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Abstract We show how modern proof environments comprising code
generators and re�ection facilities can be used for the e�ective construc-
tion of a tool for OCL. For this end, we de�ne a UML/OCL meta-model in
HOL, a meta-model for Isabelle/HOL in HOL, and a compiling function
between them over the vocabulary of the libraries provided by Feather-
weight OCL. We use the code generator of Isabelle to generate executable
code for the compiler, which is bound to a USE tool-like syntax integrated
in Isabelle/Featherweight OCL. It generates for an arbitrary class model
an object-oriented datatype theory and proves the relevant properties
for casts, type-tests, constructors and selectors automatically.
Keywords: UML, OCL, Formal Semantics, Isabelle/HOL, Re�ection.

1 Introduction

In this paper, we present a radically di�erent approach to design, model, and
implement a tool for UML and OCL. In the conventional approach, developers
use hand-written Java programs complemented by the components generated by
parsing generators [8] and by UML frameworks like OMG's MetaObject Facility
(MOF)[10] or Eclipse Modeling Framework Project (EMF)[9]. In contrast, in
our approach, we use the Isabelle Framework to generate a tool derived from a
formal semantics for (some part of) UML/OCL based on earlier work for Feath-
erweight OCL [3, 4, 6]. While the resulting tool � including user interface,
document generator, code generator, and proof support � cannot compete to
direct implementations such as [1, 12] with respect to speed of code-generation
and completeness of the supported OCL language, our front-end has its value as
a semantically founded reference implementation.

As a formalized theory in Isabelle/HOL, Featherweight OCL provides:

� the algebraic layer that contains the de�nitions of the four-valued logics
(including invalid and null) with two equalities as well as theories for
Integers and Sets,

� the state layer describing state-related operations like allInstances(), and
� the object-oriented data-type layers giving semantics to UML class models
over this, comprising the theory of accessors, type casts and tests.
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In this paper, we target to mechanize the latter. This means that our tool
generates proven theorems that make the properties of object-oriented data-type
theories explicit and which are needed as background-theory for other tools based
on automated deduction striving for semantic compliance with the standard. As
input, our tools takes a class model, which comprises:

1. Classes and class names (written as C1, . . . , Cn), which become types of
data in OCL. Class names declare two projector functions to the set of all
objects in a state: Ci.allInstances() and Ci.allInstances@pre(),

2. an inheritance relation _ < _ on classes and a collection of attributes A
associated to classes,

3. two families of accessors for each attribute a and object X in a class
de�nition (denoted by X. a :: Ci → A and X. a @pre :: Ci → A for
A ∈ {Boolean, Integer, . . . , C1, . . . , Cn}),

4. two families of operation declarations fop for each class,
5. type casts that can change the static type of an object of a class (denoted

by X. oclAsType(Ci) of type Cj → Ci)
6. two dynamic type tests (denoted by X. oclIsTypeOf(Ci) and
X. oclIsKindOf(Ci) ),

7. and last but not least, for each class name Ci, an instance of the overloaded
referential equality (written _

.
= _).

We use the notation e :: τ to say that some expression e has the static type
τ . Note that the phenomenon of dynamic types (�the type of an object at cre-
ation time�) vs. static types (�the type inferred by the type inference in presence
of possibly implicit casts�) is characteristic for statically typed object-oriented
languages such as Java or C++; apart from syntax, the object-oriented data
model presented here is in no way speci�c to UML/OCL. Finally, for each func-
tion induced by the class model rules must be derived treating strictness, null,
de�nedness, etc. . .Moreover, the subtype and inheritance relationship between
objects must be expressed, for example by the rule:

(X :: Ck). oclAsType(Cj). oclAsType(Ck) = X

where X is an object and Ck is a sub-type of Cj (i. e. Ck < Cj). This rule means
that objects can be losslessly cast up and down again; this property is the key
for the implementation of generic classes in Java and should also hold in UML.

