
EUROPEAN COMMISSION
SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2011-C
Grant agreement no.: 308830

Deliverable D2.1

Progress report for WP2: Architecture-driven decomposition

Project acronym ADVENT

Project title Architecture-driven verification of systems software

Funding scheme FP7 FET Young Explorers

Scientific coordinator Dr. Alexey Gotsman, IMDEA Software Institute,
Alexey.Gotsman@imdea.org, +34 911 01 22 02

1 Summary

This work package has been concerned with developing techniques for decomposing the veri-
fication of systems software into that of its constituent components. We have considered this
problem in several subdomains, developing techniques for separating the verification of:

• concurrent libraries from that of their clients in the presence of realistic interactions be-
tween the two [LMCS, ICALP’14];

• transactional memory implementations from that of programs using them [PODC’13,
Draft];

• eventually consistent store implementations from that of programs storing data in them
[POPL’14, TR];

• schedulers in preemptive operating system kernels from that of preemptable code [JFP].

2 Shared-Memory Concurrent Libraries [LMCS, ICALP’14]

The simplest way of structuring software is to implement a certain functionality as a library,
which encapsulates the corresponding code and data. In systems software, key libraries are
usually concurrent. Correspondingly, in this work package we have investigated methods of
decomposing reasoning about programs with concurrent libraries into that about libraries and
their clients considered in isolation. Correctness of concurrent libraries is usually stated using
the notion of linearizability [7], which fixes a correspondence between a concrete library and a
simpler abstract one, serving as its specification. Linearizability can be used for architecture-
driven verification, since it satisfies the property of observational refinement: the behaviours
of any client using the concrete library are contained in the behaviours of the client using the
abstract one. Hence, while verifying a client of a concurrent library, we can soundly replace the
library by its specification, thus simplifying the client verification. However, linearizability has
so far only been defined in idealistic settings, assuming an almost complete isolation between
the library and the client. We have proposed correctness conditions for concurrent libraries
accounting for various ways in which they interact with their clients in systems software.

Linearizability with ownership transfer [LMCS]. Classical linearizability assumes a com-
plete isolation between a library and its client, with interactions limited to passing values of a
given data type as parameters or return values of library methods. This notion is not appro-
priate for low-level heap-manipulating languages, such as C/C++. There the library and the
client run in a shared address space; thus, to prove the whole program correct, we need to verify
that one of them does not corrupt the data structures used by the other. Program logics, such
as separation logic [8], usually achieve this using the concept of ownership of data structures
by a program component: the right to access a data structure is given only to a particular
component. When verifying realistic programs, this ownership of data structures cannot be
assigned statically; rather, it should be transferred between the client and the library at calls to
and returns from the latter. Such interactions also exist in high-level languages providing basic
memory protection, such as Java. For an example, a memory allocator accessible concurrently
to multiple threads can be thought of as owning the blocks of memory on its free-list. Having
allocated a block, a thread gets its exclusive ownership, which allows accessing it without inter-
ference from the other threads. When the thread frees the block, its ownership is returned to
the allocator.

We have generalised linearizability to a setting where a library and its client execute in a
shared address space, and boundaries between their data structures can change via ownership
transfers. Linearizability is usually defined in terms of histories, which are sequences of calls to

and returns from a library in a given program execution, recording parameters and return values
passed. To handle ownership transfer, histories also have to include descriptions of memory areas
transferred. Furthermore, we should only consider balanced histories that repect the notion of
ownership in a certain sense; e.g., a client should not transfer a piece of memory to the library
that the latter already owns.

We have established that the proposed notion of linearizability implies observational refine-
ment. The need to consider ownership transfer makes the proof of this fact highly non-trivial.
This is because proving it requires us to convert a computation with a history produced by the
concrete library into a computation with a history produced by the abstract one, which requires
moving calls and returns to different points in the computation. In the setting without owner-
ship transfer, these actions are thread-local and can be moved easily; however, once they involve
ownership transfer, they become global and the justification of their moves becomes subtle, in
particular, relying on the fact that the histories involved are balanced.

To avoid having to prove the new notion of linearizability from scratch for libraries that do
not access some of the data structures transferred to them, such as concurrent containers, we
also proposed a frame rule for linearizability. It ensures the linearizability of such libraries with
respect to a specification with ownership transfer given their linearizability with respect to a
specification without one.

The attached paper on the subject [LMCS] is a jounal version of a paper that appeared in
CONCUR’12. It includes an extended presentation, full proofs and additional technical results.

Parameterised linearizability [ICALP’14]. Many concurrent libraries [5, 6, 9] are param-
eterised, meaning that they implement generic algorithms that take another library as a param-
eter and use it to implement more complex functionality. Reasoning about the correctness of
parameterised libraries is challenging, as it requires considering all possible libraries that they
can take as parameters. The classical linearizability is inapplicable to parameterised libraries,
as it assumes that all of the library implementation is given. We have proposed a notion of
parameterised linearizability that lifts this limitation. The key idea is to take into account not
only interactions of a library with its client, but also with its parameter library, with the two
types of interactions being subject to different conditions.

A challenge we had to deal with while generalising linearizability in this way is that parame-
terised libraries are often correct only under some assumptions about the context in which they
are used. Thus, a parameterised library may assume that the library it takes as a parameter
is encapsulated, meaning that clients cannot call its methods directly. A parameterised library
may also accept as a parameter only libraries satisfying certain properties. For this reason, we
actually proposed three notions of parameterised linearizability, appropriate for different situa-
tions: a general one, which does not make any assumptions about the client or the parameter
library, a notion appropriate for the case when the parameter library is encapsulated, and up-to
linearizability, which allows making assumptions about the parameter library. These notions
differ in subtle ways: we find that there is a trade-off between the assumptions that parame-
terised libraries make about their environment and the conditions that a notion of linearizability
has to impose on different types of interactions with it.

We have proved that the proposed notions of parameterised linearizability are contextual, i.e.,
closed under parameter instantiation. We also proved that parameterised linearizability is com-
positional: if several non-interacting libraries are linearizable, so is their composition. Finally,
we showed that parameterised linearizability implies observational refinement. All these results
allow modularising the reasoning about concurrent programs using parameterised libraries: con-
textuality and compositionality break the reasoning about complex parameterised libraries into
that about individual libraries from which they are constructed; observational refinement then
lifts this to complete programs, including clients.

To illustrate the applicability of our results, we proved the up-to linearizability of flat com-

bining [5], a generic algorithm for converting hard-to-parallelise sequential data structures into
concurrent ones. As part of WP5 we have also proposed a logic that allows reasoning about pa-
rameterised libraries, which complements the results in this work package; see the corresponding
deliverable.

3 Transactional Memory [PODC’13, Draft]

Transactional memory (TM) is a component that eases the task of writing concurrent applica-
tions by letting the programmer designate certain code blocks as atomic. TM allows developing a
program and reasoning about its correctness as if each atomic block executed as a transaction—
in one step and without interleaving with others—even though in reality the blocks can be
executed concurrently.

The common approach to stating the correctness of TM implementations is through a con-
sistency condition that restricts the possible TM executions. The main subtlety of formulating
such a condition is the need to provide guarantees on the state of transactional objects observed
by live transactions, i.e., those that have not yet committed or aborted. Because live trans-
actions can always be aborted, one might think it unnecessary to provide any guarantees for
them, as in fact done by common database consistency conditions. However, in the setting of
transactional memory, this is unsatisfactory, since a live transaction that sees inconsistent data
can commit a run-time fault, such as division by zero.

The question of which TM consistency condition to use is far from settled, with several
candidates having been proposed. Furthermore, all such conditions have so far been given
from the TM’s point of view and have not been connected to the semantics of a programming
language. As a consequence, it was not clear which of them provide the programmer with
behaviors that correspond to the intuitive notion of atomic blocks, and which of them puts the
minimal restrictions on TM implementations needed to achieve this.

We have bridged this gap by formalizing the intuitive expectations of a programmer as
observational refinement between TM implementations [PODC’13], similarly to how we did
this for concurrent libraries: a concrete TM observationally refines the abstract one if every
behavior a user can observe of a program linked with the concrete TM can also be observed
when the program is linked with the abstract TM instead. This allows the programmer to reason
about the behavior of the program using the intuitive semantics formalized by the abstract
TM; observational refinement implies that the conclusions will carry over to the case when the
program uses the concrete TM. From the verification perspective, this allows us to prove the
correctness of a TM separately from programs using it.

We have furthemore established which TM consistency conditions coincide with observational
refinement for different choices of the programming language. Namely, we have showed that a
variant of the opacity condition [4] coincides with observational refinement for a programming
language in which local variables modified by a transaction are not rolled back upon an abort
(e.g., Scala STM [10]) [PODC’13]. If the local variables are rolled back (as is done in most
languages), then a variant of transactional memory specification (TMS) [2], which is weaker
than opacity, coincides with observational refinement [Draft]. This formulates precise conditions
that we need to discharge of the TM implementation and the program using it when verifying
the whole system.

4 Eventually Consistent Replicated Stores [POPL’14, TR]

Our investigations have not been limited to shared-memory systems software, but also encom-
passed certain classes of software for distributed systems. Namely, we have considered replicated
stores, which allow multiple clients to issue operations on shared data on a number of replicas,
communicating changes to each other via message passing. Such stores are used in large-scale

Internet services, which geo-replicate data, placing its replicas in geographically distinct loca-
tions, and in mobile devices, which store replicas locally to support offline use. One benefit
of such architectures is that the replicas remain locally available to clients even when network
connections fail. Unfortunately, the famous CAP theorem [3] shows that such high Availability
and tolerance to network Partitions are incompatible with strong Consistency, i.e., the illusion
of a single centralized replica handling all operations. For this reason, modern replicated stores
often provide weaker forms of consistency, commonly dubbed eventual consistency. ‘Eventual’
usually refers to the guarantee that if clients stop issuing update requests, then the replicas will
eventually reach a consistent state.

Unfortunately, the semantics of eventually consistent stores is poorly understood: the very
term eventual consistency is a catch-all buzzword, and different stores claiming to be eventually
consistent actually provide subtly different guarantees. One subtlety of their semantics is that
different eventually consistent stores exhibit different degrees of deviation from strong consis-
tency (this is similar to weak memory models; see below). Another subtlety is that, in replicated
stores, clients can concurrently issue conflicting operations on the same data item at different
replicas. For example, two users connected to replicas with different views of the shopping cart
can also add and concurrently remove the same product. In such situations the store resolve
conflicts consistently by means of special procedures encapsulated into replicated data types,
which implement replicated objects such as registers, counters, sets or lists with various conflict
resolution policies. For example, the observed-remove set processes concurrent operations trying
to add and remove the same element so that an add always wins, an outcome that may be
appropriate for a shopping cart.

The absence of precise specifications for eventually consistent stores makes it impossible to
ignore their internals when verifying their clients. To address this problem, we have proposed a
framework for formally defining the semantics of an eventually consistent store using:

• replicated data type specifications, determining the conflict resolution policies used by the
store; and

• consistency axioms, constraining the level of anomalous behaviour exhibited by the store.

Replicated data type specifications specify the semantics of replicated objects declaratively,
like abstract data types. This is achieved by defining the result of a data type operation not
by a function of states, but of operation contexts—sets of events affecting the result of the
operation, together with some relationships between them. We showed that our specifications are
sufficiently flexible to handle data types representing a variety of conflict-resolution strategies:
last-write-wins register, counter, multi-value register and observed-remove set.

Consistency axioms are able to define a variety of consistency models used in existing repli-
cated stores, including a weak form of eventual consistency, session guarantees and different
kinds of causal consistency. Furthermore, we found that, when specialized to the data type of
last-writer-win register, these specifications were very close to weak memory models provided by
modern processors and programming lanugages and, in particular, the one in the 2011 C/C++
standard [1]. Reasoning on weak memory models is studied in WP3, and the connection that
we established suggests possible synergies between the two domains.

We attach the POPL’14 paper on the subject that describes the proposed specification frame-
work. The part relevant to this deliverable consists of Sections 1-4 and 7-9. In the POPL’14
paper we also developed techniques for proving correctness of replicated data type implementa-
tions with respect to our specifications. This part of the paper is covered in the deliverable for
WP5.

We have also made forrays into specifying the semantics of advanced features provided by
eventually consistent stores, such as mixtures of different consistency levels and transactions. As
part of this effort, we also justified our consistency axioms by proving that they are validated by

an example abstract implementation, based on algorithms used in eventually consistent stores.
We attach a preliminary technical report on this effort [TR].

5 Preemptive OS Kernels [JFP]

Many interactions between parts of systems software do not fit into the standard paradigm of
libraries or objects calling methods or sending messages to each other. Rather, one component
may provide the illusion to the rest of the system of running on a higher-level machine, with the
system organised into layers of such virtual machines. A prominent example of such a component
is an operating system (OS) scheduler, which virtualises the computer into an abstract machine
where every process has a dedicated CPU. We have proposed methods for decomposing the
verification of OS kernels into verifying the scheduler and the rest of the kernel separately.

This is nontrivial since most major OS kernels are designed to run with multiple CPUs and
are preemptive: it is possible for a process running in the kernel mode to get descheduled. As a
consequence, the correctness of the scheduler is interdependent with the correctness of the rest of
the kernel. This is because, when reasoning about a system call implementation in a preemptive
kernel, we have to consider the possibility of context-switch code getting executed at almost
every program point. Upon a context switch, the state of the system call will be stored in kernel
data structures and subsequently loaded for execution again, possibly on a different CPU. A
bug in the context switch code can load an incorrect state of the system call implementation
upon a context switch, and a bug in the system call can corrupt the scheduler’s data structures.

We have proposed a logic, based on separation logic [8], that is able to decompose the ver-
ification of safety properties of preemptive OS code into verifying preemptable code and the
scheduler separately. This is the first logic that can achieve this in the presence of interdepen-
dencies between the scheduler and the kernel typical for mainstream OS kernels, such as those
of Linux, FreeBSD and Mac OS X. The modularity of the logic is reflected in the structure of
its proof system, which is partitioned into high-level and low-level parts. The high-level proof
system verifies preemptable code under the illusion of an abstract machine where every process
has its own virtual CPU—the control moves from one program point in the process code to
the next without changing its state. This illusion is justified by verifying the scheduler code
separately from the kernel in the low-level proof system.

We have also proposed a novel way of proving soundness of such logics: proofs in neither
of the two proof systems comprising the logic are interpreted with respect to any semantics
alone. Instead, our soundness statement interprets a proof of the kernel in the high-level system
and a proof of the scheduler in the low-level one together with respect to the semantics of the
concrete machine. Such a form of soundness statement allows us to cope with complex ownership
transfers between the scheduler and the kernel, which would be difficult to accommodate had
we tried to give meaning to proofs of the scheduler and the kernel separately.

Even though a scheduler is supposed to provide an illusion of running on a dedicated virtual
CPU to every process, in practice, some features available to the kernel code can break through
this abstraction: e.g., a process can disable preemption and become aware of the physical CPU
on which it is currently executing. For example, some OS kernels use this to implement per-CPU
data structures—arrays indexed by CPU identifiers such that a process can only access an entry
in an array when it runs on the corresponding CPU. We have demonstrated that our approach
can deal with such implementation exposures by extending the high-level proof system for the
kernel code with axioms that allow reasoning about per-CPU data structures.

The attached paper on the subject [JFP] is a jounal version of a paper that appeared in
ICFP’11. It includes an extended presentation, full proofs and additional technical results,
including the treatment of per-CPU data structures.

References

[1] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency.
In POPL, 2011.

[2] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and
verifying transactional memory. Formal Aspects of Computing, 25(5), 2013.

[3] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2), 2002.

[4] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP,
2008.

[5] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In SPAA, 2010.

[6] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent
transactional objects. In PPOPP, 2008.

[7] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3), 1990.

[8] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
2002.

[9] C. Russo. The Joins concurrency library. In PADL, 2007.

[10] Scala STM Expert Group. Scala STM quick start guide. http://nbronson.github.io/scala-
stm/quick start.html.

List of Attached Papers

[LMCS] Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer. Logical
Methods in Computer Science, 9(3:12).

[ICALP’14] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Parameterised Linearis-
ability. ICALP’14: International Colloquium on Automata, Languages, and Programming,
Copenhagen, Denmark. To appear.

[PODC’13] Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. A program-
ming language perspective on transactional memory consistency. PODC’13: Symposium
on Principles of Distributed Computing, Montreal, Canada, pages 309-318.

[Draft] Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. Safety of Live
Transactions in Transactional Memory: TMS is Necessary and Sufficient.

[POPL’14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: specification, verification, optimality. POPL’14: Symposium on
Principles of Programming Languages, San Diego, CA, USA, pages 271-284.

[TR] Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. Understanding eventual
consistency, Microsoft Research Technical Report MSR-TR-2013-39.

[JFP] Alexey Gotsman and Hongseok Yang. Modular verification of preemptive OS kernels.
Journal of Functional Programming, 23(4):452-514.

Logical Methods in Computer Science
Vol. 9(3:12)2013, pp. 1–47
www.lmcs-online.org

Submitted Feb. 15, 2013
Published Sep. 9, 2013

LINEARIZABILITY WITH OWNERSHIP TRANSFER

ALEXEY GOTSMAN a AND HONGSEOK YANG b

a IMDEA Software Institute, Madrid, Spain
e-mail address: Alexey.Gotsman@imdea.org

b University of Oxford, Oxford, UK
e-mail address: Hongseok.Yang@cs.ox.ac.uk

Abstract. Linearizability is a commonly accepted notion of correctness for libraries of
concurrent algorithms. Unfortunately, it assumes a complete isolation between a library
and its client, with interactions limited to passing values of a given data type. This is
inappropriate for common programming languages, where libraries and their clients can
communicate via the heap, transferring the ownership of data structures, and can even
run in a shared address space without any memory protection.

In this paper, we present the first definition of linearizability that lifts this limitation
and establish an Abstraction Theorem: while proving a property of a client of a concurrent
library, we can soundly replace the library by its abstract implementation related to the
original one by our generalisation of linearizability. This allows abstracting from the
details of the library implementation while reasoning about the client. We also prove
that linearizability with ownership transfer can be derived from the classical one if the
library does not access some of data structures transferred to it by the client.

1. Introduction

The architecture of concurrent software usually exhibits some forms of modularity. For
example, concurrent algorithms are encapsulated in libraries and complex algorithms are
often constructed using libraries of simpler ones. This lets developers benefit from ready-
made libraries of concurrency patterns and high-performance concurrent data structures,
such as java.util.concurrent for Java and Threading Building Blocks for C++. To simplify
reasoning about concurrent software, we need to exploit the available modularity. In par-
ticular, in reasoning about a client of a concurrent library, we would like to abstract from
the details of a particular library implementation. This requires an appropriate notion of
library correctness.

Correctness of concurrent libraries is commonly formalised by linearizability [18], which
fixes a certain correspondence between the library and its specification. The latter is usually
just another library, but implemented atomically using an abstract data type; the two
libraries are called concrete and abstract, respectively. A good notion of linearizability
should validate an Abstraction Theorem [12, 14]: the behaviours of any client using the

2012 ACM CCS: [Theory of computiation]: Semantics and reasoning.
Key words and phrases: Concurrency, Linearizability, Ownership Transfer, Semantics, Data Abstraction.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:12)2013
c© A. Gotsman and H. Yang
CC© Creative Commons

2 A. GOTSMAN AND H. YANG

concrete library are contained in the behaviours of the client using the abstract one. This
makes it sound to replace a library by its specification in reasoning about its client.

Classical linearizability assumes a complete isolation between a library and its client,
with interactions limited to passing values of a given data type as parameters or return
values of library methods. This notion is not appropriate for low-level heap-manipulating
languages, such as C/C++. There the library and the client run in a shared address space;
thus, to prove the whole program correct, we need to verify that one of them does not corrupt
the data structures used by the other. Type systems [8] and program logics [23] usually
establish this using the concept of ownership of data structures by a program component:
the right to access a data structure is given only to a particular component or a set of them.
When verifying realistic programs, this ownership of data structures cannot be assigned
statically; rather, it should be transferred between the client and the library at calls to
and returns from the latter. The times when ownership is transferred are not determined
operationally, but set by the proof method: as O’Hearn famously put it, “ownership is in the
eye of the asserter” [23]. However, ownership transfer reflects actual interactions between
program components via the heap, e.g., alternating accesses to a shared area of memory.
Such interactions also exist in high-level languages providing basic memory protection, such
as Java. In this case, we need to ensure that a client does not subvert a library by accessing
a memory object after its ownership was transferred to the latter.

For an example of ownership transfer between concurrent libraries and their clients
consider a memory allocator accessible concurrently to multiple threads. We can think of
the allocator as owning the blocks of memory on its free-list; in particular, it can store
free-list pointers in them. Having allocated a block, a thread gets its exclusive ownership,
which allows accessing it without interference from the other threads. When the thread
frees the block, its ownership is returned to the allocator. Trying to write to a memory cell
after it was freed has dire consequences.

As another example, consider any container with concurrent access, such as a concurrent
set from java.util.concurrent or Threading Building Blocks. A typical use of such a container
is to store pointers to a certain type of data structures. However, when verifying a client of
the container, we usually think of the latter as holding the ownership of the data structures
whose addresses it stores [23]. Thus, when a thread inserts a pointer to a data structure into
a container, its ownership is transferred from the thread to the container. When another
thread removes a pointer from the container, it acquires the ownership of the data structure
the pointer identifies. If the first thread tries to access a data structure after a pointer to it
has been inserted into the container, this may result in a race condition. Unlike a memory
allocator, the container code usually does not access the contents of the data structures
its elements identify, but merely ferries their ownership between different threads. For this
reason, correctness proofs for such containers [1,10,29] have so far established their classical
linearizability, without taking ownership transfer into account.

We would like to use the notion of linearizability and, in particular, an Abstraction
Theorem to reason about the above libraries and their clients in isolation, taking into
account only the memory that they own. To this end, we would like the correctness of a
library to constrain not only pointers that are passed between it and the client, but also
the contents of the data structures whose ownership is transferred. So far, there has been
no notion of linearizability that would allow this. In the case of concurrent containers, we
have no way of using classical linearizability established for them to validate an Abstraction

LINEARIZABILITY WITH OWNERSHIP TRANSFER 3

Theorem that would be applicable to clients performing ownership transfer. This paper fills
in these gaps.

Contributions. In this paper, we generalise linearizability to a setting where a library and
its client execute in a shared address space, and boundaries between their data structures
can change via ownership transfers. Linearizability is usually defined in terms of histories,
which are sequences of calls to and returns from a library in a given program execution,
recording parameters and return values passed. To handle ownership transfer, histories
also have to include descriptions of memory areas transferred. However, in this case, some
histories cannot be generated by any pair of a client and a library: while generating his-
tories of a library we should only consider its executions in an environment that respects
ownership. For example, a client that transfers an area of memory upon a call to a library
not communicating with anyone else cannot then transfer the same area again before get-
ting it back from the library upon a method return. We propose a notion of balancedness
that characterises those histories that treat ownership transfer correctly. We then define a
linearizability relation between balanced histories, matching histories of a concrete and an
abstract library (Section 3).

This definition does not rely on a particular model of program states for describing
memory areas transferred in histories, but assumes an arbitrary model defined by a sepa-
ration algebra [7]. By picking a model with so-called permissions [5,9], we can allow clients
and libraries to transfer non-exclusive rights to access certain memory areas in particular
ways, instead of transferring their full ownership. This makes our results applicable even
when libraries and their clients share access to some areas of memory. Our definition of
balancedness for arbitrary separation algebras relies on a new formalisation of the notion of
a footprint of a state, describing the amount of permissions the state includes (Section 2).

The rest of our technical development relies on a novel compositional semantics for a
language with libraries that defines the denotation of a library or a client considered sep-
arately in an environment that communicates with the component correctly via ownership
transfers (Sections 4 and 5). In particular, the semantics allows us to generate the set of
all histories that can be produced by a library solely from its code, without considering
all its possible clients. This, in its turn, allows us to lift the linearizability on histories to
libraries and establish the Abstraction Theorem (Section 6). On the way, we also obtain
an insight into the original definition of linearizability without ownership transfer, showing
a surprising relationship between one of the ways of its formulation and the plain subset
inclusion on the sets of histories produced by concrete and abstract libraries.

We note that the need to consider ownership transfer makes the proof of the Abstraction
Theorem highly non-trivial. This is because proving the theorem requires us to convert a
computation with a history produced by the concrete library into a computation with a
history produced by the abstract one, which requires moving calls and returns to different
points in the computation. In the setting without ownership transfer, these actions are
thread-local and can be moved easily; however, once they involve ownership transfer, they
become global and the justification of their moves becomes subtle, in particular, relying on
the fact that the histories involved are balanced (Section 7).

To avoid having to prove the new notion of linearizability from scratch for libraries that
do not access some of the data structures transferred to them, such as concurrent containers,
we propose a frame rule for linearizability (Section 8). It ensures the linearizability of such
libraries with respect to a specification with ownership transfer given their linearizability
with respect to a specification without one.

4 A. GOTSMAN AND H. YANG

We provide a glossary of notation at the end of the paper.

2. Footprints of States

2.1. Separation Algebras. Our results hold for a class of models of program states called
separation algebras [7], which allow expressing the dynamic memory partitioning between
libraries and clients.

Definition 2.1. A separation algebra is a set Σ, together with a partial commutative,
associative and cancellative operation ∗ on Σ and a unit element e ∈ Σ. Here commutativity
and associativity hold for the equality that means both sides are defined and equal, or
both are undefined. The property of cancellativity says that for each σ ∈ Σ, the function
σ ∗ · : Σ ⇀ Σ is injective.

We think of elements of a separation algebra Σ as portions of program states and the ∗
operation as combining such portions. The partial states allow us to describe parts of the
program state belonging to a library or the client. When the ∗-combination of two states is
defined, we call them compatible. Incompatible states usually make contradictory claims
about the ownership of memory. We sometimes use a pointwise lifting ∗ : 2Σ × 2Σ → 2Σ of
∗ to sets of states: for p, q ∈ 2Σ we let p ∗ q = {σ1 ∗ σ2 | σ1 ∈ p ∧ σ2 ∈ q}.

Elements of separation algebras are often defined using partial functions. We use the
following notation: g(x)↓ means that the function g is defined on x, g(x)↑ means that it
is undefined on x, dom(g) denotes the set of arguments on which g is defined, [] denotes
a nowhere-defined function, and g[x : y] denotes the function that has the same value as g
everywhere, except for x, where it has the value y. We also write for an expression whose
value is irrelevant and implicitly existentially quantified.

Below is an example separation algebra RAM:

Loc = {1, 2, . . .}; Val = Z; RAM = Loc ⇀fin Val.

A (partial) state in this model consists of a finite partial function from allocated memory
locations to the values they store. The ∗ operation on RAM is defined as the disjoint function
union], with the nowhere-defined function [] as its unit. Thus, ∗ combines disjoint pieces
of memory.

More complicated separation algebras do not split memory completely, instead allowing
heap parts combined by ∗ to overlap. This is done by associating so-called permissions [5]
with memory cells in the model, which do not give their exclusive ownership, but allow
accessing them in a certain way. Types of permissions range from read sharing [5] to
accessing memory in an arbitrary way consistent with a given specification [9]. We now
give an example of a separation algebra with permissions of the former kind.

We define the algebra RAMπ as follows:

Loc = {1, 2, . . .}; Val = Z; Perm = (0, 1]; RAMπ = Loc ⇀fin (Val× Perm).

A state in this model consists of a finite partial function from allocated memory locations
to values they store and so-called permissions—numbers from (0, 1] that show “how much”
of the memory cell belongs to the partial state [5]. The latter allow a library and its client
to share access to some of memory cells. Permissions in RAMπ allow only read sharing:
when defining the semantics of commands over states in RAMπ, the permissions strictly
less than 1 are interpreted as permissions to read; the full permission 1 additionally allows

LINEARIZABILITY WITH OWNERSHIP TRANSFER 5

writing. The ∗ operation on RAMπ adds up permissions for memory cells. Formally, for
σ1, σ2 ∈ RAMπ, we write σ1] σ2 if:

∀x ∈ Loc. σ1(x)↓ ∧ σ2(x)↓ =⇒ (∃u, π1, π2. σ1(x) = (u, π1) ∧ σ2(x) = (u, π2) ∧ π1 + π2 ≤ 1).

If σ1] σ2, then we define

σ1 ∗ σ2 = {(x, (u, π)) | (σ1(x) = (u, π) ∧ σ2(x)↑) ∨ (σ2(x) = (u, π) ∧ σ1(x)↑) ∨
(σ1(x) = (u, π1) ∧ σ2(x) = (u, π2) ∧ π = π1 + π2)};

otherwise, σ1 ∗ σ2 is undefined. The unit for ∗ is the empty heap []. This definition of ∗
allows us, e.g., to split a memory area into two disjoint parts. It also allows splitting a cell
with a full permission 1 into two parts, carrying read-only permissions 1/2 and agreeing on
the value stored in the cell. These permissions can later be recombined to obtain the full
permission, which allows both reading from and writing to the cell.

Since we develop all our results for an arbitrary separation algebra, by instantiating
it with algebras similar to RAMπ, we can handle cases when a library and its client share
access to some memory areas.

Consider an arbitrary separation algebra Σ with an operation ∗. We define a partial
operation \ : Σ × Σ ⇀ Σ, called state subtraction, as follows: σ2 \σ1 is a state in Σ
such that σ2 = (σ2 \σ1) ∗ σ1; if such a state does not exist, σ2 \σ1 is undefined. The
cancellativity of ∗ implies that σ2 \σ1 is determined uniquely, and hence, the \ operation
is well-defined. When reasoning about ownership transfer between a library and a client,
we use the ∗ operation to express a state change for the component that is receiving the
ownership of memory, and the \ operation for the one that is giving it up.

Proposition 2.2. For all σ1, σ2, σ3 ∈ Σ, if σ1 ∗ σ2 and σ1 \σ3 are defined, then

(σ1 ∗ σ2) \σ3 = (σ1 \σ3) ∗ σ2.

2.2. Footprints. Our definition of linearizability uses a novel formalisation of a footprint
of a state, which, informally, describes the amount of memory or permissions the state
includes.

Definition 2.3. A footprint of a state σ in a separation algebra Σ is the set of states

δ(σ) = {σ′ | ∀σ′′. (σ′ ∗ σ′′)↓ ⇐⇒ (σ ∗ σ′′)↓}.
In the following, l ranges over footprints. The function δ computes the equivalence class

of states with the same footprint as σ. In the case of RAM, we have δ(σ) = {σ′ | dom(σ) =
dom(σ′)} for every σ ∈ RAM. Thus, states with the same footprint contain the same memory
cells. Definitions of δ for separation algebras with permissions are more complicated, taking
into account not only memory cells present in the state, but also permissions for them. In
the case of the algebra RAMπ, for σ ∈ RAMπ we have

δ(σ) = {σ′ | ∀x. (σ(x)↓ ⇐⇒ σ′(x)↓) ∧
∀u, π. (σ(x) = (u, π) ∧ π < 1 =⇒ σ(x) = σ′(x)) ∧ (σ(x) = (u, 1) =⇒ σ′(x) = (, 1))}.

In other words, states with the same footprint contain the same memory cells with the
identical permissions; in the case of memory cells on read permissions, the states also have
to agree on their values.

6 A. GOTSMAN AND H. YANG

Let F(Σ) = {δ(σ) | σ ∈ Σ} be the set of footprints in a separation algebra Σ. We now lift
the ∗ and \ operations on Σ to F(Σ). First, we define the operation ◦ : F(Σ)×F(Σ) ⇀ F(Σ)
for adding footprints. Consider l1, l2 ∈ F(Σ) and σ1, σ2 ∈ Σ such that l1 = δ(σ1) and
l2 = δ(σ2). If σ1 ∗ σ2 is defined, we let l1 ◦ l2 = δ(σ1 ∗ σ2); otherwise l1 ◦ l2 is undefined.

Proposition 2.4. The ◦ operation is well-defined.

Proof. Consider l1, l2 ∈ F(Σ) and σ1, σ2 ∈ Σ such that l1 = δ(σ1) and l2 = δ(σ2). Take
another pair of states σ′1, σ

′
2 ∈ Σ such that l1 = δ(σ′1) and l2 = δ(σ′2). Thus, σ′1 ∈ δ(σ1) and

σ′2 ∈ δ(σ2), which implies:

(σ′1 ∗ σ′2)↓ ⇐⇒ (σ1 ∗ σ′2)↓ ⇐⇒ (σ1 ∗ σ2)↓.
Furthermore, if σ′1 ∗ σ′2 and σ1 ∗ σ2 are defined, then for all σ′ ∈ Σ,

(σ′1 ∗ σ′2 ∗ σ′)↓ ⇐⇒ (σ1 ∗ σ′2 ∗ σ′)↓ ⇐⇒ (σ1 ∗ σ2 ∗ σ′)↓.
Hence, δ(σ1 ∗ σ2) = δ(σ′1 ∗ σ′2), so that ◦ is well-defined.

For RAM, ◦ is just the pointwise lifting of the disjoint function union].
To define a subtraction operation on footprints, we use the following condition.

Definition 2.5. The ∗ operation of a separation algebra Σ is cancellative on footprints
when for all σ1, σ2, σ

′
1, σ
′
2 ∈ Σ, if σ1 ∗ σ2 and σ′1 ∗ σ′2 are defined, then

(δ(σ1 ∗ σ2) = δ(σ′1 ∗ σ′2) ∧ δ(σ1) = δ(σ′1)) =⇒ δ(σ2) = δ(σ′2).

For example, the ∗ operations on RAM and RAMπ satisfy this condition.
When the ∗ operation of an algebra Σ is cancellative on footprints, we can define

an operation \\ : F(Σ) × F(Σ) ⇀ F(Σ) of footprint subtraction as follows. Consider
l1, l2 ∈ F(Σ). If for some σ1, σ2, σ ∈ Σ, we have l1 = δ(σ1), l2 = δ(σ2) and σ2 = σ1 ∗σ, then
we let l2 \\ l1 = δ(σ). When such σ1, σ2, σ do not exist, l2 \\ l1 is undefined.

Proposition 2.6. The \\ operation is well-defined.

Proof. Consider l1, l2 ∈ F(Σ) and σ1, σ2, σ
′
1, σ
′
2, σ, σ

′ ∈ Σ such that σ1, σ
′
1 ∈ l1, σ2, σ

′
2 ∈ l2,

σ1 = σ2 ∗ σ and σ′1 = σ′2 ∗ σ′. We have:

δ(σ2 ∗ σ) = δ(σ1) = l1 = δ(σ′1) = δ(σ′2 ∗ σ′).
Since δ(σ2) = δ(σ′2), by Definition 2.5 this implies δ(σ) = δ(σ′), so that \\ is well-defined.

For RAM, the \\ operation is defined as follows. For l1, l2 ∈ F(RAM), take any σ1, σ2 ∈
RAM such that δ(σ1) = l1 and δ(σ2) = l2. Then l2 \\ l1 = {σ | dom(σ)]dom(σ1) = dom(σ2)},
if dom(σ1) ⊆ dom(σ2); otherwise, l1 \\ l2 is undefined.

We say that a footprint l1 is smaller than l2, written l1 � l2, when l2 \\ l1 is defined.
The ◦ and \\ operations on footprints satisfy an analogue of Proposition 2.2.

Proposition 2.7. For all l1, l2, l3 ∈ F(Σ), if l1 ◦ l2 and l1 \\ l3 are defined, then

(l1 ◦ l2) \\ l3 = (l1 \\ l3) ◦ l2.
In the rest of the paper, we fix a separation algebra Σ with the ∗ operation cancellative on
footprints.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 7

3. Linearizability with Ownership Transfer

In the following, we consider descriptions of computations of a library providing several
methods to a multithreaded client. We fix a set ThreadID of thread identifiers and a set
Method of method names. As we explained in Section 1, a good definition of linearizability
has to allow replacing a concrete library implementation with its abstract version while
keeping client behaviours reproducible. For this, it should require that the two libraries
have similar client-observable behaviours. Such behaviours are recorded using histories,
which we now define in our setting.

Definition 3.1. An interface action ψ is an expression of the form (t, call m(σ)) or
(t, ret m(σ)), where t ∈ ThreadID, m ∈ Method and σ ∈ Σ. We denote the sets of all call
and return actions by CallAct and RetAct, and the set of all interface actions by CallRetAct.

An interface action records a call to or a return from a library method m by thread t.
The component σ in (t, call m(σ)) specifies the part of the state transferred upon the call
from the client to the library; σ in (t, ret m(σ)) is transferred in the other direction. For
example, in the algebra RAM, the annotation σ = [42 : 0] implies the transfer of the cell at
the address 42 storing 0. In the algebra RAMπ, σ = [42 : (0, 1/2)] implies the transfer of a
read permission for this cell.

Definition 3.2. A history H is a finite sequence of interface actions such that for every
thread t, its projection H|t to actions by t is a sequence of alternating call and return actions
over matching methods that starts from a call action.

In the following, we use the standard notation for sequences: ε is the empty sequence,
τ(i) is the i-th element of a sequence τ , τ�k is the prefix of τ of length k, and |τ | is the
length of τ .

Not all histories make intuitive sense with respect to the ownership transfer reading
of interface actions. For example, let Σ = RAM and consider the history in Figure 1(a).
The history is meant to describe all the interactions between the library and the client.
According to the history, the cell at the address 10 was first owned by the client, and then
transferred to the library by thread 1. However, before this state was transferred back to
the client, it was again transferred from the client to the library, this time by thread 2. This
is not consistent with the intuition of ownership transfer, as executing the second action
requires the cell to be owned both by the library and by the client, which is impossible in
RAM.

As we show in this paper, histories that do not respect the notion of ownership, such as
the one above, cannot be generated by any program, and should not be taken into account
when defining linearizability. We now use the notion of footprints of states from Section 2 to
characterise formally the set of histories that respect ownership. A finite history H induces
a partial function JHK] : F(Σ) ⇀ F(Σ), which tracks how a computation with the history
H changes the footprint of the library state:

JεK]l = l;

JHψK]l = JHK]l ◦ δ(σ), if ψ = (, call (σ)) ∧ (JHK]l ◦ δ(σ))↓;
JHψK]l = JHK]l \\ δ(σ), if ψ = (, ret (σ)) ∧ (JHK]l \\ δ(σ))↓;
JHψK]l = undefined, otherwise.

Using this function, we characterise histories respecting the notion of ownership as follows.

8 A. GOTSMAN AND H. YANG

Definition 3.3. A history H is balanced from l ∈ F(Σ) if JHK](l) is defined. We call
subsets of BHistory = {(l,H) | H is balanced from l} interface sets.

An interface set can be used to describe all the behaviours of a library relevant to its
clients. In the following, H ranges over interface sets.

To keep client behaviours reproducible when replacing a concrete library by an abstract
one, we do not need to require the latter to reproduce the histories of the former exactly:
the histories generated by the two libraries can be different in ways that are irrelevant for
their clients. We now introduce a linearizability relation that matches a history of a concrete
library with that of the abstract one that yields the same client-observable behaviour.

Definition 3.4. The linearization relation v on histories is defined as follows: H v H ′
holds if there exists a bijection ρ : {1, . . . , |H|} → {1, . . . , |H ′|} such that

∀i, j. (H(i) = H ′(ρ(i))) ∧ ((i < j ∧ ((∃t.H(i) = (t,) ∧H(j) = (t,)) ∨
(H(i) = (, ret) ∧H(j) = (, call)))) =⇒ ρ(i) < ρ(j)).

We lift v to BHistory as follows: (l,H) v (l′, H ′) holds if l′ � l and H v H ′.
Finally, we lift v to interface sets as follows: H1 v H2 holds if

∀(l1, H1) ∈ H1. ∃(l2, H2) ∈ H2. (l1, H1) v (l2, H2).

Thus, a history H is linearized by a history H ′ when the latter is a permutation of
the former preserving the order of actions within threads and non-overlapping method
invocations. The duration of a method invocation is defined by the interval from the
method call action to the corresponding return action (or to the end of the history if there
is none). An interface set H1 is linearized by an interface set H2, if every history in H1 may
be reproduced in a linearized form by H2 without requiring more memory. We now discuss
the definition in more detail.

Definition 3.4 treats parts of memory whose ownership is passed between the library and
the client in the same way as parameters and return values in the classical definition [18]:
they are required to be the same in the two histories. In fact, the setting of the classical
definition can be modelled in ours if we pass parameters and return values via the heap. Let
Σ = RAM and let us fix distinct locations argt ∈ Loc for t ∈ ThreadID meant for the transfer
of parameters and return values. Then histories of the classical definition are represented
in our setting by histories where all actions are of the form

(t, call m([argt : param])) or (t, ret m([argt : retval])), where param, retval ∈ Val.

The novelty of our definition lies in restricting the histories considered to balanced ones,
which are the only ones that can be produced by programs (we formalise this fact in Sec-
tion 5). The notion of balancedness also plays a key role in proving the Abstraction Theorem
in the presence of ownership transfer (Section 6.1).

The fact that the linearizability relation allows us to permute actions by different
threads lets us arrange method invocations into a linear sequence. For example the his-
tory in Figure 1(b) is linearized by that in Figure 1(c). The former might correspond to a
concurrent stack implementation, where threads 1 and 2 pass parameters and return values
via locations 1 and 2, respectively. Histories such as the one in Figure 1(c), where a call to
every method is immediately followed by the corresponding return, are called sequential.
Sequential histories correspond to abstract libraries with every method implemented atomi-
cally. When the histories in Figures 1(b) and 1(c) are members of interface sets defining the
behaviour of concurrent and atomic stack implementations, the linearizability relationship

LINEARIZABILITY WITH OWNERSHIP TRANSFER 9

(a):

(1, ret m1([]))

(2, ret m2([]))

(1, call m1([10 : 0]))

(2, call m2([10 : 0]))

(b):

(2, ret push([2 : OK]))

(2, call push([2 : b]))

(1, ret pop([1 : EMPTY]))(1, ret push([1 : OK]))

(1, call push([1 : a]))

(2, call pop([2 : 0]))

(1, call pop([1 : 0]))

(2, ret pop([2 : a]))

(c):

(2, ret push([2 : OK]))

(2, call push([2 : b]))

(1, ret pop([1 : EMPTY]))(1, ret push([1 : OK]))

(1, call push([1 : a])) (2, call pop([2 : 0])) (1, call pop([1 : 0]))

(2, ret pop([2 : a]))

(d):

...

(1, call push([1 : a]))

(1, ret push([1 : OK]))

(2, call pop([2 : 0])) (2, call push([2 : b]))

(1, call pop([1 : 0]))

(1, ret pop([1 : EMPTY]))

(2, ret pop([2 : a]))

(e):

...

(1, call push([1 : a]))

(1, ret push([1 : OK]))

(2, call pop([2 : 0]))

(1, call pop([1 : 0]))

(1, ret pop([1 : EMPTY]))

(2, call push([2 : b]))

(2, ret pop([2 : a]))

Figure 1: Example histories

10 A. GOTSMAN AND H. YANG

between them allows us to justify that the call to pop by thread 1 in Figure 1(b) can return
EMPTY, since this behaviour can be witnessed by the valid history of the atomic implemen-
tation in Figure 1(c). (In fact, the pop would also be allowed to return b, since the resulting
history would be linearized by a sequential history with the push of b preceding the pop.)

The requirement that the order of non-overlapping method invocations be preserved is
inherited from the classical notion of linearizability [18]. As shown by Filipović et al. [12],
this requirement is essential to validate an Abstraction Theorem for clients that can com-
municate via shared client-side variables. For example, since in Figure 1(b) the push of a
returns before the push of b is called, the order between these method invocations has to
stay the same in any linearizing history, such as the one in Figure 1(c).

Following Filipović et al. [12], we do not require the abstract history H ′ to be sequen-
tial, like in the classical definition of linearizablity. This allows our definition to compare
behaviours of two concurrent library implementations. We also allow a concrete history
to contain calls without matching returns, arising, e.g., because the corresponding method
invocation did not terminate. In this case, we require the same behaviour to be reproduced
in the abstract history [14], which is possible because the latter does not have to be sequen-
tial. For example, the history in Figure 1(d) is linearized by that in Figure 1(e). This yields
a simpler treatment of non-terminating calls than the use of completions in the classical
definition of linearizability [18].

Definition 3.4 requires that the initial footprint of an abstract history H ′ be smaller
than that of the concrete history H. This requirement is standard in data refinement [13]:
it ensures that, when we replace a concrete library by an abstract one in a program, the
library-owned memory stays disjoint from the client-owned one. It does not pose problems in
practice, as the abstract library generating H ′ usually represents some of the data structures
of the concrete library abstractly and, hence, more concisely.

So far we have defined the notion of linearizability on interface sets without taking
into account library implementations that generate them. In the rest of the paper, we
develop this notion for libraries written in a particular programming language and prove an
Abstraction Theorem, which guarantees that a library can be replaced by another library
linearizing it when we reason about its client program.

4. Programming Language

We consider a simple concurrent programming language:

C ::= c | m | C;C | C + C | C∗
L ::= {m = C; . . . ; m = C}
S ::= let L in C ‖ . . . ‖ C

A program consists of a single library L implementing methods m ∈ Method and its client
C1 ‖ . . . ‖ Cn, given by a parallel composition of threads. The language is parameterised by
a set of primitive commands c ∈ PComm, meant to execute atomically. Commands also
include method calls m ∈ Method, sequential composition C;C ′, nondeterministic choice
C + C ′ and finite iteration C∗. We use + and ∗ instead of conditionals and while loops
for theoretical simplicity: as we show below, the latter can be defined in the language as
syntactic sugar. Methods do not take arguments and do not return values, as these can
be passed via special locations on the heap associated with the identifier of the thread
calling the method (Section 3). We disallow nested method calls. We also assume that

LINEARIZABILITY WITH OWNERSHIP TRANSFER 11

every method called in the program is defined by the library, and thus call S a complete
program. An open program is a library L without a client, or a client C without a library
implementation:

C ::= let [−] in C ‖ . . . ‖ C
P ::= S | C | L

In C, we allow the client to call methods that are not defined in the program (but belong
to the missing library). An open program represents a library or a client considered in
isolation. The novelty of the kind of open programs we consider here is that we allow them
to communicate with their environment via ownership transfers. We now define a way to
specify a contract this communication follows.

4.1. Method Specifications. A predicate is a set of states from Σ, and a parameterised
predicate is a mapping from thread identifiers to predicates. We use the same symbols
p, q, r for ordinary and parameterised predicates; it should always be clear from the context
which one we mean. When p is a parameterised predicate, we write pt for the predicate
obtained by applying p to a thread t. Both kinds of predicates can be described syntactically,
e.g., using separation logic assertions [26].

We define possible ownership transfers between components with the aid of method
specifications Γ, which are sets of Hoare triples {p} m {q}, at most one for each method.
Here p and q are parameterised predicates such that pt describes pieces of state transferred
when thread t calls the method m, and qt, those transferred at its return. Note that the
intention of the pre- and postconditions in method specifications is only to identify the
areas of memory transferred; in other words, they describe the “type” of the returned data
structure, but not its “value”. As usual for concurrent algorithms, a complete specification
of a library is given by its abstract implementation (Section 6).

For example, as we discussed in Section 1, when programmers store pointers in a con-
current container, they often intend to transfer the ownership of the data structures these
pointers identify at calls to and returns from the container’s methods. In Figure 2(a) we
give an example of such a container—a bounded stack represented by an array. For read-
ability, we write examples in C instead of the minimalistic language introduced above. The
library protects the array by a lock; more complicated algorithms allow a higher degree of
concurrency [17]. Take Σ = RAM and for x ∈ Loc let Obj(x) ⊆ RAM denote the set of
states representing all well-formed data structures of a certain type allocated at the address
x. For example, for objects with a single integer field we have Obj(x) = {[x : y] | y ∈ Val}.
Then the specification of the stack when it stores pointers to such data structures can be
given as follows:

{∃x. argt 7→ x ∗ Obj(x)} push {argt 7→ OK ∨ (argt 7→ FULL ∗ Obj(x))};
{argt 7→ } pop {∃x. argt 7→ x ∗ ((x = EMPTY ∧ emp) ∨ (x 6= EMPTY ∧ Obj(x)))}. (4.1)

Here we use the separation logic syntax to describe predicates parameterised by the thread
identifier t. Thus, emp denotes the empty heap [], x 7→ y the heap [x : y], and ∗ the
combination of heaps with disjoint domains. In the following we also use the assertion
x..y 7→ for x ≤ y, denoting all the heaps with the domain {x, x + 1, . . . , y}. We use
distinguished locations argt, t ∈ ThreadID to pass parameters and return values. According
to the specification, the stack gets the ownership of an object when a pointer to it is pushed,
and gives it up when the pointer is popped.

12 A. GOTSMAN AND H. YANG

void *stack[SIZE];

int count = 0; // count of

// elements stored

Lock array_lock; // protects

// the array and the count

int push(void *arg) {

lock(array_lock);

if (count == SIZE) {

unlock(array_lock);

return FULL;

}

stack[count++] = arg;

unlock(array_lock);

return OK;

}

void *pop() {

lock(array_lock);

if (count == 0) {

unlock(array_lock);

return EMPTY;

}

void *obj = stack[--count];

unlock(array_lock);

return obj;

}

struct Node { Node *prev, *next; };

Node *free_list; // a cyclic doubly-

// linked list with a sentinel node

Lock *list_lock; // protects the list

void free(void *arg) {

Node *block = (Node*)arg;

lock(list_lock);

block->prev = free_list;

block->next = free_list->next;

free_list->next->prev = block;

free_list->next = block;

unlock(list_lock);

}

void *alloc() {

lock(list_lock);

if (free_list->next == free_list) {

unlock(list_lock);

return NULL;

}

Node *block = free_list->next;

free_list->next = block->next;

block->next->prev = free_list;

unlock(list_lock);

return block;

}

(a) (b)

Figure 2: Example concurrent library implementations: (a) a bounded stack storing point-
ers to objects; (b) a memory allocator managing memory blocks of a fixed size

Now take size ∈ N and let

Obj(x) =
{
σ | dom(σ) = {x, . . . , x+ size − 1}

}
.

We specify an allocator managing blocks of size memory cells as follows:

{∃x. argt 7→ x ∗ (x..(x+ size − 1) 7→)} free {argt 7→ };
{argt 7→ } alloc {∃x. argt 7→ x ∗ ((x = 0 ∧ emp) ∨ (x 6= 0 ∧ (x..(x+ size − 1) 7→)))}.

(4.2)
The specification corresponds to the ownership transfer reading of allocator calls explained
in Section 1. In Figure 2(b) we give an example allocator corresponding to the specification
(we have omitted initialisation code from the figure). Note that, unlike the stack, the
allocator does access the blocks of memory transferred to it by the client, since it stores
free-list pointers inside them.

To define the semantics of ownership transfers unambiguously (Section 5), we require
pre- and postconditions in method specifications to be precise [23].

