Using a Set Constraint Solver for Program
Verification

Maximiliano Cristia Universidad Nacional de Rosario — Argentina mée
Gianfranco Rossi Universita degli Studi di Parma - Italy l Il
Claudia Fryd man Aix-Marseille Université - France Il ll

4th HCVS August 2017 Gothenburg - Sweden &=

{log}: a constraint solver for set theory

{log} is a complete solver for a fragment of set theory
Prolog program based on set unification and CLP
Rossi et al. 1991; Rossi & Cristia since 2013

satisfiability solver
returns a finite representation of all solutions of a given formula

solution — assignment of values to the free variables of the formula
declarative programming language

sets in {log} are
first-class entities
finite, unbounded, untyped, nested, partially specified

{log}: some examples

set equality
{1,20A} ={1,x,3}

m {1,2uA} isinterpreted as {1,2} UA
m {log} returns four solutions

X=2AA={3} X=2AA={23}
Xx=2AA={1,3} X=2AA=1{1,23}

{log}: some examples

set equality
{1,20A} ={1,x,3}

m {1,2uA} isinterpreted as {1,2} UA
m {log} returns four solutions

X=2AA={3} X=2AA={23}
Xx=2AA={1,3} X=2AA=1{1,23}

set equality (unsatisfiable)
{1,2uA} ={1,x,3} AX #2 {log} returns false

{log}: some examples

union is commutative (mathematics)
AUB=BUA

{log}: some examples

union is commutative (mathematics)
AUB=BUA

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A, B,C) A nun(B, A, C) {log} returns false

{log}: some examples

union is commutative (mathematics)
AUB=BUA

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A, B,C) A nun(B, A, C) {log} returns false

B set operators become constraints

{log}: some examples

union is commutative (mathematics)
AUB=BUA

to prove it with {log} enter the negation

union is commutative (negation in {log})
un(A, B,C) A nun(B, A, C) {log} returns false

B set operators become constraints

m the last formula can also be written as:
nun(A, B,C) Aun(B,A,C) or
un(A, B,C) A un(B, A, XX) A C # XX

{log}: some examples

binary relations theorem (mathematics)
(A< R)[B] = R[AN B]

A, B sets; R binary relation

< domain restriction; - [-] relational image

{log}: some examples

binary relations theorem (mathematics)
(A< R)[B] = R[AN B]
A, B sets; R binary relation

< domain restriction; - [-] relational image

binary relations theorem (negation in {log})
dres(A, R, Nq1) A rimg(N+, B, N,) A inters(A, B, N3) A nrimg(R, N5, N5)

{log}: some examples

binary relations theorem (mathematics)
(A< R)[B] = R[AN B]

A, B sets; R binary relation

< domain restriction; - [-] relational image

binary relations theorem (negation in {log})
dres(A, R, Nq1) A rimg(N+, B, N,) A inters(A, B, N3) A nrimg(R, N5, N5)

m relational operators become constraints
m set and relations can be freely combined

m {log} works as an automated theorem prover

{log}: functional partial program verification

first question
is {log} useful for functional partial program verification?

second question
will it automatically discharge verification conditions of a
Hoare framework?

third question
if so, of what classes of programs?

specifications & programs

set theory is used as the specification language
much as in B and Z notations

programs are written in an abstract imperative language
abstract data types are also available

pre-conditions, loop invariants and post-conditions are given
Hoare rules apply

programs dealing with lists
an ADT named List is defined

an ADT for lists

adt List(T)

public
List() I> constructor
add(T e) > appends e to the list
fst()
T next() > fst, next, more — abstract iterator
Bool more()
rpl(T e) > replaces last iterated element with e
del() > empties the list

end public

end adt

list subroutines

with the List ADT we can write list subroutines

list equality
function Bool listEqg(List s, t)
s.fst(); t.fst()
while s.more() A t.more() A s.next() = t.next() do
skip
end while
return —s.more() A —~t.more()
end function

list subroutines

and we can annotate subroutines with specifications
list equality
PRE-CONDITION true
function Bool listEqg(List s,t)
s.fst(); t.fst()
INVARIANT S € _ + _ AS=S,US ASp || S
AtE_w_At=tUt Aty |t

A Sp =Ty

while s.more() A t.more() A s.next() = t.next() do
skip

end while

return —s.more() A =t.more()
end function
POST-CONDITION ret <— s =1t

annotations are formulas in our specification language
set theory + binary relations ~ asinZand B
INVARIANT S € _+ _ AS=5SpUS ASp || Sr

B S program variable — s specification variable

m s’ — value of s in the after state

10

INVARIANT S € _+ _ AS=5Sp,US ASp| S
AtE_»_At=t,Ut, Aty |t

/\Sp:tp

if sis a List, then s enjoys List's interface properties:

m s is aset of ordered pairs (m,g,b) — {(1,m), (2,9),(3,b)}
m s is a partial function SE_+ _
m s is partitioned by the iterator S=SpUS ASp | sr

sp processed part - sy remaining part

all these properties are provable from List’s specification

"