While in [4] we described the construction of object-oriented data-types for
UML class models conceptually and demonstrated it by an example containing
de�nitions and rules proven by hand, we go in the present work one step further:
We e�ectivelyconstruct an Isabelle plug-in for UML class models, that parses
them in concrete input syntax (inspired by the USE tool) and compiles them to
the necessary de�nitions, proofs, and infrastructure for execution and animation.
As a by-product, UML class models can be directly edited inside Isabelle theory
�les, thus inheriting the Isabelle infrastructure including IDE, code generators,
document generators and � last but not least � the proof environment for
modeling and reasoning.



2 Background: Isabelle and UML/OCL

2.1 Isabelle: A Guided Tour through the Framework

In this paper, we want to emphasize the use of Isabelle as a generic techni-
cal framework. As such, it o�ers the possibility to �drive� the core-engine by
user-programmed Standard ML (SML) programs in a logically safe way; a sys-
tem con�guration (�session�) can thus contain logical de�nitions, proofs, text-
documentation as well as code for tactic support as well as system extensions.

In order to demonstrate some relevant system features, we present a screen-
shot in Fig. 1. The left window shows a session based on Isabelle/HOL that con-
sists of the only �le Scratch.thy. One recognizes the header including theory
and the �imports Main� clause (�Main� is a synonym for Isabelle/HOL) and
then a sequence of subsections � called commands � introduced by a blue key-
word: datatype, fun,declare,ML,find_theorems, thm. . . User-interaction to Is-
abelle is document oriented, i. e. each �le belonging to a session is annotated
by the prover while editing it as usual by modern IDEs. This annotation can
consist, for example, in:

� colors (here: the underlying white indicates that Isabelle checked these com-
mands and executed them without error),

� types (to be explored by tool-tips via the hovering-gesture),
� or values associated to computations inside these commands (displayed in
the �Output� window when pointing to them; see Fig. 1 (right-below)).

Isabelle sessions can be extended by user-de�ned commands, a feature we use
for de�ning Term, or for our own textual class model syntax in Fig. 1 (right):

Fig. 1. Screenshot of Isabelle/jEdit: Standard HOL (left) and UML/OCL (right)



In the following, we describe the e�ect of commands in more detail (an in-
depth treatment can be found in the implementation manual); the resulting class
model compiler will be an application of the techniques demonstrated here.

The datatype command. The easiest way to understand this command is
to view it as a kind of macro (albeit its syntax is inspired by functional pro-
gramming languages) for the type declaration of LIST and a number of con-
stant de�nitions and theorems. Some of these de�nitions construct a model
of the constructors and derive its properties such as NIL 6= CONS n mm,
CONS n mm = CONS n′ mm′ → n = n′ and the induction rule for the type LIST.
Thus, this command constructs the theory of a freely generated data-type.

The fun command. Similarly, the fun command allows for the declaration
of recursive functions with pattern-matching. Again a conservative construction
using a recursor is used; the derivation of the equations height NIL = 0 and
height(CONS n m) = Suc(height m) is done automatically involving a termi-
nation proof. This involved construction assures logical safeness: in general, just
adding axioms for recursive equations causes inconsistency for non-terminating
functions. The resulting equations can now be used in the Isabelle simpli�er.

The ML command. Isabelle itself is built on top of an SML execution en-
vironment, accessible with the ML command: ML{∗3 + 4∗} compiles �3 + 4�,
executes it, and displays the result in the output window. However, when so-
called code-antiquotations such as @{code NIL} are used, the process is more in-
volved because SML antiquotations implicitly refer to Isabelle values. Concretely,
there is an additional processing step, resolving the needed Isabelle dependen-
cies before the SML code is actually compiled. declare[[ML_trace]] shows this
resolving step (varying depending on the antiquoted values). In Fig. 1, the two
antiquotations NIL and height imply the following generated SML code:

structure Isabelle =

struct

datatype nat = Zero_nat | Suc of nat ;

datatype list = NIL | CONS of nat * list ;

fun height NIL = Zero_nat

| height (CONS (x, t)) = Suc (height t) ;

end (*struct Generated_Code*)

This SML code re�ects equivalently the one of Isabelle side (the datatype and
fun declarations). During the compilation, antiquotations are then replaced by:

val NIL = Isabelle.NIL

val height = Isabelle.height

which makes �height NIL� e�ciently executable in the context of the compiled
code � no symbolic representation is any longer involved.