LINEARIZABILITY WITH OWNERSHIP TRANSFER 13

Definition 4.1. A predicate r ∈ 2Σ is precise if for every state σ there exists at most one
substate σ1 satisfying r, i.e., such that σ1 ∈ r and σ = σ1 ∗ σ2 for some σ2.

Since the ∗ operation is cancellative, when such a substate σ1 exists, the corresponding
substate σ2 is unique and is denoted by σ \ r. A parameterised predicate r is precise if so
is rt for every t.

Informally, a precise predicate carves out a unique piece of the heap. For example,
assuming the algebra RAM, the predicate {[42 : 0]} and those used in the allocator speci-
fication are precise. However, the predicate {[42 : 0], []} is not: when σ = [42 : 0] we can
take either σ1 = [42 : 0] and σ2 = [], or σ1 = [] and σ2 = [42 : 0].

A specified open program is of the form Γ ` C or L : Γ. In the former, the specification
Γ describes all the methods that C may call. In the latter, Γ provides specifications for the
methods in the open program that can be called by its external environment. In both cases,
Γ specifies the type of another open program that can fill in the hole in C or L. When we
are not sure which form a program has, we write Γ ` P : Γ′. In this case, if P does not
have a client, then Γ is empty; if P does not have a library, then Γ′ is empty; and if P is
complete, then both Γ and Γ′ are empty. For specified open programs

Γ ` C = Γ ` let [−] in C1 ‖ . . . ‖ Cn
and

L : Γ

agreeing on the specification Γ of library methods, we denote by C(L) the complete program

let L in C1 ‖ . . . ‖ Cn.

4.2. Primitive Commands. We now discuss primitive commands in more detail. Con-
sider the set 2Σ ∪ {>} of subsets of Σ with a special element > used to denote an error
state, resulting, e.g., from dereferencing an invalid pointer. We extend the ∗ operation on
2Σ to 2Σ ∪ {>} by letting > ∗ p = p ∗ > = > ∗ > = > for all p ∈ 2Σ.

We assume an interpretation of every primitive command c ∈ PComm as a transformer
f tc : Σ → (2Σ ∪ {>}), which maps pre-states to states obtained when thread t ∈ ThreadID
executes c from a pre-state. The fact that our transformers are parameterised by t allows
atomic accesses to areas of memory indexed by thread identifiers. This idealisation simplifies
the setting in that it lets us do without special thread-local or method-local storage for
passing method parameters and return values.

Some typical primitive commands are:

skip, [E] = E′, assume(E),

where expressions E are defined as follows:

E ::= Z | tid | [E] | E + E | −E | !E | . . .
Here tid refers to the identifier of the thread executing the command, [E] returns the contents
of the address E in memory, and !E is the C-style negation of an expression E—it returns 1
when E evaluates to 0, and 0 otherwise. The assume(E) command filters out all the input
states where E evaluates to 0. Hence, after assume(E) is executed, E always has a non-zero

14 A. GOTSMAN AND H. YANG

σ, skip ;t σ

σ, [E] = E′ ;t σ[JEKσ,t : JE′Kσ,t], if JEKσ,t ∈ dom(σ), JE′Kσ,t ∈ Val

σ, [E] = E′ ;t >, if JEKσ,t 6∈ dom(σ) or JE′Kσ,t = >
σ, assume(E) ;t σ, if JEKσ,t ∈ Val− {0}
σ, assume(E) ;t >, if JEKσ,t = >

Figure 3: Transition relation for sample primitive commands in the RAM model. The result
> indicates that the command faults.

σ, skip ;t σ

σ, [E] = E′ ;t σ[JEKσ,t : (JE′Kσ,t, 1)], if σ(JEKσ,t) = (, 1), JE′Kσ,t ∈ Val

σ, [E] = E′ ;t >, if the above condition does not hold

σ, assume(E) ;t σ, if JEKσ,t ∈ Val− {0}
σ, assume(E) ;t >, if JEKσ,t = >

Figure 4: Transition relation for sample primitive commands in the RAMπ model. The
evaluation of expressions JEKσ,t ignores permissions in σ.

value. Using it, the standard commands for conditionals and loops can be defined in our
language as follows:

(if E then C1 else C2) = (assume(E);C1) + (assume(!E);C2), (4.3)

(while E do C) = (assume(E);C)∗; assume(!E).

For the above commands c and t ∈ ThreadID, we define f tc : RAM→ 2RAM ∪ {>} using the
transition relation ;t: RAM× (RAM ∪ {>}) in Figure 3:

f tc(σ) = if (σ, c;t >) then > else
⋃{

σ′ | σ, c;t σ
′}.

In the figure, JEKσ,t ∈ Val∪{>} denotes the result of evaluating the expression E in the state
σ with the current thread identifier t. When this evaluation dereferences illegal memory
addresses, it results in the error value >. We define f tc : RAMπ → 2RAMπ ∪ {>} similarly,
but using the transition relation ;t: RAMπ × (RAMπ ∪{>}) in Figure 4. The transformers
formalise the semantics of permissions explained in Section 2: permissions less than 1 allow
reading, and the full permission 1 additionally allows writing. Note that assume yields
an empty set of post-states when its condition evaluates to zero, leading to the program
getting stuck. Thus, even though, when executing the if statement (4.3), both branches of
the non-deterministic choice will be explored, only the branch where the assume condition
evaluates to true will proceed further.

For our results to hold, we need to place some restrictions on the transformers f tc for
every primitive command c ∈ PComm and thread t ∈ ThreadID:

Footprint Preservation: ∀σ, σ′ ∈ Σ. σ′ ∈ f tc(σ) =⇒ δ(σ′) = δ(σ).
Strong Locality: ∀σ1, σ2 ∈Σ. (σ1 ∗σ2)↓ ∧ f tc(σ1) 6=> =⇒ f tc(σ1 ∗σ2) = f tc(σ1) ∗ {σ2}.

Footprint Preservation prohibits primitive commands from allocating or deallocating mem-
ory. This does not pose a problem, since in the context of linearizability, an allocator is
just another library and should be treated as such. The Strong Locality of f tc says that, if a

LINEARIZABILITY WITH OWNERSHIP TRANSFER 15

command c can be safely executed from a state σ1, then when executed from a bigger state
σ1 ∗ σ2, it does not change the additional state σ2 and its effect depends only on the state
σ1 and not on the additional state σ2.

The Strong Locality is a strengthening of the locality property in separation logic [7]:

∀σ1, σ2 ∈ Σ. (σ1 ∗ σ2)↓ ∧ f tc(σ1) 6= > =⇒ f tc(σ1 ∗ σ2) ⊆ f tc(σ1) ∗ {σ2}.
Locality rules out commands that can check if a cell is allocated in the heap other than
by trying to access it and faulting if it is not allocated. For example, let Σ = RAM and
consider the following transformer f t : RAM→ 2RAM ∪ {>}:

f t(σ) = if σ(1)↓ then {σ[1 : 0]} else {σ}.
The transformer f t defines the denotation of a ‘command’ that writes 0 to the cell at the
address 1 if it is allocated and acts as a no-op if it is not. This violates locality. Indeed,
take σ1 = [] and σ2 = [1 : 1]. Then

f t(σ1 ∗ σ2) = f t([1 : 1]) = {[1 : 0]}
and

f t(σ1) ∗ {σ2} = f t([]) ∗ {[1 : 1]} = {[]} ∗ {[1 : 1]} = {[1 : 1]}.
Hence, f t(σ1 ∗ σ2) ⊆ f t(σ1) ∗ {σ2} does not hold.

While locality prohibits the command from changing the additional state, it permits
the effect of the command to depend on this state [13]. The Strong Locality forbids such
dependencies. To see this, consider another ‘command’ defined by the following transformer
f t : RAM→ 2RAM ∪ {>}:

f t(σ) = if σ(1)↑ then >
else if (σ(2)↓) then {σ[1 : 0]}
else {σ[1 : 0], σ[1 : 1]}.

The command does not access the cell at the address 2, since it does not fault if the cell
is not allocated. However, when the cell is allocated, the effect of the command depends
on its value. It is easy to check that f t is local. However, it is not strongly local, since for
σ1 = [1 : 0] and σ2 = [2 : 0], we have

f t(σ1 ∗ σ2) = f t([1 : 0, 2 : 0]) = {[1 : 0, 2 : 0]}
and

f t(σ1) ∗ {σ2} = f t([1 : 0]) ∗ {[2 : 0]} = {[1 : 0], [1 : 1]} ∗ {[2 : 0]} = {[1 : 0, 2 : 0], [1 : 1, 2 : 0]},
so that f t(σ1 ∗σ2) = f t(σ1)∗{σ2} does not hold. The property of Strong Locality subsumes
the one of contents independence used in situations similar to ours in previous work on data
refinement in a sequential setting [13].

The transformers for standard commands, except memory (de)allocation, satisfy the
conditions of Footprint Preservation and Strong Locality.

16 A. GOTSMAN AND H. YANG

5. Client-Local and Library-Local Semantics

We now give the semantics to complete and open programs. In the latter case, we define
component-local semantics that include all behaviours of an open program under any en-
vironment satisfying the specification associated with it. In Section 6, we use these to lift
linearizability to libraries and formulate the Abstraction Theorem.

Programs in our semantics denote sets of traces, recording every step in a computation.
These include both internal actions by program components and calls and returns. We define
program semantics in two stages. First, given a program, we generate the set of the possible
execution traces of the program. This is done solely based on the structure of its statements,
without taking into account restrictions arising from the semantics of primitive commands
or ownership transfers. The next step filters out traces that are not consistent with the
above restrictions using a trace evaluation process and, for open programs, annotates calls
and returns appropriately.

5.1. Traces. Traces consist of actions, which include primitive commands performed inter-
nally by a component and calls or returns, possibly annotated with states. Thus actions,
include all interface actions ψ from Definition 3.1.

Definition 5.1. The set of actions is defined as follows:

ϕ ∈ Act ::= ψ | (t, c) | (t, call m) | (t, ret m),

where t ∈ ThreadID, m ∈ Method and c ∈ PComm.

Definition 5.2. A trace τ is a finite sequence of actions such that for every thread t, the
projection of τ to t’s call and return actions is a sequence of alternating call and return
actions over matching methods that starts from a call action.

We classify actions in a trace as those performed by the client and the library based on
whether they happen inside a method.

Definition 5.3. For a trace τ and an index i ∈ {1, . . . , |τ |}, an action τ(i) is a client
action if τ(i) = (t, c) for some thread t and a primitive command c and

∀j. j < i ∧ τ(j) = (t, call) =⇒ ∃k. j < k < i ∧ τ(k) = (t, ret).

An action τ(i) is a library action if τ(i) = (t, c) for some t and c but τ(i) is not a client
action, that is,

∃j. j < i ∧ τ(j) = (t, call) ∧ ¬∃k. j < k < i ∧ τ(k) = (t, ret).

A trace is a client trace, if all of its actions of the form (t, c) are client actions; it is a
library trace, if they all of them are library actions.

In the following, κ denotes client traces, λ, ζ, α, β library traces, and τ arbitrary ones.
We write client(τ) for the projection of τ to client, call and return actions, lib(τ) for that
to library, call and return actions, and history(τ) for that to call and return actions.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 17

LcMtη = {(t, c)}
LC1 + C2 Mtη = LC1 Mtη ∪ LC2 Mtη

LC∗ Mtη =
(
LC Mtη

)∗

LmMtη = {(t, call m) τ (t, ret m) | τ ∈ η(m, t)}
LC1;C2 Mtη = {τ1τ2 | τ1 ∈ LC1 Mtη ∧ τ2 ∈ LC2 Mtη}

LC1 ‖ . . . ‖ Cn Mη =
⋃{τ1 ‖ . . . ‖ τn | ∀t ∈ {1, . . . , n}. τt ∈ LCt Mtη}

L let {m = Cm | m ∈M} in C1 ‖ . . . ‖ Cn M = prefix(LC1 ‖ . . . ‖ Cn M(λ(m, t). LCm Mt()))

LΓ : let [−] in C1 ‖ . . . ‖ Cn M = prefix(LC1 ‖ . . . ‖ Cn M(λ(m, t). {ε}))
L{m = Cm | m ∈ {m1, . . . ,mj}} : ΓM =

prefix(
⋃
k≥1LCmgc ‖ . . . (k times) . . . ‖ Cmgc M(λ(m, t). LCm Mt()))

(where Cmgc = (m1 + . . .+mj)
∗)

Figure 5: Trace sets of commands and programs. Here prefix(T) is the prefix closure of
T and τ ∈ τ1 ‖ . . . ‖ τn if and only if every action in τ is done by a thread
t ∈ {1, . . . , n} and for all such t, we have τ |t = τt. We use λ for functions, in
contrast to λ for library traces.

5.2. Trace Sets. Consider a program Γ ` P : Γ′ and let M ⊆ Method be the set of methods
implemented by its library or called by its client. We define the trace set LΓ ` P : Γ′ M ∈
2Trace of P in Figure 5. We first define the trace set LC Mtη of a command C, parameterised
by the identifier t of the thread executing it and a mapping η ∈ M × ThreadID → 2Trace

giving the trace set of the body of every method that C can call when executed by a given
thread. The trace set of a client LC1 ‖ . . . ‖ Cn Mη is obtained by interleaving traces of its
threads.

The trace set LC(L)M of a complete program is that of its client computed with respect
to a mapping λ(m, t). LCm Mt() associating every method m with the trace set of its body
Cm. Since we prohibit nested method calls, LCm Mtη does not depend on η. We prefix-close
the resulting trace set to take into account incomplete executions. In particular, this allows
the thread scheduler to be unfair: a thread can be preempted and never scheduled again.

A program Γ ` C generates client traces LΓ ` C M, which do not include internal library
actions. This is achieved by associating an empty trace with every library method. Finally,
a program L : Γ′ generates all possible library traces LL : Γ′ M. This is achieved by running
the library under its most general client, where every thread executes an infinite loop,
repeatedly invoking arbitrary library methods.

5.3. Evaluation. The set of traces generated using L ·M may include those not consistent
with the semantics of primitive commands or expected ownership transfers. We therefore
define the meaning of a program JΓ ` P : Γ′K ∈ Σ → (2Trace ∪ {>}) by evaluating every
trace in LΓ ` P : Γ′ M from a given initial state to determine whether it is feasible. For open
programs, this process also annotates calls and returns in a trace with states transferred.

The formal definition of JΓ ` P : Γ′K is given in Figure 6 with the aid of a trace
evaluation function JΓ ` τ : Γ′K : Σ → 2Σ×Trace ∪ {>}. Given an initial state, this either
yields multiple final states and annotated traces, or fails and produces >. If the resulting set

18 A. GOTSMAN AND H. YANG

JΓ ` P : Γ′K : Σ→ (2Trace ∪ {>}):
JΓ ` P : Γ′Kσ = if ∃τ ∈ LΓ ` P : Γ′ M. JΓ ` τ : Γ′Kσ = > then >

else {τ ′ | ∃τ ∈ LΓ ` P : Γ′ M. (, τ ′) ∈ JΓ ` τ : Γ′Kσ}

JΓ ` τ : Γ′K : Σ→ (2Σ×Trace ∪ {>}):
JΓ ` ε : Γ′Kσ = {(σ, ε)}

JΓ ` τϕ : Γ′Kσ = if (JΓ ` τ : Γ′Kσ = >) then >
else if (∃(σ′,) ∈ JΓ ` τ : Γ′Kσ. JΓ ` ϕ : Γ′Kσ′ = >) then >
else {(σ′′, τ ′ϕ′) | ∃σ′. (σ′, τ ′) ∈ JΓ ` τ : Γ′Kσ ∧ (σ′′, ϕ′) ∈ JΓ ` ϕ : Γ′Kσ′}

JΓ ` ϕ : Γ′K : Σ→ (2Σ×Act ∪ {>}):
JΓ ` (t, c) : Γ′Kσ = if (f tc(σ) = >) then > else {(σ′, (t, c)) | σ′ ∈ f tc(σ)}

J(t, call m)Kσ = {(σ, (t, call m))}
J(t, ret m)Kσ = {(σ, (t, ret m))}

J(t, call m) : ({p} m {q}),Γ′Kσ = {(σ ∗ σp, (t, call m(σp))) | σp ∈ pt ∧ (σ ∗ σp)↓ }
J(t, ret m) : ({p} m {q}),Γ′Kσ = if (σ \ qt)↑ then > else {(σ \ qt, (t, ret m(σ \ (σ \ qt))))}
J({p} m {q}),Γ ` (t, call m)Kσ = if (σ \ pt)↑ then > else {(σ \ pt, (t, call m(σ \ (σ \ pt))))}
J({p} m {q}),Γ ` (t, ret m)Kσ = {(σ ∗ σq, (t, ret m(σq))) | σq ∈ qt ∧ (σ ∗ σq)↓ }

Figure 6: Semantics of programs

of state-trace pairs is empty, then the trace is infeasible and is discarded. If the evaluation
produces > on any trace from LΓ ` P : Γ′ M, then the program has no semantics for the
given initial state and its denotation is defined to be >. The evaluation of τ is defined
inductively on its length using a function JΓ ` ϕ : Γ′K : Σ→ 2Σ×Act ∪ {>} that evaluates a
single action ϕ. We explain this function by considering separately the cases of a complete
program, open program with a library and open program with a client.

The evaluation JϕK for an action in a complete program has the standard semantics,
with the effects of primitive commands computed using their transformers from Section 4.
In this case, calls and returns are left unannotated, since no ownership transfers to or from
the external environment are performed.

The function Jϕ : Γ′K gives a library-local semantics to the program L : Γ′, in the
sense that it generates library traces under any client respecting Γ′. When a method m
from Γ′ is called by thread t, the library receives the ownership of any state consistent with
the method precondition pt. This state has to be compatible with that of the library. After
the method returns, the library has to give up the piece of state satisfying its postcondition.
Since qt is precise, this piece of state is determined uniquely. The evaluation faults if the
state to be transferred is not available; thus, a library has no semantics if it violates the
contract with its client given by Γ′. This also ensures that the histories produced by a
library are balanced.

Proposition 5.4. If λ ∈ JL : Γ′Kσ, then history(λ) is balanced from δ(σ).

The function JΓ ` ϕK gives a client-local semantics to Γ ` C, in the sense that it
generates traces of this client assuming any behaviour of the library consistent with Γ.
When a thread t calls a method m in Γ, it transfers the ownership of a piece of state

LINEARIZABILITY WITH OWNERSHIP TRANSFER 19

satisfying the method precondition pt to the library being called. As before, this piece
is defined uniquely, because preconditions are precise. When such a piece of state is not
available, the evaluation faults. This ensures that client respects the method specifications
of the libraries it uses. When the method returns, the client receives the ownership of an
arbitrary piece of state satisfying its postcondition qt, compatible with the current state of
the client.

5.4. Connection between Local and Global Semantics. We now formulate a lemma,
used in the proof of the Abstraction Theorem (Section 6), that states the connection be-
tween the library-local and client-local semantics on one side and the semantics of complete
programs on the other. We start by introducing some auxiliary definitions.

Definition 5.5. A program Γ ` P : Γ′ is safe at σ, if JΓ ` P : Γ′Kσ 6= >; P is safe for
I ⊆ Σ, if it is safe at σ for all σ ∈ I.

For a set of initial states I ⊆ Σ, let

J(Γ ` P : Γ′), IK = {(σ, τ) | σ ∈ I ∧ τ ∈ JΓ ` P : Γ′Kσ}.
We define an operator ⊗ : 2Σ×Trace × 2Σ×Trace → 2Σ×Trace combining the resulting sets X
and Y of state-trace pairs produced by the client-local and library-local semantics into a
set corresponding to the complete program:

X ⊗ Y = {(σ ∗ σ′, τ) | ∃κ, λ. (σ, κ) ∈ X ∧ (σ′, λ) ∈ Y ∧ (σ ∗ σ′)↓ ∧ cover(τ, κ, λ)},
where

cover(τ, κ, λ) ⇐⇒ history(κ) = history(λ) ∧ client(τ) = ground(κ) ∧ lib(τ) = ground(λ)

and ground is a function on traces that erases the state annotations from their interface
actions.

Lemma 5.6. Assume Γ ` C and L : Γ safe for I0 and I1, respectively. Then C(L) is safe
for I0 ∗ I1 and

JC(L), I0 ∗ I1K = JΓ ` C, I0K⊗ JL : Γ, I1K.
The lemma shows that the set of traces produced by C(L) can be obtained by combining

pairs of traces with the same history produced by C and L. Note that, since the semantics
of C(L) does not annotate calls and returns with the states transferred, in cover we have
to erase these annotations from the local traces κ or λ before comparing the traces with τ .
Unpacking the definition of ⊗ and using the fact that

∀κ, λ. history(κ) = history(λ) =⇒ ∃τ. cover(τ, κ, λ),

from Lemma 5.6 we get the following two corollaries.

Corollary 5.7 (Decomposition). Assume Γ ` C and L : Γ safe for I0 and I1, respectively.
Then C(L) is safe for I0 ∗ I1 and

∀(σ, τ) ∈ JC(L), I0 ∗ I1K.∃(σ0, κ) ∈ JΓ ` C, I0K. ∃(σ1, λ) ∈ JL : Γ, I1K.
σ = σ0 ∗ σ1 ∧ cover(τ, κ, λ).

20 A. GOTSMAN AND H. YANG

Corollary 5.8 (Composition). If Γ ` C and L : Γ are safe for I0 and I1, respectively, then

∀(σ1, κ) ∈ JΓ : C, I0K. ∀(σ2, λ) ∈ JL : Γ, I1K. ((σ0 ∗ σ1)↓ ∧ history(κ) = history(λ)) =⇒
∃τ. (σ0 ∗ σ1, τ) ∈ JC(L), I0 ∗ I1K ∧ cover(τ, κ, λ).

Corollary 5.7 can be viewed as carrying over properties of the local semantics, such as
safety, to the global one, and in this sense is the statement of the soundness of the former
with respect to the latter. The corollary also confirms that the client defined by LL : Γ′ M
and Jλ : Γ′K is indeed most general, as it reproduces library behaviours under any possible
clients. Corollary 5.8 carries over properties of the global semantics to the local ones, stating
the adequacy of the latter.

Lemma 5.6 is proved in Appendix A. Most of the proof deals with maintaining a split-
ting of the state of C(L) into the parts owned by L and C, which changes during ownership
transfers. The proof relies crucially on the safety of the client and the libraries and the
Strong Locality property of primitive commands. In more detail, safety is defined by con-
sidering executions of a component in the library-local or the client-local semantics. These
execute the component code only on the memory it owns, whose amount only changes with
ownership transfers to and from its environment according to method specifications. Be-
cause of the Strong Locality property, commands fault when accessing memory cells that
are not present in the state they are run from, and their execution does not depend on any
additional memory that might be present in the state. Hence, when we use a component
inside a complete program, its safety guarantees that the component code does not touch
the part of the heap belonging to other components in the program, and its execution is not
affected by the state of such components. This guarantees that the behaviour a component
produces as part of the complete program can be reproduced when we execute it in isolation
and vice versa, allowing us to establish Lemma 5.6. In practice, the safety of a program
can be established using existing program logics, such as separation logic [23,28].

6. Abstraction Theorem

We are now in a position to define the notion of linearizability on libraries and prove the
central technical result of this paper—the Abstraction Theorem. We define linearizability
between specified libraries L : Γ, together with their sets of initial states I. First, using the
library-local semantics of Section 5, we define the interface set describing all the behaviours
of a library L when run from initial states in I:

interf(L : Γ, I) = {(δ(σ0), history(τ)) | (σ0, τ) ∈ J(L : Γ), IK} ⊆ BHistory.

Definition 6.1. Consider L1 : Γ and L2 : Γ safe for I1 and I2, respectively. We say that
(L1 : Γ, I1) is linearized by (L2 : Γ, I2), written (L1 : Γ, I1) v (L2 : Γ, I2), if, according to
Definition 3.4,

interf(L1 : Γ, I1) v interf(L2 : Γ, I2).

For an interface set H2 we say that (L1 : Γ, I1) is linearized by H2, written (L1 : Γ, I1) v
H2, if

interf(L1 : Γ, I1) v H2.

Thus, (L1 : Γ, I1) is linearized by (L2 : Γ, I2) if every history generated by the library-
local semantics of the former may be reproduced in a linearized form by the library-local
semantics of the latter without requiring more memory. The relation (L1 : Γ, I1) v (L2 :

LINEARIZABILITY WITH OWNERSHIP TRANSFER 21

Sequence<void*> stack;

int push(void *arg) {

atomic {

if (nondet()) { return FULL; }

else {

add_to_head(stack, arg);

return OK;

}

}

}

void *pop() {

atomic {

if (!isEmpty(stack)) {

void *obj = head(stack);

stack = tail(stack);

return obj;

} else { return EMPTY; }

}

}

Set<void*> free_list;

void free(void *arg) {

atomic {

add(free_list, arg);

}

}

void *alloc() {

atomic {

if (!isEmpty(free_list)) {

Node *block =

(Node*)take(free_list);

block->next = nondet();

block->prev = nondet();

return block;

} else {

return 0;

}

}

}

(a) (b)

Figure 7: Specifications corresponding to the implementations in Figure 2: (a) a bounded
stack storing pointers to objects; (b) a memory allocator managing memory blocks
of a fixed size. The Node structure is defined in Figure 2(b).

Γ, I2) allows us to specify a library by another piece of code, but possibly simpler than
the original one. For example, the stack and the allocator from Figure 2 with method
specifications (4.1) and (4.2) can be specified by the libraries in Figure 7. The libraries
replace the array and the linked list in the implementations by the abstract data types of
a sequence and a set (we assume a trivial extension of the RAM algebra from Section 2
to allow memory cells to store values of such types). Thus, the abstract libraries use less
memory than the concrete ones. Instead of using locking, all operations on the abstract
data types are done atomically; formally, we assume primitive commands corresponding to
the code in the atomic blocks.

The other relation (L1 : Γ, I1) v H2 introduced in Definition 6.1 allows us to specify
a library directly by an interface set, without fixing a piece of code generating it. The
interface set H2 can still be simpler than that of (L1 : Γ, I1), e.g., containing only sequential
histories. Even though the two forms of defining linearizability may seem very similar, as
we show in Section 6.1, their mathematical properties are fundamentally different.

We now formulate two variants of the Abstraction Theorem, corresponding to the two
ways of specifying libraries (we prove them in Section 6.1).

Theorem 6.2 (Abstraction—specification by code). If

• L1 : Γ, L2 : Γ, Γ ` C are safe for I1, I2, I, respectively, and

22 A. GOTSMAN AND H. YANG

• (L1 : Γ, I1) v (L2 : Γ, I2),

then

• C(L1) and C(L2) are safe for I ∗ I1 and I ∗ I2, respectively, and
• ∀(σ1, τ1) ∈ JC(L1), I ∗ I1K. ∃(σ2, τ2) ∈ JC(L2), I ∗ I2K. client(τ1) = client(τ2).

Thus, when reasoning about a client C(L1) of a library L1, we can soundly replace L1 by
a library L2 linearizing it: if a safety property over client traces holds of C(L2), it will also
hold of C(L1). In practice, we are usually interested in atomicity abstraction, a special
case of this transformation when methods in L2 are atomic. An instance is replacing one
of the libraries from Figure 2 by its specification from Figure 7. The requirement that C
be safe in the theorem restricts its applicability to well-behaved clients that do not access
memory owned by the library: you cannot replace a library by another one if the client can
access its internal data structures and thereby “look inside the box”. Similarly, the safety
of the libraries ensures that they cannot corrupt the data structures owned by the client.

The other version of the Abstraction Theorem, allowing library specification by an
interface set, guarantees that replacing a library by its specification leaves all the original
client behaviours reproducible modulo the following notion of trace equivalence.

Definition 6.3. Client traces κ and κ′ are equivalent, written κ ∼ κ′, if κ|t = κ′|t for all
t ∈ ThreadID and the projections of κ and κ′ to non-interface actions are identical.

Theorem 6.4 (Abstraction—specification by an interface set). If

• L1 : Γ and Γ ` C are safe for I1 and I, respectively, and
• (L1, I1) v H2,

then

• C(L1) is safe for I ∗ I1 and
• ∀(σ, τ1) ∈ JC(L1), I ∗ I1K.∃κ, l. (σ′, κ) ∈ JΓ ` C, IK ∧ (l, history(κ)) ∈ H2 ∧ (δ(σ′) ◦ l)↓ ∧

client(τ1) ∼ ground(κ).

The theorem shows that client behaviours of C(L1) can be reproduced by the client-local
semantics of C projected to histories in H2 with initial footprints compatible with initial
client states. Note that client(τ1) = client(τ2) in Theorem 6.2 implies that history(τ1) =
history(τ2), i.e., C(L2) can reproduce the history of C(L1) exactly. In contrast, Theorem 6.4
does not guarantee this, since κ ∼ κ′ does not imply history(κ) = history(κ′); we only know
that the projection to non-interface actions is reproduced. We discuss the reason for this
discrepancy below.

6.1. The Rearrangement Lemma and the Proof of the Abstraction Theorem. The
key component used for establishing Theorem 6.2 is the Rearrangement Lemma: if H v H ′,
then every execution trace of a library producing H ′ can be transformed into another trace
of the same library that differs from the original one only in the order of interface actions
and produces H, instead of H ′. Hence, the library specification can simulate any behaviour
of its implementation the client can expect.

Lemma 6.5 (Rearrangement—library). If (δ(σ), H) v (δ(σ′), H ′) and L : Γ is safe at σ′,
then

∀λ′ ∈ JL : ΓKσ′. history(λ′) = H ′ =⇒ ∃λ ∈ JL : ΓKσ′. history(λ) = H.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 23

(a):

(2, ret m2([]))

(1, call m1([10 : 0]))

(2, call m2([10 : 0]))

(1, ret m1([10 : 0]))

(b):

(2, ret m2([]))

(1, call m1([10 : 0]))

(1, ret m1([10 : 0]))

(2, call m2([10 : 0]))

Figure 8: Counterexample showing the need for history balancedness in Lemma 6.5

The proof of the lemma is highly non-trivial and is a subject of Section 7. We point
out Lemma 6.5 would not hold had we included unbalanced histories in our definition of
linearizability. To show this, take Σ = RAM and consider the histories in Figure 8. In
Figure 8(b) the library receives the cell 10 from the client, then returns it and then receives
it again. Even though the history in Figure 8(a) is linearized by that in Figure 8(b), the
former is not balanced, and by Proposition 5.4, cannot be produced by L. This shows that
Lemma 6.5 does not hold for unbalanced H.

Note that we have H v H for any history H. As a consequence, from Lemma 6.5
we obtain the following surprising result, stating that linearizability between libraries is
equivalent to inclusion between the sets of histories they produce.

Corollary 6.6. If L1 : Γ and L2 : Γ are safe for I1 and I2, respectively, then

(L1 : Γ, I1) v (L2 : Γ, I2) ⇐⇒
∀(l,H) ∈ interf(L1 : Γ, I1).∃l′. l′ � l ∧ (l′, H) ∈ interf(L2 : Γ, I2).

This fact is not a consequence of ownership transfer and also holds for the classical notion
of linearizability. Intuitively, Lemma 6.5, and hence, Corollary 6.6 hold due to a closure
property of the semantics of the language from Section 4. Namely, in this and other pro-
gramming languages, there may always be a delay between the point when a library method
is called and when it starts executing and, conversely, when it ends executing and when the
control returns to the client. For example, when executing the code in Figure 7(a), there
may be delays between a call to push, the execution of the atomic block and the return
from push. Hence, this library can produce both of the histories in Figures 1(b) and 1(c).

Due to this property of the program semantics, a trace from LLM, e.g., one producing
the history in Figure 1(c), will stay valid if we execute some of the calls in it earlier and
returns later, like in Figure 1(b). This is also (usually) safe given the ownership transfer
reading of calls and returns in the library-local semantics defined by JL : ΓK: it just means
that the library receives state from the client earlier and gives it up later. The proof of
Lemma 6.5 uses such transformations on a history to “de-linearize” it, e.g., transforming

24 A. GOTSMAN AND H. YANG

the history in Figure 1(c) into that in Figure 1(b). The above closure property is also the
reason for Theorem 6.2 guaranteeing that C(L2) can reproduce the history of C(L1) exactly.

Given that replacing a library L1 by its linearization L2 does not simplify its interface
set, can Theorem 6.2 really simplify reasoning about a complete program C(L1)? Fortu-
nately, the answer is yes, since the point of the theorem is to simplify the code of this
program. For example, replacing the library in Figure 2(a) by the one in Figure 7(a) al-
lows us to pretend in reasoning about a complete program that changes to the library
state, shared between different threads, are atomic, and thus consider fewer possible thread
interleavings. Calls and returns in such a complete program are merely thread-local oper-
ations that do not complicate reasoning. In Section 6.2, we discuss an example of using
Theorem 6.2 to simplify proofs of complicated algorithms.

Specifying a library by an interface set H2 instead of code, as in Theorem 6.4, does
not allow us to get results such as Lemma 6.5 and Corollary 6.6, since the set H2 is not
guaranteed to satisfy any closure properties. For example, it might contain only sequential
histories, where every call is immediately followed by the corresponding return without a
delay. In fact, H2 has to be simpler than the interface set of L1 for Theorem 6.4 to be useful,
since this is what the theorem replaces L1 by. Fortunately, to prove Theorem 6.4 we can
exploit a closure property of the client-local semantics, formalised by the following variant
of the Rearrangement Lemma: any client trace can be transformed into an equivalent one
with a given history linearizing the history of the original one.

Lemma 6.7 (Rearrangement—client). If (l,H) v (l′, H ′) and Γ ` C is safe at σ, then

∀κ ∈ JΓ ` CKσ. (δ(σ) ◦ l)↓ ∧ history(κ) = H =⇒ ∃κ′ ∈ JCKσ. history(κ′) = H ′ ∧ κ ∼ κ′.
Intuitively, the lemma holds because, in the client-local semantics, it is safe to execute calls
later and returns earlier. Like Lemma 6.5, this lemma would not hold if we allowed H ′ to
be unbalanced.

In summary, when a library is specified by the code of its abstract implementation,
the ability to linearize a concrete history while looking for a matching abstract one allowed
by Definition 3.4 is not strictly needed. However, it is indispensable when the library is
specified directly by a set of histories. We were able to obtain this insight into the original
definition of linearizability by formalising the guarantees the linearizability of a library
provides to its clients as Abstraction Theorems.

Using Lemmas 6.5 and 6.7, we now prove the two versions of the Abstraction Theorem.

Proof of Theorem 6.2. The safety of C(L1) and C(L2) follows from Corollary 5.7. Take
(σ, τ1) ∈ JC(L1), I ∗ I1K. We transform the trace τ1 of C(L1) into a trace τ2 of C(L2) with
the same client projection using the local semantics of L1, L2 and C. Namely, we first apply
Corollary 5.7 to generate a pair (σ1

l , λ1) ∈ JL1 : Γ, I1K of a library-local initial state and a
trace and a client-local pair (σc, κ) ∈ JΓ ` C, IK, such that

σ = σc ∗ σ1
l ∧ client(τ1) = ground(κ) ∧ history(κ) = history(λ1). (6.1)

Since (L1 : Γ, I1) v (L2 : Γ, I2), for some (σ2
l , λ2) ∈ JL2 : Γ, I2K, we have

(δ(σ1
l), history(λ1)) v (δ(σ2

l), history(λ2)),

which implies δ(σ2
l) � δ(σ1

l). By Lemma 6.5, λ2 can be transformed into a trace λ′2 such
that

((σ2
l , λ
′
2) ∈ JL2 : Γ, I2K) ∧ (history(λ′2) = history(λ1) = history(κ)).

LINEARIZABILITY WITH OWNERSHIP TRANSFER 25

Since δ(σ2
l) � δ(σ1

l) and (σc∗σ1
l)↓, we have (σc∗σ2

l)↓. We then use Corollary 5.8 to compose
the library-local trace λ′2 with the client-local one κ into a trace τ2 such that

((σc ∗ σ2
l , τ2) ∈ JC(L2), I ∗ I2K) ∧ (client(τ2) = ground(κ) = client(τ1)).

The above proof scheme can be described mnemonically as ‘decompose, rearrange, compose’.
We reuse its first two steps to prove Theorem 6.4.

Proof of Theorem 6.4. Take (σ, τ1) ∈ JC(L1), I ∗ I1K. Like in the proof of Theorem 6.2, we
apply Corollary 5.7 to generate (σ1

l , λ1) ∈ JL1, I1K and (σc, κ) ∈ JΓ ` C, IK such that (6.1)
holds. Since (L1 : Γ, I1) v H2, for some (l2, H2) ∈ H2, we have

(l2 � δ(σ1
l)) ∧ ((δ(σ1

l), history(κ)) = (δ(σ1
l), history(λ1)) v (l2, H2)).

Then by Lemma 6.7, κ can be transformed into a trace κ′, such that

(σc, κ
′) ∈ JΓ ` C, IK ∧ history(κ′) = H2 ∧ κ ∼ κ′

Since client(τ1) = ground(κ), we thus have client(τ1) ∼ ground(κ′). Furthermore, since
l2 � δ(σ1

l) and (σc ∗ σ1
l)↓, we have (δ(σc) ◦ l2)↓. Hence, κ′ and l2 are the required trace and

footprint.

6.2. Establishing and Using Linearizability with Ownership Transfer. Our prelim-
inary investigations show that linearizability with ownership transfer can be established by
generalising existing proof systems for proving classical linearizability based on separation
logic [28]. The details of such a generalisation are out of the scope of this paper; we plan
to report on it in the future.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing verifica-
tion methods. For example, the theorem can be used to justify Vafeiadis’s compositional
proof [28, Section 5.3] of the multiple-word compare-and-swap (MCAS) algorithm imple-
mented using an auxiliary operation called RDCSS [16] (the proof used an abstraction of
the kind enabled by Theorem 6.2 without justifying its correctness). If the MCAS algorithm
were verified together with RDCSS, its proof would be extremely complicated. Fortunately,
we can consider MCAS as a client of RDCSS, with the two components performing owner-
ship transfers between them. The Abstraction Theorem then makes the proof tractable by
allowing us to verify the linearizability of MCAS assuming an atomic specification of the
inner RDCSS algorithm.

7. Proof of the Rearrangement Lemma

We only give the proof of Lemma 6.5, as that of Lemma 6.7 is completely symmetric.
The proof transforms λ′ into λ by repeatedly swapping adjacent actions in it according

to a certain strategy to make the history of the trace equal to H. The most subtle place in
the proof is swapping

(t1, ret m1(σ1)) (t2, call m2(σ2))

to yield
(t2, call m2(σ2)) (t1, ret m1(σ1)),

26 A. GOTSMAN AND H. YANG

where t1 6= t2. This case is subtle for the following reason. Let the state of the library L
before the return action be θ; then (θ \σ1)↓ and the state of the library after executing the
return and the call is (θ \σ1) ∗ σ2. For the swapping to be possible, we need (θ ∗ σ2)↓; then
by Proposition 2.2

(θ \σ1) ∗ σ2 = (θ ∗ σ2) \σ1, (7.1)

which can be used to establish that the resulting trace is still produced by L. However,
(θ ∗ σ2)↓ is not guaranteed if the history H is arbitrary. For example, take Σ = RAM and
let H and H ′ be defined by Figures 8(a) and 8(b). Since H is unbalanced, it cannot be
produced by any library, and hence, we cannot swap

(1, ret m1([10 : 0])) (2, call m2([10 : 0]))

in H ′. In our proof we use the fact that the history H is balanced to show that a situation
in which we cannot swap a return followed by a call while transforming λ′ into λ cannot
happen. This is non-trivial, as the problematic situation can potentially happen midway
through the transformation. We only know that the target history H of λ is balanced, but
this does not straightforwardly imply that the histories of the intermediate traces obtained
while transforming λ′ into λ are, since these histories might be quite different from H.
Inferring their balancedness from that of H represents the most challenging part of the
proof.

We therefore first do the proof under an assumption that allows swapping a return
followed by a call easily and consider the general case later. This lets us illustrate the overall
idea of the proof, which is then reused in the additional part of the proof dealing with the
challenge presented by the general case. Namely, we make the following assumption:

Σ = RAM and for any ζ ∈ JL : ΓKσ′ and interface actions ψ1 = (t1, (σ1))
and ψ2 = (t2, (σ2)) in ζ, if t1 6= t2, then dom(σ1) ∩ dom(σ2) = ∅. (7.2)

For example, this holds when states transferred between the client and the library are always
thread-local. It is easy to check that in RAM, if (θ \σ1)↓, ((θ \σ1)∗σ2)↓ and (σ1 ∗σ2)↓, then
(θ ∗ σ2)↓ and thus (7.1) holds. Hence, (7.2) allows us to justify swapping a return followed
by a call in a trace easily. We now proceed to prove Lemma 6.5 under this assumption. In
our proof, we use the assumption in a single place, which we note explicitly; the rest of the
proof is independent from it.

Below we sometimes write vρ instead of v to make the bijection ρ used to establish
the relation between histories in Definition 3.4 explicit. For a bijection ρ between histories
H and H ′, we write idk(ρ) if ρ is an identity on the first k actions in H.

Take σ, σ′ ∈ Σ and consider a trace λ′ ∈ JL : ΓKσ′. Assume histories H,H ′ such that
history(λ′) = H ′ and (δ(σ), H) v (δ(σ′), H ′), so that H is balanced from δ(σ) and H ′ from
δ(σ′). We prove that there exists a trace λ ∈ JL : ΓKσ′ such that history(λ) = H. To this
end, we define a finite sequence of steps that transforms λ′ into a such a trace λ. The main
idea of the transformation is to make progressively longer prefixes of the trace have histories
coinciding with prefixes of H. Namely, the transformation is done in stages, and on stage
k = 0, 1, 2, . . . , |H| we obtain a trace αk ∈ JL : ΓKσ′, where α0 = λ′. Every one of these
traces is such that for some prefix βk of αk we have:

history(βk) = H�k ;

∃ρ. ((δ(σ), H) vρ (δ(σ′), history(αk))) ∧ idk(ρ);

∀j. 0 ≤ j < k =⇒ (βj is a prefix of βk).

LINEARIZABILITY WITH OWNERSHIP TRANSFER 27

We let β0 = ε, so that the above conditions are initially satisfied. Thus, during the trans-
formation, progressively longer prefixes βk of αk have histories coinciding with prefixes of
H, while the linearizability relation between the history H and that of αk is preserved. We
then take α|H| as the desired trace λ.

The trace αk+1 is constructed from the trace αk by applying the following lemma for
λ1 = βk, λ1λ2 = αk, H1 = H�k, H1ψH2 = H, αk+1 = λ1λ

′
2λ
′′
2 and βk+1 = λ1λ

′
2.

Lemma 7.1. Assume (7.2) holds. Consider a history H1ψH2 and a trace λ1λ2 ∈ JL : ΓKσ′
such that

history(λ1) = H1; (7.3)

∃ρ. ((δ(σ), H1ψH2) vρ (δ(σ′), history(λ1λ2))) ∧ id|H1|(ρ). (7.4)

Then there exist traces λ′2 and λ′′2 such that λ1λ
′
2λ
′′
2 ∈ JL : ΓKσ′ and

history(λ1λ
′
2) = H1ψ; (7.5)

∃ρ′. ((δ(σ), H1ψH2) vρ′ (δ(σ′), history(λ1λ
′
2λ
′′
2))) ∧ id|H1ψ|(ρ

′). (7.6)

To prove Lemma 7.1, we convert λ1λ2 into λ1λ
′
2λ
′′
2 by swapping adjacent actions in the

trace a finite number of times while preserving its properties of interest. These transforma-
tions are described by the following proposition, which formalises the closure properties of
the library-local semantics we alluded to in Section 6.1.

Proposition 7.2. Let L : Γ be safe at σ0 and consider ζ ∈ JL : ΓKσ0 and a history S
such that S vρ history(ζ). Then swapping any two adjacent actions ϕ1ϕ2 in ζ executed by
different threads such that

(i) ϕ1 ∈ Act− RetAct, ϕ2 ∈ CallAct; or
(ii) ϕ1 ∈ RetAct, ϕ2 ∈ CallAct, ϕ2 precedes ϕ1 in S, and (7.2) holds; or
(iii) ϕ1 ∈ RetAct, ϕ2 ∈ Act− CallAct

yields a trace ζ ′ ∈ JL : ΓKσ0 such that S vρ′ history(ζ ′) for the bijection ρ′ defined as follows.
If ϕ1 6∈ CallRetAct or ϕ2 6∈ CallRetAct, then ρ′ = ρ. Otherwise, let i be the index of ϕ1 in
S. Then ρ′(i+ 1) = ρ(i), ρ′(i) = ρ(i+ 1) and ρ′(k) = ρ(k) for k 6∈ {i, i+ 1}.

Since, in the library-local semantics, the library gains state at a call and gives it up at
a return, intuitively, the transformation in the proposition allows the library to gain state
earlier (i, ii) and give it up later (iii). The assumption that ϕ2 precede ϕ1 in case (ii) is
needed to ensure that the transformation does not violate the linearizability relation. The
proof of case (ii) is the only place where the assumption (7.2) is used.

Proof sketch for Proposition 7.2. Consider ζ = ζ1ϕ1ϕ2ζ2 ∈ JL : ΓKσ0 and let ζ ′ = ζ1ϕ2ϕ1ζ2.
The proof of the required linearizability relationship is trivial. It therefore remains to show
that (, ζ ′) ∈ JL : ΓKσ0. We know that for some α we have α ∈ LLM and (, ζ) ∈ JαKσ0. Let
α = α1ϕ

′
1ϕ
′
2α2 and α′ = α1ϕ

′
2ϕ
′
1α2, where ϕ′1 and ϕ′2 correspond to ϕ1 and ϕ2. It is easy to

see that α′ ∈ LLM. It therefore remains to show that ζ ′ ∈ Jα′Kσ0. The proof proceeds by case
analysis on the kind of actions ϕ1 and ϕ2. The justification of the case when ϕ1 is a return
and ϕ2 is a call follows from (7.2) by the argument given earlier. Out of the remaining
cases, we only consider a single illustrative one: ϕ1 = (t1, c) and ϕ2 = (t2, call m2(σ)) for
t1 6= t2.

Assume (θ′, ζ1ϕ1ϕ2) ∈ Jα1ϕ
′
1ϕ
′
2Kσ0. Then for some θ we have (θ, ζ1) ∈ Jα1Kσ0, f t1c (θ) 6=

> and θ′ ∈ f t1c (θ) ∗ {σ}. By the Footprint Preservation property, we get (θ ∗ σ)↓. Then by

28 A. GOTSMAN AND H. YANG

H1 H2

H1 H2:

⇢

�1�2:
�1 �3 �4

Figure 9: Illustration of the proof of Lemma 7.1

the Strong Locality property,

θ′ ∈ f t1c (θ) ∗ {σ} = f t1c (θ ∗ σ).

Hence, (θ′, ζ1ϕ2ϕ1) ∈ Jα1ϕ
′
2ϕ
′
1Kσ0. Thus, Footprint Preservation and Strong Locality guar-

antee that a call can be safely executed earlier than a primitive command.

Proof of Lemma 7.1. From (7.3) and (7.4) it follows that λ2 = λ3ψλ4 for some traces λ3

and λ4, where ρ maps ψ in H1ψH2 to the ψ action shown in λ2; see Figure 9. We consider
two cases.

1. ψ ∈ CallAct. Let t be the thread executing ψ. By (7.4) we have (H1ψH2)|t =
(history(λ1λ2))|t. Then, since λ1λ2 is a library trace, (7.3) implies that there are no actions
by thread t in λ3. Furthermore, for any return action ϕ in λ3, the action in H1ψH2

corresponding to it according to ρ is in H2. Thus, we can move the action ψ to the
position between λ1 and λ3 by swapping it with adjacent actions a finite number of times
as described in Proposition 7.2(i, ii). As a result, we obtain the trace λ1ψλ3λ4 ∈ JL : ΓKσ′.
Conditions (7.5)–(7.6) then follow from Proposition 7.2(i, ii) for λ′2 = ψ and λ′′2 = λ3λ4.

2. ψ ∈ RetAct. Assume that λ3 contains a call action ϕ, so that it precedes the return
action ψ in history(λ1λ2). Then by (7.3) and (7.4) the action in H1ψH2 corresponding to
ϕ according to ρ is in H2 and thus follows ψ in H1ψH2. This violates the preservation of
the order of non-overlapping method invocations required by (7.4). Hence, there are no call
actions in λ3. Since λ1λ2 is a library trace, this implies that for any action ϕ = (t, ret)
in λ3 there are no actions by the thread t in λ3 following ϕ. Thus, we can move all return
actions in the subtrace λ3 of λ1λ2 to the position between ψ and λ4 by swapping them
with adjacent actions a finite number of times as described in Proposition 7.2(iii). We thus
obtain the trace λ1λ

′
3ψλ

′
4λ4 ∈ JL : ΓKσ′, where λ′4 consists of all return actions in λ3, and λ′3

of the rest of actions in the subtrace; in particular, λ′3 does not contain any interface actions.
Conditions (7.5)–(7.6) then follow from Proposition 7.2(iii) for λ′2 = λ′3ψ and λ′′2 = λ′4λ4.

This completes the proof of Lemma 6.5 under the assumption (7.2). Let us now lift this
assumption and consider the only place in the proof of the lemma that relies on it—that
when we swap a return followed by a call using Proposition 7.2(ii) in case 1 in the proof of
Lemma 7.1. Let us now identify precise conditions under which this situation happens. Let
ψ = (t1, call m1(σ1)) and let the adjacent return action with which we are trying to swap
it be (t2, ret m2(σ2)). Let S1 be the target history H1ψH2 from Lemma 7.1 and S2 be the
history of the trace in which we are trying to swap the return and the call. Then the two

LINEARIZABILITY WITH OWNERSHIP TRANSFER 29

histories are of the form

S1 = S (t1, call m1(σ1))S1 (t2, ret m2(σ2))S2;

S2 = SS′1 (t2, ret m2(σ2)) (t1, call m1(σ1))S′2
(7.7)

for some S, S1, S2, S
′
1, S
′
2. Furthermore, from the conditions of Lemma 7.1, we have:

(i) t1 6= t2;
(ii) S1 and S2 are balanced from some l1 and l2, respectively, such that l2 � l1; and

(iii) S1 vρ S2, where id|S|(ρ) and ρ maps (t1, call m1(σ1)) and (t2, ret m2(σ2)) in S1 to the

corresponding actions shown in S2.

As the following proposition shows, we can always do the desired transformation if the
history

SS′1 (t1, call m1(σ1)) (t2, ret m2(σ2))S′2 (7.8)

resulting from swapping the return and the call in S2 is balanced from l2.

Proposition 7.3. Let L : Γ be safe at σ0. Consider traces

ζ = ζ1 (t2, ret m2(σ2)) (t1, call m1(σ1)) ζ2 ∈ JL : ΓKσ0

and
ζ ′ = ζ1 (t1, call m1(σ1)) (t2, ret m2(σ2)) ζ2.

