
logo

A Proposal For OCL λ-Expressions

Tony Clark

Middlesex University, UK

September 29, 2014

Tony Clark A Proposal For OCL λ-Expressions



logo

The Proposal

OCL lacks abstraction mechanisms: e.g. define a sort
where the predicate is an argument.
OCL lacks modularity: local functions.
OCL has arbitrary iteration expressions: why not foldr and
foldl?
Many collection functions can be defined functionally.
Complex queries and aggregations can be long-winded.
Can build libraries of functions.

Proposal: anonymous functions as sub-type of OCLExpression,
recursive let, function-types, addition of functions to classes
and data types, de-sugar loop expressions.

Tony Clark A Proposal For OCL λ-Expressions



logo

Examples

Define anonymous functions:
let rec add = fun(x:Integer,y:Integer):Integer x + y in add(10,20)

can be sugared:
let add(x:Integer,y:Integer):Integer = x + y in add(10,20)

could be recursive:
let rec size(s:Sequence(T)):Integer =

if s->isEmpty then 0 else 1 + size(s->rest())
in size(Seq{1,2,3,4,5})

can be added to types:
context Sequence(T)::size():Integer =

if self->isEmpty then 0 else 1 + s->rest()->size()

explains iterators:
S->collect(x:T | p(x)) becomes S->collect(fun(x:T):Boolean p(x))
context Sequence(T)::collect(q:(T)->Boolean):Sequence(T) =

let s:Sequence(T) = self->rest()->collect(q)
in if q(self->head()) then s->prepend(self->head)

then self->first())
else s

Tony Clark A Proposal For OCL λ-Expressions