De�ning Isar Syntax. We are adding a new command Term in Fig. 1 with
�keywords Term�; the Isar -component of Isabelle handling the �outer syntax�
is in fact recon�gurable. Generally, any command from the Isabelle core APIs is
accessible within the ML scope. So it is as well possible to implement Term for
simulating datatype, fun or any existing Isabelle command.



In a nutshell, a combination of the techniques shown in this section will be
used to construct our compiler in HOL, compile it to SML, and bind the compiled
code to a USE tool-like syntax inside Isabelle/Isar.

2.2 UML/OCL: A Running Example

Client BankAccount

Savings Current

bank

11

owner accounts

1..*1..*

1..*clients

accounts

1..*banks

max : Real overdraft : Real

name : Stringid : Integer

balance : Real

clientname : String

address : String

age : Integer

Fig. 2. A simple class model capturing a bank account

Let us consider here a small example of a UML class model together with its
class invariants in OCL. The model of Figure 2 describes a set of clients owning
bank accounts in di�erent banks. Each account is either a current account or
a savings account, and belongs to exactly one bank and one client. A client
cannot have more than one current account in a given bank, but as many savings
accounts as he likes. If a client is less than 25, his authorised overdraft is 250e
on every of his current accounts, otherwise no overdraft is allowed (it is set to 0).
Moreover, the balance of a savings account must be between 0 and max. Finally,
a consistency constraint has to be imposed: a client owning an account that
belongs to a given bank must be a client of this bank.

3 Method: Tool-Construction by Re�ection

Although it is perfectly feasible to program the compiler for class models to a
corresponding datatype theory in SML , we choose to take even more advantage
of the Isabelle framework instead. By using Isabelle/HOL as �implementation
language� itself, we pro�t from the general proof-editing facilities as well as the
possibility to prove properties over the compiler. For the moment, this covers
only termination properties of the compiling functions, but the technique can in
principle be used to prove complex meta-theoretic properties such as �if the class
model is well-formed, the generated code will be type-correct wrt. HOL types�.

The overall structure of the class-model compiler of Featherweight OCL is
illustrated in Fig. 3. In the following, we will describe its components.

3.1 UML/OCL Meta-Model

Overall, the compiler has about 6000 lines of code - so we restrict ourselves
to critical code-samples in our presentation. As short example, here is how we



Isabelle
Meta-Model 

(in HOL)

Model-transf
(in HOL)

UML/OCL
Meta-Model 

(in HOL)

SML code

Isabelle
.thy

Isabelle/
F-UML-OCL

definitions
and proofs

export

Isar-Binding
(in SML)

Fig. 3. Overview of the UML/OCL data-model compiler

de�ne the Isabelle/HOL datatype behind the abstract syntax tree of the USE

language, that we call the UML/OCL meta-model:

datatype uml_class = UmlClass

string (* name of the class *)
( string (* name *) ∗ uml_ty ) list (* attribute *)
( string (* name *) ∗ uml_operation ) list (* contract *)
( string (* name *) ∗ string ) list (* invariant *)

string (* link to superclasses *)

In this meta-model, a sample portion of our example Fig. 2 reads as follows:

[ UmlClass �Client� [ ( �clientname� ,UmlType String),
( �address� ,UmlType String) ] [] [] �OclAny�,

UmlClass �Bank� [ ( �name� ,UmlType String) ] [] [] �OclAny�,
[...] ]

The compilation proceeds by elementary well-formedness checks and through
a semantic elaboration. Finally, de�nitions for casts from Client to OclAny

were produced, for example, de�ned in terms of the common data-universe for
the given class model, together with proofs for cast-up-cast-down properties as
mentioned before. For a complete list of de�nitions and lemmas, the reader is
referred to [4].