If history(ζ ′) is balanced from δ(σ0), then ζ ′ ∈ JL : ΓKσ0.

Thus, the only problematic case we have is when the history (7.8) is not balanced from
l2. We summarise all the conditions under which such case can happen in the following
definition.

Definition 7.4. Histories S1 and S2 of the form (7.7) are conflicting if the conditions
(i)–(iii) above are satisfied and the history (7.8) is not balanced from l2.

Given Proposition 7.3, the only case when the transformation in the proof of Lemma 7.1
can fail to convert the trace is when H1ψH2 and the history currently being transformed
are conflicting. Thus, with the assumption (7.2) lifted, Lemma 7.1 turns into

Lemma 7.5. Consider a history H1ψH2, and a trace λ1λ2 ∈ JL : ΓKσ′ such that (7.3) and
(7.4) hold. Then either H1ψH2 and another history composed of actions from history(λ1λ2)
are conflicting, or there exist traces λ′2 and λ′′2 such that λ1λ

′
2λ
′′
2 ∈ JL : ΓKσ′ and (7.5)

and (7.6) hold.

We now show that no conflicting pairs of histories exist, hence guaranteeing that
Lemma 7.5 can always be used to construct αk+1 from αk in transforming λ′ into λ. This
completes the proof of Lemma 6.5 in the general case.

We first discuss the main idea of the proof. The history S1 in (7.7) is similar to (7.8)
in that the call precedes the return. We would like to use the fact that S1 is balanced to
prove that so is (7.8), thereby yielding a contradiction. As we noted at the beginning of this
section, this is not straightforward due to the differences in the form of the histories S1 and
S2 other than the precedence of the two call and return actions. We resolve this problem
by adjusting the strategy we used above to transform λ′ into λ under the assumption (7.2)
to iron out the differences between S1 and S2. In particular, we use a variant of the
transformation that, when the process of moving the call action ψ to the left in λ1λ2

gets stuck (Figure 9), leaves the corresponding action in H1ψH2 unmatched and continues
bringing the rest of the trace λ1λ2 in sync with the target history.

30 A. GOTSMAN AND H. YANG

Lemma 7.6. There are no conflicting pairs of histories.

Proof. Consider histories S1 and S2 satisfying the conditions in Definition 7.4. Since S2 is
balanced from l2,

JSS′1 (t2, ret m2(σ2))K]l2 = (JSS′1K]l2) \\ δ(σ2)

is defined. Assume

JSS′1 (t1, call m1(σ1))K]l2 = (JSS′1K]l2) ◦ δ(σ1)

is defined. Since (JSS′1K]l2) \\ δ(σ2) is defined, by Proposition 2.7, we have:

JSS′1 (t1, call m1(σ1)) (t2, ret m2(σ2))K]l2 = ((JSS′1K]l2) ◦ δ(σ1)) \\ δ(σ2) =

((JSS′1K]l2) \\ δ(σ2)) ◦ δ(σ1) = JSS′1 (t2, ret m2(σ2)) (t1, call m1(σ1))K]l2.
Then (7.8) is balanced from l2, contradicting our assumptions. Hence, ((JSS′1K]l2) ◦ δ(σ1))↑.

A call action in S′1 cannot be in S2: in this case it would follow (t2, ret m2(σ2)) in S1,
but precede it in S2, contradicting S1 v S2. Hence, all call actions in S′1 are in S1. Let
S1 = S3S4, where S3 is the minimal prefix of S1 containing all call actions from S′1. Then

S1 = S (t1, call m1(σ1))S3S4 (t2, ret m2(σ2))S2;

S2 = SS′1 (t2, ret m2(σ2)) (t1, call m1(σ1))S′2.

If S3 is non-empty, any return action in it precedes its last call action, which is also in S′1.
Since S1 v S2, such a return action also has to be in S′1. Thus, all return actions in S3 are
in S′1.

The traces S1 and S2 are of the following more general form, obtained by letting
S0 = S (t1, call m1(σ1)) and S′0 = S:

S1 = S0S3S4 (t2, ret m2(σ2))S2;

S2 = S′0S
′
1 (t2, ret m2(σ2)) (t1, call m1(σ1))S′2,

where

• S1 and S2 are balanced from some l1 and l2, respectively, such that l2 � l1;
• S0 and S′0 are identical, except S0 may have some extra call actions;
• S1 vρ S2;
• ρ−1 maps all call actions in S′1 to actions in S3;
• ρ maps all return actions in S3 to actions in S′1;
• ρ−1 maps actions in S′0 to those in S0, in particular (t1, call m1(σ1)) to an action in S0,

and (t2, ret m2(σ2)) to the same action shown in S1; and
• ((JS′0S′1K]l2) ◦ δ(σ1))↑.
We denote this form by (F). The additional call actions in S0 are the ones for which the
transformation in Lemma 7.1 failed. The conditions relating S3 and S′1 imply that S3 may
have more calls than S′1, and S′1 more returns than S3. Thus, intuitively, S0S3 gains more
state than S′0S

′
1, including that transferred by (t1, call m1(σ1)), and S′0S

′
1 gives up more

than S0S3. In the following, we use this and the fact that S1 is balanced from a bigger
footprint than S2 to show that ((JS′0S′1K]l2) ◦ δ(σ1))↓, thereby yielding a contradiction.

To this end, we describe a process that transforms the histories S1 and S2 into an-
other pair of histories satisfying the conditions above, but such that S3 is strictly smaller.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 31

Repeatedly applying this process, we can make S3 empty, obtaining histories satisfying (F):

S0S4 (t2, ret m2(σ2))S2;

S′0S
′
1 (t2, ret m2(σ2)) (t1, call m1(σ1))S′2.

(7.9)

In particular, ((JS′0S′1K]l2) ◦ δ(σ1))↑. Before describing the transformation process, we show
that, given the above pair of histories, we can obtain a contradiction. We use the following
simple proposition, proved in Appendix A.1.

Proposition 7.7. Assume S is identical to S′, except it may have extra calls, and S and
S′ are balanced from l1 and l2, respectively, such that l2 � l1. Then the ◦-combination lc of
footprints of states transferred at the extra call actions in S is defined, S′ is balanced from
l1 and

JSK]l1 = (JS′K]l1) ◦ lc ∧ JS′K]l2 � JS′K]l1.
Consider the histories in (7.9). Since all calls from S′1 are in S3 = ε, S′1 contains only returns.
Since the histories are balanced from l1 and l2, respectively, JS0K]l1 and JS′0K]l2 are defined.
The history S0 is identical to S′0, except it may have extra calls. By Proposition 7.7, the
◦-combination of footprints of states transferred at the extra call actions in S0 is defined.
Since an action (t1, call m1(σ1)) is in S0, but not in S′0, this combination is of the form
δ(σ1) ◦ lc for some lc; hence,

JS0K]l1 = (JS′0K]l1) ◦ δ(σ1) ◦ lc ∧ JS′0K]l2 � JS′0K]l1.
Therefore, (JS′0K]l2) ◦ δ(σ1) is defined. Since S′1 contains only return actions,

JS′0S′1K]l2 = (JS′0K]l2) \\ l′,
where l′ is the ◦-combination of the footprints of states transferred at these actions. This
implies

JS′0K]l2 = (JS′0S′1K]l2) ◦ l′,
where both expressions are defined. But then so is

(JS′0K]l2) ◦ δ(σ1) = (JS′0S′1K]l2) ◦ l′ ◦ δ(σ1).

Hence, (JS′0S′1K]l2)◦δ(σ1) is defined, contradicting the opposite fact established above. This
contradiction implies that a conflicting pair of histories does not exist.

Now assume arbitrary histories S1 and S2 satisfying (F):

S1 = S0S3S4 (t2, ret m2(σ2))S2;

S2 = S′0S
′
1 (t2, ret m2(σ2)) (t2, call m1(σ1))S′2,

We show that from these we can construct another pair of histories satisfying (F), but with
S3 strictly smaller. We use the same transformation as in the proof of Lemma 7.1. When
this transformation gets stuck, we obtain another pair of histories of the form (F), but again
with a smaller S3.

Let us make a case split on the next action in S3.

• S3 = (t, call m(σ))S5, such that the action corresponding to (t, call m(σ)) according to ρ
is not in S′1. In this case we let S0 := S0 (t, call m(σ)) and S3 := S5. Thus, the call action
(t, call m(σ)) unmatched in S′1 becomes part of S0.

32 A. GOTSMAN AND H. YANG

• S3 = (t, call m(σ))S5, such that the action corresponding to (t, call m(σ)) according to ρ
is in S′1. Let S′1 = S′3 (t, call m(σ))S′4, so that

S1 = S0 (t, call m(σ))S5S4 (t2, ret m2(σ2))S2;

S2 = S′0S
′
3 (t, call m(σ))S′4 (t2, ret m2(σ2)) (t2, call m1(σ1))S′2.

Using the transformations from case 1 in the proof of Lemma 7.1, we can try to move the
action (t, call m(σ)) to the position between S′0 and S′3 while preserving the balancedness
of the history. If this succeeds, we construct a new pair of histories of the form (F)
by letting S0 := S0 (t, call m(σ)), S3 := S5, S′0 := S′0 (t, call m(σ)) and S′1 := S′3S

′
4.

Otherwise, we get a pair of conflicting histories, which are of the form (F) but with a
smaller S3. Again, in this case the unmatched call action (t, call m(σ)) becomes part of
S0.
• S3 = (t, ret m(σ))S5. Then the action corresponding to (t, ret m(σ)) according to ρ is

also in S′1, so that S′1 = S′3 (t, ret m(σ))S′4:

S1 = S0 (t, ret m(σ))S5S4 (t2, ret m2(σ2))S2;

S2 = S′0S
′
3 (t, ret m(σ))S′4 (t2, ret m2(σ2)) (t2, call m1(σ1))S′2.

Using the transformations from case 2 in the proof of Lemma 7.1, we can move the return
action to the position between S′0 and S′3 while preserving the balancedness of the history.
We thus obtain a pair of histories:

S1 = S0 (t, ret m(σ))S5S4 (t2, ret m2(σ2))S2;

S2 = S′0 (t, ret m(σ))S′3S
′
4 (t2, ret m2(σ2)) (t2, call m1(σ1))S′2.

Then we can let S0 := S0 (t, ret m(σ)), S3 := S5, S′0 := S′0 (t, ret m(σ)) and S′1 := S′3S
′
4.

8. Frame Rule for Linearizability

Libraries such as concurrent containers are used by clients to transfer the ownership of data
structures, but do not actually access their contents. We show that for such libraries, the
classical linearizability implies linearizability with ownership transfer.

Definition 8.1. A method specification Γ′ = {{rm} m {sm} | m ∈M} extends a specifi-
cation Γ = {{pm} m {qm} | m ∈M}, if ∀t. rmt ⊆ pmt ∗ Σ ∧ smt ⊆ qmt ∗ Σ.

For example, the method specification (4.1) of the stack in Figure 2(a) extends the
following specification:

{∃x. argt 7→ x} push {argt 7→ OK ∨ argt 7→ FULL};
{∃y. argt 7→ y} pop {∃x. argt 7→ x}. (8.1)

According to this specification, push just receives an arbitrary pointer x as a parameter; in
contrast, the specification (4.1) additionally mandates that the object the pointer identifies
be transferred to the library. We now identify conditions under which the linearizability
between a pair of libraries satisfying Γ entails that of the same libraries satisfying an ex-
tended method specification Γ′. This yields a result somewhat analogous to the frame rule
of separation logic [26].

We start by introducing some auxiliary definitions. We first define operations for map-
ping between histories corresponding to extended and non-extended method specifications.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 33

For the method specification Γ from Definition 8.1, we define operations T·UΓ and V·WΓ on
interface actions as follows:

T(t, call m(σ))UΓ = (t, call m(σ \ (σ \ pmt)));

T(t, ret m(σ))UΓ = (t, ret m(σ \ (σ \ qmt)));

V(t, call m(σ))WΓ = (t, call m(σ \ pmt));

V(t, ret m(σ))WΓ = (t, ret m(σ \ qmt));

otherwise, the result is undefined. Thus, TψUΓ selects the part of the state in ψ that is
required by Γ and VψWΓ the extra piece of state not required by it. We then lift T·UΓ and
V·WΓ to traces by applying them to every interface action.

Given a history H0 produced by a library L : Γ′, we need to be able to check that
the library does not modify the extra pieces of state not required by the original method
specification Γ, which are given by VH0WΓ. To this end, we define an evaluation function
similar to 〈·〉] from Section 3, which is meant to be applied to VH0WΓ. For an interface
action ψ we define 〈ψ〉 : Σ→ (Σ ∪ {>}) as follows:

〈(t, call m(σ0))〉σ = if (σ ∗ σ0)↓ then σ ∗ σ0 else >;

〈(t, ret m(σ0))〉σ = if (σ \σ0)↓ then σ \σ0 else >.
We then define the evaluation 〈H〉 : Σ→ (Σ ∪ {>}) of a history H as follows:

〈ε〉σ = σ; 〈Hψ〉σ = if (〈H〉σ 6= >) then 〈ψ〉(〈H〉σ) else >.
Thus, if the evaluation does not fail, then the history respects the notion of ownership and
the pieces of state transferred to the library are returned to the client unmodified.

Theorem 8.2 (Frame rule). Assume

(1) Γ′ extends Γ;
(2) for all i ∈ {1, 2}, Li : Γ and Li : Γ′ are safe for Ii and Ii ∗ I, respectively;
(3) (L1 : Γ, I1) v (L2 : Γ, I2); and
(4) for every σ0 ∈ I1, σ′0 ∈ I and λ ∈ JL1 : Γ′K(σ0 ∗ σ′0), we have 〈Vhistory(λ)WΓ〉σ′0 6= >.

Then (L1 : Γ′, I1 ∗ I) v (L2 : Γ′, I2 ∗ I).

The theorem allows us to establish the linearizability relation with respect to the ex-
tended specification Γ′ given the relation with respect to Γ. This enables the use of the
Abstraction Theorem for clients performing ownership transfer. However, the theorem does
not guarantee the safety of the libraries with respect to Γ′ for free, because it is not implied
by their safety with respect to Γ. Intuitively, this is because Γ′ extends both precondi-
tions and postconditions in Γ; hence, not only does it guarantee to the library that the
client will provide extra pieces of state at calls, but it also requires the library to pro-
vide (possibly different) extra pieces of state at returns. For example, Γ might assign
the specification {argt 7→ } m {argt 7→ } to every method m, and Γ′, the specification
{argt 7→ } m {∃x. argt 7→ x ∗ x 7→ }. Unless a library already has all the memory required
by the postconditions in Γ′ in its initial state, it has no way of satisfying Γ′.

This situation is in contrast to the frame rule of separation logic [26], which guarantees
the safety of a piece of code with respect to an extended specification. However, the frame
rule requires the latter specification to extend both pre- and postconditions with the same
piece of state, so that the code returns it immediately after termination. In our setting,
a library can return the extra state to its client after a different method invocation and,
possibly, in a different thread.

34 A. GOTSMAN AND H. YANG

Finally, condition (4) in Theorem 8.2 ensures that the extra memory required by post-
conditions in Γ′ comes from the extra memory provided in its preconditions and the exten-
sion of the initial state, not from the memory transferred according to Γ.

It can be shown that for the library L1 in Figure 2(a), the library L2 in Figure 7(a)
and method specification Γ defined by (8.1), we have (L1 : Γ, I1) v (L2 : Γ, I2). It is
also not difficult to prove (e.g., using separation logic) that L1 : Γ′ and L2 : Γ′ are safe.
Condition (4) in Theorem 8.2 is satisfied, since the proof of safety of L1 : Γ′ would use only
the extra state provided in the preconditions of Γ′ to provide the extra state required by
its postconditions. Hence, by Theorem 8.2 we have (L1 : Γ′, I1) v (L2 : Γ′, I2).

However, Theorem 8.2 is not applicable to the memory allocators in Figures 2(b)
and 7(b): since the allocator implementation in Figure 2(b) stores free-list pointers inside
the memory blocks, it is unsafe with respect to the variant of the method specification (4.2)
that does not transfer their ownership.

The proof of Theorem 8.2 relies on the following two lemmas, proved in Appendices A.3
and A.4, that convert between library traces corresponding to extended and original method
specifications. The first lemma shows that for a trace λ produced by L : Γ′, the trace TλUΓ

can be produced by L : Γ. The safety of the library with respect to Γ and condition (4)
from Theorem 8.2 guarantee that the smaller preconditions specified by Γ are enough for
the library to execute safely and that the extra pieces of state in Γ′ do not influence its
execution.

Lemma 8.3. If λ ∈ JL : Γ′K(σ0 ∗ σ′0), L : Γ is safe at σ0, and 〈Vhistory(λ)WΓ〉σ′0 6= >, then
TλUΓ ∈ JL : ΓKσ0.

The other lemma gives conditions under which we can conclude that a trace λ is pro-
duced by L : Γ′ given that TλUΓ is produced by L : Γ.

Lemma 8.4. Assume TλUΓ ∈ JL : ΓKσ0, (σ0 ∗ σ′0)↓, history(λ) is balanced from δ(σ′′0 ∗ σ′0)
for δ(σ0) � δ(σ′′0), and 〈Vhistory(λ)WΓ〉σ′0 6= >. Then λ ∈ JL : Γ′K(σ0 ∗ σ′0).

Proof of Theorem 8.2. Consider a trace λ1 ∈ JL1 : Γ′K(σ1∗σ), where σ1 ∈ I1 and σ ∈ I. Then
by (4) we have 〈Vhistory(λ1)WΓ〉σ 6= >, and hence by Lemma 8.3 we have Tλ1UΓ ∈ JL1 : ΓKσ1.
Since (L1 : Γ, I1) v (L2 : Γ, I2), for some σ2 ∈ I2 and λ2 ∈ JL2 : ΓKσ2 we have

(δ(σ1), history(Tλ1UΓ)) v (δ(σ2), history(λ2)).

By Lemma 6.5, there exists λ′2 ∈ JL2 : ΓKσ2 such that history(λ′2) = history(Tλ1UΓ). Let λ′′2
be the trace λ′2 with its interface actions replaced so that they form the history history(λ1).
Then Tλ′′2UΓ = λ′2 and Vhistory(λ′′2)WΓ = Vhistory(λ1)WΓ. Since δ(σ2) � δ(σ1), we have
(σ2 ∗ σ)↓. Hence, by Lemma 8.4, λ′′2 ∈ JL2 : Γ′K(σ2 ∗ σ), from which the required follows.

9. Related Work

The original definition of linearizability [18] was proposed in an abstract setting that did not
consider a particular programming language and implicitly assumed a complete isolation
between the states of the client and the library. Furthermore, at the time it was not clear
what the linearizability of a library entails for its clients. Filipović et al. [12] were the first
to observe that linearizability implies a form of contextual refinement; technically, their
result is similar to our Lemma 6.7, but formulated over a highly idealistic semantics. In a

LINEARIZABILITY WITH OWNERSHIP TRANSFER 35

previous work [14], we generalised their result to a compositional proof method, formalised
by an Abstraction Theorem, that allows one to replace a concrete library by an abstract
one in reasoning about a complete program.

This paper is part of our recent push to propose notions of concurrent library correct-
ness for realistic programming languages. So far we have developed such notions together
with the corresponding Abstraction Theorems for supporting reasoning about liveness prop-
erties [14] and weak memory models [4, 6, 15]. All these results assumed that the library
and its client operate in disjoint address spaces and, hence, are guaranteed not to interfere
with each other and cannot communicate via the heap. Lifting this restriction is the goal
of the present paper. Although the basic proof structure of Theorems 6.2 and 6.4 is the
same as in [6,14], the formulations and proofs of the Abstraction Theorem and the required
lemmas here have to deal with technical challenges posed by ownership transfer that did
not arise in previous work. First, their formulations rely on the novel forms of client-local
and library-local semantics (Section 5) that allow a component to communicate with its
environment via ownership transfers. Proving Lemma 5.6 then involves a delicate tracking
of a splitting between the parts of the state owned by the library and the client, and how
ownership transfers affect it. Second, the key result needed to establish the Abstraction
Theorem is the Rearrangement Lemma (Lemmas 6.5 and 6.7). What makes the proof of
this lemma difficult in our case is the need to deal with subtle interactions between con-
currency and ownership transfer that have not been considered in previous work. Namely,
changing the history in the lemma requires commuting ownership transfer actions; justify-
ing the correctness of these transformations is non-trivial and relies on the notion of history
balancedness that we propose. These differences notwithstanding, we hope that techniques
for handling ownership transfer proposed in this paper can be combined with the ones for
handling other types of client-library interactions considered so far [4, 6, 14,15].

Recently, there has been a lot of work on verifying linearizability of common algorithms;
representative papers include [1, 10, 28]. All of them proved classical linearizability, where
libraries and their clients exchange values of a given data type and do not perform ownership
transfers. This includes even libraries, such as concurrent containers, that are actually
used by client threads to transfer the ownership of data structures. The frame rule for
linearizability we propose (Theorem 8.2) justifies that classical linearizability established
for concurrent containers entails linearizability with ownership transfer. This makes our
Abstraction Theorem applicable, enabling compositional reasoning about their clients.

Turon and Wand [27] have proposed a logic for establishing refinements between con-
current modules, likely equivalent to linearizability [12]. Their logic considers libraries and
clients residing in a shared address space, but not ownership transfer. As a result, they do
not support separate reasoning about a library and its client in realistic situations of the
kind we consider.

Elmas et al. [10,11] have developed a system for verifying concurrent programs based on
repeated applications of atomicity abstraction. They do not use linearizability to perform
the abstraction. Instead, they check the commutativity of an action to be incorporated
into an atomic block with all actions of other threads. In particular, to abstract a library
implementation in a program by its atomic specification, their method would have to check
the commutativity of every internal action of the library with all actions executed by the
client code of other threads. Thus, the method of Elmas et al. does not allow decomposing
the verification of a program into verifying libraries and their clients separately. In contrast,
our Abstraction Theorem ensures the atomicity of a library under any safe client.

36 A. GOTSMAN AND H. YANG

The most common approach of decomposing the verification of concurrent programs
is using thread-modular reasoning methods, which consider every thread in the program
in isolation under some assumptions on its environment [20, 24]. However, a single thread
would usually make use of multiple program components. This work goes further by allowing
a finer-grain intrathread-modular reasoning: separating the verification of a library and its
client, the code from both of which may be executed by a single thread. Note that this
approach is complementary to thread-modular reasoning, which can still be used to carry
out the verification subtasks, such as establishing the linearizability of libraries and proving
the safety of clients. Thread-modular techniques do enable a restricted form of intrathread-
modular reasoning, since they allow reasoning about the control of a thread in a program
while ignoring the possibility of its interruption by the other threads. Hence, they allow
considering a library method called by the thread in isolation, e.g., by using the standard
proof rules for procedures. However, such a decomposition is done under fixed assumptions
on the environment of the thread and thus does not allow, e.g., increasing the atomicity of
the environment’s actions. As the example of MCAS shows (Section 6.2), this is necessary
to deal with complex algorithms.

Ways of establishing relationships between different sequential implementations of the
same library have been studied in data refinement [19, 25], including cases of interactions
via ownership transfer [3,13,22]. Our results can be viewed as generalising data refinement
to the concurrent setting. Moreover, when specialised to the sequential case, they provide
a more flexible method of performing it in the presence of the heap and ownership transfer
than previously proposed ones. In more detail, the way we define client safety (Section 5)
is more general some of the ways used in data refinement [13]. There, it is typical to fix a
(precise) invariant of a library and check that the client does not access the area of memory
fenced off by the invariant. Here we do not require an explicit library invariant, using the
client-local semantics instead: since primitive commands fault when accessing non-existent
memory cells, the safety of the client in this semantics ensures that it does not access the
internals of the library. We note that the approach requiring an invariant for library-local
data structures does not generalise to the concurrent setting: while a precise invariant for
the data structures shared among threads executing library code is not usually difficult to
find, the state of data structures local to the threads depends on their program counters.
Thus, an invariant insensitive to program positions inside the library code often does not
exist. Such difficulties are one of reasons for using client- and library-local semantics in this
paper.

Finally, we note that the applicability of our results is not limited to proving existing
programs correct: they can also be used in the context of formal program development.
In this case, instead of abstracting an existing library to an atomic specification while
proving a complete program, the Abstraction Theorem allows refining an atomic library
specification to a concrete concurrent implementation while developing a program top-
down [2, 21]. Our work thus advances the method of atomicity refinement to a setting
with concurrent components sharing an address space and communicating via ownership
transfers.

Acknowledgements

We would like to thank Anindya Banerjee, Josh Berdine, Xinyu Feng, Hongjin Liang, Victor
Luchangco, David Naumann, Peter O’Hearn, Matthew Parkinson, Noam Rinetzky and

LINEARIZABILITY WITH OWNERSHIP TRANSFER 37

Julles Villard for helpful comments. Gotsman was supported by the EU FET project
ADVENT. Yang was supported by EPSRC.

References

[1] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for verifying
linearizability. In CAV’07: Conference on Computer Aided Verification, volume 4590 of LNCS, pages
477–490. Springer, 2007.

[2] R.-J. Back. On correct refinement of programs. J. Comput. Syst. Sci., 23(1):49–68, 1981.
[3] A. Banerjee and D. A. Naumann. Ownership confinement ensures representation independence in object-

oriented programs. J. ACM, 52(6):894–960, 2005.
[4] Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for C/C++ concurrency. In

POPL’13: Symposium on Principles of Programming Languages, pages 235–248. ACM Press, 2013.
[5] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation logic. In

POPL’05: Symposium on Principles of Programming Languages, pages 259–270. ACM Press, 2005.
[6] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on the TSO

memory model. In ESOP’12: European Symposium on Programming, volume 7211 of LNCS, pages
87–107. Springer, 2012.

[7] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In LICS’07: Sym-
posium on Logic in Computer Science, pages 366–378. IEEE, 2007.

[8] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment. In ECOOP’01:
European Conference on Object-Oriented Programming, volume 2072 of LNCS, pages 53–76. Springer,
2001.

[9] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP’09: European
Symposium on Programming, volume 5502 of LNCS, pages 363–377. Springer, 2009.

[10] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying linearizability proofs with
reduction and abstraction. In TACAS’10: Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 6015 of LNCS, pages 296–311. Springer, 2010.

[11] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL’09: Symposium on Prin-
ciples of Programming Languages, pages 2–15. ACM Press, 2009.

[12] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. Theor. Comput.
Sci., 411(51-52):4379–4398, 2010.

[13] I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaiming the client: On data refinement in the
presence of pointers. Form. Asp. Comput., 22(5):547–583, 2010.

[14] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP’11: International Col-
loquium on Automata, Languages and Programming, volume 6756 of LNCS, pages 453–465. Springer,
2011.

[15] Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Show no weakness: sequentially consistent
specifications of TSO libraries. In DISC’12: Symposium on Distributed Computing, volume 7611 of
LNCS, pages 31–45. Springer, 2012.

[16] T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap operation. In DISC’02:
Symposium on Distributed Computing, volume 2508 of LNCS, pages 265–279. Springer, 2002.

[17] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.
[18] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans.

Program. Lang. Syst., 12(3):463–492, 1990.
[19] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281, 1972.
[20] C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages 321–332, 1983.
[21] C. B. Jones. Splitting atoms safely. Theor. Comput. Sci., 375(1-3):109–119, 2007.
[22] I. Mijajlovic and H. Yang. Data refinement with low-level pointer operations. In APLAS’05: Asian

Symposium on Programming Languages and Systems, volume 3780 of LNCS, pages 19–36. Springer,
2005.

[23] P. O’Hearn. Resources, concurrency and local reasoning. Theor. Comput. Sci., 375(1-3):271–307, 2007.
[24] A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics and

Models of Concurrent Systems, pages 123–144. Springer, 1985.

38 A. GOTSMAN AND H. YANG

[25] J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages 513–523,
1983.

[26] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS’02: Symposium
on Logic in Computer Science, pages 55–74. IEEE, 2002.

[27] A. Turon and M. Wand. A separation logic for refining concurrent objects. In POPL’11: Symposium
on Principles of Programming Languages, pages 247–258. ACM Press, 2011.

[28] V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. University of Cambridge, 2008.
[29] V. Vafeiadis. Automatically proving linearizability. In CAV’10: Conference on Computer Aided Verifi-

cation, volume 6174 of LNCS, pages 450–464. Springer, 2010.

Appendix A. Additional proofs

A.1. Proof of Proposition 7.7. We prove the required by induction on the length of S.
If S is empty, then so is S′ and lc = δ(e). Assume the statement of the proposition is valid
for all histories S of length less than n > 0. Consider a history S = S0ψ of length n and a
corresponding history S′ satisfying the conditions of the proposition. We now make a case
split on the type of the action ψ.

• ψ is a call transferring σ0 that is not in S′. Then S0 and S′ are identical except S0 may
have extra calls. Hence, by the induction hypothesis for S0 and S′, S′ is balanced from
l1, JS′K]l2 � JS′K]l1 and

JSK]l1 = JS0ψK]l1 = (JS0K]l1) ◦ δ(σ0) = (JS′K]l1) ◦ (lc ◦ δ(σ0)).

• ψ is a call transferring σ0 also present in S′. Then S′ = S′0ψ, where S′0 and S0 are identical
except S0 may have extra calls. Hence, by the induction hypothesis for S0 and S′0, we
have

JSK]l1 = JS0ψK]l1 = (JS0K]l1) ◦ δ(σ0) =

(JS′0K]l1) ◦ lc ◦ δ(σ0) = (JS′0ψK]l1) ◦ lc = (JS′K]l1) ◦ lc.
In particular, S′ is balanced from l1. By the induction hypothesis for S0 and S′0, we also
have JS′0K]l2 � JS′0K]l1. From this we get

JS′K]l2 = JS′0ψK]l2 = (JS′0K]l2) ◦ δ(σ0) � (JS′0K]l1) ◦ δ(σ0) = JS′0ψK]l1 = JS′K]l1.
• ψ is a return transferring σ0. Then it is also present in S′, so that S′ = S′0ψ, where S0

and S′0 are identical except S0 may have extra calls. Then by the induction hypothesis
for S0 and S′0, we have:

JSK]l1 = JS0ψK]l1 = (JS0K]l1) \\ δ(σ0) = ((JS′0K]l1) ◦ lc) \\ δ(σ0).

Since S′ = S′0ψ is balanced from l2, (JS′0K]l2) \\ δ(σ0) is defined. Furthermore, by the in-
duction hypothesis for S0 and S′0, we also have JS′0K]l2 � JS′0K]l1. Hence, (JS′0K]l1) \\ δ(σ0)
is defined as well. By Proposition 2.7, we then have:

JSK]l1 = ((JS′0K]l1) ◦ lc) \\ δ(σ0) =

((JS′0K]l1) \\ δ(σ0)) ◦ lc = (JS′0ψK]l1) ◦ lc = (JS′K]l1) ◦ lc.
In particular, S′ is balanced from l1. From JS′0K]l2 � JS′0K]l1, it also follows that

JS′K]l2 = JS′0ψK]l2 = (JS′0K]l2) \\ δ(σ0) � (JS′0K]l1) \\ δ(σ0) = JS′0ψK]l1 = JS′K]l1.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 39

A.2. Proof of Lemma 5.6. Before delving into the proof of Lemma 5.6, we prove three
important lemmas about our semantics that justify its key steps. The first concerns the
evaluation of a call or a return action: intuitively, it says that the evaluation of such an
action by the client matches that by the library.

Lemma A.1 (Preservation). Let Γ be a method specification, σ0, σ1 states, and ϕ an action
describing a call to or return from a method specified in Γ such that

JΓ ` ϕKσ0 6= > ∧ Jϕ : ΓKσ1 6= >.
Then for all σ′0, σ

′
1, ϕ
′,

((σ′0, ϕ
′) ∈ JΓ ` ϕKσ0 ∧ (σ′1, ϕ

′) ∈ Jϕ : ΓKσ1) =⇒ ((σ′0 ∗ σ′1)↓ ⇐⇒ (σ0 ∗ σ1)↓).

If furthermore σ0 ∗ σ1 is defined, then we have

{σ0 ∗ σ1} = {σ′0 ∗ σ′1 | ∃ϕ′. (σ′0, ϕ
′) ∈ JΓ ` ϕKσ0 ∧ (σ′1, ϕ

′) ∈ Jϕ : ΓKσ1 ∧ (σ′0 ∗ σ′1)↓ }.
Proof. Consider Γ, σ0, σ1, ϕ satisfying the conditions in the lemma. We show the lemma
only for the case when ϕ is a call action: for some t,m, p, we have ϕ = (t, call m) and
{p} m { } ∈ Γ. The proof for the other case is symmetric.

To show the first claim of the lemma, consider σ′0, σ
′
1, ϕ
′ such that

(σ′0, ϕ
′) ∈ JΓ ` ϕKσ0 ∧ (σ′1, ϕ

′) ∈ Jϕ : ΓKσ1.

By the definition of the action evaluation, there exist σ2, σ3 such that

ϕ′ = (t, call m(σ3)) ∧ (σ2 ∗ σ3)↓ ∧ (σ3 ∗ σ1)↓ ∧ σ0 = σ2 ∗ σ3 ∧ σ′0 = σ2 ∧ σ′1 = σ3 ∗ σ1.

Hence,

(σ′0 ∗ σ′1)↓ ⇐⇒ (σ2 ∗ (σ3 ∗ σ1))↓ ⇐⇒ ((σ2 ∗ σ3) ∗ σ1)↓ ⇐⇒ (σ0 ∗ σ1)↓ .
Let us move on to the second claim of the lemma. Since JΓ ` (t, call m)Kσ0 6= >, pt is

precise and the ∗ operator is cancellative, there exists a unique splitting σ2 ∗ σ3 = σ0 of σ0

such that σ3 ∈ pt. Let ϕ0 = (t, call m(σ3)). Then

({(σ2, ϕ0)} = JΓ ` (t, call m)Kσ0) ∧ (∀σ′1. (σ′1, ϕ0) ∈ J(t, call m) : ΓKσ1 ⇐⇒ σ′1 = σ3 ∗ σ1).

Hence,

{σ′0 ∗ σ′1 | ∃ϕ′. (σ′0, ϕ
′) ∈ JΓ ` (t, call m)Kσ0 ∧ (σ′1, ϕ

′) ∈ J(t, call m) : ΓKσ1 ∧ (σ′0 ∗ σ′1)↓ }
= {σ2 ∗ (σ3 ∗ σ1)} = {σ0 ∗ σ1}.

The second lemma describes the decomposition and composition properties of trace evalu-
ation.

Lemma A.2 (Trace Decomposition and Composition). Consider traces τ, κ, λ without in-
terface actions such that cover(τ, κ, λ). For all states σ0, σ1, if

(σ0 ∗ σ1)↓ ∧ JΓ ` κKσ0 6= > ∧ Jλ : ΓKσ1 6= >, (A.1)

then
JτK(σ0 ∗ σ1) = {(σ′, τ) ∈ JΓ ` κKσ0 ⊗ Jλ : ΓKσ1} (A.2)

and

∀σ′0, σ′1, κ′, λ′. (cover(τ, κ′, λ′) ∧ (σ′0, κ
′) ∈ JΓ ` κKσ0 ∧ (σ′1, λ

′) ∈ Jλ : ΓKσ1)

=⇒ (σ′0 ∗ σ′1)↓ . (A.3)

40 A. GOTSMAN AND H. YANG

Proof. Consider τ, κ, λ, σ0, σ1,Γ satisfying the assumptions. We prove the lemma by induc-
tion on the length of τ . The base case of τ being the empty sequence is trivial.

Now suppose that τ = τ ′ϕ for some τ ′, ϕ. Then there exist κ′ and λ′ such that

cover(τ ′, κ′, λ′) ∧ ((κ = κ′ϕ ∧ λ = λ′) ∨ (κ = κ′ ∧ λ = λ′ϕ) ∨ (κ = κ′ϕ ∧ λ = λ′ϕ)).

By the assumption of the lemma, we have that

JΓ ` κ′Kσ0 6= > ∧ Jλ′ : ΓKσ1 6= >. (A.4)

Hence, by the induction hypothesis, we have that

Jτ ′K(σ0 ∗ σ1) = {(σ′, τ ′) ∈ JΓ ` κ′Kσ0 ⊗ Jλ′ : ΓKσ1} (A.5)

and

∀σ′0, σ′1, κ′′, λ′′. (cover(τ ′, κ′′, λ′′) ∧ (σ′0, κ
′′) ∈ JΓ ` κ′Kσ0 ∧ (σ′1, λ

′′) ∈ Jλ′ : ΓKσ1)

=⇒ (σ′0 ∗ σ′1)↓ . (A.6)

From (A.5) it follows that:
Jτ ′K(σ0 ∗ σ1) 6= >. (A.7)

Next, we prove that
Jτ ′ϕK(σ0 ∗ σ1) 6= >. (A.8)

For the sake of contradiction, suppose this disequality does not hold. Because of (A.7),
there exists σ′′ such that

(σ′′,) ∈ Jτ ′K(σ0 ∗ σ1) ∧ JϕKσ′′ = >. (A.9)

By (A.5), this implies the existence of σ′′0 , σ
′′
1 such that

(σ′′0 ,) ∈ JΓ ` κ′Kσ0 ∧ (σ′′1 ,) ∈ Jλ′ : ΓKσ1 ∧ σ′′ = σ′′0 ∗ σ′′1 .
We split cases based on the relationships among κ, κ′, λ and λ′.
(1) If κ = κ′ϕ and λ = λ′, then ϕ = (t, c) for some t, c. By (A.1), JΓ ` ϕKσ′′0 6= >, so that

f tc(σ
′′
0) 6= >. Hence, by the Strong Locality of f tc , f

t
c(σ
′′
0 ∗σ′′1) 6= >, so that JϕK(σ′′) 6= >.

But this contradicts (A.9).
(2) If κ = κ′ and λ = λ′ϕ, then ϕ = (t, c) for some t, c. This case is symmetric to the

previous one.
(3) If κ = κ′ϕ and λ = λ′ϕ, then ϕ is a call or a return action. Then, by the definition of

evaluation, JϕKσ′′ = {(σ′′, ϕ)} 6= >. This gives the desired contradiction.

The remainder of the proof is again done by a case analysis on the relationships among κ,
κ′, λ and λ′. We consider three cases.

1. κ = κ′ϕ and λ = λ′. In this case, ϕ = (t, c) for some t, c. As shown in (A.8),
Jτ ′ϕK(σ0 ∗ σ1) 6= >. Pick σ′′ such that

(σ′′, τ ′ϕ) ∈ Jτ ′ϕK(σ0 ∗ σ1). (A.10)

By the definition of the trace evaluation and the induction hypothesis in (A.5), there exist
σ′′0 , σ′′1 , κ′′ and λ′′ such that

(σ′′, ϕ) ∈ JϕK(σ′′0 ∗ σ′′1) ∧ (σ′′0 , κ
′′) ∈ JΓ ` κ′Kσ0 ∧ (σ′′1 , λ

′′) ∈ Jλ′ : ΓKσ1 ∧ cover(τ ′, κ′′, λ′′).
(A.11)

Then
cover(τ ′ (t, c), κ′′ (t, c), λ′′).

LINEARIZABILITY WITH OWNERSHIP TRANSFER 41

We have JΓ ` (t, c)Kσ′′0 6= >, because κ = κ′ (t, c) and JΓ ` κKσ0 6= >. Hence f tc(σ
′′
0) 6= >

and, furthermore, σ′′ ∈ f tc(σ′′0 ∗ σ′′1). Hence, by the Strong Locality of f tc , there exists σ′′′0
such that

σ′′′0 ∈ f tc(σ′′0) ∧ σ′′ = σ′′′0 ∗ σ′′1 .
This implies

(σ′′′0 , κ
′′ (t, c)) ∈ JΓ ` κ′ (t, c)Kσ0 = JΓ ` κKσ0.

From what we have shown so far, it follows that

(σ′′, τ ′ (t, c)) = (σ′′′0 ∗ σ′′1 , τ ′ (t, c)) ∈ JΓ ` κKσ0 ⊗ Jλ : ΓKσ1.

Thus,
JτK(σ0 ∗ σ1) ⊆ {(σ′′, τ) ∈ JΓ ` κKσ0 ⊗ Jλ : ΓKσ1}. (A.12)

To show the other inclusion and the (A.3) part of the lemma, consider σ′′0 , σ
′′
1 , κ
′′, λ′′

such that

(σ′′0 , κ
′′) ∈ JΓ ` κ′ (t, c)Kσ0 ∧ (σ′′1 , λ

′′) ∈ Jλ′ : ΓKσ1 ∧ cover(τ ′ (t, c), κ′′, λ′′).

Then for some κ′′′ we have

κ′′ = κ′′′ (t, c) ∧ cover(τ ′, κ′′′, λ′′).

By the definition of the evaluation function, there exists σ′′′0 such that

(σ′′′0 , κ
′′′) ∈ JΓ ` κ′Kσ0 ∧ (σ′′0 , (t, c)) ∈ JΓ ` (t, c)Kσ′′′0 .

By the induction hypothesis in (A.5) and (A.6),

(σ′′′0 ∗ σ′′1)↓ ∧ (σ′′′0 ∗ σ′′1 , τ ′) ∈ Jτ ′K(σ0 ∗ σ1).

Now by the Footprint Preservation property of f tc , the first conjunct above implies that
(σ′′0 ∗ σ′′1)↓, which proves (A.3). By the Strong Locality of f tc ,

(σ′′0 ∗ σ′′1 , (t, c)) ∈ J(t, c)K(σ′′′0 ∗ σ′′1).

From what we have shown above it follows that

(σ′′0 ∗ σ′′1 , τ ′ (t, c)) ∈ JτK(σ0 ∗ σ1).

Hence,
JτK(σ0 ∗ σ1) ⊇ {(σ′′, τ) ∈ JΓ ` κKσ0 ⊗ Jλ : ΓKσ1}. (A.13)

2. κ = κ′ and λ = λ′ϕ. This case is symmetric to the previous one.

3. κ = κ′ϕ and λ = λ′ϕ. In this case ϕ is a call to or a return from a method in Γ.
As shown in (A.8), Jτ ′ϕK(σ0 ∗ σ1) 6= >. Pick σ′′ such that (A.10) holds. By the definition
of evaluation and the induction hypothesis in (A.5), there exist σ′′0 , σ′′1 , κ′′ and λ′′ such
that (A.11) holds. But

JΓ ` ϕKσ′′0 6= > ∧ Jϕ : ΓKσ′′1 6= >.
Furthermore, σ′′ = σ′′0 ∗ σ′′1 . Hence, by Lemma A.1 and the definition of the evaluation,
there exist σ′′′0 , σ

′′′
1 , ϕ

′ such that

σ′′ = σ′′′0 ∗ σ′′′1 ∧ (σ′′′0 , ϕ
′) ∈ JΓ ` ϕKσ′′0 ∧ (σ′′′1 , ϕ

′) ∈ Jϕ : ΓKσ′′1
This in turn implies that

(σ′′′0 , κ
′′ϕ′) ∈ JΓ ` κ′ϕKσ0 ∧ (σ′′′1 , λ

′′ϕ′) ∈ Jλ′ϕ : ΓKσ1.

From what we have shown so far, it follows that

(σ′′, τ ′ϕ) = (σ′′′0 ∗ σ′′′1 , τ ′ϕ) ∈ JΓ ` κKσ0 ⊗ Jλ : ΓKσ1.

42 A. GOTSMAN AND H. YANG

Thus, (A.12) holds.
To show the other inclusion and the (A.3) part of the lemma, consider

σ′′0 , σ
′′
1 , σ

′′′
0 , σ

′′′
1 , κ

′′, λ′′, ϕ′

such that

(σ′′0 , κ
′′) ∈ JΓ ` κ′Kσ0 ∧ (σ′′1 , λ

′′) ∈ Jλ′ : ΓKσ1 ∧ (σ′′′0 , ϕ
′) ∈ JΓ ` ϕKσ′′0

∧ (σ′′′1 , ϕ
′) ∈ Jϕ : ΓKσ′′1 ∧ cover(τ ′ϕ, κ′′ϕ′, λ′′ϕ′).

We need to show that

(σ′′′0 ∗ σ′′′1)↓ ∧ (σ′′′0 ∗ σ′′′1 , τ ′ϕ) ∈ Jτ ′ϕK(σ0 ∗ σ1).

In particular, this establishes (A.13).
Since cover(τ ′ϕ, κ′′ϕ′, λ′′ϕ′) and ϕ′ is a call to or a return from a method in Γ,

cover(τ ′, κ′′, λ′′) ∧ ϕ = ground(ϕ′).

We now use the induction hypothesis in (A.5) and (A.6) and derive that

(σ′′0 ∗ σ′′1)↓ ∧ (σ′′0 ∗ σ′′1 , τ ′) ∈ Jτ ′K(σ0 ∗ σ1).

But JΓ ` ϕKσ′′0 6= > and Jϕ : ΓKσ′′1 6= >. Hence, by Lemma A.1,

(σ′′′0 ∗ σ′′′1)↓ ∧ (σ′′0 ∗ σ′′1 = σ′′′0 ∗ σ′′′1).

By the definition of evaluation,

JϕK(σ′′0 ∗ σ′′1) = {(σ′′0 ∗ σ′′1 , ϕ)} = {(σ′′′0 ∗ σ′′′1 , ϕ)}.
From what we have shown, it follows that

(σ′′′0 ∗ σ′′′1 , τ ′ϕ) ∈ Jτ ′ϕK(σ0 ∗ σ1),

as required.

The following lemma shows that the trace-set generation of our semantics also satisfies
the decomposition and composition properties.

Lemma A.3. ∀τ. τ ∈ LC(L)M ⇐⇒ (∃κ, λ. κ ∈ LΓ ` C M ∧ λ ∈ LL : ΓM ∧ cover(τ, κ, λ)).

Proof. Let

C = let [−] in C1 ‖ . . . ‖ Cn; L = {m = Cm | m ∈ {m1, . . .,mj}}; Cmgc = (m1 + . . .+mj)
∗.

First, consider τ ∈ LC(L)M. By the definition of the semantics, for some trace τ ′, τ is a
prefix of τ ′,

∀t ∈ {1, . . . , n}. τ ′|t ∈ LCt Mt(λ(m, t). LCm Mt())

and all actions in τ ′ are done by some thread t ∈ {1, . . . , n}. Then

∀t ∈ {1, . . . , n}. client(τ ′|t) ∈ LCt Mt(λ(m, t). {ε}) ∧ lib(τ ′|t) ∈ LCmgc Mt(λ(m, t). LCm Mt()).

Since all actions in τ ′ are done by some thread t ∈ {1, . . . , n}, we have

client(τ ′) ∈ (client(τ ′|1) ‖ . . . ‖ client(τ ′|n)) ∧ lib(τ ′) ∈ (lib(τ ′|1) ‖ . . . ‖ lib(τ ′|n)).

Hence,
client(τ ′) ∈ LΓ ` C M ∧ lib(τ ′) ∈ LL : ΓM.

Since client(τ) is a prefix of client(τ ′) and lib(τ) is a prefix of lib(τ ′), this implies

client(τ) ∈ LΓ ` C M ∧ lib(τ) ∈ LL : ΓM.

LINEARIZABILITY WITH OWNERSHIP TRANSFER 43

Furthermore, cover(τ, client(τ), lib(τ)), as desired.
Assume now that

κ ∈ LΓ ` C M ∧ λ ∈ LL : ΓM ∧ cover(τ, κ, λ).

Then for some traces κ′ and λ′, κ is a prefix of κ′, λ is a prefix of λ′, and

∀t ∈ {1, . . . , n}. κ′|t ∈ LCt Mt(λ(m, t). {ε}) ∧ λ′|t ∈ LCmgc Mt(λ(m, t). LCm Mt()).

The definition of our semantics in Figure 5 allows us to choose λ′ in such a way that for
some trace τ ′, τ is a prefix of τ ′ and cover(τ ′, κ′, λ′). Then

∀t ∈ {1, . . . , n}. τ ′|t ∈ LCt Mt(λ(m, t). LCm Mt())

and τ ′ ∈ (τ ′|1 ‖ . . . ‖ τ ′|n). Thus, τ ′ ∈ LC(L)M, which implies τ ∈ LC(L)M, as desired.

Proof of Lemma 5.6. We first show that C(L) is safe for I0 ∗ I1. Pick states σ0, σ1, τ such
that

σ0 ∈ I0 ∧ σ1 ∈ I1 ∧ (σ0 ∗ σ1)↓ ∧ τ ∈ LC(L)M.
By Lemma A.3, there exist traces κ, λ such that

κ ∈ LΓ ` C M ∧ λ ∈ LL : ΓM ∧ cover(τ, κ, λ). (A.14)

By our assumptions, Γ ` C and L : Γ are safe for I0 and I1, respectively. Hence, JΓ ` κKσ0 6=
> and Jλ : ΓKσ1 6= >. By Lemma A.2, these disequalities imply that JτK(σ0 ∗ σ1) 6= >. We
have just shown the safety of C(L) for I0 ∗ I1.

Next, we show that

JC(L), I0 ∗ I1K ⊆ JΓ ` C, I0K⊗ JL : Γ, I1K.
Pick (σ, τ) ∈ JC(L), I0 ∗ I1K. Then for some σ0, σ1 we have

σ0 ∈ I0 ∧ σ1 ∈ I1 ∧ σ = σ0 ∗ σ1 ∧ τ ∈ LC(L)M ∧ (, τ ′) ∈ JτK(σ0 ∗ σ1).

By Lemma A.3, there are κ, λ such that (A.14) holds. We use Lemma A.2 and deduce that
for some κ′, λ′ we have

(, κ′) ∈ JΓ ` κKσ0 ∧ (, λ′) ∈ Jλ : ΓKσ1 ∧ cover(τ, κ′, λ′).

Furthermore, σ0 ∈ I0, σ1 ∈ I1 and (σ0 ∗ σ1)↓. Hence,

(σ, τ) = (σ0 ∗ σ1, τ) ∈ JΓ ` C, I0K⊗ JL : Γ, I1K,
as desired.

Finally, we prove that

JC(L), I0 ∗ I1K ⊇ JΓ ` C, I0K⊗ JL : Γ, I1K.
Pick (σ, τ) ∈ JΓ ` C, I0K⊗JL : Γ, I1K. By the definition of the ⊗ operator and our semantics,
there exist σ0, σ1, σ

′
0, σ
′
1, κ, λ, κ

′, λ′ such that

σ = σ0 ∗ σ1 ∧ σ0 ∈ I0 ∧ σ1 ∈ I1 ∧ κ ∈ LΓ ` C M ∧ λ ∈ LL : ΓM
∧ (σ′0, κ

′) ∈ JΓ ` κKσ0 ∧ (σ′1, λ
′) ∈ Jλ : ΓKσ1 ∧ cover(τ, κ′, λ′).