INVARIANT S € _+ _ AS=5Sp,US ASp| S
AtE_»_At=t,Ut, Aty |t

/\Sp:tp

if sis a List, then s enjoys List's interface properties:

m s is aset of ordered pairs (m,g,b) — {(1,m), (2,9),(3,b)}
m s is a partial function SE_+ _
m s is partitioned by the iterator S=SpUS ASp | sr

sp processed part - sy remaining part

all these properties are provable from List’s specification

m then processed parts are equal inside the loop Sp=1tp

"

verification conditions

Hoare rules are applied to generate verification conditions

the most complex verification conditions are

m if the loop condition holds, then the loop invariant is
preserved after each iteration

loop condition A invariant A iteration = invariant’

m upon termination of the loop its invariant implies the
post-condition

- loop condition A invariant = post-condition

{log} is used to automatically discharge vc's

12

verification condition: an example

an example from listEq

(sr= [- loop condition]

Vse = {0y ustt Atr = {(x,y2) utr} Ayr # ¥2)

ANSE_+_ANS=S,US ASp | Sr [loop invariant]

= ((5r=0At,=0) < s=1t) [postcondition]

13

verification conditions in {log}

the negation of vc's have to be translated into {log}

this translation is straightforward
(sr=10
Vit =10
Vsr={(y) usi Aty = {(6y2) ut]} Aya # ¥2)
A pfun(s) A un(sp,Sr,S) A disj(Sp, Sr)
A pfun(t) Aun(tp, tr, t) A disj(tp, tr)
A Sy = Ty

ASr=0Atr=0AS#tVS=tA(S #DVt #0))

14

List’s specification

List is implemented as a singly-linked list

each node of the list is of type Node
a simple ADT with two fields: next and elem
methods: setNext, getNext, setElem, getElem

instances of Node are modeled as ordered pairs: (n, e)

instances of List are modeled as partial functions:
{c1 = (c2,e1),c2 = (C3,€2),...,Cn — (nullyen)}

representing the list {(eq,ey,...,ep)

15

List’s specification

in the specification of List we use three state variables

m s — representing the heap

{c1— (C2,€1),C0 = (C3,€2),...,Cn— (null,en)}

m g — representing a stack-allocated variable store

{Vi—=CiyeooyVim = Cm}

m s, — representing the memory locations of s whose
nodes have already been iterated over

{C17~"7CK’}

then Sp = Sm <1S and Sr= s\ sp

List’s implementation

internally List maintains these member variables of type Node

m s — holding the first node of the list
m f — holding the last node of the list
m c — holding the current position of the iterator

m p — holding the previous position of the iterator

List’s verification

more() — returns true iff there are more elements
PRE-CONDITION true

function more()
return c # null
end function
POST-CONDITION ret <= a(c) # null

List’s verification

more() — returns true iff there are more elements
PRE-CONDITION true

function more()
return c # null
end function
POST-CONDITION ret <= a(c) # null

rpl() — replaces p with e
PRE-CONDITION a(p) # null
procedure rpl(T e)
p.setElem(e)
end procedure
posT-conDITION " =s @ {a(p) — (v,e)} As(a(p)) = (v,-)

specification invariants

SE_+_
Sp |l s are state invariants of List's specification

{log} can prove that List's interface preserves them

m if the invariant holds and a subroutine is executed, then
the invariant must hold in the after state

invariant A subroutine = invariant’

19

specification invariants: an example

add() preserves s€ _ -+ _

SE_+_ [spec invariant]
ASs=0Ac#nullAns = {cw— (null,e)y Ad =a@ {fr ¢} [add() spec]
Vs={a(f) — (v,z2) usi} Ac ¢ doms A c # null
NS ={cw (null,e),a(f) — (c,2)usi}Ad =a® {f—c})

= s’ c_+_ [spec invariant’]

pfun(s) [negation in {log}]
A(s=0Ac#nullAs" = {(c,(null,e))} Aoplus(a, {(f,c)},a")
Vapply(a,f,m) As={(my, (v,2)) usi} Adom(s,mi) Ac & myAc#null
Aapply(a,f,m) As" = {(c, (null,e)),(ma, (c,2)) us}
Aoplus(a, {(f,0)},a"))

A npfun(s’) -

{log} is used to prove the functional partial correctness of six
subroutines based on List plus many specification invariants

GROUP VC TIME AVG
loop invariant 6 1639ms 271ms
post-condition 6 37 ms 6 ms
specification invariant 22 1170ms 53 ms
other properties 3 6 ms 2 ms
TOTALS 37 2843 ms 76 ms

{log} proves all the 37 vc's in less than 0.1s each

21

summary

{log} is a CLP solver for a fragment of set theory
it can automatically prove theorems of set theory
set-based specifications are good for many programs

{log} is able to automatically discharge vc's generated in a
Hoare framework whose assertions are set formulas

22

