Using a Set Constraint Solver for Program Verification

Maximiliano Cristiá Gianfranco Rossi Claudia Frydman Universidad Nacional de Rosario – Argentina Università degli Studi di Parma – Italy Aix-Marseille Université – France

4th HCVS

August 2017

Gothenburg - Sweden 🔚

{log} is a complete solver for a fragment of set theory Prolog program based on set unification and CLP Rossi et al. 1991; Rossi & Cristiá since 2013

satisfiability solver

returns a finite representation of all solutions of a given formula

solution \rightarrow assignment of values to the free variables of the formula

declarative programming language

sets in {log} are
first-class entities
finite, unbounded, untyped, nested, partially specified

set equality $\{1, 2 \sqcup A\} = \{1, x, 3\}$

- $\{1,2 \sqcup A\}$ is interpreted as $\{1,2\} \cup A$
- {*log*} returns four solutions

$$x = 2 \land A = \{3\} \qquad x = 2 \land A = \{2,3\} x = 2 \land A = \{1,3\} \qquad x = 2 \land A = \{1,2,3\}$$

set equality $\{1, 2 \sqcup A\} = \{1, x, 3\}$

- $\{1, 2 \sqcup A\}$ is interpreted as $\{1, 2\} \cup A$
- {*log*} returns four solutions

$$x = 2 \land A = \{3\} \qquad x = 2 \land A = \{2,3\} x = 2 \land A = \{1,3\} \qquad x = 2 \land A = \{1,2,3\}$$

set equality (unsatisfiable) $\{1, 2 \sqcup A\} = \{1, x, 3\} \land x \neq 2$

{log} returns false

union is commutative (mathematics)

 $A \cup B = B \cup A$

union is commutative (mathematics) $A \cup B = B \cup A$

to prove it with $\{log\}$ enter the negation

union is commutative (negation in {log})

 $un(A, B, C) \land nun(B, A, C)$

{log} returns false

union is commutative (mathematics) $A \cup B = B \cup A$

to prove it with $\{log\}$ enter the negation

union is commutative (negation in $\{log\}$) $un(A, B, C) \land nun(B, A, C)$

{log} returns false

set operators become constraints

union is commutative (mathematics) $A \cup B = B \cup A$

to prove it with $\{log\}$ enter the negation

union is commutative (negation in $\{log\}$) $un(A, B, C) \land nun(B, A, C)$

{log} returns false

set operators become constraints

• the last formula can also be written as: $nun(A, B, C) \land un(B, A, C)$ or $un(A, B, C) \land un(B, A, XX) \land C \neq XX$

binary relations theorem (mathematics) $(A \lhd R)[B] = R[A \cap B]$

A, B sets; R binary relation

 \lhd domain restriction; \cdot [\cdot] relational image

binary relations theorem (mathematics) $(A \lhd R)[B] = R[A \cap B]$

A, B sets; R binary relation

 \lhd domain restriction; $\cdot [\cdot]$ relational image

binary relations theorem (negation in $\{log\}$) dres $(A, R, N_1) \land rimg(N_1, B, N_2) \land inters(A, B, N_3) \land nrimg(R, N_3, N_2)$

binary relations theorem (mathematics) $(A \lhd R)[B] = R[A \cap B]$

A, B sets; R binary relation

 \lhd domain restriction; $\cdot [\cdot]$ relational image

binary relations theorem (negation in $\{log\}$) dres $(A, R, N_1) \land rimg(N_1, B, N_2) \land inters(A, B, N_3) \land nrimg(R, N_3, N_2)$

- relational operators become constraints
- set and relations can be freely combined
- $\{log\}$ works as an automated theorem prover

first question

is {log} useful for *functional partial* program verification?

second question

will it automatically discharge verification conditions of a Hoare framework?

third question

if so, of what classes of programs?