By the definition of our semantics, κ = ground(κ′) and λ = ground(λ′). Because of this and
cover(τ, κ′, λ′) we have cover(τ, κ, λ). By Lemma A.3, this implies τ ∈ LC(L)M. Also, by
Lemma A.2, we have that

(σ′0 ∗ σ′1)↓ ∧ (σ′0 ∗ σ′1, τ) ∈ JτK(σ0 ∗ σ1).

44 A. GOTSMAN AND H. YANG

Hence,
(σ, τ) = (σ0 ∗ σ1, τ) ∈ JC(L), I0 ∗ I1K,

as desired.

A.3. Proof of Lemma 8.3. Consider λ ∈ JL : Γ′K(σ0 ∗ σ′0). Then there exist σ1 and
ζ ∈ LLM such that (σ1, λ) ∈ Jζ : Γ′K(σ0 ∗ σ′0). We show that for some σ2 we have

((σ2, TλUΓ) ∈ Jζ : ΓKσ0) ∧ (σ1 = σ2 ∗ (〈Vhistory(λ)WΓ〉σ′0)).

We proceed by induction on the length of ζ. The base case of ζ = ε is trivial. Assume
that the above holds for some λ, ζ, σ1, σ2 and consider ϕ,ϕ′, σ′1 such that

ζϕ ∈ LLM ∧ (σ′1, ϕ
′) ∈ Jϕ : Γ′Kσ1 ∧ 〈Vhistory(λϕ′)WΓ〉σ′0 6= >.

We show that for some σ′2 we have

((σ′2, Tλϕ′UΓ) ∈ Jζϕ : ΓKσ0) ∧ (σ′1 = σ′2 ∗ (〈Vhistory(λϕ′)WΓ〉σ′0)).

We consider three cases, depending on the type of the actions ϕ and ϕ′.
• ϕ = ϕ′ = (t, c). Then history(λϕ′) = history(λ). Since L : Γ is safe at σ0, f tc(σ2) 6= >.

Hence, by the Strong Locality property, we have

σ′1 ∈ f tc(σ1) = f tc(σ2 ∗ (〈Vhistory(λ)WΓ〉σ′0)) =

f tc(σ2) ∗ {〈Vhistory(λ)WΓ〉σ′0} = f tc(σ2) ∗ {〈Vhistory(λϕ′)WΓ〉σ′0}.
Then σ′1 = σ′2 ∗ (〈Vhistory(λϕ′)WΓ〉σ′0) for some σ′2 ∈ f tc(σ2).
• ϕ = (t, call m) and ϕ′ = (t, call m(σp ∗ σ′p)), where σp ∈ pmt and σp ∗ σ′p ∈ rmt . Then

σ′1 = σ1 ∗ σp ∗ σ′p = (σ2 ∗ σp) ∗ ((〈Vhistory(λ)WΓ〉σ′0) ∗ σ′p) = (σ2 ∗ σp) ∗ (〈Vhistory(λϕ′)WΓ〉σ′0).

Hence, the required holds for σ′2 = σ2 ∗ σp.
• ϕ = (t, ret m) and ϕ′ = (t, ret m(σq ∗ σ′q)), where σq ∈ qmt and σq ∗ σ′q ∈ smt . Then

σ2 ∗ (〈Vhistory(λ)WΓ〉σ′0) = σ1 = σ′1 ∗ σq ∗ σ′q.
Since L : Γ is safe at σ0, σ2 = σ′2 ∗ σq for some σ′2, so that

σ′2 ∗ σq ∗ (〈Vhistory(λ)WΓ〉σ′0) = σ′1 ∗ σq ∗ σ′q.
By the cancellativity of ∗, this entails

σ′2 ∗ (〈Vhistory(λ)WΓ〉σ′0) = σ′1 ∗ σ′q.
We also know that 〈Vhistory(λϕ′)WΓ〉σ′0 6= >, so that

〈Vhistory(λϕ′)WΓ〉σ′0 = (〈Vhistory(λ)WΓ〉σ′0) \σ′q
is defined. Hence, σ′1 = σ′2 ∗ (〈Vhistory(λϕ′)WΓ〉σ′0).

LINEARIZABILITY WITH OWNERSHIP TRANSFER 45

A.4. Proof of Lemma 8.4. In the following, we extend the T·UΓ operation to non-interface
actions by assuming that it does not change them.

Consider λ, σ0, σ
′
0, σ
′′
0 satisfying the conditions of the lemma. Then history(λ) is balanced

from δ(σ′′0 ∗ σ′0) for δ(σ0) � δ(σ′′0), and there exist σ and ζ ∈ LLM such that (σ, TλUΓ) ∈ Jζ :
ΓKσ0. We show that

(σ ∗ (〈Vhistory(λ)WΓ〉σ′0), λ) ∈ Jζ : Γ′K(σ0 ∗ σ′0)

by induction on the length of ζ. The base case of ζ = ε is trivial. Assume that the above
holds for some λ, σ0, σ

′
0, σ
′′
0 , σ, ζ and consider ϕ,ϕ′, σ′ such that

(ζϕ ∈ LLM) ∧ ((σ′, Tϕ′UΓ) ∈ Jϕ : ΓKσ) ∧
(history(λϕ′) is balanced from δ(σ′′0 ∗ σ′0) for δ(σ0) � δ(σ′′0)) ∧ (〈Vhistory(λϕ′)WΓ〉σ′0 6= >).

We show that
(σ′ ∗ (〈Vhistory(λϕ′)WΓ〉σ′0), λϕ′) ∈ Jζϕ : Γ′K(σ0 ∗ σ′0).

We consider three cases, depending on the type of the actions ϕ and ϕ′.
• ϕ = ϕ′ = (t, c). Then history(λ) = history(λϕ′) and σ′ ∈ f tc(σ). Since

(σ ∗ (〈Vhistory(λ)WΓ〉σ′0))↓ ,
by the Footprint Preservation property, (σ′ ∗ (〈Vhistory(λ)WΓ〉σ′0))↓. Then by the Strong
Locality property,

σ′ ∗ (〈Vhistory(λϕ′)WΓ〉σ′0) = σ′ ∗ (〈Vhistory(λ)WΓ〉σ′0) ∈
f tc(σ) ∗ {〈Vhistory(λ)WΓ〉σ′0} = f tc(σ ∗ (〈Vhistory(λ)WΓ〉σ′0)).

• ϕ = (t, call m) and ϕ′ = (t, call m(σp ∗ σ′p)), where σp ∈ pmt and σp ∗ σ′p ∈ rmt . In
this case we have σ′ = σ ∗ σp. Since history(λϕ′) is balanced from δ(σ′′0 ∗ σ′0), we have
(σ ∗ (〈Vhistory(λ)WΓ〉σ′0) ∗ σp ∗ σ′p)↓. Then

σ ∗ (〈Vhistory(λ)WΓ〉σ′0) ∗ σp ∗ σ′p = σ′ ∗ ((〈Vhistory(λ)WΓ〉σ′0) ∗ σ′p) = σ′ ∗ 〈Vhistory(λϕ′)WΓ〉σ′0.
• ϕ = (t, ret m) and ϕ′ = (t, ret m(σq ∗σ′q)), where σq ∈ qmt and σq ∗σ′q ∈ smt . In this case we

have σ′ = σ \σq. We know 〈Vhistory(λϕ′)WΓ〉σ′0 6= >. Thus, ((〈Vhistory(λ)WΓ〉σ′0) \σ′q)↓.
Since σ ∗ (〈Vhistory(λ)WΓ〉σ′0) is defined, so is

σ′ ∗ (〈Vhistory(λϕ′)WΓ〉σ′0) = σ′ ∗ ((〈Vhistory(λ)WΓ〉σ′0) \σ′q) =

(σ \σq) ∗ ((〈Vhistory(λ)WΓ〉σ′0) \σ′q) = (σ ∗ (〈Vhistory(λ)WΓ〉σ′0)) \(σq ∗ σ′q).

Glossary

Symbol Meaning and section

Σ separation algebra, 2.1

∗ operation accompanying a separation algebra, 2.1

e unit of a separation algebra, 2.1

σ, θ state, 2.1

p, q, r, s predicate on states, 2.1; parameterised predicate, 4.1

g(x)↓ function g is defined on x, 2.1

g(x)↑ function g is undefined on x, 2.1

g[x : y] the function that has the same value as g everywhere,

46 A. GOTSMAN AND H. YANG

except for x, where it has the value y, 2.1

π permission, 2.1

\ subtraction: on states, 2.1; on a state and a predicate, 4.1

l footprint, 2.2

δ(σ) footprint of a state σ, 2.2

F(Σ) the set of all footprints in a separation algebra Σ, 2.2

◦ addition operation on footprints, 2.2

\\ subtraction operation on footprints, 2.2

� “smaller-than” relation on footprints, 2.2

ψ interface action, 3

t thread identifier, 3

m library method, 3

H,S history, 3

ε empty history or trace, 3

τ(i) the i-th element of τ , 3

τ�k the prefix of τ of length k, 3

|τ | is the length of τ , 3

JHK] footprint tracking function, 3

H interface set, 3

v linearizability: on histories, 3; interface sets, 3; libraries, 6

ρ bijection on history indices, 3

c primitive command, 4

C command, 4

L library, 4

S complete program, 4

C open program with a client, 4

P open or complete program, 4

Γ method specification, 4.1

> error state, 4.2

f tc transformer for a primitive command c and thread identifier t, 4.2

ϕ action, 5.1

τ trace, 5.1

κ client trace, 5.1

λ, ζ, α, β library trace, 5.1

lib(τ) projection of τ to library actions, calls and returns, 5.1

client(τ) projection of τ to client actions, calls and returns, 5.1

history(τ) projection of τ to calls and returns, 5.1

η mapping from methods to trace sets, 5.2

LΓ ` P : Γ′ M trace set, 5.2

JΓ ` P : Γ′K denotation of a program P, 5.3

JΓ ` τ : Γ′K evaluation of a trace τ , 5.3

JΓ ` ϕ : Γ′K evalutation of an action ϕ, 5.3

I set of initial states, 5.4

JP, IK set of traces of P run from states in I, 5.4

ground(τ) erasure of state annotations from actions in τ , 5.4

interf(L, I) interface set of L run from initial states in I, 6

∼ equivalence of client traces, 6

LINEARIZABILITY WITH OWNERSHIP TRANSFER 47

TλU selects state annotations corresponding to unextended specifications, 8

VλW selects state annotations recording extra state, 8

〈H〉 evaluation of a history H recording extra state, 8

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

Parameterised Linearisability

Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1 IMDEA Software Institute
2 University of Oxford

Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction

Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [6,7,13] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [8], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised

linearisability, appropriate for different situations: a general one, which does not make
any assumptions about the client or the parameter library, a notion appropriate for the
case when the parameter library is encapsulated, and up-to linearisability, which allows
making assumptions about the parameter library. These notions differ in subtle ways:
we find that there is a trade-off between the assumptions that parameterised libraries
make about their environment and the conditions that a notion of linearisability has to
impose on different types of interactions with it.

We prove that the proposed notions of parameterised linearisability are contextual
(§5), i.e., closed under parameter instantiation. This includes the case when the para-
meter library is itself parameterised. On the other hand, when the parameter is an or-
dinary ground library, this result allows us to derive the classical linearisability of the
instantiated library from our notion for the parameterised one. We also prove that para-
meterised linearisability is compositional (§5): if several non-interacting libraries are
linearisable, so is their composition. Finally, we show that parameterised linearisability
implies observational refinement (§6): the behaviours of any complete program using a
concrete parameterised library can be reproduced if the program uses a corresponding
abstract one instead. All these results allow modularising the reasoning about concur-
rent programs using parameterised libraries: contextuality and compositionality break
the reasoning about complex parameterised libraries into that about individual libraries
from which they are constructed; observational refinement then lifts this to complete
programs, including clients. The properties of parameterised linearisability we estab-
lish also serve to confirm the appropriateness of the proposed definitions.

We illustrate the applicability of our results by proving the up-to linearisability of
flat combining [6] (§4), a generic algorithm for converting hard-to-parallelise sequential
data structures into concurrent ones.

Due to space constraints, we defer the proofs of most theorems to [1, §B].

2 Parameterised Libraries

We consider parameterised libraries (or simply libraries) L, which provide some pub-
lic methods to their clients. The latter are multi-threaded programs that can call the
methods in parallel. In §4 and §6 we introduce a particular syntax for libraries and cli-
ents; for now it suffices to treat them abstractly. Our libraries are called parameterised
because we allow their method implementations to call abstract methods, whose imple-
mentation is left unspecified. Abstract methods are meant to be implemented by another
library provided by L’s client, which we call the parameter library of L.

We identify methods by names from a set M, ranged over by m, and threads by
identifiers from a set T , ranged over by t. For the sake of simplicity, we assume that
methods take a single integer as a parameter and always return an integer. We annotate
libraries with types as in L : M → M ′, where M,M ′ ⊆ M give the sets of abstract
and public methods of L, respectively. If M = ∅ we call L a ground library. The sets
M and M ′ do not have to be disjoint: methods in M ∩M ′ may be called by L’s clients,
but their implementation is inherited from the one given by the parameter library.

Example: Flat Combining. Flat combining [6] is a recent synchronisation paradigm,
which can be viewed [14] as a parameterised library FC : {mi}ni=1 → {do mi}ni=1 for a
given set of methods {mi}ni=1. In Figure 1 we show a pseudocode of its implementation,
which simplifies the original one in ways orthogonal to our goals. FC takes a library,

whose methods mi are meant to be executed sequentially, and efficiently turns it into a
library with methods do mi that can be called concurrently.

LOCK lock;
struct{op,param,retval} requests[NThread];

do mi(int z):
requests[mytid()].op = i;
requests[mytid()].param = z;
requests[mytid()].retval = nil;
do:

if (lock.tryacquire()):
for (t = 0; t < NThread; t++):

if (requests[t].retval == nil):
int j = requests[t].op;
int w = requests[t].param;
requests[t].retval = mj(w);

lock.release();
while (requests[mytid()].retval == nil);
return requests[mytid()].retval;

Figure 1. Flat combining: implementation FC.

As usual, this is achieved by means
of mutual exclusion, implemented using a
lock, but in a way that is more sophistic-
ated than just acquiring it before calling
a method mi. A thread executing do mi

first publishes the operation it would like
to execute and its parameter in its entry
of the requests array. It then spins, try-
ing to acquire the global lock. Having ac-
quired a lock, the thread becomes a com-
biner: it performs the operations reques-
ted by all threads, stored in requests, by
calling methods mi of the parameter lib-
rary and writing the values returned into
the retval field of the corresponding entries
in requests. Each spinning thread period-
ically checks this field and stops if some
other thread has performed the operation it
requested (for simplicity, we assume that
nil is a special value that is never returned by any method). This algorithm benefits
from cache locality when the combiner executes several operations in sequence, and
thus yields good performance even for hard-to-parallelise data structures, such as stacks
and queues.

LOCK lock;
do mi(int z):

lock.acquire();
int retval = mi(z);
lock.release();
return retval;

Figure 2. Flat combin-
ing: specification FC].

In this paper, we develop a framework for specifying and
verifying parameterised concurrent libraries. For flat combin-
ing, our framework suggests using an abstract library FC] :
{mi}ni=1 → {do mi}ni=1 in Figure 2 as a specification for the
concrete library in Figure 1. FC] specifies the expected beha-
viour of flat combining by using the naive mutual exclusion.
Showing that the implementation satisfies this specification in
our framework amounts to proving that it is related to FC] by
parameterised linearisability, which we present next.

3 Histories and Parameterised Linearisability

Histories. Informally, for a concrete library (such as the one in Figure 1) to be correct
with respect to an abstract one (such as the one in Figure 2), the two should interact with
their environment—the client and the parameter library—in similar ways. In this paper,
we assume that different libraries and their clients access disjoint portions of memory,
and thus interactions between them are limited to passing parameters and return values
at method calls and returns. This is a standard assumption [8], which we believe can be
relaxed using existing techniques [5]; see §7 for discussion. We record interactions of a
parameterised library L : M → M ′ with its environment using histories (Definition 1
below), which are certain sequences of actions of the form

Act ::= (t, call?m′(z)) | (t, ret!m′(z)) | (t, call!m(z)) | (t, ret?m(z)),

h1:

call?m1(z1) call!ma(za) ret?ma(z
′
a) ret!m1(z

′
1)

call?m2(z2) call!mb(zb) ret?mb(z
′
b) ret!m2(z

′
2)

call?m3(z3) ret!m3(z
′
3) call?m4(z4) ret!m4(z

′
4)

t1

t2

t3

h2:

call?m1(z1) call!ma(za) ret?ma(z
′
a) ret!m1(z

′
1)

call?m2(z2) call!mb(zb) ret?mb(z
′
b) ret!m2(z

′
2)

call?m3(z3) ret!m3(z
′
3) call?m4(z4) ret!m4(z

′
4)

t1

t2

t3

Figure 4. Illustration of histories and parameterised linearisability. A solid line represents a thread
executing the code of the parameterised library, and a dashed one, the parameter library.

where t ∈ T is the thread performing the action, m′ ∈ M ′ or m ∈ M is the method
involved, and z ∈ Z is the method parameter or a return value.

L′

L

client
call?m′(z) ret!m′(z)

call!m(z) ret?m(z)

callm′′(z) retm′′(z)

Figure 3. Interactions of a library
L with its client and parameter
library L′.

We illustrate the meaning of the actions in Fig-
ure 3: call? and ret! describe the client invoking public
methods m′ of the parameterised library L, and call!
and ret? the library L invoking implementations of ab-
stract methods m provided by a parameter library L′.
We denote the sets of actions corresponding to inter-
actions with these two entities by ClAct and AbsAct,
respectively. In the spirit of the opponent-proponent
distinction in game semantics [9,11], we annotate ac-
tions by ! or ? depending on whether the action was
initiated by L or by an external entity, and we denote
the corresponding sets of actions by Act! and Act?. We
also use sets ActCall?, ActRet!, ActCall! and ActRet?
with the expected meaning. Clients can also call meth-
ods m′′ ∈ M ∩ M ′ directly, as represented by the
dashed lines in the figure. Since such interactions do

not involve the library L, we do not include them into Act. Histories are finite sequences
of actions with invocations of abstract methods properly nested inside those of public
ones.

DEFINITION 1 (Histories) A history h : M → M ′ is a finite sequence of actions such
that for every t, the projection of h to t’s actions is a prefix of a sequence generated by
the grammar SHist below, where m ∈M and m′ ∈M ′:

SHist ::= ε | (t, call?m′(z)) IntSHist (t, ret!m′(z′)) | SHist SHist
IntSHist ::= ε | (t, call!m(z)) (t, ret?m(z′)) | IntSHist IntSHist

We denote the set of histories by Hist. See Figure 4 for examples. In this paper, we
focus on safety properties of libraries and thus let histories be finite. This assumption is
also taken by the classical notion of linearisability [8] and can be relaxed as described
in [4] (§7). For a history h and A ⊆ Act, we let h|A be the projection of h onto actions
in A and we denote the i-th action in h by h(i).

Parameterised Linearisability. We would like the notion of correctness of a concrete
library L : M → M ′ with respect to an abstract one L] : M → M ′ to imply obser-
vational refinement. Informally, this property means that L] can be used to replace L
in any program (consisting of a client, the library and an instantiation of the parameter
library) while keeping its observable behaviours reproducible; a formal definition is
given in §6. While this notion is intuitive, establishing it between two libraries directly
is challenging because of the quantification over all possible programs they can be used
by. We therefore set out to find a correctness criterion that compares the concrete and
abstract libraries in isolation and thus avoids this quantification. For ground libraries,
linearisability [8] formulates such a criterion by matching a history h1 of L with a his-
tory h2 of L] that yields the same client-observable behaviour. The following definition
generalises it to parameterised libraries.

DEFINITION 2 (Parameterised linearisability: general case) A history h1 :M →M ′ is
linearised by another one h2 :M →M ′, written h1 v h2, if there exists a permutation
π : N→ N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i) ∈ Act! ∧ h1(j) ∈ Act?)) =⇒ π(i) < π(j)).

For sets of histories H1, H2 we let H1 v H2 ⇐⇒ ∀h1 ∈ H1.∃h2 ∈ H2. h1 v h2.

In §4 we show how to generate all histories of a library in a particular language
and define linearisability on libraries by the v relation on their sets of histories. For
now we explain the above abstract definition. According to it, a history h1 is linearised
by a history h2 when the latter is a permutation of the former preserving the order of
actions within threads and the precedence relation between the actions initiated by the
library and those initiated by its environment. As we explain below, we have h1 v
h2 for the histories h1, h2 in Figure 4. Hence, parameterised linearisability is able to
match a history of a concurrent library with a simpler one where every contiguous block
of library execution (e.g., the one between (t1, call?m1(z1)) and (t1, call!ma(za))) is
executed without interleaving with other such blocks. On the other hand, h2 6v h1, since
(t1, call!ma(za)) precedes (t3, call?m3(z3)) in h2, but not in h1.

When h1, h2 : ∅ → M ′, i.e., these are histories of a ground library and thus con-
tain only call? and ret! actions, Definition 2 coincides with a variant of the classical
linearisability [8], which requires preserving the order between ret! and call? actions.
For example, Definition 2 requires preserving the order between (t2, ret!m2(z

′
2)) and

(t3, call?m4(z4)) in h1 from Figure 4 (shown by a diagonal arrow). This requirement
is needed for linearisability to imply observational refinement: informally, during the
interval of time between (t2, ret!m2(z

′
2)) and (t3, call?m4(z4)) in an execution of a

program producing h1, both threads t2 and t3 execute pieces of client code, which can
communicate via the client memory. To preserve the behaviour of the client when repla-
cing the concrete library in the program by an abstract one in observational refinement,
this communication must not be affected, and, for this, the abstract library has to admit
a history in which the order between the above actions is preserved.

When h1, h2 : M → M ′ correspond to a non-ground parameterised library, i.e.,
M 6= ∅, a similar situation arises with communication between the methods of the
parameter library executing in different threads. For this reason, our generalisation
of linearisability requires preserving the order between call! and ret? actions, such as

(t2, call!mb(zb)) and (t1, ret?ma(z
′
a)) in Figure 4; this requirement is dual to the one

considered in classical linearisability. It is not enough, however. Definition 2 also re-
quires preserving the order between call! and call?, as well as ret! and ret? actions, e.g.,
(t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)) in Figure 4. In the case when M ∩M ′ 6= ∅, this

is also required to validate observational refinement. For example, during the interval of
time between (t3, ret!m3(z

′
3) and (t2, ret?mb(z

′
b)) in an execution producing h1, the

client code in thread t3 can call a methodm′b ∈M∩M ′ of the parameter library (cf. the
dashed arrows in Figure 3). The code of the methodm′b executed by t3 can then commu-
nicate with that of the method mb executed by t2, and to preserve this communication,
we need to preserve the order between (t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)).

In §5 and §6 we prove that the above notion of linearisability indeed validates ob-
servational refinement. If the library L : M → M ′ producing the histories h1, h2 in
Definition 2 is such that M ∩M ′ = ∅, then the client cannot directly call methods of
its parameter library, and, as we show, parameterised linearisability can be weakened
without invalidating observational refinement.

DEFINITION 3 (Parameterised linearisability: encapsulated case) For h1, h2 : M →
M ′ with M ∩M ′ = ∅ we let h1ve h2 if there exists a permutation π : N→N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i), h1(j)) ∈ (ActRet!× ActCall?) ∪ (ActCall!× ActRet?)) =⇒ π(i) < π(j)).

Since this definition does not take into account the order between (t1, call!ma(za)) and
(t3, call?m3(z3)) in h2 from Figure 4, we have h2 ve h1 even though h2 6v h1.

Definitions 2 and 3 do not make any assumptions about the implementation of the
parameter library. However, sometimes the correctness of a parameterised library can
only be established under certain assumptions about the behaviour of its parameter. In
particular, this is the case for the flat combining library from §2. In its implementation
FC from Figure 1, a request by a thread t to execute a method mi of the parameter lib-
rary can be fulfilled by another thread t′ who happens to act as a combiner; in contrast,
the specification FC] in Figure 2 pretends that mi is executed in the requesting thread.
Thus, FC and FC] will behave differently if we supply as their parameter a library whose
methods depend on the identifiers of executing threads (e.g., with mi implemented as
“return mytid()”). As a consequence, FC does not simulate FC]. On the other hand,
this will be the case if we restrict ourselves to parameter libraries whose behaviour is
independent of thread identifiers. The following version of parameterised linearisabil-
ity allows us to use such assumptions, formulated as closure properties on histories of
interactions between a parameterised library and its parameter. Given a history h, let h
be the history obtained by swapping ! and ? actions in h.

DEFINITION 4 (Up-to linearisability) For h1, h2 : M → M ′ such that M ∩M ′ = ∅
and a binary relationR on histories of type ∅ →M , we say that h1 is linearised by h2
up toR, written h1 vR h2, if (h1|ClAct) v (h2|ClAct) and (h1|AbsAct) R (h2|AbsAct).
For flat combining, a suitable relation Rt relates two histories if one can be obtained
from the other by replacing thread identifiers of some pairs of a call and a corresponding
(if any) return action. There are other useful choices of R, such as equivalence up to
commuting abstract method invocations [7].

So far we have defined our notions of linearisability abstractly, on sets of histories.
We next introduce a language for parameterised libraries and show how to generate sets

of histories of a library in this language. This lets us lift the notion of linearisability to
libraries and prove that FC in Figure 1 is indeed linearised up toRt by FC] in Figure 2.

4 Lifting Linearisability to Libraries
Library Syntax. We use the following language to define libraries:

L ::= 〈public :B; private :B〉 B ::= ε | (m⇐ C);B | (abstractm);B
C ::= c | m() | C;C | if(E) then C else C | while(E) C

A parameterised library L is a collection of methods, some implemented by commands
C and others declared as abstract, meant to be implemented by a parameter library.
Methods can be public or private, with only the former made available to clients. In
§5 and §6 we extend the language to complete programs, consisting of a multithreaded
client using a parameterised library with its parameter instantiated. In particular, we
introduce private methods here to define parameter library instantiation in §5.

In commands, c ranges over primitive commands from a set PComm, and E over
expressions, whose set we leave unspecified. The command m() invokes the method
m; it does not mention its parameter or return value, since, as we explain below, these
are passed via dedicated thread-local memory locations. We consider only well-formed
libraries where a method is declared at most once and every method called is declared.
We identify libraries up to the order of method declarations and α-renaming of private
non-abstract methods. For a library L = 〈public :Bpub; private :Bpvt〉 we have L :
Abs(L)→ Pub(L), where Pub(L) is the set of methods declared in Bpub, and Abs(L)
of those declared as abstract in Bpub or Bpvt.

Linearisability on Libraries and the Semantics Idea. We now show how to generate
the set of histories JLK ∈ 2Hist of a library L. Then we let a library L1 be linearised by
a library L2, written L1 v L2, if JL1K v JL2K; similarly for ve and vR.

We actually generate all library traces, which, unlike histories, also record its in-
ternal actions. Let us extend the set of actions Act with elements of the forms (t, c)
for c ∈ PComm, (t, callm(z)) and (t, retm(z)), leading to a set TrAct. The latter two
kinds of actions correspond to calls and returns between methods implemented inside
the library. A trace τ is a finite sequence of elements in TrAct; we let Traces = TrAct∗.

The denotation JLK of a library L : M → M ′ includes the histories extracted from
traces that L produces in any possible environment, i.e., assuming that client threads
perform any sequences of calls to methods in M ′ with arbitrary parameter values and
that abstract methods in M return arbitrary values. The definition of JLK follows the
intuitive semantics of our programming language. An impatient reader can skip it on
first reading and jump directly to Theorem 1 at the end of this section.

Heaps and Primitive Command Semantics. Let Locs be the set of memory loca-
tions. As we noted in §3, we impose a standard restriction that different libraries and
their clients access different sets of memory locations, except the ones used for method
parameter passing. Formally, we assume that each library L is associated with a set of
its locations LocsL ⊆ Locs. The state of L is thus given by a heap σ ∈ LocsL → Z.
We assume a special subset of locations {argt}t∈T belonging to every LocsL, which
we use to pass parameters and return values for method invocations in thread t.

We assume that the execution of primitive commands and the evaluation of ex-
pressions are atomic. The semantics of a primitive command c ∈ PComm used by a

Traces of commands LCMt : (M×T → 2Traces)→ 2Traces

LcMtη = {(t, c)} LC1;C2Mtη = {τ1τ2 | τ1 ∈ LC1Mtη ∧ τ2 ∈ LC2Mtη}
Lif(E) then C1 else C2Mtη = (t, assume(E)) (LC1Mtη) ∪ (t, assume(!E))(LC2Mtη)
Lwhile(E) CMtη = ((t, assume(E))(JCKη))∗(t, assume(!E))

Lm()Mtη =

{
{(t, call!m(z)) τ (t, ret?m(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, if m ∈M
{(t, callm(z)) τ (t, retm(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, otherwise

Traces of library bodies
F : (M×T → 2Traces)→ (M×T → 2Traces) LBM :M×T → 2Traces

(F(η))(m, t) =

η(m, t) ∪ (LCMtη), if (m⇐ C) appears in L
{ε}, if m ∈M
∅, otherwise

LBpub;BpvtM = lfp(F)

Traces of libraries LL :M →M ′M : 2Traces

LLM = prefix

(⋃
k>0

∥∥k
t=1

(⋃
z,z′∈Z

m∈M′\M
(t, call?m(z)) (LBpub;BpvtM(m, t)) (t, ret!m(z′))

)∗)

Figure 5. Possible traces of a library L = 〈public : Bpub; private : Bpvt〉 : M → M ′. Here∥∥k
t=1

Tt denotes the set of all interleavings of traces from the sets T1, . . . , Tk.

σ L
call m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ L
ret m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ L
call?m(z),t σ

′ iff σ′ = σ[argt 7→ z] σ L
ret!m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ L
call!m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ L
ret?m(z),t σ

′ iff σ′ = σ[argt 7→ z]

Figure 6. Transformers for calls and returns to, from and inside a library L.

library L is defined by a family of transformers { L
c,t}t∈T , where L

c,t ⊆ (LocsL →
Z) × (LocsL → Z) describes how c affects the state of the library. The fact that the
transformers are defined on locations from LocsL formalises our assumption that L
accesses only these locations. We assume that the transformers satisfy some standard
properties [15], deferred to [1, §A] due to space constraints. To define the semantics of
expressions, we assume that for each E the set PComm contains a special command
assume(E), used only in defining the semantics, that allows the computation to proceed
only if E is non-zero: σ L

assume(E),t σ
′ iff σ′ = σ and E is non-zero in σ.

Library Denotations. The set of traces of a library is generated in two stages. First,
we generate a superset LLM ⊆ 2Traces of traces produced by L, defined in Figure 5. If
we think of commands as control-flow graphs, these traces contain interleavings of all
possible paths through the control-flow graphs of L’s methods, invoked in an arbitrary
sequence. We then select those traces in LLM that correspond to valid executions starting
in a given heap using a predicate JτKL : (LocsL → Z)→ {true, false}. We define J·KL
by generalising to calls and returns as shown in Figure 6 and letting

JεKLσ= true; J(t, a) τKLσ = if (∃σ′. σ L
a,t σ

′ ∧ JτKLσ′= true) then true else false.

Finally, we let the set of histories JLK of a library L consist of those obtained from
traces representing its valid executions from a heap with all locations set to 0:

JLK = history({τ ∈ LLM | JτKL(λx ∈ LocsL. 0) = true}),
where history projects to actions in Act.

THEOREM 1 (Correctness of flat combining) For the libraries FC in Figure 1 and FC]

in Figure 2 and the relationRt from §3 we have FC vRt FC
].

PROOF SKETCH. Consider h ∈ JFCK. In such a history, any invocation of an
abstract method (t, call!mi(zi)) (t, ret?mi(z

′
i)) happens within the execution of

the corresponding wrapper method (t′, call? do mi(zi)) (t
′, ret! do mi(z

′
i)) (or just

(t′, call? do mi(zi)) if the execution of the method is uncompleted in h), though not
necessarily in the same thread. This correspondence is one-to-one, as different invoc-
ations of abstract methods correspond to different requests to perform them. Further-
more, abstract methods in h are executed sequentially. We then construct a history h′

by replacing every abstract method call (t, call!mi(zi)) (t, ret?mi(z
′
i)) in h|AbsAct by

(t′, call? do mi(zi)) (t
′, call!mi(zi)) (t

′, ret?mi(z
′
i)) (t

′, ret! do mi(z
′
i)),

where t′ is the thread identifier of the corresponding wrapper method invocation (sim-
ilarly for uncompleted invocations). It is easy to see that (h|AbsAct) Rt (h′|AbsAct) and
h′ ∈ JFC]K. Since the execution of an abstract method in h happens within the execu-
tion of the corresponding wrapper method, we also have (h|ClAct) v (h′|ClAct). ut

5 Instantiating Library Parameters and Contextuality
We now define how library parameters are instantiated and show that our notions of
linearisability are preserved under such instantiations. To this end, we introduce a partial
operation ◦ on libraries of §4: informally, for L1 : M → M ′ and L2 : M ′ → M ′′ the
library L2 ◦ L1 : M → M ′′ is obtained by instantiating abstract methods in L2 with
their implementations from L1. Note that L1 can itself have abstract methodsM , which
are left unimplemented in L2 ◦ L1. Since we assume that different libraries operate in
disjoint address spaces, for ◦ to be defined we require that the sets of locations ofL1 and
L2 be disjoint, with the exception of those used for method parameter passing. To avoid
name clashes, we also require that public non-abstract methods of L2 not be declared as
abstract in L1 (private non-abstract methods are not an issue, since we identify libraries
up to their α-renaming); this also disallows recursion between L2 and L1.

DEFINITION 5 (Parameter library instantiation) Consider L1 : M → M ′ and L2 :
M ′ → M ′′ such that (M ′′ \ M ′) ∩M = ∅ and LocsL1 ∩ LocsL2 = {argt}t∈T . Then
L2 ◦ L1 : M → M ′′ is the library with LocsL2◦L1

= LocsL1
∪ LocsL2

obtained by
erasing the declarations for methods in M ′ from L2, reclassifying the methods from
M ′ \M ′′ in L1 as private, and concatenating the method declarations of the resulting
two libraries. We write (L2 ◦ L1)↓ when L2 ◦ L1 is defined.

We now show that the notions of parameterised linearisability we proposed are con-
textual, i.e., closed under library instantiations. This property is useful in that it allows
us to break the reasoning about a complex library into that about individual libraries
from which it is constructed. As we show in §6, contextuality also helps us establish
observational refinement.

THEOREM 2 (Contextuality of parameterised linearisability: general case) For
L1, L2 :M →M ′ such that L1 v L2:

(i) ∀L :M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L v L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 v L ◦ L2.

THEOREM 3 (Contextuality of parameterised linearisability: encapsulated case) For
L1, L2 :M →M ′ such that M ∩M ′ = ∅ and L1 ve L2:

(i) ∀L :M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L ve L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 ve L ◦ L2.

The restriction on method names in Definition 5 ensures that the library compositions
in Theorem 3 have no public abstract methods and can thus be compared by ve. Note
that if L is ground, then so are L1 ◦ L and L2 ◦ L. In this case, Theorems 2(i) and 3(i)
allow us to establish classical linearisability from parameterised one.

Stating the contextuality of vR is more subtle. The relationship L1 vR L2 allows
the use of abstract methods by L1 and L2 to differ according to R. As a consequence,
for a non-ground parameter library L, their use by L1 ◦ L and L2 ◦ L may also differ
according to another relation G. We now introduce a property of L ensuring that a
change in L’s interactions with its client according to R (the rely) leads to a change in
L’s interactions with its abstract methods according to G (the guarantee).

DEFINITION 6 (Rely-guarantee closure) Let R,G be relations between histories of
type ∅ → M ′ and ∅ → M , respectively. A library L : M → M ′ is

(R
G
)
-closed if

for all h ∈ JLK and h′ : ∅ →M ′ we have

(h|ClAct) R h′ =⇒ ∃h′′ ∈ JLK. (h′′|ClAct = h′) ∧ (h|AbsAct) G (h′′|AbsAct).
Due to space constraints, we state contextuality of vR only for the case in which lib-
rary parameters do not have public abstract methods. A more general statement which
relaxes this assumption is given in [1, §B].

THEOREM 4 (Contextuality of linearisability up toR) For L1, L2 : M → M ′ such
that M ∩M ′ = ∅ and a relationR such that L1 vR L2:

(i) ∀L :M ′′ →M.∀G.M ′′ ∩M = ∅ ∧ (L is
(R
G
)
-closed) ∧

(L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L vG L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 vR L ◦ L2.

When L in Theorem 4(i) is ground, G becomes irrelevant. In this case we say that
L is R-closed if it is

(R
{(ε,ε)}

)
-closed. Hence, from Theorems 1 and 4(i) we get that for

any Rt-closed (§3) library L we have FC ◦ L v FC] ◦ L: instantiating flat combining
with a library insensitive to thread identifiers, e.g., a sequential stack or a queue, yields
a concurrent library linearisable in the classical sense.

Given two libraries L1 : M1 → M ′1 and L2 : M2 → M ′2 that do not interact, i.e.,
(M1∪M ′1)∩ (M2∪M ′2) = ∅, we may wish to compose them by merging their method
declarations into a library L1] L2 : M1]M2 → M ′1]M ′2, as originally proposed
in [8]. Our notions of linearisability are also closed under this composition.

THEOREM 5 (Compositionality of parameterised linearisability) For L1, L
′
1 : M1 →

M ′1 and L2, L
′
2 :M2 →M ′2 such that (M1 ∪M ′1) ∩ (M2 ∪M ′2) = ∅:

(i) L1 v L′1 ∧ L2 v L′2 =⇒ L1] L2 v L′1] L′2.
(ii) L1 ve L

′
1 ∧ L2 ve L

′
2 =⇒ L1] L2 ve L

′
1] L′2.

(iii) ∀R,G. L1 vR L′1 ∧L2 vG L′2 =⇒ L1]L2 vR⊗G L′1]L′2, whereR⊗G relates
histories if their projections to M1 actions are related byR and the projections to
M2 actions are related by G.

6 Clients and Observational Refinement

A program P has the form let L in C1 ‖ . . . ‖ Cn, where L : ∅ → M is a ground
library and C1 ‖ . . . ‖ Cn is a client such that C1, . . . , Cn call only methods in M ,
written (C1 ‖ . . . ‖ Cn) : M . Using the contextuality results from §5, we now show
that our notions of linearisability imply observational refinement for such programs.

The semantics of a program P is given by the set of its traces JP K ∈ 2Traces, which
include actions (t, c) recording the execution of primitive commands c by client threads
Ct and the library L, as well as (t, callm(z)) and (t, retm(z)) actions corresponding
to the former invoking methods of the latter. The semantics JP K is defined similarly
to that of libraries in §4. In particular, we assume that client threads Ct access only
locations in a set Locsclient such that Locsclient ∩ LocsL = {argt}t∈T for any L. Due to
space constraints, we defer the definition of JP K to [1, §A]. We define the observable
behaviour obs(τ) of a trace τ ∈ JP K as its projection to client actions, i.e., those outside
method invocations, and lift obs to sets of traces as expected.

DEFINITION 7 (Observational refinement) For L1, L2 : M → M ′ we say that L1 ob-
servationally refines L2, written L1 vobs L2, if for any ground library L : ∅ →M and
client (C1 ‖ . . . ‖ Cn) :M

′ we have

obs(Jlet (L1 ◦ L) in C1 ‖ . . . ‖ CnK) ⊆ obs(Jlet (L2 ◦ L) in C1 ‖ . . . ‖ CnK).
For a binary relation R on histories we say that L1 observationally refines L2 up to
R, written L1 vRobs L2, if the above is true under the assumption that L isR-closed.

Thus, L1 vobs L2 means that L1 can be replaced by L2 in any program that uses it
while keeping observable behaviours reproducible. This allows us to check a property
of a program using L1 (e.g., the flat combining implementation in Figure 1) by check-
ing this property on a program with L1 replaced by a possibly simpler L2 (e.g., the
flat combining specification in Figure 2). Using Theorems 2–4, we can show that our
notions of linearisability validate observational refinement.

THEOREM 6 (Observational refinement) For any libraries L1, L2 :M →M ′:

(i) L1 v L2 =⇒ L1 vobs L2.
(ii) M ∩M ′ = ∅ ∧ L1 ve L2 =⇒ L1 vobs L2.

(iii) ∀R.M ∩M ′ = ∅ ∧ L1 vR L2 =⇒ L1 vRobs L2.

7 Related Work

Linearisability has recently been extended to handle liveness properties, ownership
transfer and weak memory models [4,5,10]. Most of these extensions have exploited the
connection between linearisability and observational refinement [2]. The same method-
ology is adopted in the present work, but for studying two previously unexplored topics:
parameterised libraries and the impact that common restrictions on their contexts have
on the definition of linearisability. We believe that our results are compatible with the
existing ones and can thus be extended to cover liveness and ownership transfer [4,5].

Our work shares techniques with game semantics of concurrent programming lan-
guages [12,3] and Jeffrey and Rathke’s semantics of concurrent objects [11] (in particu-
lar, we use the ? and ! notation from the latter). The proofs of our contextuality theorems
rely on the fact that library denotations satisfy certain closure properties related tov,ve

and vR, which are similar to those exploited in these prior works. However, there are
two important differences. First, prior work has not studied common restrictions on lib-
rary contexts (such as the encapsulation and closure conditions in Definitions 3 and 4)
and the induced stronger notions of refinement between libraries, the two key topics of
this paper. Second, prior works have considered all higher-order functions, while our
parameterised libraries are limited to second order. Our motivation for constraining the
setting in this way is to use a simple semantics and study the key issues involved in
linearisability of parameterised libraries without using sophisticated machinery from
game semantics, such as justification pointers and views [9], designed for accurately
modelling higher-order features. However, it is definitely a promising direction to look
for appropriate notions of linearisability for full higher-order concurrent libraries by
combining the ideas from this paper with those from game semantics.

Turon et al. proposed CaReSL [14], a logic that allows proving observational re-
finements between higher-order concurrent programs directly, without going via linear-
isability. Their work is complimentary to ours: it provides efficient proof techniques,
whereas we identify obligations to prove, independent of a particular proof system.

Acknowledgements. We thank Thomas Dinsdale-Young and Ilya Sergey for comments
that helped improve the paper. This work was supported by the EU FET project AD-
VENT.

References
1. Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Parameterised linearisability (exten-

ded version). Available from http://software.imdea.org/∼gotsman/.
2. Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for

concurrent objects. Theor. Comput. Sci., 411(51-52), 2010.
3. Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.

Ann. Pure Appl. Logic, 151(2-3), 2008.
4. Alexey Gotsman and Hongseok Yang. Liveness-preserving atomicity abstraction. In ICALP,

2011.
5. Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer. In CONCUR,

2012.
6. Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the

synchronization-parallelism tradeoff. In SPAA, 2010.
7. Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-

concurrent transactional objects. In PPOPP, 2008.
8. Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for con-

current objects. ACM Trans. Program. Lang. Syst., 12(3), 1990.
9. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,

163(2), 2000.
10. Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely. Quarantining weakness -

compositional reasoning under relaxed memory models. In ESOP, 2013.
11. Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for concurrent objects.

Theor. Comput. Sci., 338(1-3), 2005.
12. James Laird. A game semantics of idealized CSP. ENTCS, 45, 2001.
13. Claudio Russo. The Joins concurrency library. In PADL, 2007.
14. Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style reas-

oning in a logic for higher-order concurrency. In ICFP, 2013.
15. Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In FoSSaCS,

2002.

A Programming Language Perspective on
Transactional Memory Consistency

Hagit Attiya
Technion

Alexey Gotsman
IMDEA Software Institute

Sandeep Hans
Technion

Noam Rinetzky
Tel-Aviv University

ABSTRACT
Transactional memory (TM) has been hailed as a paradigm for sim-
plifying concurrent programming. While several consistency con-
ditions have been suggested for TM, they fall short of formaliz-
ing the intuitive semantics of atomic blocks, the interface through
which a TM is used in a programming language.

To close this gap, we formalize the intuitive expectations of a
programmer as observational refinement between TM implementa-
tions: a concrete TM observationally refines an abstract one if ev-
ery user-observable behavior of a program using the former can be
reproduced if the program uses the latter. This allows the program-
mer to reason about the behavior of a program using the intuitive
semantics formalized by the abstract TM; the observational refine-
ment relation implies that the conclusions will carry over to the case
when the program uses the concrete TM. We show that, for a par-
ticular programming language and notions of observable behavior,
a variant of the well-known consistency condition of opacity is suf-
ficient for observational refinement, and its restriction to complete
histories is furthermore necessary.

Our results suggest a new approach to evaluating and compar-
ing TM consistency conditions. They can also reduce the effort of
proving that a TM implements its programming language interface
correctly, by only requiring its developer to show that it satisfies the
corresponding consistency condition.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.4 [Software Engineering]: Software/Program Verification

Keywords
Transactional memory; atomic blocks; observational refinement

1. INTRODUCTION
Transactional memory (TM) eases the task of writing concur-

rent applications by letting the programmer designate certain code
blocks as atomic. TM allows designing a program and reason-
ing about its correctness as if each atomic block executed as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

node := new(StackNode);
node.val := val;
result := abort;
while (result == abort) do {

result := atomic {
node.next = Top.read();
Top = node;

}
}

Figure 1: Example of transactional memory usage

transaction—in one step and without interleaving with others. As
an example, Figure 1 shows how atomic blocks yield simple code
for pushing an element onto a stack represented as a singly-linked
list: in this case it is possible to read the top-of-the-stack pointer,
point the new element to it, and change the top-of-the-stack pointer,
all at once. Many TM implementations have been proposed [10],
using a myriad of design approaches that, for efficiency, may exe-
cute transactions concurrently, yet aim to provide the programmer
with an illusion that they are executed atomically. This illusion is
not always perfect—for example, as evident from Figure 1, trans-
actions can abort due to conflicts with concurrently running ones
and need to be restarted.

How can we be sure that a TM indeed implements atomic blocks
correctly? So far, researchers have tried to achieve this through
a consistency condition that restricts the possible TM executions.
Several such conditions have been proposed, including opacity [8,
9], virtual world consistency [16], TMS [5,18] and DU-opacity [3].
Opacity is the best-known of them; roughly speaking, it requires
that for any sequence of interactions between the program and the
TM, dubbed a history, there exist another history where:

(i) the interactions of every separate thread are the same as in the
original history;

(ii) the order of non-overlapping transactions present in the origi-
nal history is preserved; and

(iii) each transaction executes atomically.
Unfortunately, this definition is given from the TM’s point of

view, as a restriction on the set of histories it can produce, and is
not connected to the semantics of a programming language. The
situation for other TM consistency conditions is the same and, in
fact, it is not clear which of them provide the programmer with
behaviors that correspond to the intuitive notion of atomic blocks,
and which of them puts the minimal restrictions on TM implemen-
tations needed to achieve this.

In this paper, we aim to bridge this gap by formalizing the
intuitive expectations of a programmer as observational refine-
ment [13, 14] between TM implementations. Consider two TM
implementations—a concrete one, such as an efficient TM, and an

abstract one, such as a TM executing every atomic block atomi-
cally. Informally, the concrete TM observationally refines the ab-
stract one if every behavior a user can observe of a program P
linked with the concrete TM can also be observed when P is linked
with the abstract TM instead. This allows the programmer to reason
about the behavior of P using the intuitive semantics formalized by
the abstract TM; the observational refinement relation implies that
the conclusions will carry over to the case when P uses the con-
crete TM.

We show that one TM implementation observationally refines
another if they are in an opacity relation. The relation requires that
every history of the concrete TM have a matching history of the
abstract TM satisfying the conditions (i) and (ii) above. By instan-
tiating it with an abstract TM implementation that executes transac-
tions atomically, we obtain the existing notion of opacity. However,
our definition also allows comparing two TM implementations that
execute transactions concurrently, such as a more and a less op-
timized one. Furthemore, we show that observational refinement
between two TM implementations implies the opacity relation be-
tween thir restriction to complete histories, i.e., ones in which every
transaction either commits or aborts.

We note that the formalization of observational refinement, and
thus our results, depend on the particular choices of programming
language and the notion of observations. In this first treatment of
this topic, we consider a basic programming language and partic-
ular forms of observations. The features of the language are as
follows:
• Threads can access shared global variables outside transactions,

but not inside them. However, thread-local variables (such as
node in Figure 1) can be accessed in both cases.
• An aborted transaction is not restarted automatically and modi-

fications to thread-local variables that it may have performed are
not rolled back.
• A program cannot explicitly ask the TM to abort a transaction.
• Nesting of atomic blocks is not allowed.
As observable behaviors of a program, our result allows one to take
either the set of its reachable states or the set of all sequences of
actions performed by its finite computations. This allows a pro-
grammer to reason about safety, but not about liveness properties.

It is likely that for other programming languages or notions of
observations, other consistency criteria will be necessary or suffi-
cient for observational refinement, resulting in different trade-offs
between the efficiency of TM implementations and the flexibility
of their programming interfaces (see Section 8 for discussion). We
hope that the link between TM consistency conditions and pro-
gramming language abstractions we establish in this paper will en-
able TM implementors and language designers to make informed
decisions about such trade-offs. Our approach can also reduce the
effort of proving that a TM implements its programming interface
correctly, by only requiring its developer to show that it satisfies the
corresponding consistency condition.

2. PROGRAMMING LANGUAGE
We develop our results for a simple concurrent programming

language with programs consisting of a fixed, but arbitrary, num-
ber m of threads, identified by ThreadID = {1, . . . ,m}. Ev-
ery thread t ∈ ThreadID has a private set of local variables
LVart = {x, y, . . .}, and all threads share access to a set of global
variables GVar = {g, . . .}. For simplicity, we assume that all
variables are of type integer. Let Var = GVar] ⊎m

t=1 LVart be
the set of all program variables (where] denotes disjoint union).
In addition to variables, threads can access software or hardware

transactional memory, which from now on we refer to as the trans-
actional system. The system manages a fixed collection of trans-
actional objects Obj = {o, . . .}, each having a set of methods
Method = {f, . . .} that threads can call. For simplicity, we as-
sume that each method takes one integer parameter and returns an
integer value, and that all objects have the same set of methods.

The syntax of the language is as follows:

C ::= c | C;C | if (b) then C else C |
while (b) do C | x := atomic {C} | x := o.f(e)

P ::= C1 ‖ . . . ‖ Cm
where b and e denote Boolean and integer expressions over local
variables, left unspecified. A program P is a parallel composition
of sequential commandsC1, . . . , Cm, which can include primitive
commands c from a set Pcomm, sequential compositions, condi-
tionals, loops, atomic blocks and object method invocations.

