Realizing Model Simplifications with QVT
Operational Mappings

Alexander Kraas

Poppenreuther Str. 45, D-90419 Niirnberg, Germany
alexander.kraas@gmx.de

Abstract. After parsing the input of a textual modeling language, fur-
ther processing steps may be required before the result can be mapped
to corresponding elements in a model. For instance, such a processing
step can be the simplification of syntactic constructs. An approach for
model simplification resting on transformation patterns is presented in
this paper. The presented approach rests on the refinement of a derived
base transformation with the superimposition of mapping operations.
The transformations are specified with the Operational Mappings part
of the Query/View/Transformations (QVT) specification.

Keywords: QVT-O, Transformation, Patterns, Simplification

1 Introduction

In general, modeling languages can be classified into textual as well as graphical
modeling languages. However, also hybrid approaches using both kinds of mod-
eling exist. For instance, the Specification and Description Language (SDL) [9]
can be considered as such a language. Further processing steps (e.g. simplifica-
tions) may be required after the textual input of a hybrid modeling language is
parsed and represented in terms of a Concrete Syntax Tree (CST). According
to the taxonomy given in [1], model simplification is an approach where particu-
lar syntactic constructs are transformed into more primitive constructs. Usually,
dedicated frameworks for language transformations, such as Stratego/XT [7],
can be utilized for this purpose. However, an access to an already existing model
may be required for the simplification of the textual input of a hybrid language.
If a CST is defined in terms of a metamodel, the Query/View/Transformations
(QVT) [8] specification supports such an transformation scenario.

Since the general realization of transformation patterns by using the Rela-
tional Language of QVT is already discussed in [3], in this paper the implemen-
tation of patterns for model simplification by using the Operational Mappings
of QVT is discussed. The QVT features transformation extension and superim-
position of mapping operations play a key role for the presented approach. Even
if these features are defined in the QVT specification [8], only less information
concerning their combined application can be found in the literature. Hence,
the successful application of the approach for the textual SDL editor of the SU-
MoVal framework [10] is used in this paper to illustrate the implementation of

simplification patterns. The transformations within the SU-MoVal framework
are executed by the QVT operational component (QVTo) [12] of Eclipse.

The rest of this paper is structured as follows. The proposed approach and
transformation patterns for model simplification are introduced in section 2.
Related work is discussed in section 3 and a conclusion is given in section 4.

2 Transformation Patterns for Model Simplification

An approach to implement patterns for model simplification with QVT Oper-
ational Mappings (QVT-0O) is presented in this chapter. After the general ap-
proach is discussed, a transformation example is introduced in section 2.2, which
is used to explain the approach more descriptive in subsequent sections. Finally,
the realization of exemplary patterns for model simplification is discussed in
section 2.4.

2.1 General Approach

The presented approach to simplify models by using QVT Operational Map-
pings (QVT-O) rests upon a common endogenous base transformation (Tc¢p)
that is extended by another transformation (Tgp) implementing a particular
simplification pattern.

derived Control flow

"""""""" TCB
transformation TCB trpnsformation TSP

. T main() ain()
instance of !

| extends mapping A::mapA§< —_——

i mapping B::mapB() : B appinj?::mapB(): B,‘

! mapping C::mapC() : C =Z-"

: Mout
Min Tgp Overriding mapping

operation

Fig. 1. Conceptual overview

Derivation of a common base transformation: As shown in part A of
Fig. 2, the required transformation T¢p is derived from a metamodel (MM) and
the input model (Myy) and the output model (MouT) are instances of MM. The
purpose of T¢p is to produce only a one-to-one copy of model Myx and therefore,
a particular mapping operation for each metaclass is contained in T¢g. Even if
a higher-order transformation could be applied to derive T¢p from a metamodel
MM, transformation Tcp is generated with a Model-to-Text (M2T) approach so
that its source code can be partially reused to specify transformation Tgp.

In order to achieve that transformation Tcp makes a copy of My, all ele-
ments of My are mapped to equal elements in Moyr. Hence, Tcg implements
an entire rewrite system that consists of contextual mapping operations that
invoke other mapping operations in a nested manner to map the properties of
an input element.

Realizing a simplification pattern: When a model simplification pat-
tern is implemented by transformation Tgp, the control flow of T¢p has to be
redirected at points where the relevant elements to be simplified occur. Usually,
such points are mapping operations that are defined in the context of the rele-
vant metaclasses. After the mapping operations in T'cp are identified, they have
to be overridden by corresponding mapping operations (see part B of Fig. 2) in
Tgsp, which implement the desired simplification pattern.