set theory is used as the specification language much as in B and Z notations

programs are written in an abstract imperative language abstract data types are also available

pre-conditions, loop invariants and post-conditions are given Hoare rules apply

programs dealing with lists an ADT named List is defined adt List(T) public List() add(Te) fst() T next() Bool more() rpl(Te) del() end public end adt

constructorappends e to the list

 \triangleright fst, next, more \rightarrow abstract iterator

replaces last iterated element with eempties the list

with the List ADT we can write list subroutines

```
list equality
function Bool listEq(List s, t)
    s.fst(); t.fst()
    while s.more() ∧ t.more() ∧ s.next() = t.next() do
        skip
    end while
    return ¬s.more() ∧ ¬t.more()
end function
```

list subroutines

and we can annotate subroutines with specifications

list equality

```
PRE-CONDITION true
function Bool listEq(List s, t)
     s.fst(); t.fst()
     INVARIANT S \in \_ \rightarrow \_ \land S = S_D \cup S_r \land S_D \parallel S_r
                   \wedge t \in \_ \rightarrow \_ \land t = t_p \cup t_r \land t_p \parallel t_r
                   \wedge S_p = t_p
    while s.more() \land t.more() \land s.next() = t.next() do
         skip
     end while
     return \negs.more() \land \negt.more()
end function
 POST-CONDITION ret \iff s = t
```

annotations are formulas in our specification language

set theory + binary relations $\,pprox\,$ as in Z and B

INVARIANT
$$S \in _ \rightarrow _ \land S = S_p \cup S_r \land S_p \parallel S_r$$

 $\land t \in _ \rightarrow _ \land t = t_p \cup t_r \land t_p \parallel t_r$
 $\land S_p = t_p$

- s program variable → s specification variable
- $s' \longrightarrow$ value of s in the after state

specifications

INVARIANT
$$s \in _ \Rightarrow _ \land s = s_p \cup s_r \land s_p \parallel s_r$$

 $\land t \in _ \Rightarrow _ \land t = t_p \cup t_r \land t_p \parallel t_r$
 $\land s_p = t_p$

if s is a List, then s enjoys List's interface properties:

all these properties are provable from List's specification

specifications

INVARIANT
$$s \in _ \Rightarrow _ \land s = s_p \cup s_r \land s_p \parallel s_r$$

 $\land t \in _ \Rightarrow _ \land t = t_p \cup t_r \land t_p \parallel t_r$
 $\land s_p = t_p$

if s is a List, then s enjoys List's interface properties:

• then processed parts are equal inside the loop $s_p = t_p$

Hoare rules are applied to generate verification conditions

the most complex verification conditions are

if the loop condition holds, then the loop invariant is preserved after each iteration

loop condition \land invariant \land iteration \implies invariant'

 upon termination of the loop its invariant implies the post-condition

 \neg loop condition \land invariant \implies post-condition

{log} is used to automatically discharge vc's

an example from listEq

$$(s_r = \emptyset \qquad [\neg \text{ loop condition}] \lor t_r = \emptyset \lor s_r = \{(x, y_1) \sqcup s_r^1\} \land t_r = \{(x, y_2) \sqcup t_r^1\} \land y_1 \neq y_2) \land s \in _ \rightarrow _ \land s = s_p \cup s_r \land s_p \parallel s_r \qquad [\text{loop invariant}] \land t \in _ \rightarrow _ \land t = t_p \cup t_r \land t_p \parallel t_r \land s_p = t_p \implies ((s_r = \emptyset \land t_r = \emptyset) \iff s = t) \qquad [\text{postcondition}]$$

the negation of vc's have to be translated into {log}

this translation is straightforward

$$(s_r = \emptyset \lor t_r = \emptyset \lor s_r = \{(x, y_1) \sqcup s_r^1\} \land t_r = \{(x, y_2) \sqcup t_r^1\} \land y_1 \neq y_2) \land pfun(s) \land un(s_p, s_r, s) \land disj(s_p, s_r) \land pfun(t) \land un(t_p, t_r, t) \land disj(t_p, t_r) \land s_p = t_p \land (s_r = \emptyset \land t_r = \emptyset \land s \neq t \lor s = t \land (s_r \neq \emptyset \lor t_r \neq \emptyset))$$