Primitive commands are meant to execute atomically. We do not
fix their set Pcomm, but assume that it at least includes assign-
ments to local and global variables: e.g., g := x. We partition
the set Pcomm into 2m classes: Pcomm =

⊎m
t=1(LPcommt]

GPcommt). The intention is that commands from LPcommt

can access only the local variables of thread t (LVart); com-
mands from GPcommt can additionally access global variables
(LVart] GVar). We formalize these restriction in Section 4. We
forbid a thread t from accessing local variables of other threads.
Thus, the thread cannot mention such variables in the conditions
of if and while commands and can only use primitive commands
from LPcommt] GPcommt.

An atomic block x := atomic {C} executes the command C as
a transaction, which the transactional system can decide to com-
mit or abort. The system’s decision is returned in the local vari-
able x, which gets assigned distinguished values committed or
aborted. We forbid nested atomic blocks and, hence, nested trans-
actions. Inside an atomic block (and only there), the program can
invoke methods on transactional objects, as in x := o.f(e). Here
the expression e gives the value of the method parameter, and x
gets assigned the return value after the method terminates. The
transactional system may decide to abort a transaction initiated by
x := atomic {C} not only upon reaching the end of the atomic

block, but also during the execution of a method on a transactional
object. Once this happens, the execution of C terminates. We do
not allow programs in our language to abort a transaction explicitly.
A typical pattern of using the transactional system is to execute a
transaction repeatedly until it commits, as shown in Figure 1.

We forbid accessing global variables inside atomic blocks; thus,
a thread t can use primitive commands from GPcommt only out-
side them. A transaction can use local variables of the current
thread; if the transaction is aborted, these variables are not rolled
back to their initial values, and the values written to them by the
transaction can thus be observed by the following non-transactional
code. We note that, whereas transactional objects are managed by
the transactional system, global variables are not. Thus, threads can
communicate via the transactional system inside atomic blocks,
and directly via global variables outside them. We also note that
the transactional system is not part of a program, but is a library
used by it. Hence, the state of the transactional system is separate
from the variables in Var to which the program has access.

A correct transactional system implementation has to ensure
that the program behaves as though atomic blocks indeed execute
atomically, i.e., without interleaving with actions of other threads,
and that operations invoked on transactional objects in aborted
transactions have no effect. This does not require the implemen-
tation to execute atomic blocks like this internally; it only has to

provide the illusion of their atomicity to the rest of the program. In
the rest of the paper, we prove that a variant of a well-known cri-
terion of transactional system correctness, opacity, is sufficient and
necessary to validate this illusion for our programming language.

3. THE OPACITY RELATION

Histories
In this section we formalize the notion of opacity in our setting, and
along the way, show how to make it more flexible. To this end, we
introduce the notion of a history, which records all the interactions
a program in the language of Section 2 has with the transactional
system in one of its executions. A history, ranged over by H and
S, is a finite1 sequence of interface actions, defined as follows.

DEFINITION 1. An interface action ψ is an expression of one of
the following forms:

Request actions Response actions
(t, txbegin) (t,OK)
(t, txcommit) (t, committed) | (t, aborted)
(t, call o.f(n)) (t, ret(n′) o.f) | (t, aborted)

where t ∈ ThreadID, o ∈ Obj, f ∈ Method and n, n′ ∈ Z.

Interface actions denote the control flow crossing the boundary
between the program and the transactional system: request actions
correspond to the control being transferred from the program to
the transactional system, and response actions correspond to the
control being transferred the other way around. A (t, txbegin) ac-
tion denotes a thread t requesting the transactional system to start
executing a transaction; this action is generated upon entering an
atomic block. An OK action is the only possible response by the
transactional system. A txcommit action is issued when a trans-
action tries to commit upon exiting an atomic block. The trans-
actional system responds with a committed or aborted action, de-
pending on the result. Actions call and ret denote a call to and a re-
turn from an invocation of a method on a transactional object; they
are annotated with the parameter or the return value. As we noted
in Section 2, the transactional system may also decide to abort a
transaction while executing a method on a transactional object. In
such cases, the corresponding call action is followed by an aborted
action instead of a ret one.

We use the following notation: ε is the empty history; H(i) is
the i-th element of a history H; H|t is the projection of H onto
actions of thread t; H|¬t is the projection of H onto actions of
threads other than t; H|o is the projection of H onto call and ret
actions on object o; |H| is the length of H; H�i is the prefix of H
containing i actions;H1H2 is the concatenation ofH1 andH2. We
denote by _ an expression that is irrelevant and implicitly existen-
tially quantified.

The interactions of programs in the language of Section 2 with
the transactional system are not arbitrary; they are recorded by his-
tories that satisfy certain well-formedness properties, summarized
in the following definition.

DEFINITION 2. A history H is well-formed if
• request and response actions are properly matched: for every

thread t, H|t consists of alternating request and corresponding
response actions, starting from a request action;

1We do not consider infinite computations in this paper; see Sec-
tion 8 for a discussion.

• actions denoting beginning and end of transactions are prop-
erly matched: for every thread t, in the projection of H|t to
txbegin, committed and aborted actions, txbegin alternates
with committed or aborted, starting from txbegin; and
• call and ret actions occur only inside transactions: for every

thread t, ifH|t = H1 ψH2 for a call or ret actionψ, thenH1 =
H ′1 ψ

′H ′′1 for some txbegin action ψ′, and historiesH ′1 andH ′′1
such that H ′′1 does not contain txbegin, txcommit, committed
or aborted actions.

Program executions that run utill completion are described by
complete histories, in which every transaction either aborts or com-
mits. This class of histories is of a particular importance to us be-
cause our necessity result holds only for this class.

DEFINITION 3. A well-formed history H is complete if all trans-
actions in it have completed: if H = H1 (t, txbegin)H2, then H2

contains a (t, committed) or (t, aborted) action.

We specify the behavior of a transactional system implementa-
tion by the set of possible interactions it can have with its clients—
its history set H, which is a prefix-closed set of well-formed his-
tories. For our purposes, this specifies the behaviour of a transac-
tional system completely; thus, in the following, we often conflate
the notion of a transactional system and its history set.

We denote the complete subset of a history setH by

H|complete = {H | H ∈ H ∧ (H is complete)}.

The definition of the opacity relation
We define the notion of opacity in a slightly more flexible way than
the original one [8, 9], inspired by the approach taken when defin-
ing the correctness of concurrent libraries via linearizability [15].
Namely, we define the correctness of a transactional system im-
plementation by relating its history set to that of an abstract im-
plementation, whose behavior it has to simulate; in this context,
we call the original implementation concrete. The abstract imple-
mentation is typically one in which atomic blocks actually execute
atomically and methods called by aborted transactions have no ef-
fect. As we show below, we can obtain the original definition of
opacity by instantiating ours with such an abstract implementation;
however, our definition can also be used to compare two arbitrary
implementations. To disambiguate, in the following we refer to our
notion as the opacity relation, instead of just opacity.

According to the following definition, a concrete transactional
system HC is in the opacity relation with an abstract transactional
system HA, if every history H from HC can be matched by a his-
tory S from HA that “looks similar” to H from the perspective of
the program. The similarity is formalized by a relation H v S,
which requires S to be a permutation of H preserving the order
of actions within a thread and that of non-overlapping transactions
(whether committed or aborted). Here the duration of a transaction
is defined by the interval from its txbegin action to the correspond-
ing committed or aborted action (or to the end of the history if
there is none).

DEFINITION 4. A well-formed historyH is in the opacity relation
with a well-formed history S, denotedH v S, if there is a bijection
θ : {1, . . . , |H|} → {1, . . . , |S|} such that ∀i.H(i) = S(θ(i))
and

∀i, j. i < j ∧ ((∃t.H(i) = (t, _) ∧H(j) = (t, _)) ∨
(H(i) ∈ {(_, committed), (_, aborted)} ∧
H(j) = (_, txbegin)))

=⇒ θ(i) < θ(j).

A transactional system HC is in the opacity relation with a trans-
actional systemHA, denotedHC v HA, if

∀H ∈ HC . ∃S ∈ HA. H v S.

In the following, for i < j we say that the actions H(i) and
H(j) are in the per-thread order in H when they are by the same
thread and in the real-time order when H(i) = (_, committed) or
H(i) = (_, aborted) and H(j) = (_, txbegin). Thus, H v S
requires that the per-thread and real-time orders between actions in
H be preserved in S. We now make some comments concerning
the choices taken in this definition.
• As we show in Section 7, preserving the real-time order in Defi-

nition 4 is necessary to validate observational refinement due to
the fact that, in our programming language, threads can access
global variables outside transactions and, hence, can notice the
order of non-overlapping transactions.
• Definition 4 treats committed and aborted transactions uni-

formly. This is a characteristic feature of opacity: it ensures
that the results returned by methods of transactional objects in-
side aborted transactions are as consistent as those returned in-
side committed transactions (we return to this point in Sections 7
and 8).
• The abstract history S in Definition 4 is not required to be se-

quential, i.e., it may have overlapping executions of transac-
tions. This allows the definition to compare behaviors of two
realistic transactional system implementations that actually exe-
cute transactions concurrently. We also allow H to contain un-
completed transactions (without a final committed or aborted
action) arising, e.g., because the corresponding thread has been
preempted. In this case, we require the same behavior to be re-
produced in the matching history S, which is possible because
the latter does not have to be sequential [7].

Comparison with the original opacity definition
We now show how the original notion of opacity [8, 9] can be ob-
tained from ours by instantiating Definition 4 with an abstract trans-
actional systemHatomic in which atomic blocks execute atomically
and methods called by aborted transactions have no effect. We first
introduce the ingredients needed to define this system. We start by
defining a special class of non-interleaved histories.

DEFINITION 5. A well-formed history H is non-interleaved if
actions by any two transactions do not overlap: if H =
H1 (t, txbegin)H2 (t

′, txbegin)H3, where H2 does not contain
txbegin actions, then either H2 contains a (t, committed) or a
(t, aborted) action, or there are no actions by thread t in H3.

Note that a non-interleaved history does not have to be com-
plete. In fact, the history setHatomic we are about to define contains
only non-interleaved histories, but some of them are incomplete.
This is because a concrete transactional system may produce histo-
ries with incomplete transactions, and our opacity relation requires
these transactions to stay incomplete in the matching history of the
abstract system. To check whether an incomplete history should be
included into Hatomic, we first complete it with the aid of the op-
eration defined below, which aborts every transaction that has not
tried to commit yet and commits or aborts every transaction that
has tried to commit (as witnessed by a txcommit action), but has
not yet got a response.

DEFINITION 6. A history H is a completing history for an inter-
face action ψ, if the following holds:
• if ψ = (t, call o.f(n)), then H = (t, aborted);

• if ψ = (t, txbegin), then
H = (t,OK) (t, txcommit) (t, aborted);
• if ψ ∈ {(t, ret(n) o.f), (t,OK)}, then
H = (t, txcommit) (t, aborted);
• if ψ = (t, txcommit), then
H = (t, committed) or H = (t, aborted);
• otherwise, H = ε.

DEFINITION 7. A history Hc is a non-interleaved completion of
a non-interleaved history H , if Hc is a non-interleaved complete
history that can be constructed from H by adding a completing
history for the last action of every thread right after this action. We
denote the set of non-interleaved completions ofH by nicomp(H).

To define Hatomic, we also need to know the intended semantics
of operations on transactional objects. We describe the semantics
for an object o ∈ Obj by fixing all sequences of actions on o that are
considered correct when executed by a sequential program. More
precisely, a sequential specification of an object o is a set of histo-
ries [[o]] such that:
• [[o]] is prefix-closed;
• each H ∈ [[o]] consists of alternating call and ret actions on o,

starting from a call action, where every ret is by the same thread
as the preceding call; and
• [[o]] is insensitive to thread identifiers: for any H ∈ [[o]], chang-

ing the thread identifier in call-ret pair of adjacent actions in H
yields a history in [[o]].

For example, [[o]] for a register object o would consist of histories
where each read method invocation returns the value written by the
latest preceding write method invocation (or the default value if
there is none).

Using sequential specifications for all objects, we now define
when a complete and non-interleaved history H respects the object
semantics. Let H(i) be a call or ret action on an object o. We
say that H(i) is legal in H if H ′|o ∈ [[o]], where H ′ is the history
obtained from H by projecting H�i on all actions by committed
transactions and the transaction containing H(i). A complete and
non-interleaved history H is legal if all call and ret actions in H
are legal. We now let Hatomic to be the set of all non-interleaved
histories that can be completed to a legal history:

Hatomic = {H | H is non-interleaved ∧ ∃ legalHc ∈ nicomp(H)}.
Thus, we can say that a transactional system HC establishes

the illusion of atomicity for transactions if HC v Hatomic. Note
that, since we require the history set of a transactional system to
be prefix-closed, this criterion checks every prefix of any history
produced by HC , just like opacity as formulated in [9]. However,
in other aspects this definition is of a different form than opacity,
which we can formulate in our setting as follows.

DEFINITION 8. A history Hc is a suffix completion of a history
H , if it is a complete history, H is a prefix of Hc, and Hc can be
constructed from H by appending to it a completing history for the
last action of every thread. We denote the set of suffix-completions
of H by scomp(H).

DEFINITION 9. A transactional systemHC is opaque if for every
history H ∈ HC , there exists a history Hc ∈ scomp(H) and a
complete, non-interleaved and legal history Sc such thatHc v Sc.

The main difference is that Definition 9 first completes a history
fromHC and then finds its match according to the opacity relation;

our criterion HC v Hatomic first finds the match and then com-
pletes the matching history. For technical reasons, Definition 9 also
uses a slightly different completion, putting completing histories at
the end to avoid creating new real-time orderings.

Fortunately, completion and matching commute, and thus the
two formulations of opacity are equivalent.

PROPOSITION 10. A transactional system HC is opaque if and
only ifHC v Hatomic.

We prove the proposition in [2, Appendix A]. The formulation
HC v Hatomic is more convenient for us, since the statement of
observational refinement we give in Section 5 below requires us
to leave the histories of the concrete transactional system intact.
Stating transactional system consistency in this way also avoids the
need to bake in completions (Definition 7) into the definition of the
opacity relation (Definition 4): the treatment of incomplete trans-
actions can be deferred to the choice of the abstract transactional
system.

4. PROGRAMMING LANGUAGE SEMAN-
TICS

Our goal is to establish a connection between conditions on
transactional system implementations, such as the opacity relation
from Section 3, and the behavior of programs that use these sys-
tems, such as those in the language of Section 2. To this end, in
this section we define the semantics of our programming language,
i.e., what kinds of computations can result when a program exe-
cutes with a particular transactional system.

A program computation is captured by a trace τ , which is a finite
sequence of actions, each describing a single computation step.

DEFINITION 11. An actionϕ is an expression of one of the follow-
ing forms: ϕ ::= ψ | (t, c), where t ∈ ThreadID and c ∈ Pcomm.
We denote that set of all actions by Action.

In addition to interface actions, we have actions of the form
(t, c), which denote the execution of a primitive command by
thread t. To denote the evaluation of conditions in if and while

statements, we assume that the sets LPcommt contain special prim-
itive commands assume(b), where b is a Boolean expression over
local variables of thread t, defining the condition. We state their
semantics formally below; informally, assume(b) does nothing if b
holds in the current program state, and stops the computation oth-
erwise. Thus, it allows the computation to proceed only if b holds.
The assume commands are only used in defining the semantics of
the programming language; hence, we forbid threads from using
them directly.

We denote by history(τ) the history obtained by projecting a
trace τ to interface actions. We use various operations on histories
defined in Section 3 for traces as well. As is the case for histories,
programs in the language of Section 2 do not generate arbitrary
traces, but only those satisfying certain conditions summarized in
the following definition.

DEFINITION 12. A trace τ is well-formed if
• the history history(τ) is well-formed;
• thread t does not access local variables of other threads: if τ =
τ1 (t, c) τ2, then c ∈ LPcommt] GPcommt; and
• commands in τ do not access global variables inside a transac-

tion: if τ = τ1 (t, c) τ2 for c ∈ GPcommt, then it is not the
case that τ1 = τ ′1 (t, txbegin) τ ′′1 , where τ ′′1 does not contain
committed or aborted actions.

We denote the set of well-formed traces by WTrace.

We use two additional operations on traces. For a trace τ , we
define trans(τ) and nontrans(τ) as the subsequence of actions in
τ executed inside transactions (including txbegin, committed and
aborted actions), respectively, outside them (excluding txbegin,
committed and aborted actions). Formally, we include an action
ϕ = (t, _) such that τ |t = τ1 ϕ τ2 into trans(τ) if:
• ϕ is a txbegin, committed or aborted action; or
• τ1 = τ ′1 (t, txbegin) τ ′′1 , where τ ′′1 does not contain committed

or aborted actions.
All other actions form nontrans(τ). Actions in τ that are in
trans(τ) are transactional and all others are non-transactional.

A state of a program records the values of all its variables: s ∈
State = Var → Z. The semantics of a program P = C1 ‖
· · · ‖ Cm is given by the set of traces [[P]](s,H) ∈ P(WTrace)
it produces when run with a transactional systemH from an initial
state s. We define this set in two stages. First, we define the set
[[P]](s) ∈ P(WTrace) that a program produces when run from
s with the behaviors of the transactional system unrestricted. We
then compute the set of traces produced by P when run with a given
transactional system H by selecting those traces that interact with
the transactional system in a way consistent withH:

[[P]](s,H) = {τ | τ ∈ [[P]](s) ∧ history(τ) ∈ H}. (1)

The set [[P]](s) is itself computed in two stages2. First, we
compute a trace set A(P) ∈ P(WTrace) that resolves all issues
regarding sequential control flow and interleaving. Intuitively, if
one thinks of each sequential command Ct in P as a control-flow
graph, then A(P) contains all possible interleavings of paths in
the control-flow graph of all the commands Ct starting from their
source nodes. The set A(P) is a superset of all the traces that can
actually be executed: e.g., if a thread executes the command

x := 1; if (x = 1) y := 1 else y := 2 (2)

where x is a local variable, then A(P) will contain a trace where
y := 2 is executed instead of y := 1. To filter out such nonsensi-
cal traces, we evaluate every trace to determine whether its control
flow is consistent with the expected behavior of its actions. This is
formalized by a function eval : State×WTrace→ P(State) that,
given an initial state and a trace, produces the set of states resulting
from executing the actions in the trace, or an empty set if the trace
is infeasible. Then we let

[[P]](s) = {τ | τ ∈ A(P) ∧ eval(s, τ) 6= ∅}. (3)

The rest of this section defines the trace set A(P) and the eval-
uation function eval formally. The definitions follow the intuitive
semantics of our programming language and can be skipped on first
reading (they are only used in the proofs of Lemmas 18 and 20
in Section 6 and in the detailed proof of Theorem 24 in [2, Ap-
pendix B]).

Trace set A(P)

The function A(·) in Figure 2 maps commands and programs to
the set of their possible traces. A(C)t gives the set of traces
produced by a command C when it is executed by thread t. To
define A(P), we first compute the set of all the interleavings of
traces produced by the threads constituting P . Formally, τ ∈
interleave(τ1, . . . , τm) if and only if every action in τ is performed
by some thread t ∈ {1, . . . ,m}, and τ |t = τt for every thread
t ∈ {1, . . . ,m}. We then let A(P) be the set of all prefixes of the
resulting traces, as denoted by the prefix operator. We take prefix
2Here we define the set [[P]](s) in a denotational style; a definition
using structural operational semantics would also be appropriate.

A(c)t = {(t, c)}
A(C1;C2)t = {τ1 τ2 | τ1 ∈ A(C1)t ∧ τ2 ∈ A(C2)t}

A(if (b) then C1 else C2)t = {(t, assume(b)) τ1 | τ1 ∈ A(C1)t} ∪ {(t, assume(¬b)) τ2 | τ2 ∈ A(C2)t}
A(while (b) do C)t = {((t, assume(b)) (A(C)t))∗ (t, assume(¬b))}

A(x := o.f(e))t = {(t, assume(e = n)) (t, call o.f(n)) (t, ret(n′) o.f) (t, x := n′) | n, n′ ∈ Z} ∪
{(t, assume(e = n)) (t, call o.f(n)) (t, aborted) | n ∈ Z}

A(x := atomic {C})t = {(t, txbegin) (t,OK) τ (t, aborted) (t, x := aborted) | τ (t, aborted) ∈ A(C)t} ∪
{(t, txbegin) (t,OK) τ (t, txcommit) (t, committed) (t, x := committed) | τ ∈ A(C)t ∧ τ 6= _ (t, aborted)} ∪
{(t, txbegin) (t,OK) τ (t, txcommit) (t, aborted) (t, x := aborted) | τ ∈ A(C)t ∧ τ 6= _ (t, aborted)}

A(C1 ‖ . . . ‖ Cm) = prefix(
⋃{interleave(τ1, . . . , τm) | ∀t. 1 ≤ t ≤ m =⇒ τt ∈ A(Ct)t})

Figure 2: The function A(·) mapping commands and programs to the set of all their possible traces

closure here to account for incomplete program computations as
well as those in which the scheduler preempts a thread forever.
A(c)t returns a singleton set with the action corresponding to

the primitive command c (recall that primitive commands execute
atomically). A(C1;C2)t concatenates all possible traces corre-
sponding to C1 with those corresponding to C2. The set of traces
for a conditional considers cases where either branch is taken. We
record the decision using an assume action; at the evaluation stage,
this allows us to ensure that this decision is consistent with the pro-
gram state. The trace set for a loop is defined using the Kleene
closure operator ∗ to produce all possible unfoldings of the loop
body. Again, we record branching decisions using assume actions.

The trace set of a method invocation x := f(e) includes both
traces where the method executes successfully and where the cur-
rent transaction is aborted. The former set is constructed by non-
deterministically choosing two integers n and n′ to describe the
parameter n and the return value n′ for the method call. To ensure
that e indeed evaluates to n, we insert assume(e = n) before the
call action, and to ensure that x gets the return value n′, we add
the assignment x := n′ after the ret action. Note that some of the
choices here might not be feasible: the chosen n might not be the
value of the parameter expression e when the method is invoked, or
the method might never return n′ when called with n. Such infeasi-
ble choices are filtered out at the following stages of the semantics
definition: the former at the evaluation stage (3) by the semantics
of assume, and the latter in (1) by selecting the traces from [[P]](s)
that interact with the transactional system correctly.

The trace set of x := atomic {C} contains traces in which C is
aborted in the middle of its execution (at an object operation) and
those in whichC executes until completion and then the transaction
commits or aborts. From the restrictions on programs introduced
in Section 2, we immediately get:

PROPOSITION 13. For any program P , the set A(P) contains
only well-formed traces.

Semantics of primitive commands
To define evaluation, we assume a semantics of every command
c ∈ Pcomm, given by a function [[c]] that defines how the program
state is transformed by executing c. As we noted in Section 2, dif-
ferent classes of primitive commands are supposed to access only
certain subsets of variables. To ensure that this is indeed the case,
we define [[c]] as a function of only those variables that c is allowed
to access. Namely, the semantics of c ∈ LPcommt is given by

[[c]] : (LVart → Z)→ P(LVart → Z),

and the semantics of c ∈ GPcommt, by

[[c]] : ((LVart] GVar)→ Z)→ P((LVart] GVar)→ Z).

For a valuation q of variables that c is allowed to access, [[c]](q)
yields the set of their valuations that can be obtained by executing
c from a state with variable values q. Note that this allows c to be
non-deterministic. For example, an assignment command x := g
has the following semantics:

[[x := g]](q) = q[x 7→ q(g)],

where q[x 7→ q(g)] is the function that has the same value as q
everywhere, except for x, where it has the value q(g). We define
the semantics of assume commands following the informal expla-
nation given at the beginning of this section: for example,

[[assume(x = n)]](q) =

{
{q}, if q(x) = n;

∅, otherwise.
(4)

Thus, when the condition in assume does not hold of q, the com-
mand stops the computation by not producing any output states.

We lift functions [[c]] to full states by keeping the variables
that c is not allowed to access unmodified. For example, if c ∈
GPcommt, then for all u ∈ Var we let

[[c]](s)(u) =

{
[[c]](s|LVart]GVar)(u), if u ∈ LVart] GVar;

s(u), otherwise.

where s|LVart]GVar is the restriction of s to variables in LVart]
GVar.

Trace evaluation
Using the semantics of primitive commands, we first define the
evaluation of a single action on a given state:

eval : State× Action→ P(State)

eval(s, (t, c)) = [[c]](s);

eval(s, ϕ) = {s} for all other actions ϕ.

Note that this does not change the state s as a result of interface
actions, since their return values are assigned to local variables by
separate actions introduced when generating A(P). We then lift
eval to traces as follows:

eval : State×WTrace→ P(State)

eval(s, ε) = {s};
eval(s, τϕ) = {s′′ | ∃s′. s′ ∈ eval(s, τ) ∧ s′′ ∈ eval(s′, ϕ)}.

This allows us to define [[P]](s) as the set of those traces fromA(P)
that can be evaluated from s without getting stuck, as formalized

by (3). Note that this definition enables the semantics of assume
defined by (4) to filter out traces that make branching decisions
inconsistent with the program state. For example, consider the pro-
gram (2). The set A(P) includes traces where both branches are
explored. However, due to the semantics of the assume actions
added to the traces according to Figure 2, only the trace executing
y := 1 will result in a non-empty set of final states after the evalu-
ation and, therefore, only this trace will be included into [[P]](s).

5. OBSERVATIONAL REFINEMENT
Informally, a concrete transactional system HC observationally

refines an abstract transactional system HA, if replacing HC by
HA in a program leaves all its original user-observable behaviors
reproducible. The formal definition depends on which aspects of
program behavior we consider observable. One possibility is to
allow the user to observe the values of all variables during the pro-
gram execution. The corresponding notion of observational refine-
ment is stated as follows.

DEFINITION 14. A transactional system HC observationally re-
fines a transactional systemHA with respect to states, denoted by
HC �state HA, if

∀P.∀s. ∀τ ∈ [[P]](s,HC).∃τ ′ ∈ [[P]](s,HA).
eval(s, τ) = eval(s, τ ′).

Note that, since the semantics of a program P includes traces cor-
responding to its incomplete computations (see the use of prefix-
closure in Figure 2), we allow observing intermediate program
states as well as final ones. Definition 14 implies that, if a program
using the abstract transactional system HA satisfies a correctness
property stated in terms of such states, then it will still satisfy the
property if it uses the concrete systemHC instead.

In some situations, we may also be interested in observing sep-
arate program actions and the order between them, rather than the
set of all reachable program states. In particular, this is desirable
for checking the validity of linear-time temporal properties over
program traces. We formulate the corresponding notion of obser-
vational refinement as follows.

DEFINITION 15. Well-formed traces τ and τ ′ are observationally
equivalent, written τ ∼ τ ′, if

(∀t ∈ ThreadID. τ |t = τ ′|t) ∧ (nontrans(τ) = nontrans(τ ′)).

A transactional systemHC observationally refines a transactional
systemHA with respect to traces, denoted byHC �trace HA, if

∀P.∀s.∀τ ∈ [[P]](s,HC). ∃τ ′ ∈ [[P]](s,HA). τ ∼ τ ′.

Traces related by ∼ are thus considered indistinguishable to the
user, and, hence, the user can observe which equivalence class
over ∼ the trace executed by the program belongs to.

We are now in a position to state our main result.

THEOREM 16.

HC v HA =⇒ HC �trace HA =⇒
HC �state HA =⇒ HC |complete v HA|complete.

Thus, for our programming language, the opacity relation implies
observational refinement with respect to traces or states, and either
of these implies that the complete subsets of the transactional sys-
tems are in the opacity relation.

The first and the second implications from Theorem 16 are
proved in Section 6, and the third one, in Section 7.

6. SUFFICIENCY OF THE OPACITY RE-
LATION

Our goal in this section is to show that the opacity relation im-
plies observational refinement with respect to traces. The next
lemma (proved below) is key in establishing this: it shows that a
trace τH with a history H can be transformed into an equivalent
trace τS with a history S that is in the opacity relation with H .

LEMMA 17 (REARRANGEMENT). For any well-formed histo-
ries H and S:

H v S =⇒ (∀well-formed τH . history(τH) = H =⇒
∃well-formed τS . history(τS) = S ∧ τH ∼ τS).

We also rely on the following lemma, which straightforwardly
implies that observational refinement with respect to traces implies
that with respect to states. The proof of the lemma (given below)
relies on the restrictions on accesses to variables in Definition 12.

LEMMA 18. For all well-formed traces τH and τS ,

τH ∼ τS ∧ eval(s, τH) 6= ∅ =⇒ ∀s. eval(s, τH) = eval(s, τS).

COROLLARY 19. HC �trace HA =⇒ HC �state HA.

Lemma 18 also allows us to conclude that the trace τS resulting
from the transformation in Lemma 17 can be produced by a pro-
gram P if so can the original trace τH .

LEMMA 20. If τH ∈ [[P]](s) and τH ∼ τS , then τS ∈ [[P]](s).

PROOF. Let P = C1 ‖ . . . ‖ Cm. Consider s, τH and τS such that
τH ∈ [[P]](s) and τH ∼ τS . Then for some τ ′ we have τH τ ′ ∈
A(P) and eval(s, τH) 6= ∅. This implies (τH τ ′)|t ∈ A(Ct)t for
any thread t. Since τH ∼ τS , we have that, τS |t = τH |t. Then
(τS τ

′)|t ∈ A(Ct)t and by the definition of A(P) in Figure 2 we
get τS ∈ A(P). Furthermore, by Lemma 18, eval(s, τS) 6= ∅, so
that τS ∈ [[P]](s).

THEOREM 21. HC v HA =⇒ HC �trace HA.

PROOF. Assume HC v HA and consider a program P , a state
s and a trace τH ∈ [[P]](s,HC). Let history(τH) = H; then
τH ∈ [[P]](s) and H ∈ HC . Since HC v HA, there exists a
history S ∈ HA such that H v S. Since H and S are well-
formed, Lemma 17 implies that there is a well-formed trace τS such
that τH ∼ τS and history(τS) = S. Then by Lemma 20 we have
τS ∈ [[P]](s). Since S ∈ HA, this implies τS ∈ [[P]](s,HA).

Proof of Lemma 17 (Rearrangement)
Consider H , S and τH such that H v S and history(τH) = H .
Note that |H| = |S|. To obtain the desired trace τS , we inductively
construct a sequence of well-formed traces τ i, i = 0..|S| with
well-formed histories Hi = history(τ i) such that

Hi�i= S�i ; Hi v S; τH ∼ τ i. (5)

We then let τS = τ |S|, so that τH ∼ τ |S| and

history(τ |S|) = H |S| = H |S|�|S|= S�|S|= S,

as required. Note that the conditionHi v S in (5) is not used to es-
tablish the required properties of τS ; we add it so that the induction
goes through.

We start the construction of the sequence of traces τ i with τ0 =
τH , so that H0 = H and all the requirements in (5) hold trivially.
Assume a trace τ i satisfying (5) was constructed; we get τ i+1 from
τ i by applying the following lemma. Since ∼ is transitive, the
conclusion of the lemma implies the desired properties of τ i+1.

τ i

S

τ1 τ3 ψ τ4

S1 ψ S2

τ2

(a) Trace τ i and history S

τ i+1

S

τ1 ψτ3|t τ3|¬t τ4

S1 ψ S2

(b) Case of ψ 6= (t, txbegin)

τ i+1

S

τ1 nontrans(τ3) ψ trans(τ3) τ4

S1 ψ S2

(c) Case of ψ = (t, txbegin)

Figure 3: An illustration of the transformations performed in the proof of Lemma 22

LEMMA 22. Assume well-formed histories Hi and S and a well-
formed trace τ i such that

history(τ i) = Hi; Hi�i= S�i ; Hi v S.
Then there exist some well-formed historyHi+1 and a well-formed
trace τ i+1 such that

history(τ i+1) = Hi+1; Hi+1�i+1 = S�i+1 ;

Hi+1 v S; τ i ∼ τ i+1.

PROOF. Let S = S1 ψ S2, where |S1| = i. By assumption,
history(τ i)�i= Hi�i= S�i= S1. Thus, for some traces τ1 and
τ2, we have τ i = τ1 τ2, where τ1 is the minimal prefix of τ i such
that history(τ1) = S1. We also have Hi v S, and, hence, there
exists a bijection θ : {1, . . . , |Hi|} → {1, . . . , |S|} satisfying the
conditions of Definition 4. Since θ preserves the per-thread order
of actions and history(τ1) = S1, we can assume that θ maps ac-
tions in history(τ1) to the corresponding actions in S1. Hence, for
some traces τ3 and τ4, we have

history(ψ) = ψ, τ2 = τ3 ψ τ4, τ i = τ1 τ2 = τ1 τ3 ψ τ4,

and θ maps the ψ in history(τ i) to ψ in S, i.e., θ(|history(τ1 τ3)|+
1) = |S1|+ 1; see Figure 3(a).

Let ψ = (t, _). We note that, since θ preserves the per-thread
order of actions and history(τ1) = S1, we have history(τ3|t) = ε.
We proceed by case analysis on the kind of ψ.

Case I: ψ 6= (t, txbegin). Let τ i+1 = τ1 (τ3|t)ψ (τ3|¬t) τ4
and Hi+1 = history(τ i+1); see Figure 3(b). Intuitively, τ i+1 is
obtained from τ i = τ1 τ3 ψ τ4 by moving all the actions in τ3 per-
formed by thread t, together with ψ, to the position right after τ1.

Since history(τ3|t) = ε, history(τ1) = S1 and |S1| = i, we get:

Hi+1�i+1 = (history(τ1 (τ3|t)ψ (τ3|¬t) τ4))�i+1

= S1 ψ = S�i+1 ,

as required. We also have:

τ i+1|t = (τ1 (τ3|t)ψ (τ3|¬t) τ4)|t
= (τ1|t) (τ3|t)ψ (τ4|t)
= (τ1 τ3 ψ τ4)|t
= τ i|t;

τ i+1|¬t = (τ1 (τ3|t)ψ (τ3|¬t) τ4)|¬t
= (τ1|¬t) (τ3|¬t) (τ4|¬t)
= (τ1 τ3 ψ τ4)|¬t
= τ i|¬t.

Hence, for any thread t′, we have τ i|t′ = τ i+1|t′ and Hi+1|t′ =
Hi|t′ = S|t′ . Any real-time order between two actions that ex-

ists in Hi+1, but not in Hi, also exists between the actions in S
corresponding to them according to θ. Thus, Hi+1 v S.

Since ψ 6= (t, txbegin) and history(τ3|t) = ε, all the actions
performed by t in the subtrace τ3 of τ i are transactional. Hence,

nontrans(τ i+1) = nontrans(τ1 (τ3|t)ψ (τ3|¬t) τ4)

= nontrans(τ1 τ3 ψ τ4)

= nontrans(τ i)

and therefore τ i ∼ τ i+1.

Case II: ψ = (t, txbegin). Note that the subtrace τ3 of τ i does
not contain any committed or aborted actions ψ′. Indeed, assume
otherwise. Since history(τ1) = S1, the action in S correspond-
ing to ψ′ according to θ would be in S2. This would mean that
the real-time order between ψ′ and ψ in Hi is not preserved in S,
contradicting our assumption that Hi v S. Thus, for any thread
t′ 6= t, τ3|t′ consists of some number of non-transactional actions
followed by some number of transactional ones, and τ3|t does not
contain any transactional actions. Motivated by these observations,
we let

τ i+1 = τ1 nontrans(τ3)ψ trans(τ3) τ4

and Hi+1 = history(τ i+1); see Figure 3(c).3 Intuitively, τ i+1 is
obtained from τ i = τ1 τ3 ψ τ4 by moving all transactional actions
in τ3 to the position right before τ4.

Since history(nontrans(τ3)) = ε, history(τ1) = S1 and |S1| =
i, we get:

Hi+1�i+1 = (history(τ1 nontrans(τ3)ψ trans(τ3) τ4)�i+1

= S1 ψ = S�i+1 ,

as required.
Since for every thread t′ 6= t, τ3|t′ consists of non-transactional

actions followed by transactional ones,

(nontrans(τ3)ψ trans(τ3))|t′ = (τ3 ψ)|t′ .
Since τ3|t does not contain any transactional actions, τ3 =
nontrans(τ3) and, hence,

(nontrans(τ3)ψ trans(τ3))|t = (τ3 ψ)|t.
Thus, for any t′′ we have

τ i+1|t′′ = (τ1 nontrans(τ3)ψ trans(τ3) τ4)|t′′
= (τ1 τ3 ψ τ4)|t′′ = τ i|t′′

3Here we are applying nontrans to a part τ3 of a well-formed trace
τ i. Note that, in the absence of txbegin actions in τ3, the defi-
nition of nontrans given in Section 4 considers all actions in τ3
non-transactional.

and Hi+1|t′′ = Hi|t′′ = S|t′′ . Any real-time order between ac-
tions in Hi+1 also exists in Hi, and hence, Hi+1 v S. Finally,

nontrans(τ i+1) = nontrans(τ1 nontrans(τ3)ψ trans(τ3) τ4)

= nontrans(τ1 τ3 ψ τ4)

= nontrans(τ i),

so that τ i ∼ τ i+1.

Proof of Lemma 18
Consider s, τH and τS such that τH ∼ τS and eval(s, τH) 6= ∅. We
need to show that eval(s, τS) 6= ∅. The proof of this fact is similar
in its structure to that of Lemma 17. We inductively construct a
sequence of well-formed traces τ i, i = 0..|τS | such that

τ i�i= τS�i ; τ i ∼ τS ; eval(s, τ i) = eval(s, τH) 6= ∅. (6)

Then for i = |τS | we get τ i = τS , which implies the required.
To construct the sequence of traces τ i, we let τ0 = τH , so that

all the requirements in (6) hold trivially. Assume now that a trace
τ i satisfying (6) has been constructed. Let τS = τ1 ϕ τ2, where
|τ1| = i, and ϕ = (t, _). By assumption, τ i�i= τS�i and, since
τ i ∼ τS , we also have τ i|t = τS |t. Hence, for some traces τ ′2 and
τ ′′2 , we get

τ i = τ1 τ
′
2 ϕ τ

′′
2 ,

where τ ′2 does not contain any actions by thread t. Let

τ i+1 = τ1 ϕ τ
′
2 τ
′′
2 ;

then τ i+1�i+1 = τS�i+1. We now show that τ i+1 ∼ τ i and
eval(s, τ i+1) = eval(s, τ i), which implies the required.

First note that τ i|t′ = τ i+1|t′ for any thread t′ since τ ′2 does not
contain any actions by thread t. Next, consider the case when the
action ϕ in τ i is non-transactional. Since τ i|t = τS |t, so is the cor-
responding action ϕ in τS . Assume that some action ϕ′ = (t′, _)
in the subtrace τ ′2 of τ i is non-transactional as well, where t′ 6= t.
Let ϕ′ be the j-th action by thread t′ in τ i. Since τ i|t′ = τS |t′ , ϕ′
is also the j-th action by thread t′ in τS and is non-transactional in
this trace. But then ϕ′ has to be in the subtrace τ2 of τS and thus
follow ϕ, contradicting nontrans(τ i) = nontrans(τS). Hence,
if the action ϕ in τ i is non-transactional, then the subtrace τ ′2 of
τ i does not contain any non-transactional actions. This implies
nontrans(τ i+1) = nontrans(τ i) and thus τ i+1 ∼ τ i.

The restrictions on accesses to variables by commands from
LPcommt and GPcommt (stated in Section 2 and formalized in
Section 4) imply

PROPOSITION 23. Assume ϕ1 and ϕ2 are actions by different
threads and, if ϕ1 = (t1, c1) and ϕ2 = (t2, c2), then

(c1 ∈ LPcommt1 ∧ c2 ∈ LPcommt2] GPcommt2) ∨
(c1 ∈ LPcommt1] GPcommt1 ∧ c2 ∈ LPcommt2).

Then eval(s, ϕ1 ϕ2) = eval(s, ϕ2 ϕ1) for any state s.

Since τ i is well-formed, by Definition 12 for any action (t′, c) in
it we have that c ∈ LPcommt]GPcommt and, if c ∈ GPcommt,
then the action is non-transactional. Given this and the properties
of τ ′2 established above, by applying Proposition 23 repeatedly we
get that eval(s′, ϕ τ ′2) = eval(s′, τ ′2 ϕ) for any state s′. Hence,

eval(s, τ i+1) = eval(s, τ1 ϕ τ
′
2 τ
′′
2) =

eval(s, τ1 τ
′
2 ϕ τ

′′
2) = eval(s, τ i).

7. NECESSITY OF THE OPACITY RELA-
TION

In this section we prove that observational refinement with re-
spect to states implies the opacity relation restricted to the complete
subsets of the transactional systems. We only give a proof sketch
here and defer the full proof to [2, Appendix B].

THEOREM 24. HC �state HA =⇒ HC |complete v HA|complete.

PROOF SKETCH. For every complete history H ∈ HC we con-
struct a program PH where every thread performs the sequence
of transactions specified by H , records the return values obtained
from methods of transactional objects, and monitors whether the
real-time order between actions includes that in H .

In more detail, given that the history H is well-formed, we con-
struct the code of every thread t as a sequence of atomic blocks,
corresponding to txbegin, committed and aborted actions in H|t,
which perform the sequence of method invocations determined by
call and ret actions in H|t. We record the return value for every
method invocation in a dedicated variable local to the correspond-
ing thread, which is never rewritten (this is possible because H is
finite). The return status of every transaction is also recorded in
a dedicated local variable. As a result, from the final state of an
execution of PH , we can reconstruct the interaction of each thread
with the transactional system. (We rely here on the fact that the
histories considered are complete; our notion of observation is not
strong enough to distinguish between, e.g., histories H ϕH ′ and
HH ′ where ϕ is a call action that does not return.)

To check whether an execution of PH complies with the real-
time order in H , we exploit the ability of threads to communicate
via global variables outside transactions. For each transaction inH ,
we introduce a global variable g, which is initially 0 and is set to 1
by the thread executing the transaction right after the transaction
completes, by a command following the corresponding atomic

block. Before starting a transaction, each thread checks whether
all transactions preceding this one in the real-time order in H have
finished by reading the corresponding g variables. The outcome is
recorded in a dedicated local variable.

Let s be a state with all variables set to distinguished initial val-
ues. From the above it follows that, given any trace τ ∈ [[PH]](s),
by observing the states in eval(s, τ), we can unambiguously deter-
mine whether the per-thread projections of history(τ) are equal to
those of H and whether the real-time order in history(τ) includes
that in H .

Now given H ∈ HC , we construct a trace τ ∈ [[PH]](s,HC)
such that history(τ) = H and eval(s, τ) = {s′}, where the
state s′ signals the above correspondence of the trace to H . By
Definition 14, there exists a trace τ ′ ∈ [[PH]](s,HA) such that
eval(s, τ ′) = {s′}. But then the per-thread projections of S =
history(τ ′) are equal to those of H and the real-time order in H is
preserved in S. By Definition 4, this implies H v S.

The proof highlights the features of our programming model that
lead to the necessity result. First, the ability to access global vari-
ables outside transactions allows us to monitor the real-time order.
Second, we use the ability of programs to observe values assigned
to local variables during the execution of a transaction, even if the
transaction aborts: PH records the return values of method invoca-
tions by aborted transactions in special local variables, which can
then be observed in final states. This necessitates treating aborted
transactions in the same way as committed ones in the consistency
definition.

8. RELATED WORK AND DISCUSSION
Previous work has studied transactional memory consistency by:
• investigating the semantics of different programming languages

with atomic blocks and the feasibility of their efficient imple-
mentation [1, 11, 19]; or
• defining consistency conditions for TM [3,5,8,9,18] and proving

that particular TM implementations validate them [4, 9].
Thus, previous work has tended to address the issue from the per-
spective of either programming languages or TM implementations
and has not tried to relate these two levels in a formal manner. An
exception is the work by Harris et al. [12], which proved that a
specific TM implementation, Bartok-STM, validates a particular
semantics of atomic blocks in a programming language.

This paper tries to fill in the gap in existing studies by relating the
semantics of a programming language with atomic blocks to that of
a TM system implementing them. Our work is complementary to
previous proofs that certain TM systems satisfy opacity [4], as it
lifts such results to the language level. Our work is also more gen-
eral than that of Harris et al. [12], since our results allow establish-
ing observational refinement for any TM implementation satisfying
opacity. However, some of the above-mentioned papers [1, 19] in-
vestigated advanced language interfaces that we do not consider,
such as nested transactions and access to shared data both inside
and outside transactions.

This paper employs a well-known technique from the theory of
programming languages, observational refinement [13, 14], to ex-
plore the most appropriate way to specify TM consistency. Obser-
vational refinement has previously been used to characterize cor-
rectness criteria for libraries of concurrent data structures. Thus,
Filipovic et al. [6] proved that, in this setting sequential consis-
tency [17] is necessary and sufficient for observational refinement,
and so is linearizability [15] when client programs can interact via
shared global variables. Gotsman and Yang [7] adjusted lineariz-
ability to account for infinite computations and showed its suffi-
ciency for observational refinement in the case when the client can
observe the validity of liveness properties. Our work takes this
approach from the simpler setting of concurrent libraries to the
more elaborate setup of transactional memory. Since we allow the
abstract transactional system to have incomplete transactions, we
hope that in the future we can generalize our consistency condition
to specify liveness properties, along the lines of [7].

Opacity requires the TM behavior observed by aborted transac-
tions to be as consistent as that observed by committed ones. Other
proposed consistency conditions tried to relax this requirement. For
example, virtual world consistency (VWC) [16] requires the behav-
ior observed by an individual aborted transaction to be consistent
only with the committed transactions from which it reads and those
previously committed by the same thread. Our necessity result im-
plies that VWC does not imply observational refinement for our
programming language. However, this does not rule out the viabil-
ity of VWC and related notions as a consistency condition for TM.
VWC may well imply observational refinement for a programming
language in which aborted transactions do not affect the rest of the
computation (in particular, their modifications to local variables are
rolled back) and a weaker notion of observations. This paper estab-
lishes an approach for evaluating and comparing TM consistency
conditions, and in future work, we hope to apply it to VWC and
other conditions, such as TMS [5,18] and DU-opacity [3]. We also
intend to investigate the behaviour of incomplete histories with re-
spect to observational refinement, whose treatment by the opacity
relation causes our result to fall short of the strict equivalence be-
tween the relation and the observational refinement.

Acknowledgements
This work is supported by EU FP7 projects TRANSFORM
(238639) and ADVENT (308830). We thank Victor Luchangco,
Eran Yahav, Hongseok Yang and the reviewers for helpful com-
ments.

9. REFERENCES
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

transactional memory and automatic mutual exclusion. In
POPL, pages 63–74, 2008.

[2] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A
programming language perspective on transactional memory
consistency. Technical Report CS-2013-04, Department of
Computer Science, Technion, 2013.

[3] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of
deferred update in transactional memory. In ICDCS, 2013.
To appear.

[4] A. Bieniusa and P. Thiemann. Proving isolation properties
for software transactional memory. In ESOP, pages 38–56,
2011.

[5] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards
formally specifying and verifying transactional memory.
Formal Aspects of Computing, pages 1–31, March 2012.

[6] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang.
Abstraction for concurrent objects. In ESOP, pages 252–266,
2009.

[7] A. Gotsman and H. Yang. Liveness-preserving atomicity
abstraction. In ICALP (2), pages 453–465, 2011.

[8] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPOPP, pages 175–184, 2008.

[9] R. Guerraoui and M. Kapalka. Principles of Transactional
Memory. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool, 2011.

[10] T. Harris, J. Larus, and R. Rajwar. Transactional memory.
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2010.

[11] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy.
Composable memory transactions. In PPOPP, pages 48–60,
2005.

[12] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI, pages 14–25, 2006.

[13] J. He, C. Hoare, and J. Sanders. Data refinement refined. In
ESOP, pages 187–196, 1986.

[14] J. He, C. Hoare, and J. Sanders. Prespecification in data
refinement. Information Processing Letters, 25(2):71 – 76,
1987.

[15] M. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, 1990.

[16] D. Imbs, J. R. G. de Mendívil, and M. Raynal. Brief
announcement: virtual world consistency: a new condition
for STM systems. In PODC, pages 280–281, 2009.

[17] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, 1979.

[18] M. Lesani, V. Luchangco, and M. Moir. Putting opacity in its
place. In WTTM, 2012.

[19] K. F. Moore and D. Grossman. High-level small-step
operational semantics for transactions. In POPL, pages
51–62, 2008.

Safety of Live Transactions in Transactional Memory:
TMS is Necessary and Sufficient

Hagit Attiya∗ Alexey Gotsman† Sandeep Hans∗ Noam Rinetzky‡

Abstract
The main challenge of stating the correctness of transactional memory (TM) systems is the need to provide

guarantees on the system state observed by live transactions, i.e., those that have not yet committed or aborted. A
TM correctness condition should not be too restrictive, to allow flexibility in implementation, yet strong enough
to disallow undesirable TM behavior, which can lead to run-time errors in live transactions. The latter feature
is formalized by observational refinement between TM implementations, stating that properties of a program
using a concrete TM implementation can be established by analyzing its behavior with an abstract TM, serving
as a specification of the concrete one.

We show that a variant of transactional memory specification (TMS) is equivalent to observational refinement
for the common programming model in which local variables are rolled back upon a transaction abort and, hence,
is the weakest consistency condition for this case. This is challenging due to the nontrivial formulation of TMS,
which allows different aborted and live transactions to have different views on the system state. Our proof
reveals some natural, but subtle, assumptions on the TM required for the equivalence result.

This is a submission to the regular track.
It can be considered for the best student paper award: Sandeep Hans is a full-time student.

∗Technion - Israel Institute of Technology, Israel, {hagit,sandeep}@cs.technion.ac.il
†IMDEA Software Institute, Spain, alexey.gotsman@imdea.org
‡Tel Aviv University, Israel, maon@cs.tau.ac.il

1 Introduction

result := abort;
while (result == abort) {

result := atomic {
x = X.read();
y = Y.read();
z = 42 / (x - y);
Z.write(z);

} }

Figure 1: TM usage

Transactional memory (TM) eases the task of writing concurrent applications by let-
ting the programmer designate certain code blocks as atomic. TM allows developing
a program and reasoning about its correctness as if each atomic block executes as a
transaction—in one step and without interleaving with others—even though in reality
the blocks can be executed concurrently. Figure 1 shows how atomic blocks yield simple
code for computations involving several shared transactional objects X, Y and Z, access
to which is mediated by the TM.

The common approach to stating TM correctness is through a consistency condi-
tion that restricts the possible TM executions. The main subtlety of formulating such a
condition is the need to provide guarantees on the state of transactional objects observed by live transactions, i.e.,
those that have not yet committed or aborted. Because live transactions can always be aborted, one might think it
unnecessary to provide any guarantees for them, as in fact done by common database consistency conditions [12].
However, in the setting of transactional memory, this is often unsatisfactory. For example, in Figure 1 the program-
mer may rely on the fact that X 6= Y, and, correspondingly, make sure that every committing transaction preserves
this invariant. If we allow the transaction to read values of X and Y violating the invariant (counting on it to abort
later, due to inconsistency), this will lead to the program faulting due to a division by zero.