2.2 Transformation Example and Required Metaclasses.

In order to make the approach discussed in the following sections more descrip-
tive, a transformation example resting on a metamodel for representing parse-
trees of the concrete syntax (CS) of the Specification and Description Language
(SDL) [9] is used. This example is taken from the SDL-UML Modeling and
Validation framework (SU-MoVal) [10].

Since the concrete syntax of SDL makes use of so-called short hand notations
that have to be transformed to equivalent language constructs, this is considered
to be a good case study for model simplification. In particular, the transforma-
tion example consists of the transformation of a mathematical or logical in-line
operator to a corresponding operation application. For instance, the concrete
syntax expression 1 + 1 is transformed to "+" (1, 1).

ExpressionCS
attribute
+/isConstant : Boolean

BinaryExpressionCS PrimaryCS

JAN

attribute
+leftOperand : ExpressionCS - o
+right(gperand 0 EspressionCS OperationApplicationCS
+operationldentifier : IdentifierCS attribute
+resolvedOperation : String [0..1] +operationidentifier : IdentifierCS
+resolvedOperation : String [0..1]
+actualParameters : ActualParameterCS [0..*]

| OperatorApplicationCS |

Fig. 2. Binary expression metaclass

As shown in Fig. 2, the BinaryExpressionsCS metaclass is a sub-type of
ExpressionCS and it is used to represent mathematical or logical inline opera-

tors (e.g. + operator) within SDL expressions. After application of the transfor-
mations patterns discussed in the subsequent sections, an instance of Binary-
ExpressionCS is transformed to an OperatorApplicationCs.

2.3 Derivation of a Common Base Transformation

The derivation of a transformation from a metamodel by using a Model-to-
Text (M2T) transformation is out of scope of this paper. Hence, the derivation
approach is only discussed on a high-level of abstraction. For instance, the M2T
tool Acceleo [11] is used for the derivation task during the implementation of
SU-MoVal [10].

Transformation Main Part. As shown in the code example below, the re-
quired main operation of Tcp is empty, because the concrete behavior is speci-
fied by a transformation that extends T¢p. Furthermore, the input and output
parameters of T'cp have the same type because Tcp is an endogenous transfor-
mation.

modeltype CS uses ConcreteSyntax ("http://...");
transformation TCB(in inp:CS, out outp:CS)
main() { // Nothing to do here !}

Mapping Operations for Metaclasses. For each metaclass of the example
metamodel CS, a corresponding mapping operation for Tcp is derived. Depend-
ing on the kind of a metaclass (abstract or non-abstract), two different kind
of mapping operations are generated. In addition, the context (self) and the
result type of a mapping operation correspond to the currently processed meta-
class.

For each abstract metaclasses, a disjunctive mapping operation is introduced
consisting of an ordered list of mapping operations for all subclasses of that
metaclass (e.g. ExpressionCS). An important fact is that attributes, if any,
of an abstract metaclass cannot taken into account by a disjunctive mapping
operation. Instead, these attributes are processed by each mapping operation
listed as disjunctive alternative.

mapping CS::ExpressionCS::mapExpressionCS() : CS::ExpressionCS
disjuncts
CS::EqualityExpressionCS: :mapEqualityExpressionCs,
CS::PrimaryCS: :mapPrimaryCs,
CS: :TypeCoercionCS: :mapTypeCoercionCs,
CS: :MonadicExpressionCS: :mapMonadicExpressionCs,
CS::CreateExpressionCS: :mapCreateExpressionCs,
CS::RangeCheckExpressionCS: :mapRangeCheckExpressionCs,
CS::BinaryExpressionCS: :mapBinaryExpressionCS {}

In contrast to abstract metaclasses, all owned and inherited attributes of a
non-abstract metaclass (e.g. BinaryExpressionCS) are processed for the deriva-
tion of the body of a corresponding mapping operation.

mapplngCS :BinaryExpressionCS: :mapBinaryExpressionCS()
: CS::BinaryExpressionCS {

result.resolvedOperation := self.resolvedOperation;

result.operationIdentifier := self.operationIdentifier.map
mapIdentifierCSQ);

result.leftOperand := self.leftOperand.map mapExpressionCS(Q);

result.rightOperand := self.rightOperand.map mapExpressionCS();

result.resolvedType := self.resolvedType;

