ∧ x 6= 2 {log} returns false

2

{log}: some examples

set equality
{1, 2 t A} = {1, x, 3}

{1, 2 t A} is interpreted as {1, 2} ∪ A
{log} returns four solutions

x = 2 ∧ A = {3} x = 2 ∧ A = {2, 3}
x = 2 ∧ A = {1, 3} x = 2 ∧ A = {1, 2, 3}

set equality (unsatisfiable)
{1, 2 t A} = {1, x, 3} ∧ x 6= 2 {log} returns false

2

{log}: some examples

union is commutative (mathematics)
A ∪ B = B ∪ A

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A,B, C) ∧ nun(B,A, C) {log} returns false

set operators become constraints
the last formula can also be written as:
nun(A,B, C) ∧ un(B,A, C) or
un(A,B, C) ∧ un(B,A, XX) ∧ C 6= XX

3

{log}: some examples

union is commutative (mathematics)
A ∪ B = B ∪ A

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A,B, C) ∧ nun(B,A, C) {log} returns false

set operators become constraints
the last formula can also be written as:
nun(A,B, C) ∧ un(B,A, C) or
un(A,B, C) ∧ un(B,A, XX) ∧ C 6= XX

3

{log}: some examples

union is commutative (mathematics)
A ∪ B = B ∪ A

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A,B, C) ∧ nun(B,A, C) {log} returns false

set operators become constraints

the last formula can also be written as:
nun(A,B, C) ∧ un(B,A, C) or
un(A,B, C) ∧ un(B,A, XX) ∧ C 6= XX

3

{log}: some examples

union is commutative (mathematics)
A ∪ B = B ∪ A

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A,B, C) ∧ nun(B,A, C) {log} returns false

set operators become constraints
the last formula can also be written as:
nun(A,B, C) ∧ un(B,A, C) or
un(A,B, C) ∧ un(B,A, XX) ∧ C 6= XX

3

{log}: some examples

binary relations theorem (mathematics)
(AC R)[B] = R[A ∩ B]

A, B sets; R binary relation

C domain restriction; · [·] relational image

binary relations theorem (negation in {log})
dres(A,R,N1) ∧ rimg(N1,B,N2) ∧ inters(A,B,N3) ∧ nrimg(R,N3,N2)

relational operators become constraints
set and relations can be freely combined

{log} works as an automated theorem prover

4

{log}: some examples

binary relations theorem (mathematics)
(AC R)[B] = R[A ∩ B]

A, B sets; R binary relation

C domain restriction; · [·] relational image

binary relations theorem (negation in {log})
dres(A,R,N1) ∧ rimg(N1,B,N2) ∧ inters(A,B,N3) ∧ nrimg(R,N3,N2)

relational operators become constraints
set and relations can be freely combined

{log} works as an automated theorem prover

4

{log}: some examples

binary relations theorem (mathematics)
(AC R)[B] = R[A ∩ B]

A, B sets; R binary relation

C domain restriction; · [·] relational image

binary relations theorem (negation in {log})
dres(A,R,N1) ∧ rimg(N1,B,N2) ∧ inters(A,B,N3) ∧ nrimg(R,N3,N2)

relational operators become constraints
set and relations can be freely combined

{log} works as an automated theorem prover

4

{log}: functional partial program verification

first question
is {log} useful for functional partial program verification?

second question
will it automatically discharge verification conditions of a
Hoare framework?

third question
if so, of what classes of programs?