The question of which TM consistency condition to use is far from settled, with several candidates having been
proposed [2,3,6,10]. An ideal condition should be as weak as possible, to allow flexibility in TM implementations,
yet strong enough to satisfy the intuitive expectations of the programmer and, in particular, to disallow undesirable
behaviors such as the one described above. Observational refinement [7, 8] allows formalizing the programmer’s
expectations and thereby evaluating consistency conditions systematically. Consider two TM implementations—a
concrete one, such as an efficient TM, and an abstract one, such as a TM executing every atomic block atomically.
Informally, the concrete TM observationally refines the abstract one for a given programming language if every
behavior a user can observe of a program P in this language linked with the concrete TM can also be observed
when P is linked with the abstract TM instead. This allows the programmer to reason about the behavior of P (e.g.,
the preservation of the invariant X 6= Y) using the expected intuitive semantics formalized by the abstract TM; the
observational refinement relation implies that the conclusions (e.g., the safety of the division in Figure 1) will carry
over to the case when P uses the concrete TM.

In prior work [1] we showed that a variant of the opacity condition [6] coincides with observational refinement
for a particular programming language and, hence, is the weakest consistency condition for this language. Roughly
speaking, a concrete TM implementation is in the opacity relation with an abstract one if for any sequence of
interactions with the concrete TM, dubbed a history, there exists a history of the abstract TM where: (i) the actions
of every separate thread are the same as in the original history; and (ii) the order of non-overlapping transactions
present in the original history is preserved. However, our result considered a programming language in which local
variables modified by a transaction are not rolled back upon an abort. Although this assumption holds in some
situations (e.g., for Scala STM [13]), it is non-standard and most TM systems do not satisfy it. In this paper, we
consider a variant of transactional memory specification (TMS) [3], a condition weaker than opacity,1 and show
that, under some natural assumptions on the TM, it coincides with observational refinement for a programming
language in which local variables do get rolled back upon an abort.

This result is not just a straightforward adjustment of the one about opacity to a more realistic setting: TMS
weakens opacity in a nontrivial way, which makes reasoning about its relationship with observational refinement
much more intricate. In more detail, the key feature of opacity is that the behavior of all transactions in a history of
the concrete TM, including aborted and live ones, has to be explained by a single history of the abstract TM. TMS
relaxes this requirement by requiring only committed transactions in the concrete history to be explained by a single
abstract one obeying (i)–(ii) above; every response obtained from the TM in an aborted or live transaction may be
explained by a separate abstract history. The constraints on the choice of the abstract history are subtle: on one

1The condition we present here is actually called TMS1 in [3, 11]. These papers also propose another condition, called TMS2, but it is
stronger than opacity [11] and therefore not considered here.

1

hand, somewhat counter-intuitively, TMS allows it to include transactions that aborted in the concrete history, with
their status changed to committed, and exclude some that committed; on the other hand, this is subject to certain
carefully chosen constraints. The flexibility in the choice of the abstract history is meant to allow the concrete TM
implementation to perform as many optimizations as possible. However, it is not straightforward to establish that
this flexibility does not invalidate observational refinement (and hence, the informal guarantees that programmers
expect from a TM) or that the TMS definition cannot be weakened further.

Our results ensure that this is indeed the case. Informally, if local variables are not rolled back when transactions
abort, threads can communicate to each other the observations they make inside aborted transactions about the state
of transactional objects. This requires the TM to provide a consistent view of this state across all transactions, as
formalized by the use of a single abstract history in opacity. However, if local variables are rolled back upon an
abort, no information can leak out of an uncommitted transaction, possibly apart from the fact that the code in
the transaction has faulted, stopping the computation. To get observational refinement in this case we only need
to make sure that a fault in the transaction occurring with the concrete TM could be reproduced with the abstract
one. For this it is sufficient to require that the state of transactional objects seen by every live transaction can be
explained by some abstract history; different transactions can be explained by different histories.

Technically, we prove that TMS is sufficient for observational refinement by establishing a nontrivial property
of the set of computations of a program, showing that a live transaction cannot notice the changes in the commit-
ted/aborted status of transactions concurrent with it that are allowed by TMS (Lemma 9, Section 6.1). Proving
that TMS is necessary for observational refinement is challenging as well, as this requires us to devise multiple
programs that can observe whether the subtle constraints governing the change of transaction status in TMS are
fulfilled by the TM. We have identified several closure properties on the set of histories produced by the abstract TM
required for these results to hold. Although intuitive, these properties are not necessarily provided by an arbitrary
TM, and our results demonstrate their importance.

To concentrate on the core goal of this paper, the programming language we consider does not allow explicit
transaction aborts or transaction nesting and assumes a static separation of transactional and non-transactional
shared memory. Extending our development to lift these restrictions is an interesting avenue for future work. Also,
due to space constraints, we defer some of the proofs to Appendix D.

2 Programming Language Syntax

We consider a language where a program P = C1 ‖ · · · ‖ Cm is a parallel composition of threads Ct, t ∈
ThreadID = {1, . . . ,m}. Every thread t ∈ ThreadID has a set of local variables LVart = {x, y, . . .} and threads
share a set of global variables GVar = {g, . . .}, all of type integer. We let Var = GVar] ⊎m

t=1 LVart be the set
of all program variables. Threads can also access a transactional memory, which manages a fixed collection of
transactional objects Obj = {o, . . .}, each with a set of methods Method = {f, . . .} that threads can call. For
simplicity, we assume that each method takes one integer parameter and returns an integer value, and that all objects
have the same set of methods. The syntax of commands C is standard:

C ::= c | C;C | while (b) do C | if (b) then C else C | x := atomic {C} | x := o.f(e)

where b and e denote Boolean and integer expressions over local variables, left unspecified. The syntax includes
primitive commands c from a set PComm, sequential composition, conditionals, loops, atomic blocks and object
method invocations. Primitive commands execute atomically, and they include assignments to local and global
variables and a special fault command, which stops the execution of the program in an error state. Thus, fault
encodes illegal computations, such as division by zero or dereference of null-valued pointers.

An atomic block x := atomic {C} executes C as a transaction, which the TM can commit or abort. The sys-
tem’s decision is returned in the local variable x, which gets assigned distinguished values committed or aborted.
We do not allow programs in our language to abort a transaction explicitly and forbid nested atomic blocks and,
hence, nested transactions. We also assume that a program can invoke methods on transactional objects only inside
atomic blocks and access global variables only outside them. Local variables can be accessed in both cases; how-
ever, threads cannot access local variables of other threads. Due to space constraints, we defer the formalisation of

2

the rules on variable accesses to Appendix A. When we later define the semantics of our programming language,
we mandate that, if a transaction is aborted, local variables are rolled back to the values they had at its start, and
hence, the values written to them by the transaction cannot be observed by the following non-transactional code.

3 Model of Computations

To define the notion of observational refinement for our programming language and the TMS consistency condition,
we need a formal model for program computations. To this end, we introduce traces, which are certain finite
sequences of actions, each describing a single computation step (we do not consider infinite computations).

DEFINITION 1. Let ActionId be a set of action identifiers. A TM interface action ψ has one of the following forms:

Request actions Matching response actions

(a, t, txbegin) (a, t,OK) | (a, t, aborted)

(a, t, txcommit) (a, t, committed) | (a, t, aborted)

(a, t, call o.f(n)) (a, t, ret(n′) o.f) | (a, t, aborted)

where a ∈ ActionId, t ∈ ThreadID, o ∈ Obj, f ∈ Method and n, n′ ∈ Z. A primitive action φ has the form
(a, t, c), where c ∈ PComm is a primitive command. We use ϕ to range over actions of either type.

TM interface actions denote the control flow of a thread t crossing the boundary between the program and the TM:
request actions correspond to the control being transferred from the former to the latter, and response actions, the
other way around. A txbegin action is generated upon entering an atomic block, and a txcommit action when a
transaction tries to commit upon exiting an atomic block. Actions call and ret denote a call to and a return from
an invocation of a method on a transactional object and are annotated with the method parameter or return value.
The TM may abort a transaction at anys point when it is in control; this is recorded by an aborted response action.

A trace τ is a finite sequence of actions satisfying certain natural well-formedness conditions (stated informally
due to space constraints; see Appendix B): every action in τ has a unique identifier; no action follows a fault;
request and response actions are properly matched; actions denoting the beginning and end of transactions are
properly matched; call and ret actions occur only inside transactions; and commands in τ do not access local
variables of other threads and do not access global variables when inside a transaction. We denote the set of traces
by Trace. A history is a trace containing only TM interface actions; we useH,S to range over histories. We specify
the behavior of a TM implementation by the set of possible interactions it can have with programs: a transactional
memory T is a set of histories that is prefix-closed and closed under renaming action identifiers.

We denote irrelevant expressions by _ and use the following notation: τ(i) is the i-th element of τ ; τ |t is the
projection of τ onto actions of the form (_, t, _); |τ | is the length of τ ; τ1τ2 is the concatenation of τ1 and τ2. We
say that an action ϕ is in τ , denoted by ϕ ∈ τ , if τ = _ϕ_. The empty sequence of actions is denoted ε.

A transaction T is a non-empty trace such that it contains actions by the same thread, begins with a txbegin
action and only its last action can be a committed or an aborted action. We use the following terminology for
transactions. A transaction T is: committed if it ends with a committed action, aborted if it ends with aborted,
commit-pending if it ends with txcommit, and live, in all other cases. We refer to this as T ’s status. A transaction
T is completed if it is either committed or aborted, and visible if it contains a txcommit action. A transaction
T is in a trace τ , written T ∈ τ , if τ |t = τ1Tτ2 for some t, τ1 and τ2, where either T is completed or τ2 is
empty. We denote the set of all transactions in τ by tx(τ) and use self-explanatory notation for various subsets of
transactions: committed(τ), aborted(τ), pending(τ), live(τ), visible(τ). For ϕ ∈ τ , the transaction of ϕ in τ ,
denoted txof(ϕ, τ), is the subsequence of τ comprised of all actions that are in the same transaction as ϕ (undefined
if ϕ does not belong to a transaction).

4 Transactional Memory Specification (TMS)

In this section we formalise the TMS [3] correctness condition in our setting. TMS was originally formulated in an
operational manner, using I/O automata; here we present a more abstract definition appropriate for our goals (we

3

provide further comparison in Section 7). As is common in consistency conditions for shared-memory concurrency,
such as opacity [6] or linearizability [9], a crucial building block in the TMS definition is the following notion of
the real-time order, which captures the order between non-overlapping transactions in a history.

DEFINITION 2. Let ψ = (_, t, _) and ψ′ = (_, t′, _) be two actions in a history H; ψ is before ψ′ in the real-time
order in H , denoted by ψ ≺H ψ′, if H = HψH2H

′
2ψ
′H3 and either (i) t = t′ or (ii) (_, t′, txbegin) ∈ H ′2ψ′ and

either (_, t, committed) ∈ ψH2 or (_, t, aborted) ∈ ψH2. A transaction T is before an action ψ′ in the real-time
order in H , denoted by T ≺H ψ′, if ψ ≺H ψ′ for any ψ ∈ T . A transaction T is before a transaction T ′ in the
real-time order in H , denoted by T ≺H T ′, if T ≺H T ′(1).

Given a history H of program interactions with a concrete TM, TMS requires us to explain the behavior of
all committed transactions in H by a single history S of the abstract TM, and to explain every response action ψ
in H by an abstract history Sψ. As we show in this paper, the existence of such explanations ensures that TMS
imply observational refinement between the two TMs: the behavior of a program during some transaction in the
history H of the program’s interactions with the concrete TM can be reproduced when the program interacts with
the abstract TM according to the history S or Sψ. Below we use this insight when explaining the rationale for key
TMS features.

The history Sψ used to explain a response action ψ includes the transaction of ψ and a subset of transactions
from H whose actions justify the response ψ. The following notion of a possible past of a history H = H1ψ
defines all sets of transactions from H that can form Sψ. Note that, if a transaction selected by this definition is
aborted or commit-pending in H , its status is changed to committed when constructing Sψ, as formalized later in
Definition 4. Informally, the response ψ is given as if all the transactions in its possible past have taken effect and
all the others have not. We first give the formal definition of a possible past, and then explain it on an example.

DEFINITION 3. A history Hψ = H ′1ψ is a possible past of a history H = H1ψ, where ψ is a response action, if:
(i) H ′1 is a subsequence of H1;

(ii) Hψ is comprised of the transaction of ψ and some of the visible transactions in H:

tx(Hψ) ⊆ {txof(ψ,H)} ∪ visible(H).

(iii) for every transaction T ∈ Hψ, out of all transactions preceding T in the real-time order in H , the history Hψ

includes exactly the committed ones:

∀T ∈ tx(Hψ).∀T ′. T ′ ≺Hψ T ⇐⇒ T ′ ≺H T ∧ T ′ ∈ committed(H).

We denote the set of possible pasts of H by TMSpast(H).

We explain the definition using the history H of the trace shown in Figure 2; one of its possible pasts Hψ

consists of the transactions T1, T4 and T5. According to (ii), the transaction of ψ (T5 in Figure 2) is always
included into any possible past, and live transactions are excluded: since they have not made an attempt to commit,
they should not have an effect on ψ. Out of the visible transactions in H , we are allowed to select which ones to
include (and, hence, treat as committed), subject to (iii): if we include a transaction T then, out of all transactions
preceding T in the real-time order in H , we have to include exactly the committed ones. For example, since T4
and T5 are included in Hψ, T1 must also be included and T3 must not. This condition is necessary for TMS to
imply observational refinement. Informally, T3 cannot be included into Hψ because, in a program producing H , in
between T3 aborting and T5 starting, thread t2 could have communicated to thread t3 the fact that T3 has aborted,
e.g., using a global variable g, as illustrated in Figure 2. When executing ψ, the code in T5 may thus expect that T3
did not take effect; hence, the result of ψ has to reflect this, so that the code behavior is preserved when replacing
the concrete TM by an abstract one in observational refinement. This is a key idea used in our proof that TMS
is necessary for observational refinement (Section 6.2). In contrast to T3, we can include T4 into Hψ even if it is
aborted or commit-pending. Since our language does not allow accessing global variables inside transactions, there
is no way for the code in T5 to find out about the status of T4 from thread t2, and hence, this code will not notice
if the status of T4 is changed to committed when replacing the concrete TM by an abstract one in observational

4

t1 T1 C
φ1

T2 C/A/CP/L
g′ == 1

t2 T3 A
g := 1 φ2

T4 C/A/CP
g′ := 1

t3
g == 1

T5 ψ

Figure 2: Transactions T1, T4 and T5 form one possible past of the history H of the trace shown. Allowed status
of transactions in H is denoted as follows: committed – C, aborted – A, commit-pending – CP, live – L. The
transaction T5 executes only primitive actions after ψ in the trace.

refinement. For similar reasons, we can exclude T2 from Hψ even if it is committed. This idea is used in our proof
that TMS is sufficient for observational refinement (Section 6.1).

Before giving the definition of TMS, we introduce operations used to change the status of transactions in a
possible past of a history to committed. Suffix commit completion below converts commit-pending transactions into
committed; then completed possible past defines a possible past with all transactions committed.

DEFINITION 4. A history Hc is a suffix completion of a history Hψ if Hc = HψH ′, any action in H ′ is either
committed or aborted, and every transaction in Hc except possibly that of ψ, is completed. It is a suffix com-
mit completion of H if H ′ consists of committed actions only. The sets of suffix completions and suffix commit
completions of H are denoted comp(H) and comcomp(H), respectively.

A history Hc
ψ is a completed possible past of a history H = H1ψ, if Hc

ψ is a suffix commit completion of a
history obtained from a possible past H ′1ψ of H by replacing all the aborted actions in H ′1 by committed actions.
The set of completed possible pasts of H is denoted cTMSpast(H):

cTMSpast(H1ψ) = {Hc
ψ | ∃H ′1. H ′1ψ ∈ TMSpast(H1ψ) ∧Hc

ψ ∈ comcomp(com(H ′1)ψ)},

where |com(H ′1)| = |H ′1| and com(H ′1)(i) = (if (H ′1(i) = (a, t, aborted)) then (a, t, committed) else H ′1(i)).

For example, one completed possible past of the history in Figure 2 consists of the transactions T1, T4 and T5, with
the status of the latter changed to committed if it was previously aborted or commit-pending. Note that a history H
has a suffix completion only if H is of the form H = H1ψ where all the transactions in H1ψ, except possibly that
of ψ, are commit-pending or completed. Also, cTMSpast(H1ψ) 6= ∅ only if, in addition, ψ is a response action.

The following definition of the TMS relation between TMs matches a history H arising from a concrete TM
with a similar history S of an abstract TM. As part of this matching, we require that S be a permutation of H
preserving the real-time order, which is formalised by the opacity relation [1, 6]. As in Definition 3(iii), this
requirement is necessary to ensure observational refinement between the TMs: preserving the real-time order is
necessary to preserve communication between threads when replacing the concrete TM with the abstract one.

DEFINITION 5. A history H is in the opacity relation with a history S, denoted by H vop S, if

∀ψ,ψ′. (ψ ∈ S ⇐⇒ ψ ∈ H) ∧ (ψ ≺H ψ′ =⇒ ψ ≺S ψ′).

DEFINITION 6. A history H is in the TMS relation with TM T , denoted H vtms T , if:
(i) ∃Hc ∈ comp(H|¬live), S ∈ T . Hc|com vop S, where ·|¬live and ·|com are the projections to actions by

transactions that are not live and by committed transactions, respectively; and
(ii) for every response action ψ such that H = H1ψH2: ∃Hc

ψ ∈ cTMSpast(H1ψ).∃Sψ ∈ T . Hc
ψ vop Sψ.

A TM TC is in the TMS relation with a TM TA, denoted by TC vtms TA, if ∀H ∈ TC . H vtms TA.

5 Observational Refinement

Our main result relates TMS to observational refinement, which we introduce in this section. This requires defining
the semantics of the programming language, i.e., the set of traces that computations of programs produce. A
state of a program records the values of all its variables: s ∈ State = Var → Z. The semantics of a program
P = C1 ‖ · · · ‖ Cm is given by the set of traces [[P, T]](s) ⊆ Trace it produces when run with a TM T from an

5

initial state s. To define this set, we first define the set of traces [[P]](s) ⊆ Trace that a program can produce when
run from swith the behavior of the TM unrestricted, i.e., considering all possible values the TM can return to object
method invocations and allowing transactions to commit or abort arbitrarily. We then restrict to the set of traces
produced by P when run with T by selecting those traces that interact with the TM in a way consistent with T :
[[P, T]](s) = {τ | τ ∈ [[P]](s) ∧ history(τ) ∈ T }, where history(·) projects to TM interface actions. Due to space
constraints, we defer the formal definition of [[P]](s) to Appendix C. The definition follows the intuitive semantics
of our programming language. In particular, it mandates that local variables be rolled back upon a transaction abort
and includes traces corresponding to incomplete program computations into [[P]](s).

We can now define the notions of observations and observational refinement. Informally, given a trace τ of a
client program, we consider observable: (i) the sequence of actions performed outside transactions in τ ; (ii) the
per-thread sequence of actions in τ that are not part of uncommitted transactions; and (iii) whether a τ ends with
fault or not. Then observational refinement between a concrete TM TC and an abstract one TA states that every
observable behavior of a program P using TC can be reproduced when P uses TA. Hence, any conclusion about its
observable behavior that a programmer makes assuming TA will carry over to TC . Since our notion of observations
excludes actions performed inside aborted or live transactions other than faulting, the programmer cannot make any
conclusions about them. But, crucially, the programmer can be sure that, if a program is non-faulting under TA, it
will stay so under TC . Let us call an action ϕ ∈ τ transactional if ϕ ∈ T for some T ∈ τ , and non-transactional
otherwise. We denote by τ |trans and τ |¬trans the projections of τ to transactional and non-transactional actions.

DEFINITION 7. The thread-local observable behavior of thread t in a trace τ , denoted by observablet(τ), is
if τ |t ends with a fault action, and (τ |t)|obs otherwise, where ·|obs denotes the projection to non-transactional
actions and actions by committed transactions. A TM TC observationally refines a TM TA, denoted by TC � TA,
if for every program P , state s and trace τ ∈ [[P, TC]](s) we have: (i) ∃τ ′ ∈ [[P, TA]](s). τ ′|¬trans = τ |¬trans; and
(ii) ∀t.∃τ ′t ∈ [[P, TA]](s). observablet(τ

′
t) = observablet(τ).

6 Main Result

The main result of this paper is that the TMS relation can be characterized in terms of observational refinement for
a class of TMs that enjoy certain natural closure properties.
• A TM T is closed under immediate aborts if it allows adding arbitrary immediately aborted transactions to

any history H ∈ T : if H1H2H3 ∈ T , H2|t = ε and H1(_, t, txbegin)H2(_, t, aborted)H3 is a well-formed
history, then the latter belongs to T .
• A TM T is closed under removing transaction responses if whenever H1(_, t, aborted)H2 ∈ T or
H1(_, t, committed)H2 ∈ T for H2 not containing actions by t, we also have H1H2 ∈ T .
• A TM T is closed under removing live and aborted transactions if whenever H ∈ T , we also have H ′ ∈ T

for any historyH ′ which is a subsequence ofH such that committed(H ′) = committed(H), pending(H ′) =
pending(H), live(H ′) ⊆ live(H) and aborted(H ′) ⊆ aborted(H).
• A TM T is closed under commit-pending transactions completion if whenever H ∈ T and comp(H) 6= ∅,

we have comp(H) ∩ T 6= ∅.
• A TM T is closed under aborting live transactions if wheneverH1ψ ∈ T and ψ ∈ {(_, t,OK), (_, t, ret_)},

we have H1ψψc(_, t, aborted) ∈ T , where ψc is an arbitrary request action by t.
These properties are satisfied by the expected TM specification that executes every transaction atomically [1].

THEOREM 8. Let TC and TA be transactional memories.
(i) If TA is closed under immediate aborts and removing transaction responses, then TC vtms TA =⇒ TC � TA.

(ii) If TA is closed under removing live and aborted transactions, aborting live transactions and commit-pending
transactions completion, then TC � TA =⇒ TC vtms TA.

6.1 Proof of Theorem 8(i) (Sufficiency)

Let us fix a program P = C1 ‖ . . . ‖ Cm, state s and TMs TC and TA such that TC vtms TA and TA satisfies the
closure conditions stated in the theorem. As we have noted before, the main subtlety of TMS lies in explaining the

6

behavior of a live transaction under TC by a history of TA where the committed/aborted status of some transactions
is changed, as formalized by the use of cTMSpast in Definition 6(ii). Correspondingly, the most challenging part
of the proof is to show that a trace from [[P, TC]](s) with a fault inside a live transaction can be transformed into
a trace with the fault from [[P, TA]](s). The following lemma describes the first and foremost step of this trans-
formation: it converts a trace τ ∈ [[P]](s) with a live transaction into another trace from [[P]](s) that contains the
same live transaction, but whose history of non-aborted transactions is a given element of cTMSpast(history(τ)).
In other words, this establishes that the live transaction cannot notice the changes of the status of other transactions
done by cTMSpast. Let τ |¬abortedtx be the projection of τ excluding aborted transactions.

LEMMA 9 (Live transaction insensitivity). Let τ = τ1ψτ2 ∈ [[P]](s) be such that ψ is a response action by thread
t0 that is not a committed or aborted action and τ2 contains only primitive actions by thread t0. Consider Hc

ψ ∈
cTMSpast(history(τ)). There exists τψ ∈ [[P]](s) such that history(τψ)|¬abortedtx = Hc

ψ and τψ|t0 = τ |t0 .

PROOF. We first show how to construct τψ and then prove that it satisfies the required properties. We illustrate
the idea of its construction using the trace τ in Figure 2. Let history(τ) = H1ψ. Since Hc

ψ ∈ cTMSpast(H), by
Definition 4 there exist histories H ′1, H ′′1 , and Hcc such that

H ′1ψ ∈ TMSpast(H1ψ) ∧ H ′′1 = com(H ′1) ∧ Hc
ψ = H ′′1ψH

cc ∈ comcomp(H ′′1ψ).

Recall that, for the τ in Figure 2, H ′1ψ consists of the transactions T1, T4 and T5. Then H ′′1 is obtained from
H ′1 by changing the last action of T4 to committed if it was aborted; Hc

ψ is obtained by completing T4 with a
committed action if it was commit-pending. The trickiness of the proof comes from the fact that just mirroring
these transformations on τ may not yield a trace of the program P : for example, if T4 aborted, the code in thread
t2 following T4 may rely on this fact, communicated to it by the TM via a local variable. Fortunately, we show that
it is possible to construct the required trace by erasing certain suffixes of every thread and therefore getting rid of
the actions that could be sensitive to the changes of transaction status, such as those following T4. This erasure has
to be performed carefully, since threads can communicate via global variables: for example, the value written by
the assignment to g′ in the code following T4 may later be read by t1, and, hence, when erasing the the former, the
latter action has to be erased as well. We now explain how to truncate τ consistently.

Let ψb be the last txbegin action in H ′1ψ; then for some traces τ b1 and τ b2 we have τ = τ b1ψ
bτ b2ψτ2. For the τ

in Figure 2, ψb is the txbegin action of T4. Our idea is, for every thread other than t0, to erase all its actions that
follow the last of its transactions included into H ′1ψ or its last non-transactional action preceding ψb, whichever is
later. Formally, for every thread t, let τ It denote the prefix of τ |t that ends with the last TM interface action of t in
H ′1ψ, or ε if no such action exists. For example, in Figure 2, τ It1 and τ It2 end with the last TM interface actions of
T1 and T4, respectively. Similarly, let τNt denote the prefix of τ |t that ends in the last non-transactional action of
t in τ b1 , or ε if no such action exists. For example, in Figure 2, τNt1 and τNt2 end with φ1 and φ2, respectively. Let
τt0 = τ |t0 and for any t 6= t0 let τt be τ It , if |τNt | < |τ It |, and τNt , otherwise. We then let the truncated trace τ ′ be
the subsequence of τ such that τ ′|t = τt for any t. Thus, for the τ in Figure 2, in the corresponding trace τ ′ the
actions of t1 end with φ1 and those of t2 with the last action of T4; note that this erases both operations on g′. To
construct τψ from τ ′, we mirror the transformations of H ′1 into H ′′1 and Hc

ψ. Let τ ′′ be defined by |τ ′′| = |τ ′| and

τ ′′(i) = (if (τ ′(i) = (a, t, aborted) ∧ τ ′(i) ∈ H ′1)) then (a, t, committed) else τ ′(i)).

Then we let τψ = τ ′′Hcc.
We first prove that τψ|t0 = τ |t0 . Let T = txof(ψ,H1ψ); then by Definition 3(ii), T ∈ H ′1ψ. Hence, by

Definition 3(iii) we have

∀T ′. T ′ ≺H′1ψ T ⇐⇒ T ′ ≺H1ψ T ∧ T ′ ∈ committed(H1ψ), (1)

so that (H ′1ψ)|t0 does not contain aborted transactions and τ ′′|t0 = τ ′|t0 = τ |t0 . Besides, Hcc|t0 = ε and, hence,
τψ|t0 = τ ′′|t0 = τ |t0 .

We now sketch the proof that τψ ∈ [[P]](s), appealing to the intuitive understanding of the programming
language semantics. To this end, we show that τ ′ and then τ ′′ belong to [[P]](s). We start by analyzing how the

7

τ ∗ ψb

τ It

τNt
(a) τt = τNt

τ ∗ ψb

τ It

τNt
(b) τt = τ It

τ ψb ∗∗

τ It

τNt
(c) τt = τ It

Figure 3: Cases in the proof of Lemma 9. ∗ all actions by t are transactional; ∗∗ all actions by t come from a single
transaction, started before or by ψb

trace τ |t is truncated to τt for every thread t 6= t0. Let us make a case split on the relative positions of τNt , τ It and
ψb in τ . There are three cases, shown in Figure 3. Either τt = τNt (a, thread t1 in Figure 2) or τt = τ It (b, c). In the
former case, ψb has to come after the end of τNt . In the latter case, either ψb comes after the end of τ It (b) or is its
last action or precedes the latter (c, thread t2 in Figure 2).

By the choice of τNt , in (a) and (b) the fragment of τ in between the end of τNt and ψb can contain only
those actions by t that are transactional (T2 in Figure 2). By the choice of τ It and ψb, in (c) the fragment of τ in
between ψb and the end of τ It cannot contain a txbegin action by t and, hence, can contain only those actions by
t that are transactional. Furthermore, these have to come from a single transaction, started either by ψb or before
it (T4 in Figure 2). Finally, by the choice of ψb the actions of t0 following ψb are transactional and come from
the transaction of ψ, also started either by ψb or before it (T5 in Figure 2). Given this analysis, the transformation
from τ to τ ′ can be viewed as a sequence of two: (i) erase all actions following ψb, except those in some of
transactions that were already ongoing at this time; (ii) erase some suffixes of threads containing only transactional
actions. Since transactional actions do not access global variables, they are not affected by the actions of other
threads. Furthermore, as we noted in Section 5, [[P]](s) includes incomplete program computations. This allows us
to conclude that τ ′ ∈ [[P]](s).

We now show that τ ′′ is valid, again referring to cases (a-c). Let T = txof(ψb, H1ψ); then T ∈ H ′1ψ by the
choice of ψb and by Definition 3(iii) we get (1). Hence, for threads t falling into cases (a) or (b), τ ′|t may not
contain aborted transactions that are also in H ′1ψ. For threads t falling into case (c), the only aborted transaction
included into H ′1ψ can be the last one in τ ′|t. Finally, above we established that (H ′1ψ)|t0 does not contain aborted
transactions. Hence, transactions in τ ′ whose status is changed from aborted to committed when switching to τ ′′

do not have any actions following them in τ ′. Furthermore, [[P]](s) allows committing or aborting transactions
arbitrarily. This allows us to conclude that τ ′′ ∈ [[P]](s). For the same reason, we get τψ ∈ [[P]](s).

Finally, we show that history(τψ)|¬abortedtx = Hc
ψ. It is sufficient to show that history(τ ′′)|¬abortedtx = H ′′1ψ;

since τψ = τ ′′Hcc and Hcc contains only committed actions, this would imply

history(τψ)|¬abortedtx = history(τ ′′Hcc)|¬abortedtx = history(τ ′′)|¬abortedtxHcc = H ′′1ψH
cc = Hc

ψ.

By the choice of τ It for t 6= t0, every transaction in (H ′1ψ)|t is also in τ It . Hence, H ′1ψ is a subsequence of
history(τ ′). By the definition of τ ′′ and H ′′1 , H ′′1ψ is a subsequence of history(τ ′′). Then since H ′′1ψ does not
contain aborted transactions, H ′′1ψ is a subsequence of history(τ ′′)|¬abortedtx.

Thus, to prove history(τ ′′)|¬abortedtx = H ′′1ψ it remains to show that every non-aborted transaction in
history(τ ′′) is in H ′′1ψ. Since the construction of τ ′′ from τ ′ changes the status of only those transactions that
belong to H ′1ψ, it is sufficient to show that every non-aborted transaction in history(τ ′) is in H ′1ψ. Here we only
consider the case when such a transaction is by a thread t 6= t0 and τ ′|t = τNt 6= ε; we cover the other cases in
Appendix D. Let φNt be the last action in τNt and T = txof(ψb, H1ψ) ∈ H ′1ψ. Then by Definition 3(iii) we get (1).
Since φNt comes before ψb in H1ψ, any transaction T ′ in τ ′|t is such that T ′ ≺H1ψ T , which together with (1)
implies the required. This concludes the proof that history(τ ′′)|¬abortedtx = H ′′1ψ.

We now give the other lemmas necessary for the proof. Definition 6 matches a history of TC with one of
TA using the opacity relation, possibly after transforming the former with cTMSpast. The following lemma is
used to transform a trace of P accordingly. The lemma shows that, if we consider only traces where aborted

8

transactions abort immediately (i.e., are of the form (_, _, txbegin) (_, _, aborted)), then the opacity relation implies
observational refinement with respect to observing non-transactional actions and thread-local trace projections.
This result is a simple adjustment of the one about the sufficiency of opacity for observational refinement to our
setting [1, Theorem 16] (it was proved in [1] for a language where local variables are not rolled back upon a
transaction abort; this difference, however, does not matter if aborted transactions abort immediately).

LEMMA 10. Consider τ ∈ [[P]](s) such that all the aborted transactions in τ abort immediately. Let S be such that
history(τ) vop S. Then there exists τ ′ ∈ [[P]](s) such that history(τ ′) = S, τ |¬trans = τ ′|¬trans and ∀t. τ ′|t = τ |t.

Let τ |¬abortact be the trace obtained from τ by removing all actions inside aborted transactions, so that every
such transaction aborts immediately. We can benefit from Lemma 10 because local variables are rolled back if a
transaction aborts, and, hence, applying ·|¬abortact to a trace preserves its validity.

PROPOSITION 11. ∀τ. τ ∈ [[P]](s) =⇒ τ |¬abortact ∈ [[P]](s).

Finally, Definition 6 matches only histories of committed transactions, but the histories of the traces in
Lemma 10 also contain aborted transactions. Fortunately, the following lemma allows us to add empty aborted
transactions into the abstract history while preserving the opacity relation.

LEMMA 12. Let H be a history where all aborted transactions abort immediately and S be such that
H|¬abortedtx vop S. There exists a history S′ such that S′|¬abortedtx = S and H vop S

′.

Using Definition 6(i), Proposition 11 and Lemmas 10 and 12, we can show that the TMS relation preserves
non-transactional actions and thread-local observable behavior of threads whose last action is not a fault.

LEMMA 13. ∀τ ∈ [[P, TC]](s).∃τ ′ ∈ [[P, TA]](s). (τ ′|¬trans = τ |¬trans) ∧ (∀t. (τ ′|t)|obs = (τ |t)|obs).
PROOF OF THEOREM 8(I). Given Lemma 13, we only need to establish the preservation of faults inside trans-
actions. Consider τ0 ∈ [[P, TC]](s) such that τ0 = τ1ψτ2φ, where φ = (_, t0, fault) is transactional and ψ is
the last TM interface action by thread t0. Then τ2|t0 consists of transactional actions and thus does not contain
accesses to global variables. Hence, τ = τ1ψ(τ2|t0)φ ∈ [[P, TC]](s). By our assumption, TC vtms TA. Then there
exists Hc

ψ ∈ cTMSpast(history(τ)) and S ∈ TA such that Hc
ψ vop S. By Lemma 9, for some trace τψ we have

τψ ∈ [[P]](s), history(τψ)|¬abortedtx = Hc
ψ and τψ|t0 = τ |t0 . By Proposition 11, τψ|¬abortact ∈ [[P]](s). Using

Lemma 12, we get a history S′ such that history(τψ|¬abortact) vop S
′ and S′|¬abortedtx = S. Since S ∈ TA and

TA is closed under immediate aborts, we get S′ ∈ TA. Hence, by Lemma 10, for some τ ′ ∈ [[P, TA]](s) we have
τ ′|t0 = τψ|t0 = τ |t0 = _φ, as required.

6.2 Proof Sketch for Theorem 8(ii) (Necessity)

Consider TC and TA such that TC � TA and TA satisfies the closure conditions stated in the theorem. To show that
for any H0 ∈ TC we have H0 vtms TA, we have to establish conditions (i) and (ii) from Definition 6. We sketch
the more interesting case of (ii) (cf. Lemma 17), in which H0 = H1ψH2 = HH2 ∈ TC , where ψ is a response
action by a thread t0. We assume that ψ is not a committed or aborted action: the full proof considers the case of
aborted actions separately (Lemma 18). We need to find Hc ∈ cTMSpast(H) and S ∈ TA such that Hc vop S.

To this end, we construct a program PH (as we explain further below) where every thread t performs the se-
quence of transactions specified inH|t. The program monitors certain properties of the TM behavior, e.g., checking
that the return values obtained from methods of transactional objects in committed transactions correspond to those
in H and that the real-time order between actions includes that in H . If these properties hold, thread t0 ends by
executing the fault command. Let s be a state with all variables set to distinguished values. We next construct a
trace τ ∈ [[PH , TC]](s) such that history(τ) = H and t0 faults in τ . By Definition 7, there exists τ ′ ∈ [[PH , TA]](s)
such that t0 faults in τ ′. However, the program PH is constructed so that t0 can fault in τ ′ only if the properties of
the TM behaviour the program monitors hold, and thusH is related to history(τ ′) in a certain way. This relationship
allows us to construct Hc ∈ cTMSpast(H) from H and S ∈ TA from history(τ ′) such that Hc vop S.

In more detail, thread t0 in PH monitors the return status of every transaction and the return values obtained
inside the atomic blocks corresponding to transactions committed in H|t0 and the (live) transaction of ψ. If there

9

is a mismatch with H|t0 , this is recorded in a special local variable. At the end of the transaction of ψ, t0 checks
the variable and faults if the TM behavior matched H|t0 . This construction is motivated by the fact that faulting
is the only observation Definition 7 allows us to make about the behavior of the live transaction of ψ. Since the
definition does not correlate actions by threads t other than t0 between τ and τ ′, such threads monitor TM behavior
differently: if there is a mismatch withH|t, a thread t faults immediately. Since a trace can have at most one fault
and t0 faults in τ ′, this ensures that any committed transaction in τ ′ behaves as in H .

To check whether an execution of PH complies with the real-time order in H , for each transaction in H , we
introduce a global variable g, which is initially 0 and is set to 1 by the thread executing the transaction right after
the transaction completes, by a command following the corresponding atomic block. Before starting a transaction,
each thread checks whether all transactions preceding this one in the real-time order in H have finished by reading
the corresponding g variables. Thread t0 records the outcome in the special local variable checked at the end; all
other threads fault upon detecting a mismatch.

This construction of PH allows us to infer that: (i) the projection of history(τ ′)|t0 to committed transactions
and txof(ϕ, τ ′) is equal to the corresponding projection of H|t0 ; (ii) for all other threads t a similar relationship
holds for the prefix of history(τ ′)|t ending with the last transaction preceding txof(ϕ, τ ′) in the real-time order; (iii)
the real-time order in history(τ ′) includes that in H . Transactions concurrent with txof(ϕ, τ ′) in τ ′ may behave
differently from H . However, checks done by PH inside these transactions ensure that, if such a transaction T is
visible in τ ′, then the return values inside T match those in H . The checks on the global variables g done right
before T also ensure that all transactions preceding T in the real-time order inH commit or abort in τ ′ as prescribed
by H . This relationship between H and history(τ ′) allows us to establish the requirements of Definition 6(ii).

7 Related Work

When presenting TMS [3], Doherty et al. discuss why it allows programmers to think only of serial executions
of their programs, in which the actions of a transaction appear consecutively. This discussion—corresponding to
our sufficiency result—is informal, since the paper lacks a formal model for programs and their semantics. Most
of it explains how Definition 6(i) ensures the correctness of committed transactions. The discussion of the most
challenging case of live transactions—corresponding to Definition 6(ii) and our Lemma 9—is one paragraph long.
It only roughly sketches the construction of a trace with an abstract history allowed by TMS and does not give
any reasoning for why this trace is a valid one, but only claims that constraints in Definition 6(ii) ensure this.
This reasoning is very delicate, as indicated by our proof of Lemma 9, which carefully selects which actions to
erase when transforming the trace. Moreover, Doherty et al. do not try to argue that TMS is the weakest condition
possible, as we established by our necessity result.

Another TM consistency condition, weaker than opacity but incomparable to TMS, is virtual world consistency
(VWC) [10]. Like TMS, VWC allows every operation in a live or aborted transaction to be explained by a separate
abstract history. However, it places different constraints on the choice of abstract histories, which do not take into
account the real-time order between actions. Because of this, VWC does not imply observational refinement for
our programming language: taking into account the real-time order is necessary when threads can communicate
via global variables outside transactions.

Our earlier paper [1] has laid the groundwork for relating TM consistency and observational refinement, and
it includes a detailed comparison with related work on opacity and observational refinement. The present paper
considers a much more challenging case of a language where local variables are rolled back upon an abort. To
handle this case, we have developed new techniques, such as establishing the live transaction insensitivity property
(Lemma 9) to prove sufficiency and proposing monitor programs for the nontrivial constraints used in the TMS
definition to prove necessity. Similarly to [1] and other papers using observational refinement to study consistency
conditions [4, 5], we reformulate TMS so that it is not restricted to an abstract TM TA that executes transactions
atomically. This generality, not allowed by the original TMS definition, has two benefits. First, our reformulation
can be used to compare two TM implementations, e.g., an optimized and an unoptimized one. Second, dealing
with the general definition forces us to explicitly state the closure properties required from the abstract TM, rather
than having them follow implicitly from its atomic behavior.

10

References

[1] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language perspective on transactional
memory consistency. In PODC, pages 309–318, 2013.

[2] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in transactional memory. In ICDCS,
2013.

[3] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying transactional
memory. Formal Aspects of Computing, 25(5):769–799, 2013.

[4] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. In ESOP, pages
252–266, 2009.

[5] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP (2), pages 453–465, 2011.
[6] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP, pages 175–184, 2008.
[7] J. He, C. Hoare, and J. Sanders. Data refinement refined. In ESOP, pages 187–196, 1986.
[8] J. He, C. Hoare, and J. Sanders. Prespecification in data refinement. Information Processing Letters, 25(2):71

– 76, 1987.
[9] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Transactions

on Programming Languages and Systems, 12(3):463–492, 1990.
[10] D. Imbs and M. Raynal. Virtual world consistency: A condition for STM systems (with a versatile protocol

with invisible read operations). Theor. Comput. Sci., 444:113–127, 2012.
[11] M. Lesani, V. Luchangco, and M. Moir. Putting opacity in its place. In WTTM, 2012.
[12] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26:631–653, October 1979.
[13] Scala STM Expert Group. Scala STM quick start guide, 2012. http://nbronson.github.io/scala-

stm/quick_start.html.

11

A Restrictions on Variable Accesses

To formalise restrictions on accesses to variables by primitive commands, we partition the set PComm− {fault}
into 2m classes: PComm − {fault} =

⊎m
t=1(LPcommt] GPcommt). The intention is that commands from

LPcommt can access only the local variables of thread t (LVart); commands from GPcommt can additionally
access global variables (LVart] GVar). We formalize these restrictions in Appendix C. To ensure that a thread
t does not access local variables of other threads, we require that the thread cannot mention such variables in the
conditions of if and while commands and can only use primitive commands from LPcommt] GPcommt.

B Formal Definition of Traces

DEFINITION 14 (Traces). A trace τ is a finite sequence of actions, satisfying the following conditions:
(i) every action in τ has a unique identifier: if τ = τ1(a1, _, _)τ2(a2, _, _)τ3 then a1 6= a2.

(ii) no action follows a fault: if τ = τ ′ϕ then τ ′ does not contain a fault action.
(iii) request and response actions are properly matched: for every thread t, history(τ)|t consists of alternating

request and corresponding response actions, starting from a request action;
(iv) actions denoting the beginning and end of transactions are properly matched: for every thread t, in the

projection of history(τ)|t to txbegin, committed and aborted actions, txbegin alternates with committed or
aborted, starting from txbegin;

(v) call and ret actions occur only inside transactions: for every thread t, if τ |t = τ1ψτ2 for a call or ret action
ψ, then τ1 = τ ′1ψ

′τ ′′1 for some txbegin action ψ′, and τ ′1 and τ ′′1 such that τ ′′1 does not contain committed or
aborted actions;

(vi) commands in τ do not access local variables of other threads: if (_, t, c) ∈ τ then c ∈ LPcommt]GPcommt]
{fault};

(vii) commands in τ do not access global variables inside a transaction: if τ = τ1 (_, t, c) τ2 for c ∈ GPcommt,
then it is not the case that τ1 = τ ′1 (_, t, txbegin) τ ′′1 , where τ ′′1 does not contain committed or aborted actions.

C Formal Definition of the Semantics of the Programming Language

This section formally defines the set [[P]](s). It is computed in two stages. First, we compute a set A(P) of
traces that resolves all issues regarding sequential control flow and interleaving. Intuitively, if one thinks of each
thread Ct in P as a control-flow graph, then A(P) contains all possible interleavings of paths in the graphs of Ct,
t ∈ ThreadID starting from their initial nodes. The set A(P) is a superset of all the traces that can actually be
executed: e.g., if a thread executes the command “x := 1; if (x = 1) y := 1 else y := 2” where x, y are local
variables, then A(P) will contain a trace where y := 2 is executed instead of y := 1. To filter out such nonsensical
traces, we evaluate every trace to determine whether it is valid, i.e., whether its control flow is consistent with the
effect of its actions on program variables. This is formalized by a function eval : State×Trace→ P(State)∪{ }
that, given an initial state and a trace, produces the set of states resulting from executing the actions in the trace,
an empty set if the trace is invalid, or a special state if the trace contains a fault action. Thus, [[P]](s) = {τ ∈
A(P) | eval(s, τ) 6= ∅}.

When defining the semantics, we encode the evaluation of conditions in if and while statements with assume
commands. More specifically, we expect that the sets LPcommt contain special primitive commands assume(b),
where b is a Boolean expression over local variables of thread t, defining the condition. We state their semantics
formally below; informally, assume(b) does nothing if b holds in the current program state, and stops the computa-
tion otherwise. Thus, it allows the computation to proceed only if b holds. The assume commands are only used in
defining the semantics of the programming language; hence, we forbid threads from using them directly.

The trace set A(P). The function A′(·) in Figure 4 maps commands and programs to sequences of actions they
may produce. Technically, A′(·) might contain sequences that are not traces, e.g., because they do not have unique
identifiers or continue beyond a fault command. This is resolved by intersecting the set A′(P) with the set of all
traces to define A(P). A′(C)t gives the set of action sequences produced by a command C when it is executed

12

A′(c)t = {(_, t, c)}
A′(C1;C2)t = {τ1 τ2 | τ1 ∈ A′(C1)t ∧ τ2 ∈ A′(C2)t}
A′(if (b) then C)t = {(_, t, assume(b)) (A′(C)t)}
A′(if (b) then C1 else C2)t = {(_, t, assume(b)) τ1 | τ1 ∈ A′(C1)t} ∪ {(_, t, assume(¬b)) τ2 | τ2 ∈ A′(C2)t}
A′(while (b) do C)t = {((_, t, assume(b)) (A′(C)t))∗ (_, t, assume(¬b))}
A′(x := o.f(e))t = {(_, t, assume(e = n)) (_, t, call o.f(n)) (_, t, ret(n′) o.f) (_, t, x := n′) | n, n′ ∈ Z} ∪

{(_, t, assume(e = n)) (_, t, call o.f(n)) (_, t, aborted) | n ∈ Z}
A′(x := atomic {C})t = {(_, t, txbegin) (_, t, aborted) (_, t, x := aborted)} ∪
{(_, t, txbegin) (_, t,OK) τ (_, t, aborted) (_, t, x := aborted) | τ (_, t, aborted) τ ′ ∈ A′(C)t ∧ (_, t, aborted) 6∈ τ} ∪
{(_, t, txbegin) (_, t,OK) τ (_, t, txcommit) (_, t, r) (_, t, x := r) | τ ∈ A′(C)t ∧

(_, t, aborted) 6∈ τ ∧ (r = committed ∨ r = aborted)}
A′(C1 ‖ . . . ‖ Cm) = prefix(

⋃{interleave(τ1, . . . , τm) | ∀t. 1 ≤ t ≤ m =⇒ τt ∈ A′(Ct)t})
A(P) = A′(P) ∩ Trace

Figure 4: The definition of A(P).

by thread t. To define A′(P), we first compute the set of all the interleavings of action sequences produced by the
threads constituting P . Formally, τ ∈ interleave(τ1, . . . , τm) if and only if every action in τ is performed by some
thread t ∈ {1, . . . ,m}, and τ |t = τt for every thread t ∈ {1, . . . ,m}. We then let A′(P) be the set of all prefixes
of the resulting sequences, as denoted by the prefix operator. We take prefix closure here to account for incomplete
program computations as well as those in which the scheduler preempts a thread forever.

A′(c)t returns a singleton set with the action corresponding to the primitive command c (primitive commands
execute atomically). A′(C1;C2)t concatenates all possible action sequences corresponding to C1 with those cor-
responding to C2. The set of action sequences of a conditional considers cases where either branch is taken. We
record the decision using an assume action; at the evaluation stage, this allows us to ensure that this decision is
consistent with the program state. The set of action sequences for a loop is defined using the Kleene closure op-
erator ∗ to produce all possible unfoldings of the loop body. Again, we record branching decisions using assume
actions.

The set of action sequences of a method invocation x := f(e) includes both sequences where the method
executes successfully and where the current transaction is aborted. The former set is constructed by nondetermin-
istically choosing two integers n and n′ to describe the parameter n and the return value n′ for the method call.
To ensure that e indeed evaluates to n, we insert assume(e = n) before the call action, and to ensure that x gets
the return value n′, we add the assignment x := n′ after the ret action. Note that some of the choices here might
not be feasible: the chosen n might not be the value of the parameter expression e when the method is invoked,
or the method might never return n′ when called with n. Such infeasible choices are filtered out at the following
stages of the semantics definition: the former in the definition of [[P]](s) by the use of evaluation and the semantics
of assume, and the latter in the definition of [[P, T]](s) by selecting the sequences from [[P]](s) that interact with
the transactional memory correctly. The set of action sequences of x := atomic {C} contains those in which C is
aborted in the middle of its execution (at an object operation or right after it begins) and those in which C executes
until completion and then the transaction commits or aborts.

Semantics of primitive commands. To define evaluation, we assume a semantics of every command c ∈
PComm − {fault}, given by a function [[c]] that defines how the program state is transformed by executing c.
As we noted before, different classes of primitive commands are supposed to access only certain subsets of vari-
ables. To ensure that this is indeed the case, we define [[c]] as a function of only those variables that c is allowed to
access. Namely, the semantics of c ∈ LPcommt is given by

[[c]] : (LVart → Z)→ P(LVart → Z).

13

The semantics of c ∈ GPcommt is given by

[[c]] : ((LVart] GVar)→ Z)→ P((LVart] GVar)→ Z).

Note that we allow c to be non-deterministic.
For a valuation q of variables that c is allowed to access, [[c]](q) yields the set of their valuations that can be

obtained by executing c from a state with variable values q. For example, an assignment command x := g has the
following semantics:

[[x := g]](q) = {q[g 7→ q(g)]} .
We define the semantics of assume commands following the informal explanation given at the beginning of this
section: for example,

[[assume(x = n)]](q) =

{
{q}, if q(x) = n;

∅, otherwise.
(2)

Thus, when the condition in assume does not hold of q, the command stops the computation by not producing any
output.