3.2 Isabelle Meta-Model

While our meta model for Isabelle/HOL should be generic enough for represent-
ing all the concepts occurring in [4], we used a convenient abstraction wrt. to
the real meta model de�ned in SML. For the moment, our simplistic abstraction
is su�ciently expressive for modeling UML/OCL class models, although a long
term goal would be the creation of symbolic tests generation procedures. Here
is the Isabelle/HOL meta model describing Isabelle datatypes:

datatype hol_datatype =

Datatype string (* name *)
( string (* name *)
∗ hol_simplety list (* arguments *) ) list (* constructors *)



The previous meta model belongs to the following more general one, while a few
is presented, there is actually an abundance of constructors:

datatype hol_theory = Theory_datatype hol_datatype
| Theory_definition hol_definition
| Theory_lemma hol_lemma
| [...]

3.3 Model-Transformation and Bindings to Isabelle/jEdit

The transformation from UML-Meta to Isabelle-Meta is purely de�ned in HOL

(no tricks, no axioms, no SML), following linearly the structure of [4]. By apply-
ing this generic transformation to the bank example, we obtain automatically
the de�nition of the object universe of [3] instantiated for the bank example:
Fig. 4 (top) shows a simple fragment of datatypes (there are also proofs).

As described in Sec. 2.1, we now de�ne a textual format for the UML/OCL
meta-model and bind the generated (�re�ected�) compiler to it. Conceptually,
it is similar to the Term command, only that UML data-models are simulated
with the raw implementation of the datatype and lemma commands, instead of
printing a term. We were inspired by the syntax of the USE tool[7] as entry point
in Isabelle/jEdit. Finally, the interactive editing of the bank example leads to
2385 de�nitions and derived theorems, the source code is in Fig. 4 (bottom).

4 An Empirical Evaluation

This section gives some experimental results on run-time executions of the gen-
erated compiler. We study the following scenario: we build a sample of class
models, where in each class model, every class inherits explicitly from one class,
except OclAny standing as the only root: thus we have a tree where each class in-
herits implicitly from all classes present in the path of ancestors going to OclAny.
For example, Current is an explicit subclass of Account, while Current also im-
plicitly inherits from OclAny. Attributes and associations between classes are
not considered here; as a shorthand, the �subclass� word alone will designate an
explicit subclass.

We present Fig. 5 a table reporting the number of theorems associated to each
tested class model. Numbers of generated theorems are indicated by powers of
1000 (so Kilo and Mega), and those in italic are an estimation based on the size of
the generated �le. The class models we are measuring can be identi�ed uniquely
by pairs (X,Y ) whereX is the exact number of subclasses of every class having at
least one subclass; and Y is the depth of the inheritance tree (without OclAny, so
the minimum is one for a tree containing at least OclAny with another element).
Class-models appear sorted in the table according to the following priority: 1) by
row using the total number of classes in the class model, c represents the cardinal
without OclAny; then 2) by column using the depth of the inheritance tree.
For instance, class models in the row [(1, 30), (2, 4), (5, 2), (30, 1)] are sorted in
decreasing order by depth, all having 31 classes (c = 30, OclAny counts for 1).

Since the generated UML/OCL theorems serve for solving (the most automat-
ically) UML/OCL formulas manually entered by the user, our goal is to continue



datatype typeSavings = mkSavings oid int⊥ real⊥
datatype typeoidSavings = mkoidSavings typeSavings real⊥
datatype typeAccount = mkAccount_Savings typeoidSavings

| mkAccount_Checks typeoidChecks

| mkAccount oid
datatype typeoidAccount = mkoidAccount typeAccount int⊥real⊥
datatype typeOclAny = mkOclAny_Client typeoidClient

| mkOclAny_Bank typeoidBank

| mkOclAny_Account typeoidAccount

| mkOclAny_Savings typeoidSavings

| mkOclAny_Checks typeoidChecks

| mkOclAny oid
datatype typeoidOclAny = mkoidOclAny typeOclAny

Class Bank

Attributes

name : String

End

Class Client

Attributes

clientname : String

address : String

age : Integer

End

Class Account

Attributes

id : Integer

balance : Real

End

Class Savings < Account

Attributes

max : Real

End

Class Current < Account

Attributes

overdraft : Real

End

Association clients

Between Bank [1 .. *]