5

specifications & programs

set theory is used as the specification language
much as in B and Z notations

programs are written in an abstract imperative language
abstract data types are also available

pre-conditions, loop invariants and post-conditions are given
Hoare rules apply

programs dealing with lists
an ADT named List is defined

6

an ADT for lists

adt List(T)
public

List() . constructor

add(T e) . appends e to the list

fst()
T next() . fst,next,more→ abstract iterator

Bool more()
rpl(T e) . replaces last iterated element with e

del() . empties the list

end public
end adt

7

list subroutines

with the List ADT we can write list subroutines

list equality
function Bool listEq(List s, t)

s.fst(); t.fst()
while s.more() ∧ t.more() ∧ s.next() = t.next() do

skip
end while
return ¬s.more() ∧ ¬t.more()

end function

8

list subroutines

and we can annotate subroutines with specifications

list equality
pre-condition true
function Bool listEq(List s, t)

s.fst(); t.fst()
invariant s ∈ 7→ ∧ s = sp ∪ sr ∧ sp ‖ sr

∧ t ∈ 7→ ∧ t = tp ∪ tr ∧ tp ‖ tr
∧ sp = tp

while s.more() ∧ t.more() ∧ s.next() = t.next() do
skip

end while
return ¬s.more() ∧ ¬t.more()

end function
post-condition ret ⇐⇒ s = t

9

specifications

annotations are formulas in our specification language

set theory + binary relations ≈ as in Z and B

invariant s ∈ 7→ ∧ s = sp ∪ sr ∧ sp ‖ sr
∧ t ∈ 7→ ∧ t = tp ∪ tr ∧ tp ‖ tr
∧ sp = tp

s program variable −→ s specification variable

s′ −→ value of s in the after state

10

specifications

invariant s ∈ 7→ ∧ s = sp ∪ sr ∧ sp ‖ sr
∧ t ∈ 7→ ∧ t = tp ∪ tr ∧ tp ‖ tr
∧ sp = tp

if s is a List, then s enjoys List’s interface properties:

s is a set of ordered pairs 〈m, g,b〉 −→ {(1,m), (2, g), (3,b)}

s is a partial function s ∈ 7→

s is partitioned by the iterator s = sp ∪ sr ∧ sp ‖ sr
sp processed part - sr remaining part

all these properties are provable from List’s specification

then processed parts are equal inside the loop sp = tp

11

specifications

invariant s ∈ 7→ ∧ s = sp ∪ sr ∧ sp ‖ sr
∧ t ∈ 7→ ∧ t = tp ∪ tr ∧ tp ‖ tr
∧ sp = tp

if s is a List, then s enjoys List’s interface properties:

s is a set of ordered pairs 〈m, g,b〉 −→ {(1,m), (2, g), (3,b)}

s is a partial function s ∈ 7→

s is partitioned by the iterator s = sp ∪ sr ∧ sp ‖ sr
sp processed part - sr remaining part

all these properties are provable from List’s specification

then processed parts are equal inside the loop sp = tp

11

verification conditions

Hoare rules are applied to generate verification conditions

the most complex verification conditions are

if the loop condition holds, then the loop invariant is
preserved after each iteration

loop condition ∧ invariant ∧ iteration =⇒ invariant’

upon termination of the loop its invariant implies the
post-condition

¬ loop condition ∧ invariant =⇒ post-condition

{log} is used to automatically discharge vc’s

12

verification condition: an example

an example from listEq

(sr = ∅ [¬ loop condition]

∨ tr = ∅
∨ sr = {(x, y1) t s1r} ∧ tr = {(x, y2) t t1r} ∧ y1 6= y2)

∧ s ∈ 7→ ∧ s = sp ∪ sr ∧ sp ‖ sr [loop invariant]

∧ t ∈ 7→ ∧ t = tp ∪ tr ∧ tp ‖ tr
∧ sp = tp

=⇒ ((sr = ∅ ∧ tr = ∅) ⇐⇒ s = t) [postcondition]

13

verification conditions in {log}

the negation of vc’s have to be translated into {log}

this translation is straightforward

(sr = ∅
∨ tr = ∅
∨ sr = {(x, y1) t s1r} ∧ tr = {(x, y2) t t1r} ∧ y1 6= y2)

∧ pfun(s) ∧ un(sp, sr, s) ∧ disj(sp, sr)
∧ pfun(t) ∧ un(tp, tr, t) ∧ disj(tp, tr)
∧ sp = tp
∧ (sr = ∅ ∧ tr = ∅ ∧ s 6= t ∨ s = t ∧ (sr 6= ∅ ∨ tr 6= ∅))