List is implemented as a singly-linked list

each node of the list is of type Node a simple ADT with two fields: next and elem methods: setNext, getNext, setElem, getElem

instances of Node are modeled as ordered pairs: (n, e)

instances of List are modeled as partial functions:

$${C_1 \mapsto (C_2, e_1), C_2 \mapsto (C_3, e_2), \ldots, C_n \mapsto (null, e_n)}$$

representing the list $\langle e_1, e_2, \ldots, e_n \rangle$

in the specification of List we use three state variables

• $s \rightarrow$ representing the heap

 $\{C_1\mapsto (C_2,e_1),C_2\mapsto (C_3,e_2),\ldots,C_n\mapsto (null,e_n)\}$

- $a \rightarrow$ representing a stack-allocated variable store { $v_1 \mapsto c_1, \dots, v_m \mapsto c_m$ }
- s_m → representing the memory locations of s whose nodes have already been iterated over {c₁,..., c_k}

then $s_p \triangleq s_m \lhd s$ and $s_r \triangleq s \setminus s_p$

internally List maintains these member variables of type Node

- \blacksquare s \rightarrow holding the first node of the list
- $\blacksquare f \rightarrow$ holding the last node of the list
- $\blacksquare\ \mathsf{c} \to \mathsf{holding}\ \mathsf{the}\ \mathsf{current}\ \mathsf{position}\ \mathsf{of}\ \mathsf{the}\ \mathsf{iterator}$
- $\blacksquare\ p \rightarrow$ holding the previous position of the iterator

List's verification

```
more() \rightarrow returns true iff there are more elements

PRE-CONDITION true

function more()

return c \neq null

end function

POST-CONDITION ret \iff a(c) \neq null
```

List's verification

```
more() \rightarrow returns true iff there are more elements

PRE-CONDITION true

function more()

return c \neq null

end function

POST-CONDITION ret \iff a(c) \neq null
```

```
rpl() → replaces p with e

PRE-CONDITION a(p) \neq null

procedure rpl(T e)

p.setElem(e)

end procedure

POST-CONDITION s' = s \oplus \{a(p) \mapsto (y, e)\} \land s(a(p)) = (y, _)
```

 $s \in _ \Rightarrow _$ $s = s_p \cup s_r$ $s_p \parallel s_r$ are state invariants of List's specification

{log} can prove that List's interface preserves them

if the invariant holds and a subroutine is executed, then the invariant must hold in the after state

invariant \wedge subroutine \implies invariant'

specification invariants: an example

add() preserves $s \in _ \rightarrow _$

$$s \in _ \rightarrow _$$

$$(spec invariant]$$

$$\land (s = \emptyset \land c \neq null \land s' = \{c \mapsto (null, e)\} \land a' = a \oplus \{f \mapsto c\}$$

$$\lor s = \{a(f) \mapsto (y, z) \sqcup s_1\} \land c \notin dom s \land c \neq null$$

$$\land s' = \{c \mapsto (null, e), a(f) \mapsto (c, z) \sqcup s_1\} \land a' = a \oplus \{f \mapsto c\}$$

$$\implies s' \in _ \rightarrow _$$

$$(spec invariant')$$

$$pfun(s) \qquad [negation in \{log\}]$$

$$\land (s = \emptyset \land c \neq null \land s' = \{(c, (null, e))\} \land oplus(a, \{(f, c)\}, a')$$

$$\lor apply(a, f, m_2) \land s = \{(m_2, (y, z)) \sqcup s_1\} \land dom(s, m_1) \land c \notin m_1 \land c \neq null$$

$$\land apply(a, f, m_2) \land s' = \{(c, (null, e)), (m_2, (c, z)) \sqcup s_1\}$$

$$\land oplus(a, \{(f, c)\}, a'))$$

$$\land npfun(s')$$

{log} is used to prove the functional partial correctness of six subroutines based on List plus many specification invariants

GROUP	VC	TIME	AVG
loop invariant	6	1,639 ms	271 ms
post-condition	6	37 ms	6 ms
specification invariant	22	1,170 ms	53 ms
other properties	3	6 ms	2 ms
TOTALS	37	2,843 ms	76 ms

 $\{log\}$ proves all the 37 vc's in less than 0.1s each

{log} is a CLP solver for a fragment of set theory

it can automatically prove theorems of set theory

set-based specifications are good for many programs

{log} is able to automatically discharge vc's generated in a Hoare framework whose assertions are set formulas