Role banks

Client [1 .. *]

Role clients End

Association accounts

Between Account [1 .. *]

Role accounts

Client [1]

Role owner End

Association bankaccounts

Between Account [1 .. *]

Role accounts

Bank [1]

Role bank End

Context c: Savings

Inv A : `0 < (c .max)`

Inv B : `c .balance <= (c .max) and 0 <= (c .balance)`

Context c: Current

Inv A : `25 < (c .owner .age) implies (c .overdraft = 0)`

Inv B : `c .owner .age <= 25 implies (c .overdraft = -250)`

Context c: Client

Inv A : `c .accounts ->collect(banks) = c .banks `

Fig. 4. Modeling the bank account in UML/OCL with Isabelle/jEdit



c depth c depth 5 depth 4 depth 3 depth 2 depth 1

12 (1, c) 14K (3, 2) 12K (c, 1) 11K

14 (1, c) 20K (2, 3) 17K (c, 1) 16K

20 (1, c) 52K (4, 2) 39K (c, 1) 39K

30 (1, c) 155K (2, 4) 121K (5, 2) 115K (c, 1) 115K
39 (1, c) 330K (3, 3) 240K (c, 1) 240K
42 (1, c) 409K (6, 2) 288K (c, 1) 294K
56 (1, c) 964K (7, 2) 649K (c, 1) 661K
62 (1, c) 1.3M (2, 5) 907K (c, 1) 882K
72 (1, c) 2M (8, 2) 1.3M (c, 1) 1.3M
84 (1, c) 3.3M (4, 3) 2.1M (c, 1) 2.1M
90 (1, c) 4.2M (9, 2) 2.5M (c, 1) 2.5M

Fig. 5. Number of theorems generated

to generate new UML/OCL theorems, while keeping an objective of shortening
the size of proofs whenever applicable. In a class model with only OclAny as class,
we obtain a theory comprising 182 theorems proven automatically; by adding
another class, we reach 384 theorems.

Besides the constraint on the generation of a high number of theorems, time
or space involved for performing the generation is obviously a criteria to consider
as enhancement: we need at least 9G of RAMmemory for generating in 1 min one
of the three examples of c = 56 classes. For c = 90, 28G becomes mandatory to
be executed in 7 min; however, there are substantial potentials for optimization.

5 Conclusion

We have shown a method to construct semantic-based tools for textual domain-
speci�c languages (DSLs) based on UML and OCL. Based on Isabelle/HOL the-
ories that capture the semantic essence of a DSL (in our case: class-models plus
OCL invariants and contracts), we describe model-transformation from a for-
mal UML meta-model to an Isabelle meta-model that generates the necessary
properties automatically. Compared to conventional implementations of code-
generators for OCL, the resulting tool is clearly not competitive in terms of
compilation size of models, essentially because each theorem is complemented
with a proof of a certain size. On the other hand our tool is unique that it actu-
ally generates a large number of theorems resulting from class-models which are
necessary for symbolic execution and UML/OCL interactive proving. Moreover,
our tool � for which we still see a large potential of optimization � can serve
as reference environment for the UML/OCL language.

Related Work. The idea to use SML for supporting data-type theories is in
itself very old and deeply linked from the very beginning with theorem proving
environments such as Edinburgh-LCF, HOL4, HOL-light, Isabelle and Coq. The
application to object-oriented data-type theories is also not new � earlier works
in this line are [11], for example. In contrast to [5], we applied these techniques
to UML under closed-world assumption for a standard-conform 4-valued logics
for OCL, which is seen as the semantic framework for DSL's. This is particularly
important and challenging since heterogenous system speci�cations need to be
combined in a seamless way, and since semantically correct tools have to be
developed for these language combinations.



Future Work. It is our ultimate goal to develop the technology up to the point
that it can be used for automated test-generation following the lines of [2]. We
expect that the approach can be applied to textually presented sequence models,
state-machines or MARTE-pro�les.
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