14

List’s specification

List is implemented as a singly-linked list

each node of the list is of type Node
a simple ADT with two fields: next and elem

methods: setNext, getNext, setElem, getElem

instances of Node are modeled as ordered pairs: (n, e)

instances of List are modeled as partial functions:

{c1 7→ (c2, e1), c2 7→ (c3, e2), . . . , cn 7→ (null, en)}

representing the list 〈e1, e2, . . . , en〉

15

List’s specification

in the specification of List we use three state variables

s→ representing the heap
{c1 7→ (c2, e1), c2 7→ (c3, e2), . . . , cn 7→ (null, en)}

a→ representing a stack-allocated variable store
{v1 7→ c1, . . . , vm 7→ cm}

sm → representing the memory locations of s whose
nodes have already been iterated over
{c1, . . . , ck}

then sp , sm C s and sr , s \ sp

16

List’s implementation

internally List maintains these member variables of type Node

s→ holding the first node of the list

f→ holding the last node of the list

c→ holding the current position of the iterator

p→ holding the previous position of the iterator

17

List’s verification

more() → returns true iff there are more elements
pre-condition true
function more()

return c 6= null
end function
post-condition ret ⇐⇒ a(c) 6= null

rpl() → replaces p with e
pre-condition a(p) 6= null
procedure rpl(T e)

p.setElem(e)
end procedure
post-condition s′ = s⊕ {a(p) 7→ (y, e)} ∧ s(a(p)) = (y,)

18

List’s verification

more() → returns true iff there are more elements
pre-condition true
function more()

return c 6= null
end function
post-condition ret ⇐⇒ a(c) 6= null

rpl() → replaces p with e
pre-condition a(p) 6= null
procedure rpl(T e)

p.setElem(e)
end procedure
post-condition s′ = s⊕ {a(p) 7→ (y, e)} ∧ s(a(p)) = (y,)

18

specification invariants

s ∈ 7→
s = sp ∪ sr
sp ‖ sr are state invariants of List’s specification

{log} can prove that List’s interface preserves them

if the invariant holds and a subroutine is executed, then
the invariant must hold in the after state

invariant ∧ subroutine =⇒ invariant’

19

specification invariants: an example

add() preserves s ∈ 7→

s ∈ 7→ [spec invariant]

∧ (s = ∅ ∧ c 6= null ∧ s′ = {c 7→ (null, e)} ∧ a′ = a⊕ {f 7→ c} [add() spec]

∨ s = {a(f) 7→ (y, z) t s1} ∧ c /∈ dom s ∧ c 6= null

∧ s′ = {c 7→ (null, e), a(f) 7→ (c, z) t s1} ∧ a′ = a⊕ {f 7→ c})

=⇒ s′ ∈ 7→ [spec invariant’]

pfun(s) [negation in {log}]

∧ (s = ∅ ∧ c 6= null ∧ s′ = {(c, (null, e))} ∧ oplus(a, {(f, c)}, a′)

∨ apply(a, f,m2) ∧ s = {(m2, (y, z)) t s1} ∧ dom(s,m1) ∧ c /∈ m1 ∧ c 6= null

∧ apply(a, f,m2) ∧ s′ = {(c, (null, e)), (m2, (c, z)) t s1}

∧ oplus(a, {(f, c)}, a′))

∧ npfun(s′)
20

case study

{log} is used to prove the functional partial correctness of six
subroutines based on List plus many specification invariants

group vc time avg

loop invariant 6 1,639 ms 271 ms
post-condition 6 37 ms 6 ms
specification invariant 22 1,170 ms 53 ms
other properties 3 6 ms 2 ms

totals 37 2,843 ms 76 ms

{log} proves all the 37 vc’s in less than 0.1s each

21

summary

{log} is a CLP solver for a fragment of set theory

it can automatically prove theorems of set theory

set-based specifications are good for many programs

{log} is able to automatically discharge vc’s generated in a
Hoare framework whose assertions are set formulas

22