Processing of Metaclass Attributes. In general, the mapping operation for
a non-abstract metaclass assigns each owned or inherited attribute of an input
object (self) to a corresponding attribute of the result object (result). Since
QVT-0O distinguish between assignments to mono- or multi-valued properties
or variables, this has also to be considered during the processing of attributes.
Hence, a simple assignment (’:=’ operator) is used for the mapping of an at-
tribute with an upper multiplicity of 1. In contrast, attributes with an upper
multiplicity of >1 are assigned with a composite assignment (’+=" operator).

result.myProperty := self.myProperty.map mapMySubclassA();
result.myProperty += self.myProperty->map mapMySubclassA();

The attribute type is another property that is taken into account during the
derivation process. Usually, a type dependent mapping operation is invoked, be-
fore the value is assigned to the output object. This is not the case for attributes
with a primitive (e.g. String) or an enumerated type for which the input value
is just copied to the corresponding attribute of the output object.

result.myProperty := self.myProperty;
result.myProperty += self.myProperty;

Design Principles and Used Features of QVT-0. Apart from the discussed
extension mechanism also the access mechanism of QVT-O could be considered
to access mapping operations of Tcg. However, this mechanism does not support
transformation inheritance so that the transformation control flow cannot be
redirected through superimposition of mapping operations of Tgp.
Furthermore, QVT-O supports the inheritance and the merge of mapping op-
erations. These features where not taken into account for the presented approach,
because they induce a combined execution of all involved mapping operations.
If these features would be used, the mapping rules for a particular metaclass
had to be specified in different mapping operations. Instead, the discussed ap-
proach recommends to process all inherited and owned attributes of a metaclass

within one mapping operation of T¢g. The advantage for the implementation
of transformation patterns is a better maintainability and a lower complexity,
because required mapping rules can be specified within one overriding mapping
operation of Tgp.

Since the inheritance and the merge of mapping operations are not used,
also the QVT-O feature of abstract mapping operations is not required in order
to process abstract metaclasses of MM. Instead, disjunctive mapping operations
are used for this purpose, because they make a fine grained manipulation of the
transformation’s control flow possible.

2.4 Exemplary Transformation Patterns for Model Simplification

Resting on the already introduced approach (see Sec. 2.1), exemplary transfor-
mation patterns for model simplification are discussed in more detail in this
section. For this purpose, the transformation example of section 2.2 is used in
the following paragraphs.

Top-level Simplification. A model can be represented as a tree structure of
nested model elements, which are instances of different metaclasses of a meta-
model. The most simple use case for model simplification is the transforma-
tion of top-level elements only. If this pattern is applied to the transforma-
tion example (see Sec. 2.2), only the top-level instances of BinaryExpressionCS
will be transformed to a corresponding OperatorApplicationCS and nested
BinaryExpressionsCS will be preserved (see example output O; shown in Fig. 3).

| platform:/resource/ConstraintCounUmodels@r platform:/resource/ConstraintCount/model @
4 Statements CS1 4 Statements CS1

4 4 Compound Statement CS 4 <% Compound Statement CS
4 4 Statements CS 24 4 4 Statements CS24
4 <4 Assignment Statement CS 27 4 < Assignment Statement CS 27
< Vanable Identifier CS 29 < Variable Identifier CS 29

4 &_Binary Expression CS 3 4 <& QOperator Application C$ 3>
4 Variable A CS34 <4 Identifier CS "+"
4<% _Binary Expression CS 38 <4 Actual Parameter CS 45

¢ Literal CS 4 < Actual Parameter CS 46
4 Literal CS
4 Identifier CS /" » Litera
4 Identifier C5"+" 4 Literal CS
4 Variable Definition Statement CS 8 <4 Identifier CS /"

4 Vanable Definition Statement CS8

Fig. 3. Example input model and output model 1

In order to realize this pattern for the given transformation example with
QVT, the transformation T¢p is extended by transformation InfixOperation-
ToOperator. Within the main() method of this transformation, the root element

of the model is selected and an appropriate mapping operation of the Tcp trans-
formation is invoked. According to the presented approach, the control flow of
the transformation remains in Tcp, as long as one of its mapping operations
is overridden by another operation specified in the InfixOperationToOperator
transformation.

transformation InfixOperationToOperator
(in input : CS, out output : CS) extends T(CB;
main() {
input.rootObjects() [CS::StatementCS]->map mapStatmentCSQ; }