We lift functions [[c]] to full states by keeping the variables that c is not allowed to access unmodified and
producing if c faults. For example, if c ∈ LPcommt, then

[[c]](s) = {s|LVar\LVart] q | q ∈ [[c]](s|LVart)},
where s|V is the restriction of s to variables in V . Finally, we let

[[fault]](s) = ,
so that the only way a program can fault is by executing the fault command.

Trace evaluation. Using the semantics of primitive commands, we first define the evaluation of a single action
on a given state:

eval : State× Action→ P(State) ∪ { }
eval(s, (_, t, c)) = [[c]](s);

eval(s, ψ) = {s}.
Note that this does not change the state s as a result of TM interface actions, since their return values are assigned
to local variables by separate actions introduced when generating A(P). We then lift eval to traces as follows:

eval : State× Trace→ P(State) ∪ { }

eval(s, τ) =

{
∅, if τ = τ ′ϕ ∧ eval(s, τ ′) = ∅;
evalna(s, τ |¬abortact), otherwise,

where

evalna(s, τ) =

{
{s}, if τ = ε;

{s′′ ∈ eval(s′, ϕ) | s′ ∈ evalna(s, τ ′)}, if τ = τ ′ϕ.

The set of states resulting from evaluating trace τ from state s is effectively computed by the helper function
evalna(s, τ), which ignores actions inside aborted transactions to model local variable roll-back. However, ignoring
the contents of aborted transactions completely poses a risk that we might consider traces including sequences of
actions inside aborted transactions that yield an empty set of states. To mitigate this, eval(s, τ) recursively evaluates
every prefix of τ , thus ensuring that sequences of actions inside aborted transaction are valid.

As we explained in Section 5, we define [[P]](s) as the set of those traces from A(P) that can be evaluated from
s without getting stuck, as formalized by eval. Note that this definition enables the semantics of assume defined
by (2) to filter out traces that make branching decisions inconsistent with the program state. For example, consider
again the program “x := 1; if (x = 1) y := 1 else y := 2”. The set A(P) includes traces where both branches
are explored. However, due to the semantics of the assume actions added to the traces according to Figure 4, only
the trace executing y := 1 will result in a non-empty set of final states after the evaluation and, therefore, only this
trace will be included into [[P]](s).

14

D Additional Proofs

D.1 Remaining Cases from the Proof of Lemma 9

• t 6= t0 is such that τ ′|t = τ It 6= ε. Let ψIt be the last action in τ It . Let T = txof(ψIt , H1ψ). By the choice of
τ It we have T ∈ H ′1ψ; then by Definition 3(iii) we get (1). Since any transaction T ′ in history(τ ′|t) is either
T or is such that T ′ ≺(H1ψ)|t T , this implies the required.
• t = t0. Let T = txof(ψ,H1ψ) ∈ H ′1ψ. Then by Definition 3(iii) we get (1). Since any transaction T ′ in

history(τ ′|t0) is either T or is such that T ′ ≺(H1ψ)|t0 T , this implies the required.

D.2 Proof of Lemma 12

Let n be the number of aborted transactions in H . To construct the desired S′, we inductively construct a sequence
of histories Si, i = 0..n such that

|aborted(Si)| = i; Si|¬abortedtx = S; {ψ | ψ ∈ Si} ⊆ {ψ | ψ ∈ H};
∀ψ1, ψ2 ∈ Si. ψ1 ≺H ψ2 =⇒ ψ1 ≺Si ψ2.

(3)

We then let S′ = Sn, so that H vop S
′.

For i = 0, we take S0 = S, and all the requirements in (3) hold vacuously. Assume a history Si satisfying (3)
was constructed; we get Si+1 from Si by the following construction. Let H = H1ψbH2ψaH3, where ψb =
(_, t, txbegin), ψa = (_, t, aborted), H2|t = ε and

¬∃ψ′. ψ′ = (_, _, txbegin) ∈ H1 ∧ txof(ψ′, H) ∈ aborted(H) ∧ ψ′ 6∈ Si.

That is, out of all aborted transactions in H that are not in Si, ψbψa is the one with the earliest txbegin. We now
consider two cases.
Case I: H1 does not contain a committed or an aborted action.

In this case, let Si+1 = ψbψaSi. We only need to show that for any ψ′ ∈ Si we have ψ′ ≺H ψb =⇒
ψ′ ≺Si+1 ψb and ψa ≺H ψ′ =⇒ ψa ≺Si+1 ψ

′. The latter holds by the construction of Si+1. To show the
former, observe that, since H1 does not contain a committed or aborted action, it cannot contain actions by
thread t. Hence, we cannot have ψ′ ≺H ψb for any ψ′.

Case II: H1 contains a committed or an aborted action.

Let ψ be the last committed or aborted action in Si that is also in H1 and let Si = S′ψS′′. We then let
Si+1 = S′ψψbψaS′′. We again need to show that for any ψ′ ∈ Si we have ψ′ ≺H ψb =⇒ ψ′ ≺Si+1 ψb and
ψa ≺H ψ′ =⇒ ψa ≺Si+1 ψ

′.

Assume ψ′ ≺H ψb for some ψ′ ∈ Si; then ψ′ ∈ H1. By the choice of ψb and ψa, all the committed
and aborted actions in H1 are in Si, and by the choice of ψ, all such actions are in S′ψ. Hence, if ψ′ is a
committed or an aborted action, then ψ′ ∈ S′ψ and, hence, ψ′ ≺Si+1 ψb. If ψ′ is by thread t, then it is either
a committed or an aborted action (and, hence, ψ′ ≺Si+1 ψb) or it precedes such an action ψ′′ ∈ Si by t in
H1: ψ′ ≺H1 ψ

′′. Then ψ′ ≺Si+1 ψ
′′ and ψ′′ ≺Si+1 ψb, which implies ψ′ ≺Si+1 ψb.

Now assume ψa ≺H ψ′ for some ψ′ ∈ Si; then ψ′ ∈ H3. If ψ′ is a txbegin action, then ψ ≺H ψ′. Hence,
ψ ≺Si ψ′, i.e., ψ′ ∈ S′′, which implies ψa ≺Si+1 ψ

′. If ψ′ is by thread t, then it is either a txbegin action
(and, hence, ψa ≺Si+1 ψ′) or it follows such an action ψ′′ ∈ Si by thread t in H3: ψ′′ ≺H3 ψ′. Then
ψ′′ ≺Si+1 ψ

′ and ψa ≺Si+1 ψ
′′, which implies ψa ≺Si+1 ψ

′.

D.3 Proof of Lemma 13

Let H = history(τ). By assumption, TC vtms TA. Hence, there exist histories Hc ∈ comp(H|¬live) and
S ∈ TA such that Hc|com vop S. Then Hc = (H|¬live)H ′ for some H ′. Let τ c be the trace obtained from
τ in the same way as Hc is obtained from H: τ c = τ0H

′, where τ0 is obtained from τ by discarding all live
transactions; thus, history(τ c) = Hc. It is easy to see that τ c ∈ [[P]](s). Besides, τ c|¬trans = τ |¬trans and

15

(τ |t)|obs is a prefix of (τ c|t)|obs for any t. Let τna = τ c|¬abortact. By Proposition 11 we get τna ∈ [[P]](s).
Since (Hc|¬abortact)|¬abortedtx = Hc|com vop S, by Lemma 12, for some history S′ we have history(τna) =
Hc|¬abortact vop S′ and S′|¬abortedtx = S. Since TA is closed under immediate aborts and S ∈ TA, we
have S′ ∈ TA. We have τna ∈ [[P]](s); hence, by Lemma 10, there exists a trace τ ′′ ∈ [[P]](s) such that
history(τ ′′) = S′ ∈ TA,

τ ′′|¬trans = τna|¬trans = τ c|¬trans = τ |¬trans,
and τ ′′|t = τna|t for any t. Let τ ′ be the history obtained from τ ′′ by discarding the actions in Hc, which are last
by the corresponding threads. Then

τ ′|¬trans = τ ′′|¬trans = τ |¬trans,
τ ′ ∈ [[P]](s) and, since TA is closed under removing transaction responses, history(τ ′) ∈ TA. Given τ ′′|t = τna|t,
it is also easy to check that (τ ′|t)|obs = (τ |t)|obs, as required.

D.4 Proof of Theorem 8(ii) (Necessity)

Let τ�i denote the prefix of a trace τ containing i actions and let τ�ϕ denote the prefix of τ until (and including)
the action ϕ.

DEFINITION 15. Two traces τ and τ ′ are equivalent up to identifiers, denoted τ ≡ τ ′, if |τ | = |τ ′| and for every
i = 1 . . . |τ |, actions τ(i) and τ ′(i) may differ only in their action identifiers.

LEMMA 16. Let TC and TA be transactional memories such that TC � TA, and TA is closed under removing live
and aborted transactions and commit-pending transactions completion. Let H be a history in TC . There exists a
history Hc ∈ comp(H|¬live) and a history S ∈ TA, such that Hc|com vop S.

Proof: Let us choose an integer value u 6= 1 which does not appear in H . We use the following shorthands:
• We let m be the largest thread identifier occurring in H .
• We denote by kt the number of transactions started by thread t inH , i.e., the number of (_, t, txbegin) actions

in H .
• We partition H|t into kt subsequences: H|t = Ht

1 . . . H
t
kt , where Ht

i is comprised of the actions in the i-th
transaction of t. Specifically, Ht

i (1) = (_, t, txbegin).
• We let cti be the outcome of the i-th transaction of thread t, i.e., cti = committed or cti = aborted. If the

transaction is not completed, cti is undefined.
• We denote by qti the number of call actions of thread t in its i-th transaction, i.e., in Ht

i .
• We let (_, t, call oti,j .f

t
i,j(n

t
i,j)) be the j-th call action of thread t in its i-th transaction.

• We let (_, t, ret(rti,j) o
t
i,j .f

t
i,j) be the j-th ret action of thread t in its i-th transaction. If the response

to (_, t, call oti,j .f
t
i,j(n

t
i,j)) is an aborted action, we let rti,j = aborted. If there is no response to

(_, t, call oti,j .f
t
i,j(n

t
i,j)), i.e., the transaction is live and (_, t, call oti,j .f

t
i,j(n

t
i,j)) is its last action, then we

let rti,j = u.
• We denote by lasttx(t, i, t′) the number of transactions of thread t′ in H that either committed or aborted

before the i-th transaction of thread t started, i.e., the number of (_, t′, committed) and (_, t′, aborted) actions
preceding the i-th (_, t, txbegin) action in H .

For every thread t = 1..m we construct a straight-line command

CtH = GP t1;CP
t
1;GP

t
2;CP

t
2; . . . ;GP

t
kt ;CP

t
kt ,

where GP t
i and CP t

i are defined in Figure 5. Here the gti variables are global and all others are local. The gti
variables are used to monitor the real-time order: gti is written only by thread t and is used to signal that the i-
th transaction of thread t ended. The variable zti,t′ is used to record whether the lasttx(t, i, t′)-th transaction of
thread t′ signaled that it had ended before the i-th transaction of thread t started. As lasttx(t, i, t′) might be 0,
we add a dummy variable gt0 for every thread t. Later in the proof we execute the program from a state in which
gt0 is initialised to 1. The variable wti records whether the i-th transaction of thread t committed or aborted. The
variables yti,j record the return value of the j-th object method invocation in the i-th transaction of thread t.

16

GP ti = zti,1 := g1lasttx(t,i,1); if(z
t
i,1 6= 1) then fault;

. . .

zti,m := gmlasttx(t,i,m); if(z
t
i,m 6= 1) then fault;

• If Ht
i is a committed or aborted transaction, then

CP t
i = wti := atomic { yti,1 := oti,1.f

t
i,1(n

t
i,1); if(y

t
i,1 6= rti,1) then fault;

. . . ;

yt
i,qti

:= ot
i,qti
.f t
i,qti

(nt
i,qti

); if(yt
i,qti
6= rt

i,qti
) then fault; }

if(wti 6= cti) then fault else gti := 1;

• If Ht
i is a live transaction, then

CP t
i = wti := atomic { yti,1 := oti,1.f

t
i,1(n

t
i,1);

. . . ;

yt
i,qti

:= ot
i,qti
.f t
i,qti

(nt
i,qti

);

fault; }

• If Ht
i is a commit-pending transaction, then

CP t
i = wti := atomic { yti,1 := oti,1.f

t
i,1(n

t
i,1); if(y

t
i,1 6= rti,1) then fault;

. . . ;

yt
i,qti

:= ot
i,qti
.f t
i,qti

(nt
i,qti

); if(yt
i,qti
6= rt

i,qti
) then fault; }

Figure 5: The construction of CP t
i and GP ti for Lemma 16 and Lemma 17 (case of t 6= t0).

Thus, the command GP ti ;CP
t
i begins by reading the signals of the last transaction of every thread that, ac-

cording to H , should end before the i-th transaction of thread t starts. It then performs an atomic block in which
it invokes the sequence of object method invocations induced by Ht

i . After the atomic block ends, the command
signals the end of the transaction. The desired program PH is:

PH = C1
H ‖ . . . ‖ CmH .

We now construct a particular trace τ of PH . We build τ by first constructing a trace τ t for every sequential
command CtH and then interleaving the traces τ1, . . . , τm in a particular way. Consider the set of traces A(CtH)t
of the sequential command CtH , and let τ t ∈ A(CtH)t be the maximal trace without any fault actions such that
H|t = history(τ t). The trace τ t exists, since by construction ofCtH and the definition of the trace set of a sequential
command (Figure 4), there is a trace in A(CtH)t for every possible parameter and return value of object method
invocations and atomic blocks in CtH ; in particular, A(CtH)t contains a trace where the parameters and return
values of object method invocations and the return values of transactions are as in H|t. We now partition every τ t

into
∣∣H|t

∣∣ subsequences that we later interleave to create τ :

τ t = τ t1 . . . τ
t
|H|t|.

Formally, for every i = 1..
∣∣H|t

∣∣ there is exactly one TM interface action ψti in τ ti and the conditions in Figure 6
hold. This defines τ ti uniquely and ensures that, if τ ti ends with ψti = (_, t, txbegin), then it contains all the actions
that are used to read the global signaling variables that precede ψti in τ t. The desired trace is constructed by
interleaving the subsequences of the traces τ1, . . . , τm according to the order induced by H . Formally,

τ = τ t1j1 . . . τ
t|H|
j|H|

,

17

τ ti =

_ψt
i , ψt

i ∈ {(_, t, txbegin), (_, t, call o.f(n)), (_, t, txcommit)};
ψt
i , ψt

i = (_, t,OK);

ψt
i (_, t, y

t
i,_ := n), ψt

i = (_, t, ret(n) o.f) ∧ txof(ψt
i , τ

t) ∈ live(τ t);

ψt
i (_, t, y

t
i,_ := n) (_, t, assume(yti,_ = rti,_)), ψt

i = (_, t, ret(n) o.f) ∧ txof(ψt
i , τ

t) /∈ live(τ t);

ψt
i (_, t, wi := cti) (_, t, assume(wi = cti)) (_, t, g

t
i := 1), ψt

i ∈ {(_, t, committed), (_, t, aborted)}.

Figure 6: The construction of τ ti for Lemma 16 and Lemma 17.

where H(i) = (_, ti, _) and ji =
∣∣(H�i)|ti

∣∣. Note that by construction history(τ) = H .
Since τ t ∈ A(CtH)t, we have τ ∈ A(PH). Let s be the state where all the local variables are set to u

and for all t, gti = 0 for i 6= 0 and gt0 = 1. By the construction of τ , we have eval(s, τ) 6= ∅. Then, since
history(τ) = H ∈ TC , we have τ ∈ [[PH]](s, TC). Since τ ∈ [[PH]](s, TC) and TC � TA, by Definition 7 there
exists a trace τ ′ ∈ [[PH]](s, TA) such that τ ′ ∈ A(PH), τ ′|¬trans = τ |¬trans and S′ = history(τ ′) ∈ TA.

We now analyze the relationship between a transaction in τ and the one in τ ′ arising from the execution of the
same commands. The construction in Figure 5 ensures that:

• If a transaction in τ is completed, then so is the corresponding transaction in τ ′, since every completed trans-
action in τ is followed by a non-transactional action assigning to gti and τ ′|¬trans = τ |¬trans. Furthermore,
a transaction in τ is committed if and only if so is the corresponding transaction in τ ′, and in this case the
return values for transactional actions inside the transactions match.
• If a transaction in τ is live, then the corresponding transaction in τ ′ is live, aborted or does not appear in τ ′

at all.
• If a transaction in τ is commit-pending, then the corresponding transaction in τ ′ can have any status or

may not appear in τ ′ at all. However, if the transaction in τ ′ is visible (in particular, commit-pending or
committed), then the return values for transactional actions inside the transactions match.

Let H1 = (H|¬live)|¬abortedtx and Sr = (S′|¬live)|¬abortedtx. Since S′ ∈ TA and TA is closed under removing live
and aborted transactions, Sr ∈ TA. Let p′t, respectively, p′′t be the index of last txcommit or committed action in
H1|t, respectively, Sr|t; if there is no such action, the corresponding index is 0. Let pt = min(p′t, p

′′
t). From the

above analysis it follows that (H1|t)�pt ≡ (Sr|t)�pt .
Let S1 be a history obtained from Sr by renaming the action identifiers such that S1 ≡ Sr, (H1|t)�pt =

(S1|t)�pt and all actions in S1 that do not belong to (Sr|t)�pt for some t have identifiers that do not appear in H .
Since Sr ∈ TA and TA is closed under renaming action identifiers, we get S1 ∈ TA.

The history S1 does not contain live transactions so that comp(S1) 6= ∅. Then, since S1 ∈ TA and TA is closed
under commit-pending transactions completion, we get that there exists a history S2 ∈ comp(S1) ∩ TA. Then
S2 = S1S

′
1 for some history S′1 that contains only committed and aborted actions; without loss of generality we

can assume that identifiers of actions in S′1 do not appear in H . Let S′′1 be the subsequence of committed actions in
S1 that are not in H1. The history H1S

′′
1S
′
1 contains only visible transactions. We construct the desired history Hc

by aborting all the commit-pending transactions in H1S
′′
1S
′
1. Let Hc = H1S

′′
1S
′
1Ha, where Ha consists of actions

(_, t, aborted) for every thread t ending with a commit-pending transaction in H1S
′′
1S
′
1; these actions have unique

identifiers that do not appear in H . We have that Hc ∈ comp(H|¬live), for the following reasons:
(i) S′′1 completes the commit-pending transactions in H that get committed in S′.

(ii) S′1 completes the commit-pending transactions in H that stay commit-pending in S′.
(iii) Ha aborts the commit-pending transactions in H that become live or aborted in S′ or do not appear there at

all.
Let S = S2|com. Since S2 ∈ TA has only completed transactions and TA is closed under removing live and

aborted transactions, we get that S = S2|com ∈ TA. We now show Hc|com vop S, thus completing the proof. We
first show that ∀t ∈ ThreadID. (Hc|t)|com = S|t by considering several cases.

18

• H|t does not contain commit-pending transactions. Then H1|t = S1|t, H1|t contains only committed trans-
actions and S′1 = S′′1 = Ha = ε. Hence,

(Hc|t)|com = (H1|t)|com = H1|t = S1|t = (S1|t)|com = (S2|t)|com = S|t.

• H|t ends with a commit-pending transaction and (S′′1S
′
1Ha)|t = S′′1 |t = (_, t, committed). Then H1|t =

(H1|t)�pt and S1|t = ((S1|t)�pt)(S′′1 |t). Hence,

Hc|t = (H1|t) (S′′1 |t) = ((H1|t)�pt) (S′′1 |t) = ((S1|t)�pt) (S′′1 |t) = S1|t = S2|t.

Then (Hc|t)|com = (S2|t)|com = S|t.
• H|t ends with a commit-pending transaction and (S′′1S

′
1Ha)|t = S′1|t. Then H1|t = S1|t. Hence,

Hc|t = (H1|t) (S′1|t) = (S1|t) (S′1|t) = S2|t.

Then (Hc|t)|com = (S2|t)|com = S|t.
• H|t ends with a commit-pending transaction and (S′′1S

′
1Ha)|t = Ha|t = (_, t, aborted). Then

((H1|t) (Ha|t))|com = ((H1|t)�pt)|com and S1|t = (S1|t)�pt . Hence,

(Hc|t)|com = ((H1|t) (Ha|t))|com = ((H1|t)�pt)|com = ((S1|t)�pt)|com = S1|t = S2|t.

This shows ∀t ∈ ThreadID. (Hc|t)|com = S|t. Finally, for every completed transaction T in τ , the value of gti is
set to 1 after the transaction completes and is read before every transaction T ′ that begins after the completion of
T . Hence, the transaction in τ ′ corresponding to T completes before the transaction corresponding to T ′ begins.
Then the real-time order in Hc is preserved in S, which implies Hc|com vop S.

LEMMA 17. Let TC and TA be transactional memories such that TC � TA and TA is closed under live trans-
actions omission and pending transactions completion. Let H = H ′ψ ∈ TC , where ψ is a response action
and ψ /∈ {(_, _, committed), (_, _, aborted)}. There exists a history S ∈ TA such that Hc vop S, where
Hc ∈ cTMSpast(H).

Proof: Let ψ be an action of thread t0. As in Lemma 16, we build a program PH for H that records the interaction
of every thread t with the transactional memory and monitors whether the real-time order includes that in H . The
sequential commands CiH constructed for all the threads except t0 are the same as in Lemma 16, but C0

H , the
sequential command built for t0, is different.

As in Lemma 16, the command C0
H records the arguments passed to method calls and the return values during

a transaction the program using local variables that are never rewritten. However, C0
H observes these values after

the transaction completes using conditional command. This makes the sequence of actions inside a committed
transaction observable to thread t0. As a result, if PH is evaluated with a history H ′ which has a different per-
thread sequence of actions inside committed transactions than that of H , then the trace would reflect the difference
by either a fault by some thread other than t0 or by the non-transactional actions of t0. Histories H and H ′

might perform different actions inside aborted transactions, but this is fine for our purposes because the actions
inside aborted transactions are not observable. Monitoring the real-time order is done using the same monitoring
mechanism as in Lemma 16.

The challenge here is to construct a program that can observe the sequence of actions inside the transaction of
ψ, which is live. The only one way to get this observation is to use faults. Hence, given an incomplete history H ,
we construct a program which faults if the local observations of t0 are the same as in H .

Now we formalize the intuitive proof sketch. To make the proof self-contained we repeat some parts of the
constructions that were already discussed in Lemma 16. Let us choose an integer value u 6= 1 which does not
appear in H . We use the following shorthands:
• We denote by m the number of threads that have an action in H , and for simplicity, let m be the largest

thread identifier occurring in H .

19

GP t0i = zt0i,1 := g1lasttx(t0,i,1); if(z
t0
i,1 6= 1) then mismatch := 1;

. . .

zt0i,m := gmlasttx(t0,i,m); if(z
t0
i,m 6= 1) then mismatch := 1;

• For the live transaction of ψ, CP t0
kt0

is constructed as follows:

CP t0
kt0

= wt0
kt0

:= atomic { yt0
kt0 ,1

:= ot0
kt0 ,1

.f t0
kt0 ,1

(nt0
kt0 ,1

);

if(yt
kt0 ,1

6= rt
kt0 ,1

) then mismatch := 1;

. . . ;

yt0
kt0 ,q

t0

kt0

:= ot0
kt0 ,q

t0

kt0

.f t0
kt0 ,q

t0

kt0

(nt0
kt0 ,q

t0

kt0

);

if(yt
kt0 ,qt

kt0

6= rt
kt0 ,qt

kt0

) then mismatch := 1;

if(mismatch 6= 1) then fault; }

• For an aborted or a committed transaction by t0, CP t
i is constructed as follows:

CP t0
i = wt0i := atomic { yt0i,1 := ot0i,1.f

t0
i,1(n

t0
i,1); if(y

t0
i,1 6= rt0i,1) then mismatch := 1;

. . . ;

yt0
i,q
t0
i

:= ot0
i,q
t0
i

.f t0
i,q
t0
i

(nt0
i,q
t0
i

); if(yt0
i,q
t0
i

6= rt0
i,q
t0
i

) then mismatch := 1; }
if(wt0i 6= ct0i) then mismatch := 1 else gt0i := 1;

Figure 7: The construction of CP t0
i and GP t0i for Lemma 17.

• We denote by kt the number of transactions started by thread t inH , i.e., the number of (_, t, txbegin) actions
in H .
• We partition H|t into kt subsequences: H|t = Ht

1 . . . H
t
kt , where Ht

i is comprised of the actions in the i-th
transaction of t. Specifically, Ht

i (1) = (_, t, txbegin).
• We let cti be the outcome of the i-th transaction of thread t, i.e., cti = committed or cti = aborted. If the

transaction is not completed, cti is undefined.
• We denote by qti the number of call actions of thread t in its i-th transaction, i.e., in Ht

i .
• We let (_, t, call oti,j .f

t
i,j(n

t
i,j)) be the j-th call action of thread t in its i-th transaction.

• We let (_, t, ret(rti,j) o
t
i,j .f

t
i,j) be the j-th ret action of thread t in its i-th transaction.

• If the response to (_, t, call oti,j .f
t
i,j(n

t
i,j)) is an aborted action, we let rti,j be aborted. If there is no response

to (_, t, call oti,j .f
t
i,j(n

t
i,j)), i.e. the transaction is live and (_, t, call oti,j .f

t
i,j(n

t
i,j)) is the last action in the

transaction, then rti,j is set to u.
• We denote by lasttx(t, i, t′) the number of transactions of thread t′ in H that either committed or aborted

before the i-th transaction of thread t started, i.e., the number of (_, t′, committed) and (_, t′, aborted) actions
preceding the i-th (_, t, txbegin) action in H .

For every thread t = 1..m we construct a straight-line command

CtH = GP t1;CP
t
1;GP

t
2;CP

t
2; . . . ;GP

t
kt ;CP

t
kt .

CP t
i is a sequence of commands constructed according to the i-th transaction of thread t in H . The construction of

CP t0
i and GP t0i is shown in Figure 7, and the construction of CP t

i and GP ti , when t 6= t0, is shown in Figure 5.
Here the g variables are global and all others are local. The g and z variables are used to monitor the real-time

order. The variable gti is written only by thread t and is used to signal that the i-th transaction of thread t ended:
gti is set to 1 only after t’s i-th transaction either committed or aborted. The variable zti,t′ is local to thread t. It is
used to record if the lasttx(t, i, t′)-th transaction of thread t′ signaled that it had ended before the i-th transaction of

20

thread t started. As lasttx(t, i, t′) might be 0, we add a dummy variable gt0 for every thread t. Later in the proof we
execute the program from a state in which gt0 is initialised to 1. The variable wti records whether the i-th transaction
of thread t committed or aborted. The variables yti,j record the return value of the j-th object method invocation in
the i-th transaction of thread t. Variable mismatch is a local variable of thread t0. It us used to check that the return
values values for object methods by thread t0 are as expected: it is set to 1 if there is a mismatch. It will help in
producing a different trace if there is a mismatch.

Thus, the command CtH begins by reading the signals of the last transaction of every thread that, according to
H , should end before the i-th transaction of thread t starts. It then performs an atomic block in which it invokes
the sequence of object method invocations induced by Ht

i . After the atomic block ends, CP t
i signals the end of

the transaction. The desired program PH is the parallel composition of the straight-line commands of the different
threads:

PH = C1
H ‖ . . . ‖ CmH .

We now construct a particular trace τ of PH . We build τ by first constructing a trace τ t for every sequential
command CtH and then interleaving the traces τ1, . . . , τm in a particular way.

Consider the set of traces A(CtH)t (cf. Figure 4) of the sequential command CtH , and let τ t ∈ A(CtH)t be the
maximal trace such that H|t = history(τ tc). The trace τ t exists, since by construction of CtH and the definition of
the trace set of a sequential command, there is a trace in A(CtH)t for every possible parameter and return value of
object method invocations and atomic blocks in CtH ; in particular, A(CtH)t contains a trace where the parameters
and return values of object method invocations and the return values of transactions are as in H|t.

We now partition every τ t into
∣∣H|t

∣∣ subsequences that we later interleave to create τ :

τ t = τ t1 . . . τ
t
|H|t|.

Formally, for every i = 1..
∣∣H|t

∣∣ there is exactly one TM interface action ψti in τ ti . The construction of τ ti is shown
in Figure 6. Note that this defines τ t1 . . . τ

t∣∣H|t
∣∣ uniquely. The above definition also ensures that, if τ ti ends with

ψti = (_, t, txbegin), then it contains all the actions that are used to read the global signaling variables that precede
ψti in τ t.

The desired trace is constructed by interleaving the subsequences of the traces τ1, . . . , τm according to the
order induced by H . Formally,

τ = τ t1j1 . . . τ
t|H|
j|H|

,

where H(i) = (_, ti, _) and ji =
∣∣H�i |ti

∣∣. Note that by construction history(τ) = H .
This ends the construction, which is similar to Lemma 16. The rest of the proof diverges from the proof of

Lemma 16.
Since τ t ∈ A(CtH)t, we have τ ∈ A(PH). Since history(τ) = H ∈ TC , we have τ ∈ [[PH]](s, TC).
Since τ ∈ [[PH]](s, TC) has a fault after the action ψ and TC � TA, by Definition 7 there exists a trace

τ ′ ∈ [[PH]](s, TA) that ends with a fault by thread t0. Hence, τ ′ ∈ A(PH) and S′ = history(τ ′) is in TA. Since
τ and τ ′ have only one fault, the global variables in τ and τ ′ have same values, and thus the real-time order of
actions in H is preserved in S′. Also, the actions inside committed transactions in S′ are same as in H and all the
committed transactions in τ are committed in τ ′ since we check the local values wti outside the atomic block.

Now we create a history Hc using the history S′. Let H1 = H|v∪ψ and Sr = S′|v∪ψ, respectively, where ·|v∪ψ
is the projection to actions by all the visible transactions and the transaction of ψ.

Since the return values of object invocations are checked inside the completed transactions in H1 and that of
ψ, all the return values inside completed transactions that completed before txbegin of txof(ψ, Sr) in Sr and the
transaction of ψ are same as in H1; otherwise, the trace τ would have a fault by a thread t 6= t0, or would not
have a fault after ψ by thread t0.

Thus, for thread t0, (Sr�ψ)|t0 ≡ (H1�ψ)|t0 and for every thread t 6= t0, if there is a txcommit action in Sr|t,
then (Sr�kt)|t ≡ (H1�kt)|t, where kt is the index of the kth txcommit action, ψt, in H1|t and k is the number
of txcommit actions in Sr|t. Let S1 be a history with unique action identifiers obtained from Sr by renaming the

21

action identifiers in Sr such that S1 ≡ Sr and ∀i = 1 . . . |(H1�ψ)|t0 |, (S1|t0)(i) = (H1|t0)(i), and for every thread
t 6= t0, if there is a txcommit action in Sr, then ∀i = 1 . . . kt, (S1|t)(i) = (H1|t)(i) and all actions in S1 that are
not in H1 do not have action identifier same as any action in H1. Note that if there is not txcommit action in Sr|t,
then S1|t = Sr|t = ε. Note that since S1|t contains only visible transactions, either S1|t = ε or S1|t = (S1|t)�ψt
or S1|t = (S1|t)�ψt ψ′t, where ψ′t = (_, t, committed) or (_, t, aborted).

Let Hp be the subsequence of H1 such that for thread t0, Hp|t0 = H1|t0 and for all other threads, if Sr|t does
not contains a txcommit action then Hp|t = ε, if Sr|t contains a txcommit action then Hp|t = H1|t if ψt is the last
action in H1|t; otherwise Hp|t = (H1|t)�ψt ψ′′t , where ψ′′t is the response of ψt in H1. Let H ′1 be a subsequence of
H1 such that for thread t0, H ′1|t0 = H1|t0 and for all other threads, if Sr|t does not contains a txcommit action then
H ′1|t = ε, otherwise H ′1|t = (H1|t)�ψt . Note that for every thread t 6= t0, either S1|t does not contain a txcommit
action and H ′1|t = Hp|t = ε, or S1|t contains a txcommit action and H ′1|t = (Hp|t)�ψt = (H1|t)�ψt , where ψt is
the last txcommit action in S1|t.

Note that a transaction in τ that does not complete before txbegin of txof(ψ, τ) may have different response in
τ ′. Also note that a transaction that is in H1 but not in H ′1 cannot complete before the txbegin of txof(ψ,H1). The
reason for this is that for every completed transaction, either committed or aborted, that completed in H1 before
txbegin of txof(ψ,H1), there is a completed transaction, with the same return value, in S1. This is because for
every committed and aborted transaction in τ that completed before txbegin of txof(ψ, τ), τ ′ contains assignment
to the variable g following the completion of the transaction, and the txof(ψ,H1) has checks in τ before it began
on the number of transactions completed by other threads. However, for a transaction in τ that does not complete
before txbegin of txof(ψ, τ) may have only a prefix or no action executed in τ ′, and if it is completed in both τ and
τ ′, it may have different response. Note that for any transaction in H ′1, all its preceding transactions are in S1 with
the same response actions, for the same reason.

Since S′ ∈ TA and TA is closed under removing live and aborted transactions, Sr ∈ TA. Since TA is closed
under renaming action identifiers, we get S1 ∈ TA. Since S1 ∈ TA and TA is closed under commit-pending
transactions completion, there exists a history S2 ∈ comp(S1) ∩ TA. Let S2 = S1S

′
1 ∈ TA be a history such that

every action in S′1 is either committed or aborted and has unique action identifiers with no action identifier that
appear in S1 or H1, and every transaction in S2, except that of ψ, is complete. Let S = S2|c∪ψ, where ·|c∪ψ is
the projection to actions by all the committed transactions and the transaction of ψ. Let S′′1 be the subsequence of
committed and aborted actions in S1 which are not in H ′1. There are committed and aborted actions in S1 which
are not in H ′1 because some of the commit-pending transactions in τ are executed to completion in τ ′ after txbegin
of txof(ψ, τ).

Let Hc = (H ′1S
′′
1S
′
1)|c∪ψ. Note that all the transactions in Hc and S are completed, except for the transaction

of ψ. The reason for this is for every thread t 6= t0, the last transaction in H ′1|t is a completed transaction or a
commit-pending transaction, which gets completed either by S′′1 if it is completed in S1, or it gets completed by S′1
if it is commit-pending in S1. Since S2 ∈ TA and TA is closed under removing live and aborted transactions, in
particular removing aborted transactions, we get that S = S2|c∪ψ ∈ TA. Now we show that Hc ∈ cTMSpast(H)
(Claim 17.1) and then show Claim 17.2 and Claim 17.3 to prove that Hc vop S.

CLAIM 17.1. Hc ∈ cTMSpast(H).

Proof: Let H ′′1ψ be the subsequence of Hp obtained by removing some transactions in the following way:
• a committed transaction Tc is removed if Tc is not in Hc.
• an aborted transaction Ta is removed if there is no txbegin action, by any thread in H ′′1ψ, after Ta completes.
Consider the following about the history H ′′1ψ:

(i) H ′′1ψ is a subsequence of Hp, which is a subsequence of H .
(ii) H ′′1 contains some of the visible transactions in H and also includes txof(ψ,H). This is because H1 contains

all the visible transactions in H and txof(ψ,H).
(iii) Since for any transaction in Hp, all its preceding transactions are in S1 with the same response actions of

preceding transactions. (The response of the last transaction by a thread t 6= t0 in Hp might have different
response in S1.). Thus, we get that for a transaction in Hp (and in H), if it is included in Hp then all of its
preceding transactions in Hp (and in H) are also included. Since all the committed transactions in Hp, which

22

have a transaction after them in real-time order in H ′′1ψ, are included in H ′′1ψ, it follows that

∀T ∈ tx(H ′′1ψ).∀T ′. T ′ ≺H′′1 ψ T ⇐⇒ (T ′ ≺H T ∧ T ′ ∈ committed(H)).

Therefore, H ′′1ψ ∈ TMSpast(H), by Definition 3.
Note that for every aborted transaction by a thread t 6= t0, that is last in Hp and included in H ′′1ψ, the response

action is removed in H ′1 and replaced by a committed or aborted action in S′′1 . Therefore, (H ′1S
′′
1S
′
1)|c∪ψ ∈

comcomp(com(H ′′1)ψ), and hence Hc ∈ comcomp(com(H ′′1)ψ).
SinceH ′′1ψ ∈ TMSpast(H) andHc ∈ comcomp(com(H ′′1)ψ), Definition 4 implies thatHc ∈ cTMSpast(H).

�

CLAIM 17.2. For every thread t 6= t0, if there is a txcommit action in S1, then (S1�ψt)|t = (H ′1�ψt)|t, where ψt
is the last txcommit action in S1|t.

Proof: Since (Sr�kt)|t ≡ (H1�kt)|t, where H1|t(kt) = ψt, and by the construction of S1, for every thread t 6= t0
it holds that ∀i = 1 . . . kt, (S1|t)(i) = (H1|t)(i), we get that (S1�ψt)|t = (H1�ψt)|t. By construction of H ′1,
H ′1|t�ψt = Hp|t�ψt = H1|t�ψt . Therefore, (S1�ψt)|t = (H ′1�ψt)|t. �

CLAIM 17.3. Hc|t = S|t, for every thread t 6= t0.

Proof: If S1|t does not contain a txcommit, then S1|t = H ′1|t = ε. Also, Hc|t = ε and S|t = ε, and the claim
holds vacuously.

If there is a txcommit action in S1|t, Claim 17.2 implies that (S1�ψt)|t = (H ′1�ψt)|t, where ψt is the
last txcommit action in S1|t. Let S1|t = (S1�ψt)|tSt, for some history St. Note that either St = ε or
St = (_, t, committed) or (_, t, aborted).

If St = (_, t, committed) or (_, t, aborted), then S1|t is a completed history and hence, S2|t = S1|t and
S′1|t = ε. Since S′′1 contains all committed and aborted transactions in S1 which are not in H ′1, it follows that
S′′1 |t = St. Hence, S2|t = S1|t = (H ′1S

′′
1)|t, and

Hc|t = ((H ′1S
′′
1S
′
1)|c∪ψ)|t = ((H ′1S

′′
1)|c∪ψ)|t = (S1|c∪ψ)|t = (S2|c∪ψ)|t = S|t

If St = ε, then the last transaction in S1|t is either commit-pending or completed in both H ′1|t and S1|t, and
hence, S2|t = (S1S

′
1)|t and S′′1 |t = ε. Since (S1�ψt)|t = (H ′1�ψt)|t, it follows that (S1S′1)|t = (H ′1S

′
1)|t, and

Hc|t = ((H ′1S
′′
1S
′
1)|c∪ψ)|t = ((H ′1S

′
1)|c∪ψ)|t = ((S1S

′
1)|c∪ψ)|t = (S2|c∪ψ)|t = S|t

�

Since thread t0 faults only if all the checks that ensures it succeeded, we get that H ′1|t0 = S1|t0 . Therefore,

Hc|t0 = (H ′1S
′
1S
′′
1)|t0 = H ′1|t0 = S1|t0 = S2|t0 = S|t0 .

Claim 17.3 implies that Hc|t = S|t, for all other threads t 6= t0.
Since for every complete transaction T in τ the value of gti is set to 1 after the transaction completes and is read

by every transaction T ′ that begin after the completion of T , we get that T completes in τ ′ before the transaction
T ′ begins; otherwise, it would generate a fault by a thread t 6= t0, and will not generate a fault by t0. Thus, the
real-time order in Hc is preserved in S, implying that Hc vop S and completing the proof.

LEMMA 18. Let TC and TA be transactional memories such that TC � TA and TA is closed under live transactions
omission, pending transactions completion and aborting live transactions. Let H = H ′ψ ∈ TC , where ψ =
(t0, _, aborted)}. There exists a history S ∈ TA such that Hc vop S, where Hc ∈ cTMSpast(H).

23

Proof: Let H0 = H�ψr , where ψr is the last response action by txof(ψ,H). Let H1 = H0ψcψ, where ψc is the
last request action in H by txof(ψ,H). Note that ψc may not necessarily be a txcommit action. It can be any
arbitrary request action that got aborted. Since every prefix of H is in TC , the history H0 is also in TC . Lemma 17
yields a history Hc

0 ∈ cTMSpast(H0) and a history S0 ∈ TA such that Hc
0 vop S0, where Hc

0 ∈ cTMSpast(Hψ).
Let Hc = H0ψcψ and S = S0ψcψ. Since S0 ∈ TA and TA is closed under aborting live transactions, we

get that S ∈ TA. Since Hc
0 ∈ cTMSpast(H0), we get Hc ∈ cTMSpast(H), implying that Hc vop S, since

Hc
0 vop S0.

PROOF OF THEOREM 8(II). Let H ∈ TC . Since TC � TA, Lemma 16 gives a history Hc ∈ comp(H|¬live) and a
history S ∈ TA such that Hc|com vop S.

Since every prefix of H is in TC , for every response ψ action in H , Hψ = H�ψ ∈ TC .
If ψ is a committed action, then Lemma 16 gives a history Hc ∈ comp(Hψ|¬live) and a history S ∈ TA such

that Hc|com vop S.
If ψ is a response action, but neither committed nor aborted, then Lemma 17 gives a history Sψ ∈ TA such

that Hc
ψ vop Sψ, where Hc

ψ ∈ cTMSpast(Hψ).
If ψ is an aborted action, then Lemma 18 gives a history Sψ ∈ TA such that Hc

ψ vop Sψ, where Hc
ψ ∈

cTMSpast(Hψ).
In all cases, H vtms TA.

24

Replicated Data Types: Specification, Verification, Optimality

Sebastian Burckhardt
Microsoft Research

Alexey Gotsman
IMDEA Software Institute

Hongseok Yang
University of Oxford

Marek Zawirski
INRIA & UPMC-LIP6

Abstract
Geographically distributed systems often rely on replicated eventu-
ally consistent data stores to achieve availability and performance.
To resolve conflicting updates at different replicas, researchers
and practitioners have proposed specialized consistency protocols,
called replicated data types, that implement objects such as reg-
isters, counters, sets or lists. Reasoning about replicated data types
has however not been on par with comparable work on abstract data
types and concurrent data types, lacking specifications, correctness
proofs, and optimality results.

To fill in this gap, we propose a framework for specifying repli-
cated data types using relations over events and verifying their im-
plementations using replication-aware simulations. We apply it to
7 existing implementations of 4 data types with nontrivial conflict-
resolution strategies and optimizations (last-writer-wins register,
counter, multi-value register and observed-remove set). We also
present a novel technique for obtaining lower bounds on the worst-
case space overhead of data type implementations and use it to
prove optimality of 4 implementations. Finally, we show how to
specify consistency of replicated stores with multiple objects ax-
iomatically, in analogy to prior work on weak memory models.
Overall, our work provides foundational reasoning tools to support
research on replicated eventually consistent stores.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; eventual consistency; weak memory

1. Introduction
To achieve availability and scalability, many networked computing
systems rely on replicated stores, allowing multiple clients to issue
operations on shared data on a number of replicas, which commu-
nicate changes to each other using message passing. For example,
large-scale Internet services rely on geo-replication, which places
data replicas in geographically distinct locations, and applications
for mobile devices store replicas locally to support offline use. One
benefit of such architectures is that the replicas remain locally avail-
able to clients even when network connections fail. Unfortunately,
the famous CAP theorem [19] shows that such high Availability
and tolerance to network Partitions are incompatible with strong
Consistency, i.e., the illusion of a single centralized replica han-
dling all operations. For this reason, modern replicated stores often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535848

provide weaker forms of consistency, commonly dubbed eventual
consistency [36]. ‘Eventual’ usually refers to the guarantee that

if clients stop issuing update requests, then the replicas
will eventually reach a consistent state. (1)

Eventual consistency is a hot research area, and new replicated
stores implementing it appear every year [1, 13, 16, 18, 23, 27,
33, 34, 37]. Unfortunately, their semantics is poorly understood:
the very term eventual consistency is a catch-all buzzword, and
different stores claiming to be eventually consistent actually pro-
vide subtly different guarantees. The property (1), which is a form
of quiescent consistency, is too weak to capture these. Although
it requires the replicas to converge to the same state eventually, it
doesn’t say which one it will be. Furthermore, (1) does not provide
any guarantees in realistic scenarios when updates never stop ar-
riving. The difficulty of reasoning about the behavior of eventually
consistent stores comes from a multitude of choices to be made in
their design, some of which we now explain.

Allowing the replicas to be temporarily inconsistent enables
eventually consistent stores to satisfy clients’ requests from the
local replica immediately, and broadcast the changes to the other
replicas only after the fact, when the network connection permits
this. However, this means that clients can concurrently issue con-
flicting operations on the same data item at different replicas; fur-
thermore, if the replicas are out-of-sync, these operations will be
applied to its copies in different states. For example, two users shar-
ing an online store account can write two different zip codes into
the delivery address; the same users connected to replicas with dif-
ferent views of the shopping cart can also add and concurrently
remove the same product. In such situations the store needs to en-
sure that, after the replicas exchange updates, the changes by dif-
ferent clients will be merged and all conflicts will be resolved in a
meaningful way. Furthermore, to ensure eventual consistency (1),
the conflict resolution has to be uniform across replicas, so that, in
the end, they converge to the same state.

The protocols achieving this are commonly encapsulated within
replicated data types [1, 10, 16, 18, 31, 33, 34] that implement ob-
jects, such as registers, counters, sets or lists, with various conflict-
resolution strategies. The strategies can be as simple as establishing
a total order on all operations using timestamps and letting the last
writer win, but can also be much more subtle. Thus, a data type
can detect the presence of a conflict and let the client deal with it:
e.g., the multi-value register used in Amazon’s Dynamo key-value
store [18] would return both conflicting zip codes in the above ex-
ample. A data type can also resolve the conflict in an application-
specific way. For example, the observed-remove set [7, 32] pro-
cesses concurrent operations trying to add and remove the same
element so that an add always wins, an outcome that may be appro-
priate for a shopping cart.

Replicated data type implementations are often nontrivial, since
they have to maintain not only client-observable object state, but
also metadata needed to detect and resolve conflicts and to han-
dle network failures. This makes reasoning about their behavior
challenging. The situation gets only worse if we consider multi-

ple replicated objects: in this case, asynchronous propagation of
updates between replicas may lead to counterintuitive behaviors—
anomalies, in database terminology. The following code illustrates
an anomaly happening in real replicated stores [1, 18]:
Replica r1→ x.wr(post) i= y.rd // comment← Replica r2

y.wr(comment) j=x.rd // empty
(2)

We have two clients reading from and writing to register objects x
and y at two different replicas; i and j are client-local variables.
The first client makes a post by writing to x at replica r1 and then
comments on the post by writing to y. After every write, replica r1

might send a message with the update to replica r2. If the messages
carrying the writes of post to x and comment to y arrive to replica r2

out of the order they were issued in, the second client can see the
comment, but not the post. Different replicated stores may allow
such an anomaly or not, and this has to be taken into account when
reasoning about them.

In this paper, we propose techniques for reasoning about even-
tually consistent replicated stores in the following three areas.

1. Specification. We propose a comprehensive framework for
specifying the semantics of replicated stores. Its key novel com-
ponent is replicated data type specifications (§3), which provide
the first way of specifying the semantics of replicated objects
with advanced conflict resolution declaratively, like abstract data
types [25]. We achieve this by defining the result of a data type
operation not by a function of states, but of operation contexts—
sets of events affecting the result of the operation, together with
some relationships between them. We show that our specifications
are sufficiently flexible to handle data types representing a variety
of conflict-resolution strategies: last-write-wins register, counter,
multi-value register and observed-remove set.

We then specify the semantics of a whole store with multiple
objects, possibly of different types, by consistency axioms (§7),
which constrain the way the store processes incoming requests in
the style of weak shared-memory models [2] and thus define the
anomalies allowed. As an illustration, we define consistency mod-
els used in existing replicated stores, including a weak form of
eventual consistency [1, 18] and different kinds of causal consis-
tency [23, 27, 33, 34]. We find that, when specialized to last-writer-
wins registers, these specifications are very close to fragments of
the C/C++ memory model [5]. Thus, our specification framework
generalizes axiomatic shared-memory models to replicated stores
with nontrivial conflict resolution.

2. Verification. We propose a method for proving the correctness
of replicated data type implementations with respect to our speci-
fications and apply it to seven existing implementations of the four
data types mentioned above, including those with nontrivial opti-
mizations. Reasoning about the implementations is difficult due to
the highly concurrent nature of a replicated store, with multiple
replicas simultaneously updating their object copies and exchang-
ing messages. We address this challenge by proposing replication-
aware simulations (§5). Like classical simulations from data refine-
ment [21], these associate a concrete state of an implementation
with its abstract description—structures on events, in our case. To
combat the complexity of replication, they consider the state of an
object at a single replica or a message in transit separately and as-
sociate it with abstract descriptions of only those events that led to
it. Verifying an implementation then requires only reasoning about
an instance of its code running at a single replica.

Here, however, we have to deal with another challenge: code at
a single replica can access both the state of an object and a message
at the same time, e.g., when updating the former upon receiving the
latter. To reason about such code, we often need to rely on cer-
tain agreement properties correlating the abstract descriptions of
the message and the object state. Establishing these properties re-

quires global reasoning. Fortunately, we find that agreement prop-
erties needed to prove realistic implementations depend only on ba-
sic facts about their messaging behavior and can thus be established
once for broad classes of data types. Then a particular implementa-
tion within such a class can be verified by reasoning purely locally.

By carefully structuring reasoning in this way, we achieve easy
and intuitive proofs of single data type implementations. We then
lift these results to stores with multiple objects of different types by
showing how consistency axioms can be proved given properties of
the transport layer and data type implementations (§7).

3. Optimality. Replicated data type designers strive to optimize
their implementations; knowing that one is optimal can help guide
such efforts in the most promising direction. However, proving
optimality is challengingly broad as it requires quantifying over all
possible implementations satisfying the same specification.

For most data types we studied, the primary optimization target
is the size of the metadata needed to resolve conflicts or handle net-
work failures. To establish optimality of metadata size, we present
a novel method for proving lower bounds on the worst-case meta-
data overhead of replicated data types—the proportion of metadata
relative to the client-observable content. The main idea is to find a
large family of executions of an arbitrary correct implementation
such that, given the results of data type operations from a certain
fixed point in any of the executions, we can recover the previous
execution history. This implies that, across executions, the states at
this point are distinct and thus must have some minimal size.

Using our method, we prove that four of the implementations
we verified have an optimal worst-case metadata overhead among
all implementations satisfying the same specification. Two of these
(counter, last-writer-wins register) are well-known; one (optimized
observed-remove set [6]) is a recently proposed nontrivial opti-
mization; and one (optimized multi-value register) is a small im-
provement of a known implementation [33] that we discovered dur-
ing a failed attempt to prove optimality of the latter. We summarize
all the bounds we proved in Fig. 10.