In order to transform each occurrence of BinaryExpressionsCS, the control
flow within Tcp is redirected at points where associated mapping operations are
invoked. Therefore, the operation mapExpressionCS() is overridden as follows:

mapping CS::ExpressionCS: :mapExpressionCS() : CS::ExpressionCS
disjuncts
CS::EqualityExpression(CS: :mapEqualityExpressionCs,
CS::PrimaryCS: :mapPrimaryCs,
CS: :TypeCoercionCS: :mapTypeCoercionCs,
CS::MonadicExpressionCS: :toOperatorApplication,
CS::CreateExpressionCS: :mapCreateExpressionCs,
CS: :RangeCheckExpressionCS: :mapRangeCheckExpressionCs,
CS::BinaryExpressionCS: : toOperatorApplication {}

The last line (bold printed) of mapExpressionCS() is modified in compari-
son to the overridden operation in T¢g. That is because the control flow shall
be redirected to the toOperatorApplication() operation that implements the
mapping of a BinaryExpressionCS to an OperatorApplicationCs.

mappingCS: :BinaryExpressionCS: : toOperatorApplication()
: CS::OperatorApplicationCS {

result.resolvedType := self.resolvedType;
result.resolvedOperation := self.resolvedOperation;
result.operationIdentifier := self.operationIdentifier;

result.actualParameters := OrderedSet {
object ActualParameterCS { expression :
object ActualParameterCS { expression :

self.leftOperand },
self.rightOperand }};

Since only top-level instances of BinaryExpressionCS shall be transformed
by the toOperatorApplication() operation, all attributes of an input element
are assigned directly to the created output element (without invoking any other
mapping operation).

Recursive Simplification. The objective of the pattern for recursive simpli-
fication is to transform all model elements of a particular kind. This is realized
with a recursive call of the mapping operation, if required. After applying a re-
cursive simplification pattern for the given transformation example, the input
model I (shown in Fig. 3) is transformed to the output model 02 (see Fig. 4).
As expected, all instances of BinaryExpressionCS in the output model 02 are
transformed to instances of OperatorApplicationCS.

In order to implement the recursive transformation pattern for the given
transformation example, a slightly modified variant of the already discussed
InfixOperationToOperator transformation is used. Hence, the toOperator-
Application() mapping operation is modified in a way so that also for nested
elements dedicated mapping operations are invoked instead of copying them.

result.actualParameters := OrderedSet {
object ActualParameterCS { expression :=
self.leftOperand.map mapExpressionCSQ) },
object ActualParameterCS { expression :=
self.rightOperand.map mapExpressionCSQ) } }

s

The additional map operation calls (bold printed) in the code snippet shown
above realize the recursive call to the toOperatorApplication() mapping op-
eration. When one of the mapExpressionCS() operations is invoked, appropri-
ate mapping operations defined in Tcp are processed as long as an instance of
BinaryExpressionCS shall be mapped. If this is the case, the control flow of the
transformation is redirected to the toOperatorApplication() operation once
again.

] platfoum:,’resource/’ConstraintCounL/modeis/O 4 & platform:/resource/ConstraintCount/model @

<4 Statements CS1 a4 4 Statements CS1
4 4 Compound Statement CS 4 4 Compound Statement CS
4 4 Statements CS24 4 4 Statements CS24
4 4 Assignment Statement C5 27 4 4 Assignment Statement CS 27
4 Vanable Identifier CS 29 4 Variable Identifier CS 29
«<E Qpsor ophcion S
4 Identifier 5+ <4 Vanable & S$34

4 Actual Parameter C545 4 & Operator Application CS 32

4 4 Actual Parameter C546 4 Identifier CS /"

4 & Operator Application (538 4 Actual Parameter C545
< Identimier <% Actual Parameter CS46

4 4 Actual Parameter CS47 4 Identifier CS"+"

4 Literal CS <4 Variable Definition Statement CS8
4 4 Actual Parameter CS48

& Literal CS

<4 Variable Definition Statement CS8

Fig. 4. Output models 2 and 3

Simplification of Leaf Elements. The transformation pattern for simplifi-
cation of leaf elements can be considered as opposite of the already presented
top-level simplification pattern. A simplification of leaf elements applied to the
transformation example causes a mapping of leaf BinaryExpressionCS elements
to corresponding OperatorApplicationCS elements, whereas top-level elements
of that kind are only copied to the output model (see output model 03 in Fig. 4).

A modified variant of the InfixOperationToOperator transformation can be
used to implement the simplification of leaf elements. Therefore, the mapBinary-
ExpressionCS() operation, which just makes a copy of the input element, is
added as an additional mapping alternative to the disjunctive mapping operation
mapExpressionCS(). It is important to add mapBinaryExpressionCS() after
toOperationApplication(), because the disjunctive alternatives are processed
in sequential order.

mapping CS::ExpressionCS: :mapExpressionCS() : CS::ExpressionCS
disjuncts

CS::BinaryExpressionCS::toOperatorApplication,
CS::BinaryExpressionCS: :mapBinaryExpressionCS {}

A when clause is added to the toOperatorApplication() operation, be-
cause it shall only be invoked for input elements that have no further nested
BinaryExpressionCS elements. If the condition of the when clause is not ful-
filled, the mapping operation is not invoked.

mappingCS: :BinaryExpressionCS: : toOperatorApplication()
: CS::OperatorApplicationCS
when { self.allSubobjectsOfType
(CS::BinaryExpressionCS)->size() = 0 }

3 Related Work

Many works [2,3, 6] concerning the refinement of endogenous transformations
and the implementation of transformation patterns with the QVT Relational
Language (QVT-R) exist. In addition, the usage of the AtlanMod Transforma-
tion Language (ATL) for this purpose is analysed in [4, 6]. Even if the mentioned
works discuss possible approaches, the analysis of the ATL Transformation Zoo
in [5] comes to the conclusion that transformation superimposition is rarely used
in practice.

In contrast to before mentioned works, the approach presented in this paper
rests on the QVT Operational Mappings (QVT-O) [8], which is an imperative
transformation language and not a relational language as used by the mentioned
works. Furthermore, instead of introducing only a copy pattern for QVT-O trans-
formations, the presented work discuss the refinement of generated copy patterns
towards essential patterns for model simplification.

4 Conclusion

The approach for model simplification by using the QVT Operational Mappings
presented in this paper is not only restricted to the used metamodel of the
textual notation of SU-MoVal [10]. That is because the rules for the derivation
of a common base transformation, which is the starting point for all discussed
simplification patterns, are also applicable to each other kind of metamodel.

In addition, the applicability of the approach is not limited to the patterns
discussed in the section before, because further patterns for simplification can
be realized in a similar manner. As a matter of principle, also other kind of
endogenous model transformations could be implemented in the same manner,
because the area of model simplification is only used as an exemplarily use-case
in order to demonstrate the overall approach. A running transformation example
and further information can be obtained from the SU-MoVal homepage [10].

References

1. Mens T., Van Gorp P.: A Taxonomy of Model Transformation. In: Electronic Notes

in Theoretical Computer Science, vol. 152, pp. 125 — 142. Elsevier, Amsterdam
2006

2. éolds)chmidt T., Wachsmuth G.: Refinement transformation support for QVT Re-
lational transformations. In: 3rd Workshop on Model Driven Software Engineering,
MDSE 2008 (2008)

3. Tacob M-E., Steen M., Heerink L.: Reusable model transformation patterns. En-
terprise Distributed Object Computing Conference Workshops, 2008 12th., pp. 1
— 12. IEEE Press, New York (2008)

4. Tisi M., et. al.: Refining Models with Rule-based Model Transformations. INRIA,
Rennes, France (2011)

5. Kusel A., et. al.: Reality Check for Model Transformation Reuse: The ATL Trans-
formation Zoo Case Study. In: 2nd Workshop on the Analysis of Model Transfor-
mations, AMT@Models’13, pp. 1 — 10. Miami (2013)

6. Wagelaar D., Van Der Straeten R., Deridder D.: Module superimposition: a com-
position technique for rule-based model transformation languages. In: Software &
Systems Modeling, vol. 9, issue 3, pp. 285 — 309, Springer, Heidelberg (2010)

7. Bravenboer M., Kalleberg K. T., Vermaas R., Visser E.: Stratego/XT 0.17. A
language and toolset for program transformation. In: Science of Computer Pro-
gramming, vol. 72, issue 1, pp. 52 — 70, Elsevier (2008)

8. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Version 1.1. OMG Document Number:
formal/2011-01-01. http://www.omg.org/spec/QVT/1.1/PDF/

9. International Telecommunication Union: Recommendation 7.101
(12/2011), Specification and Description Language — Basic SDL-2010.
https://www.itu.int/rec/TREC-Z.101/en

10. SDL-UML Modeling and Validation (SU-MoVal) framework, Open source software,
http://www.su-moval.org/

11. Acceleo Model-to-Text transformation framework, Open source software,
http://www.eclipse.org/acceleo/

12. QVT Operational component of Eclipse, Open source software,
http://projects.eclipse.org/projects/modeling. mmt.qvt-oml