We hope that the theoretical foundations we develop will help
in exploring the design space of replicated data types and replicated
eventually consistent stores in a systematic way.

2. Replicated Data Types
We now describe our formal model for replicated stores and intro-
duce replicated data type implementations, which implement op-
erations on a single object at a replica and the protocol used by
replicas to exchange updates to this object. Our formalism follows
closely the models used by replicated data type designers [33].

A replicated store is organized as a collection of named ob-
jects Obj = {x, y, z, . . .}. Each object is hosted at all replicas
r, s ∈ ReplicaID. The sets of objects and replicas may be infinite,
to model their dynamic creation. Clients interact with the store by
performing operations on objects at a specified replica. Each ob-
ject x ∈ Obj has a type τ = type(x) ∈ Type, whose type signa-
ture (Opτ ,Valτ) determines the set of supported operations Opτ
(ranged over by o) and the set of their return values Valτ (ranged
over by a, b, c, d). We assume that a special value ⊥ ∈ Valτ be-
longs to all sets Valτ and is used for operations that return no
value. For example, we can define a counter data type ctr and
an integer register type intreg with operations for reading, incre-
menting or writing an integer a: Valctr = Valintreg = Z ∪ {⊥},
Opctr = {rd, inc} and Opintreg = {rd} ∪ {wr(a) | a ∈ Z}.

We also assume sets Message of messages (ranged over by m)
and timestamps Timestamp (ranged over by t). For simplicity, we
let timestamps be positive integers: Timestamp = N1.
DEFINITION 1. A replicated data type implementation for a data
type τ is a tuple Dτ = (Σ, ~σ0,M, do, send, receive), where ~σ0 :

Figure 1. Illustrations of a concrete (a) and two abstract executions (b, c)

1: x.inc
2: send

3: receive
4: x.inc
5: send

6: receive
7: x.rd8: receive

to r3

r1 r2 r3
(a) 1: x.inc

4: x.inc

7: x.rd: 1

vis

vis

(b)

1: x.inc

4: x.inc

7: x.rd: 2

vis

vis

(c)
vis

ReplicaID→ Σ, M ⊆ Message and

do : Opτ × Σ× Timestamp→ Σ× Valτ ;
send : Σ→ Σ×M ; receive : Σ×M → Σ.

We denote a component of Dτ , such as do, by Dτ .do. A tuple Dτ
defines the class of implementations of objects with type τ , meant
to be instantiated for every such object in the store. Σ is the set of
states (ranged over by σ) used to represent the current state of the
object, including metadata, at a single replica. The initial state at
every replica is given by ~σ0.
Dτ provides three methods that the rest of the store implemen-

tation can call at a given replica; we assume that these methods
execute atomically. We visualize store executions resulting from re-
peated calls to the methods as in Fig. 1(a), by arranging the calls on
several vertical timelines corresponding to replicas at which they
occur and denoting the delivery of messages by diagonal arrows. In
§4, we formalize them as sequences of transitions called concrete
executions and define the store semantics by their sets; the intuition
given by Fig. 1(a) should suffice for the following discussion.

A client request to perform an operation o ∈ Opτ triggers the
call do(o, σ, t) (e.g., event 1 in Fig. 1(a)). This takes the current
state σ ∈ Σ of the object at the replica where the request is
issued and a timestamp t ∈ Timestamp provided by the rest of
the store implementation and produces the updated object state and
the return value of the operation. The data type implementation can
use the timestamp provided, e.g., to implement the last-writer-wins
conflict-resolution strategy mentioned in §1, but is free to ignore it.

Nondeterministically, in moments when the network is able to
accept messages, a replica calls send. Given the current state of the
object at the replica, send produces a message inM to broadcast to
all other replicas (event 2 in Fig. 1(a)); sometimes send also alters
the state of the object. Using broadcast rather than point-to-point
communication does not limit generality, since we can always tag
messages with the intended receiver. Another replica that receives
the message generated by send calls receive to merge the enclosed
update into its copy of the object state (event 3 in Fig. 1(a)).

We now reproduce three replicated data type implementations
due to Shapiro et al. [33].They fall into two categories: in op-
based implementations, each message carries a description of the
latest operations that the sender has performed, and in state-based
implementations, a description of all operations it knows about.

Op-based counter (ctr). Fig. 2(a) shows an implementation of
the ctr data type. A replica stores a pair 〈a, d〉, where a is the
current value of the counter, and d is the number of increments
performed since the last broadcast (we use angle brackets for tuples
representing states and messages). The send method returns d and
resets it; the receive method adds the content of the message to
a. This implementation is correct, as long as each message is
delivered exactly once (we show how to prove this in §5). Since inc
operations commute, they never conflict: applying them in different
orders at different replicas yields the same final state.

State-based counter (ctr). The implementation in Fig. 2(b)
summarizes the currently known history by recording the contri-

Figure 2. Three replicated data type implementations

(a) Op-based counter (ctr)
Σ = N0 × N0

M = N0

~σ0 = λr. 〈0, 0〉

do(rd, 〈a, d〉, t) = (〈a, d〉, a)
do(inc, 〈a, d〉, t) = (〈a+ 1, d+ 1〉,⊥)

send(〈a, d〉) = (〈a, 0〉, d)
receive(〈a, d〉, d′) = 〈a+ d′, d〉

(b) State-based counter (ctr)
Σ = ReplicaID× (ReplicaID→ N0)

σ0 = λr. 〈r, λs. 0〉
M = ReplicaID→ N0

do(rd, 〈r, v〉, t) = (〈r, v〉,∑{v(s) | s ∈ ReplicaID})
do(inc, 〈r, v〉, t) = (〈r, v[r 7→ v(r) + 1]〉,⊥)

send(〈r, v〉) = (〈r, v〉, v)
receive(〈r, v〉, v′) = 〈r, (λs.max{v(s), v′(s)})〉
(c) State-based last-writer-wins register (intreg)
Σ = Z× (Timestamp] {0})
~σ0 = λr. 〈0, 0〉
M = Σ
do(rd, 〈a, t〉, t′) = (〈a, t〉, a)

do(wr(a′), 〈a, t〉, t′) = if t < t′ then (〈a′, t′〉,⊥) else (〈a, t〉,⊥)
send(〈a, t〉) = (〈a, t〉, 〈a, t〉)
receive(〈a, t〉, 〈a′, t′〉) = if t < t′ then 〈a′, t′〉 else 〈a, t〉

bution of every replica to the counter value separately (reminiscent
of vector clocks [29]). A replica stores its identifier r and a vector
v such that for each replica s the entry v(s) gives the number of
increments made by clients at s that have been received by r. A
rd operation returns the sum of all entries in the vector. An inc
operation increments the entry for the current replica. We denote
by v[i 7→ j] the function that has the same value as v everywhere,
except for i, where it has the value j. The send method returns the
vector, and the receive method takes the maximum of each entry in
the vectors v and v′ given to it. This is correct because an entry for s
in either vector reflects a prefix of the sequence of increments done
at replica s. Hence, we know that min{v(s), v′(s)} increments by
s are taken into account both in v(s) and in v′(s).

State-based last-writer-wins (LWW) register (intreg). Un-
like counters, registers have update operations that are not com-
mutative. To resolve conflicts, the implementation in Fig. 2 uses
the last-writer-wins strategy, creating a total order on writes by as-
sociating a unique timestamp with each of them. A state contains
the current value, returned by rd, and the timestamp at which it was
written (initially, we have 0 instead of a timestamp). A wr(a′) com-
pares its timestamp t′ with the timestamp t of the current value a
and sets the value to the one with the highest timestamp. Note that
here we have to allow for t′ < t, since we do not make any assump-
tions about timestamps apart from uniqueness: e.g., the rest of the
store implementation can compute them using physical or Lamport
clocks [22]. We show how to state assumptions about timestamps in
§4. The send method just returns the state, and the receive method
chooses the winning value by comparing the timestamps in the cur-
rent state and the message, like wr.

State-based vs. op-based. State-based implementations con-
verge to a consistent state faster than op-based implementations be-
cause they are transitively delivering, meaning that they can prop-
agate updates indirectly. For example, when using the counter in
Fig. 2(b), in the execution in Fig. 1(a) the read at r3 (event 7) re-
turns 2, even though the message from r1 has not arrived yet, be-
cause r3 learns about r1’s update via r2. State-based implementa-
tions are also resilient against transport failures like message loss,
reordering, or duplication. Op-based implementations require the
replicated store using them to mask such failures (e.g., using mes-
sage sequence numbers, retransmission buffers, or reorder buffers).

The potential weakness of state-based implementations is the
size of states and messages, which motivates our examination of
space optimality in §6. For example, we show that the counter
in Fig. 2(b) is optimal, meaning that no counter implementation
satisfying the same requirements (transitive delivery and resilience
against message loss, reordering, and duplication) can do better.

3. Specifying Replicated Data Types and Stores
Consider the concrete execution in Fig. 1(a). What are valid return
values for the read in event 7? Intuitively, 1 or 2 can be justifiable,
but not 100. We now present a framework for specifying the ex-
pected outcome declaratively, without referring to implementation
details. For example, we give a specification of a replicated counter
that is satisfied by both implementations in Fig. 2(a, b).

In presenting the framework, we rely on the intuitive under-
standing of the way a replicated store executes given in §2. Later we
define the store semantics formally (§4), which lets us state what it
means for a store to satisfy our specifications (§4 and §7).

3.1 Abstract Executions and Specification Structure
We define our specifications on abstract executions, which in-
clude only user-visible events (corresponding to do calls) and
describe the other information about the store processing in an
implementation-independent form. Informally, we consider a con-
crete execution correct if it can be justified by an abstract execution
satisfying the specifications that is “similar” to it and, in particular,
has the same operations and return values.

Abstract executions are inspired by axiomatic definitions of
weak shared-memory models [2]. In particular, we use their pre-
viously proposed reformulation with visibility and arbitration rela-
tions [13], which are similar to the reads-from and coherence rela-
tions from weak shared-memory models. We provide a comparison
with shared-memory models in §7 and with [13] in §8.
DEFINITION 2. An abstract execution is a tuple
A = (E, repl, obj, oper, rval, ro, vis, ar), where
• E ⊆ Event is a set of events from a countable universe Event;
• each event e ∈ E describes a replica repl(e) ∈ ReplicaID

performing an operation oper(e) ∈ Optype(obj(e)) on an object
obj(e) ∈ Obj, which returns the value rval(e) ∈ Valtype(obj(e));
• ro ⊆ E × E is a replica order, which is a union of transitive,

irreflexive and total orders on events at each replica;
• vis ⊆ E × E is an acyclic visibility relation such that
∀e, f ∈ E. e vis−→ f =⇒ obj(e) = obj(f);
• ar ⊆ E × E is an arbitration relation, which is a union of

transitive, irreflexive and total orders on events on each object.
We also require that ro, vis and ar be well-founded.
In the following, we denote components ofA and similar structures
as in A.repl. We also use (e, f) ∈ r and e r−→ f interchangeably.

Informally, e vis−→ f means that f is aware of e and thus e’s
effect can influence f ’s return value. In implementation terms, this
may be the case if the update performed by e has been delivered to
the replica performing f before f is issued. The exact meaning of
“delivered”, however, depends on how much information messages
carry in the implementation. For example, as we explain in §3.2,
the return value of a read from a counter is equal to the number
of inc operations visible to it. Then, as we formalize in §4, the
abstract execution illustrated in Fig. 1(b) justifies the op-based
implementation in Fig. 2(a) reading 1 in the concrete execution in
Fig. 1(a). The abstract execution in Fig. 1(c) justifies the state-based
implementation in Fig. 2(b) reading 2 due to transitive delivery
(§2). There is no abstract execution that would justify reading 100.

x.wr(empty)

x.wr(post)

y.wr(comment)

ro

ro

y.rd: comment

x.rd: empty

roar

vis

vis
The ar relation represents the

ordering information provided by
the store, e.g., via timestamps.
On the right we show an ab-
stract execution corresponding to
a variant of the anomaly (2). The
ar edge means that any replica
that sees both writes to x should assume that post overwrites empty.

We give a store specification by two components, constraining
abstract executions:
1. Replicated data type specifications determine return values of

operations in an abstract execution in terms of its vis and ar rela-
tions, and thus define conflict-resolution policies for individual
objects in the store. The specifications are the key novel compo-
nent of our framework, and we discuss them next.

2. Consistency axioms constrain vis and ar and thereby disallow
anomalies and extend the semantics of individual objects to that
of the entire store. We defer their discussion to §7. See Fig. 13 for
their flavor; in particular, COCV prohibits the anomaly above.

Each of these components can be varied separately, and our spec-
ifications will define the semantics of any possible combination.
Given a specification of a store, we can determine whether a set
of events can be observed by its users by checking if there is an
abstract execution with this set of events satisfying the data type
specifications and consistency axioms.

3.2 Replicated Data Type Specifications
In a sequential setting, the semantics of a data type τ can be
specified by a function Sτ : Op+

τ → Valτ , which, given a non-
empty sequence of operations performed on an object, specifies the
return value of the last operation. For a register, read operations
return the value of the last preceding write, or zero if there is no
prior write. For a counter, read operations return the number of
preceding increments. Thus, for any sequence of operations ξ:

Sintreg(ξ rd) = a, if wr(0) ξ = ξ1 wr(a) ξ2 and
ξ2 does not contain wr operations;

Sctr(ξ rd) = (the number of inc operations in ξ);
Sintreg(ξ inc) = Sctr(ξ wr(a)) = ⊥.
In a replicated store, the story is more interesting. We specify

a data type τ by a function Fτ , generalizing Sτ . Just like Sτ , this
determines the return value of an operation based on prior opera-
tions performed on the object. However, Fτ takes as a parameter
not a sequence, but an operation context, which includes all we
need to know about a store execution to determine the return value
of a given operation o—the set E of all events that are visible to o,
together with the operations performed by the events and visibility
and arbitration relations on them.
DEFINITION 3. An operation context for a data type τ is a tuple
L = (o,E, oper, vis, ar), where o ∈ Opτ , E is a finite subset of
Event, oper : E → Opτ , vis ⊆ E ×E is acyclic and ar ⊆ E ×E
is transitive, irreflexive and total.

We can extract the context of an event e ∈ A.E in an abstract
execution A by selecting all events visible to it according to A.vis:

ctxt(A, e) = (A.oper(e), G, (A.oper)|G, (A.vis)|G, (A.ar)|G),

where G = (A.vis)−1(e) and ·|G is the restriction to events in G.
Thus, in the abstract execution in Fig. 1(b), the operation context of
the read from x includes only one increment event; in the execution
in Fig. 1(c) it includes two.
DEFINITION 4. A replicated data type specification for a type τ is
a function Fτ that, given an operation context L for τ , specifies a
return value Fτ (L) ∈ Valτ .

Note that Fτ (o, ∅, . . .) returns the value resulting from performing
o on the initial state for the data type (e.g., 0 for the LWW-register).

We specify multiple data types used in a replicated store by a
partial function F mapping them to data type specifications.
DEFINITION 5. An abstract execution A satisfies F, written A |=
F, if the return value of every event in A is computed on its context
by the specification for the type of the object the event accesses:

∀e ∈ A.E. (A.rval(e) = F(type(A.obj(e)))(ctxt(A, e))).

We specify a whole store by F and a set of consistency axioms (§7).
This lets us determine if its users can observe a given set of events
by checking if there is an abstract execution with these events that
satisfies F according to the above definition, as well as the axioms.

Note that Fτ is deterministic. This does not mean that so is
an outcome of an operation on a store; rather, that all the non-
determinism arising due to its distributed nature is resolved by vis
and ar in the context passed to Fτ . These relations are chosen
arbitrarily subject to consistency axioms. Due to the determinacy
property, two events that perform the same operation and see the
same set of events produce the same return values. As we show
in §7, this property ensures that our specifications can formalize
eventual consistency in the sense of (1).

We now give four examples of data type specifications, corre-
sponding to the four conflict-resolution strategies mentioned in §1
and §2: (1) operations commute, so no conflicts arise; (2) last writer
wins; (3) all conflicting values are returned; and (4) conflicts are
resolved in an application-specific way. We start by specifying the
data types whose implementations we presented in §2.

1. Counter (ctr) is defined by

Fctr(inc, E, oper, vis, ar) = ⊥;

Fctr(rd, E, oper, vis, ar) =
∣∣{e ∈ E | oper(e) = inc}

∣∣. (3)

Thus, according to Def. 5 the executions in Fig. 1(b) and 1(c) satisfy
the counter specification: both 1 and 2 are valid return values for the
read from x when there are two concurrent increments.

2. LWW-register (intreg) is defined by

Fintreg(o,E, oper, vis, ar) = Sintreg(Earo), (4)

where Ear denotes the sequence obtained by ordering the opera-
tions performed by the events inE according to ar. Thus, the return
value is determined by establishing a total order of the visible oper-
ations and applying the regular sequential semantics. For example,
by Def. 5 in the example execution from §3.1 the read from x has
to return empty; if we had a vis edge from the write of post to the
read from x, then the read would have to return post. As we show in
§7, weak shared-memory models are obtained by specializing our
framework to stores with only LWW-registers.

We can obtain a concurrent semantics Fτ of any data type τ
based on its sequential semantics Sτ similarly to (4). For example,
Fctr defined above is equivalent to what we obtain using this
generic construction. The next two examples go beyond this.

3. Multi-value register (mvr). This register [1, 18] has the same
operations as the LWW-register, but its reads return a set of values:

Fmvr(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = wr(a)

∧ ¬∃f ∈ E. oper(f) = wr() ∧ e vis−→ f}.
wr(0)

wr(2)

vis

wr(3)

wr(1)
visvis

(We write for an expression whose value
is irrelevant.) A read returns the values writ-
ten by currently conflicting writes, defined as
those that are not superseded in vis by later
writes; ar is not used. For example, a rd would
return {2, 3} in the context on the right.

Figure 3. The set of configurations Config and the transition relation
−→D: Config × Event × Config for a data type library D. We use
e : {h1 = u1, h2 = u2} to abbreviate h1(e) = u1 and h2(e) = u2. We
uncurry R ∈ RState where convenient.

Objτ = {x ∈ Obj | type(x) = τ}
RState =

⋃
X⊆Obj

∏
x∈X(ReplicaID→ D(type(x)).Σ)

TState = MessageID ⇀
⋃
τ∈Type(ReplicaID× Objτ × D(τ).M)

Config = RState× TState

D(type(x)).do(o, σ, t) = (σ′, a)

e : {act = do, obj = x, repl = r, oper = o, time = t, rval = a}
(R[(x, r) 7→ σ], T)

e−→D (R[(x, r) 7→ σ′], T)

D(type(x)).send(σ) = (σ′,m) mid /∈ dom(T)

e : {act = send, obj = x, repl = r, msg = mid}
(R[(x, r) 7→ σ], T)

e−→D (R[(x, r) 7→ σ′], T [mid 7→ (r, x,m)])

D(type(x)).receive(σ,m) = σ′ r 6= r′

e : {act = receive, obj = x, repl = r, srepl = r′, msg = mid}
(R[(x, r) 7→ σ], T [mid 7→ (r′, x,m)])

e−→D
(R[(x, r) 7→ σ′], T [mid 7→ (r′, x,m)])

4. Observed-remove set (orset). How do we specify a repli-
cated set of integers? The operations of adding and removing differ-
ent elements commute and thus do not conflict. Conflicts arise from
concurrently adding and removing the same element. For example,
we need to decide what rd will return as the contents of the set in
the context (rd, {e, f}, oper, vis, ar), where oper(e) = add(42)
and oper(f) = remove(42). If we use the generic construction
from the LWW-register, the result will depend on the arbitration
relation: ∅ if e ar−→ f , and {42} otherwise. An application may re-
quire a more consistent behavior, e.g., that an add operation always
win against concurrent remove operations. Observed-remove (OR)
set [7, 32] achieves this by mandating that remove operations can-
cel only the add operations that are visible to them:

Forset(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = add(a)

∧ ¬∃f ∈ E. oper(f) = remove(a) ∧ e vis−→ f}, (5)

In the above operation context rd will return ∅ if e vis−→ f , and {42}
otherwise. The rationale is that, in the former case, add(42) and
remove(42) are not concurrent: the user who issued the remove
knew that 42 was in the set and thus meant to remove it. In the
latter case, the two operations are concurrent and thus add wins.

As the above examples illustrate, our specifications can describe
the semantics of data types and their conflict-resolution policies
declaratively, without referring to the internals of their implemen-
tations. In this sense the specifications generalize the concept of an
abstract data type [25] to the replicated setting.

4. Store Semantics and Data Type Correctness
A data type library D is a partial mapping from types τ to data type
implementations D(τ) from Def. 1. We now define the semantics of
a replicated store with a data type library D as a set of its concrete
executions, previously introduced informally by Fig. 1(a). We then
state what it means for data type implementations of §2 to satisfy
their specifications of §3.2 by requiring their concrete executions
to be justified by abstract ones. In §7 we generalize this to the
correctness of the whole store with multiple object with respect to
both data type specifications and consistency axioms.

Semantics. We define the semantics using the relation −→D:
Config × Event × Config in Fig. 3, which describes a single

step of the store execution. The relation transforms configurations
(R, T) ∈ Config describing the store state:R gives the object state
at each replica, and T the set of messages in transit between them,
each identified by a message identifier mid ∈ MessageID. A mes-
sage is annotated by the origin replica and the object to which it
pertains. We allow the store to contain only some objects from Obj
and thus allow R to be partial on them. We use a number of func-
tions on events, such as act, obj, etc., to record the information
about the corresponding transitions, so that −→D is implicitly pa-
rameterized by them; we give their full list in Def. 6 below.

The first rule in Fig. 3 describes a replica r performing an opera-
tion o on an object x using the do method of the corresponding data
type implementation. We record the return value using the function
rval. To communicate the change to other replicas, we can at any
time perform a transition defined by the second rule, which puts a
new message m created by a call to send into the set of messages
in transit. The third rule describes the delivery of such a message to
a replica r other than the origin replica r′, which triggers a call to
receive. Note that the relation−→D does not make any assumptions
about message delivery: messages can be delivered in any order,
multiple times, or not at all. These assumptions can be introduced
separately, as we show later in this section. A concrete execution
can be thought of as a finite or infinite sequence of transitions:

(R0, T0)
e1−→ (R1, T1)

e2−→ . . .
en−→ (Rn, Tn) . . . ,

where all events ei are distinct. To ease mapping between concrete
and abstract executions in the future, we formalize it as a structure
on events, similarly to Def. 2.
DEFINITION 6. A concrete execution of a store with a data type
library D is a tuple

C = (E, eo, pre, post, act, obj, repl, oper, time, rval,msg, srepl).

Here E ⊆ Event, the execution order eo is a well-founded,
transitive, irreflexive and total order on E, relating the events
according to the order of the transitions they describe, time is
injective and pre, post : E → Config form a valid sequence of
transitions:

(∀e ∈ E. pre(e)
e−→D post(e)) ∧

(∀e, f ∈E. e eo−→ f ∧ ¬∃g. e eo−→ g
eo−→ f =⇒ post(e) = pre(f)).

We have omitted the types of functions on events, which are
easily inferred from Fig. 3: e.g., act : E → {do, send, receive}
and time : E ⇀ Timestamp, defined only on e with act(e) = do.

We denote the initial configuration of C by init(C) =
C.pre(e0), where e0 is the minimal event in C.eo. If C.E is finite,
we denote the final configuration of C by final(C) = C.post(ef),
where ef is the maximal event in C.eo. The semantics JDK of D is
the set of all its concrete executions C that start in a configuration
with an empty set of messages and all objects in initial states, i.e.,

∃X ⊆ Obj. init(C) = ((λx ∈ X.D(type(x)).~σ0), []),

where [] is the everywhere-undefined function.

Transport layer specifications. Data type implementations such
as the op-based counter in Fig. 2(a) can rely on some guarantees
concerning the delivery of messages ensured by the rest of the store
implementation. They may similarly assume certain properties of
timestamps other than uniqueness (guaranteed by the injectivity of
time in Def. 6). We take such assumptions into account by admit-
ting only a subset of executions from JDK that satisfy a transport
layer specification T , which is a predicate on concrete executions.
Thus, we consider a replicated store to be defined by a pair (D, T)
and the set of its executions be JDK ∩ T .

Even though our definition of T lets it potentially restrict data
type implementation internals, the particular instantiations we use

only restrict message delivery and timestamps. For technical rea-
sons, we assume that T always satisfies certain closure properties:
for every C ∈ T , the projection of C onto events on a given object
or a subset of events forming a prefix in the eo order is also in T .

As an example, we define a transport layer specification ensur-
ing that a message is delivered to any single replica at most once,
as required by the implementation in Fig. 2(a). Let the delivery re-
lation del(C) ∈ C.E ×C.E pair events sending and receiving the
same message:

e
del(C)−−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.act(e) = send ∧
C.act(f) = receive ∧ C.msg(e) = C.msg(f).

Then the desired condition on concrete executions C is

∀e, f, g ∈ C.E. e del(C)−−−−→ f ∧ e del(C)−−−−→ g ∧
C.repl(f) = C.repl(g) =⇒ f = g. (T-Unique)

Data type implementation correctness. We now state what it
means for an implementation Dτ of type τ from Def. 1 to satisfy a
specification Fτ from Def. 4. To this end, we consider the behavior
ofDτ under the “most general” client and transport layer, perform-
ing all possible operations and message deliveries. Formally, let
JDτ K be the set of executions C ∈ J[τ 7→ Dτ]K of a store contain-
ing a single object x of a type τ with the implementation Dτ , i.e.,
init(C) = (R, []) for some R such that dom(R) = {x}.

Then Dτ should satisfy Fτ under a transport specification T if
for every concrete execution C ∈ JDτ K ∩ T we can find a “simi-
lar” abstract execution satisfying Fτ and, in particular, having the
same operations and return values. As it happens, all components
of the abstract execution except visibility are straightforwardly de-
termined by C; as explained in §3.1, we have some freedom in
choosing visibility. We define the choice using a visibility witness
V , which maps a concrete execution C ∈ JDτ K to an acyclic re-
lation on (C.E)|do defining visibility (here ·|do is the restriction to
events e with C.act(e) = do). Let

e
ro(C)−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.repl(e) = C.repl(f);

e
ar(C)−−−→ f ⇐⇒ e, f ∈ (C.E)|do ∧

C.obj(e) = C.obj(f) ∧ C.time(e) < C.time(f).

Then the abstract execution justifying C ∈ JDτ K is defined by

abs(C,V) = (C.E|do, E.repl|do, E.obj|do, E.oper|do, E.rval|do,

ro(C)|do,V(C), ar(C)).

DEFINITION 7. A data type implementation Dτ satisfies a speci-
fication Fτ with respect to V and T , written Dτ sat[V, T] Fτ , if
∀C ∈ JDτ K ∩ T . (abs(C,V) |= [τ 7→ Fτ]), where |= is defined
in Def. 5.

As we explained informally in §3.1, the visibility witness de-
pends on how much information the implementation puts into
messages. Since state-based implementations, such as the ones in
Fig. 2(b, c), are transitively delivering (§2), for them we use the
witness V state(C) = (ro(C) ∪ del(C))+|do. By the definition of
ro(C) and del(C), (ro(C) ∪ del(C)) is acyclic, so V state is well-
defined. State-based implementations do not make any assumptions
about the transport layer: in this case we write T = T-Any. In
contrast, op-based implementations, such as the one in Fig. 2(a),
require T = T-Unique. Since such implementations are not tran-
sitively delivering, the witness V state is not appropriate for them.
We could attempt to define a witness for them by straightforwardly
lifting the delivery relation:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do ∧

∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f}.

However, we need to be more careful, since for op-based imple-

mentations e
ro(C)−−−→ e′

del(C)−−−−→ f ′
ro(C)−−−→ f does not ensure that the

update of e is taken into account by f : if there is another send event
e′′ in between e and e′, then e′′ will capture the update of e and e′

will not. Hence, we define the witness as:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do

∧ ∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f

∧ ¬∃e′′. e ro(C)−−−→ e′′
ro(C)−−−→ e′ ∧ C.act(e′′) = send}.

We next present a method for proving data type implementation
correctness in the sense of Def. 7. In §7 we lift this to stores with
multiple objects and take into account consistency axioms.

5. Proving Data Type Implementations Correct
The straightforward approach to proving correctness in the sense
of Def. 7 would require us to consider global store configurations
in executions C, including object states at all replicas and all mes-
sages in transit, making the reasoning non-modular and unintuitive.
To deal with this challenge, we focus on a single component of
a store configuration using replication-aware simulation relations
Rr andM, analogous to simulation (aka coupling) relations used
in data refinement [21]. TheRr relation associates the object state
at a replica r with an abstract execution that describes only those
events that led to this state;M does the same for a message. For
example, when provingDctr in Fig. 2(b) with respect toFctr in (3),
M associates a message carrying a vector v with executions in
which each replica s makes v(s) increments. As part of a proof
of Dτ , we require checking that the effect of its methods, such as
Dτ .do, can be simulated by appropriately transforming related ab-
stract executions while preserving the relations. We define these
transformations using abstract methods do], send] and receive] as
illustrated in Fig. 4(a, b). For example, if a replica r executesDτ .do
from a state σ related byRr to an abstract execution I (we explain
the use of I instead of A later), we need to find an I ′ related by
Rr to the resulting state σ′. We also need to check that the value
returned by Dτ .do on σ is equal to that returned by Fτ on I .

These conditions consider the behavior of an implementation
method on a single state and/or message and its effect on only
the relevant part of the abstract execution. However, by localizing
the reasoning in this way, we lose some global information that is
actually required to verify realistic implementations. In particular,
this occurs when discharging the obligation for receive in Fig. 4(b).
Taking a global view, σ and m there are meant to come from the
same configuration in a concrete execution C; correspondingly, I
and J are meant to be fragments of the same abstract execution
abs(C,V). In this context we may know certain agreement prop-
erties correlating I and J , e.g., that the union of their visibility re-
lations is itself a well-formed visibility relation and is thus acyclic.
Establishing them requires global reasoning about whole execu-
tions C and abs(C,V). Fortunately, we find that this can be done
knowing only the abstract methods, not the implementation Dτ .
Furthermore, these methods state basic facts about the messaging
behavior of implementations and are thus common to broad classes
of them, such as state-based or op-based. This allows us to estab-
lish agreement properties using global reasoning once for a given
class of implementations; at this stage we can also benefit from the
transport layer specification T and check that the abstract methods
construct visibility according to the given witness V . Then a par-
ticular implementation within the class can be verified by discharg-
ing local obligations, such as those in Fig. 4(a, b), while assuming
agreement properties. This yields easy and intuitive proofs.

To summarize, we deal with the challenge posed by a distributed
data type implementation by decomposing reasoning about it into

Figure 4. Diagrams illustrating replication-aware simulations

(a) (b) (c)

I
do] // I′OO

Rr��
σ
Dτ .do

//��
Rr
OO

σ′

(I, J)
receive] // I′OO

Rr��
(σ,m)

Dτ .receive
//

��
Rr×M
OO

σ′

D
step(C′,e,D)// D′OO

G��
C

e
//

��
G
OO

C′

global reasoning done once for a broad class of implementations
and local implementation-specific reasoning. We start by present-
ing the general form of obligations to be discharged for a single
implementation within a certain class (§5.1) and the particular form
they take for the class of state-based implementations (§5.2), to-
gether with some examples (§5.3). We then formulate the obliga-
tions to be discharged for a class of implementations (§5.4), which
in particular, establish the agreement properties assumed in the per-
implementation obligations. In [12, §B], we give the obligations for
op-based implementations, together with a proof of the counter in
Fig. 2(a). An impatient reader can move on to §6 after finishing
§5.3, and come back to §5.4 later.

Since Def. 7 considers only single-object executions, we fix
an object x of type τ and consider only concrete and abstract
executions over x, whose sets we denote by CEx[x] and AEx[x].

5.1 Replication-Aware Simulations
As is typical for simulation-based proofs, we need to use auxiliary
state to record information about the computation history. For this
reason, actually our simulation relations associate a state or a mes-
sage with an instrumented execution—a pair (A, info) ∈ IEx of
an abstract execution A ∈ AEx[x] and a function info : A.E →
AInfo, tagging events with auxiliary information from a set AInfo.
As we show below, AInfo can be chosen once for a class of data
type implementations: e.g., AInfo = Timestamp for state-based
ones (§5.2). We use I and J to range over instrumented executions
and shorten, e.g., I.A.E to I.E. For a partial function h we write
h(x)↓ for x ∈ dom(h), and adopt the convention that h(x) = y
implies h(x)↓.
DEFINITION 8. A replication-aware simulation between Dτ and
Fτ with respect to info and abstract methods do], send] and
receive] is a collection of relations {Rr,M | r ∈ ReplicaID}
satisfying the conditions in Fig. 5.

Here info and abstract methods are meant to be fixed for a given
class of implementations, such as state or op-based. To prove a par-
ticular implementation within this class, one needs to find simula-
tion relations satisfying the conditions in Fig. 5. For example, as we
show in §5.3, the following relation lets us prove the correctness of
the counter in Fig. 2(b) with respect to info and abstract methods
appropriate for state-based implementations:

〈s, v〉 [Rr] I ⇐⇒ (r = s) ∧ (v [M] I);
v [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
∀s. v(s) =

∣∣{e ∈ E | oper(e) = inc ∧ repl(e) = s}
∣∣.

(6)

INIT in Fig. 5 associates the initial state at a replica r with the
execution having an empty set of events. DO, SEND and RECEIVE
formalize the obligations illustrated in Fig. 4(a, b). Note that do] is
parameterized by an event e (required to be fresh in instantiations)
and the information about the operation performed.

The abstract methods are partial and the obligations in Fig. 5
assume that their applications are defined. When instantiating
receive] for a given class of implementations, we let it be defined
only when its arguments satisfy the agreement property for this
class, which we establish separately (§5.4). While doing this, we
can also establish some execution invariants, holding of single ex-

Figure 5. Definition of a replication-aware simulation {Rr,M} between
Dτ and Fτ . All free variables in each condition are implicitly universally
quantified and have the following types: σ, σ′ ∈ Σ, m ∈ M , I, I′, J ∈
IEx, e ∈ Event, r ∈ ReplicaID, o ∈ Opτ , a ∈ Valτ , t ∈ Timestamp.

Rr ⊆ Σ× IEx, r ∈ ReplicaID; M⊆M × IEx

do] : IEx× Event× ReplicaID× Opτ × Valτ × Timestamp ⇀ IEx

send] : IEx ⇀ IEx× IEx; receive] : IEx× IEx ⇀ IEx

INIT: Dτ .~σ0(r) [Rr] I∅, where I∅.E = ∅
DO: (do](I, e, r, o, a, t) = I′ ∧ Dτ .do(o, σ, t) = (σ′, a) ∧ σ [Rr] I)

=⇒ (σ′ [Rr] I′ ∧ a = Fτ (ctxt(I′.A, e)))

SEND: (send](I) = (I′, J) ∧ Dτ .send(σ) = (σ′,m) ∧ σ [Rr] I)
=⇒ (σ′ [Rr] I′ ∧ m [M] J)

RECEIVE: (receive](I, J)↓ ∧ σ [Rr] I ∧ m [M] J)

=⇒ (Dτ .receive(σ,m) [Rr] receive](I, J))

ecutions supplied as parameters to do] and send]. We similarly as-
sume them in Fig. 5 via the definedness of these abstract methods.

5.2 Instantiation for State-Based Implementations
Fig. 6 defines the domain AInfo and abstract methods appropriate
for state-based implementations. In §5.4 we show that the existence
of a simulation of Def. 8 with respect to these parameters implies
Dτ sat[V state,T-Any] Fτ (Theorems 9 and 10). The do] method
adds a fresh event e with the given attributes to I; its timestamp
t is recorded in info. In the resulting execution I ′, the event e is
the last one by its replica, observes all events in I and occupies the
place in arbitration consistent with t. The send] method just returns
I , which formalizes the intuition that, in state-based implementa-
tions, send returns a message capturing all the information about
the object available at the replica. The receive] method takes the
component-wise union I t J of executions I related to the current
state and J related to the message, applied recursively to the com-
ponents of I.A and J.A. We also assume that I tJ recomputes the
arbitration relation in the resulting execution from the timestamps.
This is the reason for recording them in info: we would not be able
to construct receive](I, J).ar solely from I.ar and J.ar.

The agreement property agree(I, J) guarantees that I t J is
well-formed (e.g., its visibility relation is acyclic) and that, for each
replica, I describes a computation extending J or vice versa. The
latter follows from the observation we made when explaining the
state-based counter in §2: a message or a state in a state-based im-
plementation reflects a prefix of the sequence of events performed
at a given replica. The first conjunct of the execution invariant inv
requires arbitration to be consistent with event timestamps; the sec-
ond conjunct follows from the definition of V state (§4). When dis-
charging the obligations in Fig. 5 with respect to the parameters in
Fig. 6 for a particular implementation, we can rely on the agree-
ment property and the execution invariant.

5.3 Examples
We illustrate the use of the instantiation from §5.2 on the state-
based counter, LWW-register and OR-set. In [12, §A] we also give
proofs of two multi-value register implementations.

Counter: Dctr in Fig. 2(b) and Fctr in (3). Discharging the
obligations in Fig. 5 for the simulation (6) is easy. The key case
is RECEIVE, where the first conjunct of agree in Fig. 6 ensures that
min{v(s), v′(s)} increments by a replica s are taken into account
both in v(s) and in v′(s):

(〈r, v〉 [Rr] I) ∧ (v′ [M] J) =⇒ (∀s. min{v(s), v′(s)} =

|{e ∈ I.E ∩ J.E | I.oper(e) = inc ∧ I.repl(e) = s}|).

Figure 6. Instantiation for state-based data type implementations. In do]

we omit the straightforward definition of ar′ in terms of I.info and t.

AInfo = Timestamp

agree(I, J) ⇐⇒ ∀r. (({e ∈ I.E | I.repl(e) = r}, I.ro) is a prefix of
({e ∈ J.E | J.repl(e) = r}, J.ro) or vice versa) ∧ (I t J ∈ IEx)

inv(I) ⇐⇒ (∀e, f ∈ I.E. (e, f) ∈ I.ar ⇐⇒ I.info(e) < I.info(f))

∧ ((I.vis ∪ I.ro)+ ⊆ I.vis)

do](I, e, r, o, a, t) = I′, if inv(I) ∧ e 6∈ I.E ∧ I′ ∈ IEx

where I′ = ((I.E ∪ {e}, I.repl[e 7→ r], I.obj[e 7→ x], I.oper[e 7→ o],

I.rval[e 7→ a], I.ro ∪ {(f, e) | f ∈ I.E ∧ I.repl(f) = r},
I.vis ∪ {(f, e) | f ∈ I.E}, ar′), I.info[e 7→ t])

send](I) = (I, I), if inv(I)

receive](I, J) = I t J, if inv(I) ∧ inv(J) ∧ agree(I, J)

This allows establishing receive(〈r, v〉, v′) [Rr] (I t J), thus
formalizing the informal justification of correctness we gave in §2.

LWW-register: Dintreg in Fig. 2(c) and Fintreg in (4). We asso-
ciate a state or a message 〈a, t〉 with any execution that contains
a wr(a) event with the timestamp t maximal among all other wr
events (as per info). By inv in Fig. 6, this event is maximal in ar-
bitration, which implies that rd returns the correct value; the other
obligations are also discharged easily. Formally, ∀r.Rr =M and

〈a, t〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
(t = 0 ∧ a = 0 ∧ (¬∃e ∈ E. oper(e) = wr())) ∨
(t > 0 ∧ (∃e ∈ E. oper(e) = wr(a) ∧ info(e) = t)

∧ (∀f ∈ E. oper(f) = wr() =⇒ info(f) ≤ t)).
Optimized OR-set: Dorset in Fig. 7 andForset in (5). A problem
with implementing a replicated set is that we often cannot discard
the information about an element from a replica state after it has
been removed: if another replica unaware of the removal sends
us a snapshot of its state containing this element, the semantics
of the set may require our receive to keep the element out of the
set. As we prove in §6, for the OR-set keeping track of information
about removed elements cannot be fully avoided, which makes its
space-efficient implementation very challenging. Here we consider
a recently-proposed OR-set implementation [6] that, as we show in
§6, has an optimal space complexity. It improves on the original
implementation [32], whose complexity was suboptimal (we have
proved the correctness of the latter as well; see [12, §A]).

An additional challenge posed by the OR-set is that, according
to Forset, a remove operation may behave differently with respect
to different events adding the same element to the set, depending on
whether it sees them or not. This causes the implementation to treat
internally each add operation as generating a unique instance of
the element being added, further increasing the space required. To
combat this, the implementation concisely summarizes information
about instances. An instance is represented by a unique instance
identifier that is generated when a replica performs an add and
consists of the replica identifier and the number of adds (of any
elements) performed at the replica until then. In a state 〈r, V, w〉,
the vector w determines the identifiers of all instances that the
current replica r has ever observed: for any replica s, the replica
r has seen w(s) successive identifiers (s, 1), (s, 2), . . . , (s, w(s))
generated at s. To generate a new identifier in do(add(a′)), the
replica r increments w(r). The connection between the vector
w in a state or a message and add events es,k in corresponding
executions is formalized in lines 1-3 of the simulation relation, also
shown in Fig. 7. In receive we take the pointwise maximum of the
two vectors w and w′. Like for the counter, the first conjunct of
agree implies that this preserves the clauses in lines 1-3.

Figure 7. Optimized OR-set implementation [6] and its simulation

Σ = ReplicaID× ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

~σ0 = λr. 〈r, (λa, s. 0), (λs. 0)〉
M = ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

do(add(a′), 〈r, V, w〉, t) = (〈r, (λa, s. if a = a′ ∧ s = r

then w(r) + 1 else V (a, s)), w[r 7→ w(r) + 1]〉,⊥)

do(remove(a′), 〈r, V, w〉, t) =
(〈r, (λa, s. if a = a′ then 0 else V (a, s)), w〉,⊥)

do(rd, 〈r, V, w〉, t) = (〈r, V, w〉, {a | ∃s. V (a, s) > 0})
send(〈r, V, w〉) = (〈r, V, w〉, 〈V,w〉)
receive(〈r, V, w〉, 〈V ′, w′〉) =

〈r, (λa, s. if (V (a, s) = 0 ∧ w(s) ≥ V ′(a, s)) ∨
(V ′(a, s) = 0 ∧ w′(s) ≥ V (a, s))

then 0 else max{V (a, s), V ′(a, s)}),
(λs.max{w(s), w′(s)})〉

〈s, V, w〉 [Rr] I ⇐⇒ (r = s) ∧ (〈V,w〉 [M] I)

〈V,w〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
1: ∃ distinct es,k. ({es,k | s ∈ ReplicaID ∧ 1 ≤ k ≤ w(s)} =

2: {e ∈ E | oper(e) = add()}) ∧
3: (∀s, k, j. (repl(es,k) = s) ∧ (es,j

ro−→ es,k ⇐⇒ j < k)) ∧
4: (∀a, s. (V (a, s) ≤ w(s)) ∧ (V (a, s) 6= 0 =⇒
5: (oper(es,V (a,s)) = add(a)) ∧
6: (¬∃k. V (a, s) < k ≤ w(s) ∧ oper(es,k) = add(a)) ∧
7: (¬∃f ∈ E. oper(f) = remove(a) ∧ es,V (a,s)

vis−→ f))) ∧
8: (∀a, s, k. es,k ∈ E ∧ oper(es,k) = add(a) =⇒
9: (k ≤ V (a, s) ∨ ∃f ∈ E. oper(f) = remove(a) ∧ es,k vis−→ f))

The component w in 〈r, V, w〉 records identifiers of both of
those instances that have been removed and those that are still in
the set (are active). The component V serves to distinguish the
latter. As it happens, we do not need to store all active instances
of an element a: for every replica s, it is enough to keep the last
active instance identifier generated by an add(a) at this replica. If
V (a, s) 6= 0, this identifier is (s, V (a, s)); if V (a, s) = 0, all
instances of a generated at s that the current replica knows about
are inactive. The meaning of V is formalized in the simulation:
each instance identifier given by V is covered by w (line 4) and, if
V (a, s) 6= 0, then the event es,V (a,s) performs add(a) (line 5), is
the last add(a) by replica s (line 6) and has not been observed by
a remove(a) (line 7). Finally, the add(a) events that are not seen
by a remove(a) in the execution are either the events es,V (a,s) or
those superseded by them (lines 8-9). This ensures that returning
all elements with an active instance in rd matches Forset.

When a replica r performs do(add(a′)), we update V (a′, r)
to correspond to the new instance identifier. Conversely, in
do(remove(a′)), we clear all entries in V (a′), thereby deactivat-
ing all instances of a′. However, after this their identifiers are still
recorded in w, and so we know that they have been previously re-
moved. This allows us to address the problem with implementing
receive we mentioned above: if we receive a message with an active
instance (s, V ′(a, s)) of an element a that is not in the set at our
replica (V (a, s) = 0), but previously existed (w(s) ≥ V ′(a, s)),
this means that the instance has been removed and should not be
active in the resulting state (the entry for (a, s) should be 0). We
also do the same check with the state and the message swapped.

As the above explanation shows, our simulation relations are
useful not only for proving correctness of data type implementa-
tions, but also for explaining their designs. Discharging obligations
in Fig. 5 requires some work for the OR-set; due to space con-
straints, we defer this to [12, §A].

Figure 8. Function step that mirrors the effect of an event e ∈ C′.E from
C′ ∈ CEx[x] in D ∈ DEx, defined when so is the abstract method used

step(C′, e,D) =
D[r 7→ do](D(r), e, r, C′.oper(e), C′.rval(e), C′.time(e))],

if C′.act(e) = do ∧ C′.repl(e) = r

step(C′, e,D) = D[r 7→ I, C′.msg(e) 7→ J],
if C′.act(e) = send ∧ C′.repl(e) = r ∧ C′.msg(e) 6∈ dom(D) ∧

send](D(r)) = (I, J)

step(C′, e,D) = D[r 7→ receive](D(r), D(C′.msg(e)))],
if C′.act(e) = receive ∧ C′.repl(e) = r

5.4 Soundness and Establishing Agreement Properties
We present conditions on AInfo and abstract methods ensuring the
soundness of replication-aware simulations over them and, in par-
ticular, establishing the agreement property and execution invari-
ants assumed via the definedness of abstract operations in Fig. 5.
THEOREM 9 (Soundness). Assume AInfo, do], send], receive], V
and T that satisfy the conditions in Fig. 9 for some G. If there exists
a replication-aware simulation betweenDτ and Fτ with respect to
these parameters, then Dτ sat[V, T] Fτ .
Conditions in Fig. 9 require global reasoning, but can be discharged
once for a class of data types. For example, they hold of the
instantiation for state-based implementations from §5.2, as well as
one for op-based implementations presented in [12, §B].
THEOREM 10. There exists G such that, for allDτ , the parameters
in Fig. 6 satisfy the conditions in Fig. 9 with respect to this G,
V = V state, T = T-Any.

The proofs of Theorems 9 and 10 are given in [12, §B]. To
explain the conditions in Fig. 9, here we consider the proof strategy
for Theorem 9. To establish Dτ sat[V, T] Fτ , for any C ∈
JDτ K∩T we need to show abs(C,V) |= [τ 7→ Fτ]. We prove this
by induction on the length of C. To use the localized conditions in
Fig. 5, we require a relation G associating C with a decomposed
execution—a partial function D : (ReplicaID ∪ MessageID) ⇀
IEx that gives fragments of abs(C,V) corresponding to replica
states and messages in the final configuration of C. We write DEx
for the set of all decomposed executions, so that G ⊆ CEx[x] ×
DEx. The existence of a decomposed execution D such that C [G]
D forms the core of our induction hypothesis. G-CTXT in Fig. 9
checks that the abstract methods construct visibility according to V:
it requires the context of any event e by a replica r to be the same
in D(r) and abs(C,V). Together with DO in Fig. 5, this ensures
abs(C,V) |= [τ 7→ Fτ].

We write C′ ∼ (C
e−→ (R, T)) when C′ is an extension of

C in the following sense: C′.E = C.E] {e}, the other compo-
nents of C are those of C′ restricted to C.E, e is last in C′.eo and
C′.post(e) = (R, T). For the induction step, assume C [G] D and
C′ ∼ (C

e−→ (R, T)); see Fig. 4(c). Then the decomposed execu-
tion D′ corresponding to C′ is given by step(C′, e,D), where the
function step in Fig. 8 mirrors the effect of the event e from C′ in
D using the abstract methods. G-STEP ensures that it preserves the
relation G. Crucially, G-STEP also requires us to establish the de-
finedness of step and thus the corresponding abstract method. This
justifies the agreement property and execution invariants encoded
by the definedness and allows us to use the conditions in Fig. 5 to
complete the induction. We also require G-INIT, which establishes
the base case, and G-VIS, which formulates a technical restriction
on V . Finally, the conditions in Fig. 9 allow us to use the transport
specification T by considering only executions C satisfying it.

6. Space Bounds and Implementation Optimality
Object states in replicated data type implementations include
not only the current client-observable content, but also metadata

Figure 9. Proof obligations for abstract methods. Free variables are implic-
itly universally quantified and have the following types: C,C′ ∈ CEx[x]∩
T , D ∈ DEx, r ∈ ReplicaID, e ∈ Event, (R, T) ∈ Config.

G-CTXT: (C [G] D ∧ e ∈ abs(C,V).E ∧ abs(C,V).repl(e) = r)

=⇒ ctxt(D(r).A, e) = ctxt(abs(C,V), e)

G-STEP: (C′ ∼ (C
e−→ (R, T)) ∧ (C [G] D))

=⇒ (step(C′, e,D)↓ ∧ C′ [G] step(C′, e,D))

G-INIT: (C.E = {e} ∧ C.pre(e) = (, []))

=⇒ (step(C, e,D∅)↓ ∧ C [G] step(C, e,D∅)),
where D∅ is such that dom(D∅) = ReplicaID ∧

∀r ∈ ReplicaID. D∅(r).E = ∅
G-VIS: (e ∈ abs(C,V).E ∧ (C is a prefix of C′ under C′.eo))

=⇒ ctxt(abs(C,V), e) = ctxt(abs(C′,V), e)

needed for conflict resolution or masking network failures. Space
taken by this metadata is a major factor determining their efficiency
and feasibility. As illustrated by the OR-set in §5.3, this is espe-
cially so for state-based implementations, i.e., those that satisfy
their data type specifications with respect to the visibility witness
V state and the transport layer specification T-Any. We now present
a general technique for proving lower bounds on this space over-
head, which we use to prove optimality of four state-based imple-
mentations (we leave other implementation classes for future work;
see §9). As in §5, we only consider executions over a fixed object
x of type τ .

6.1 Metadata Overhead
To measure space, we need to consider how data are represented.
An encoding of a set S is an injective function enc : S → Λ+,
where Λ is some suitably chosen fixed finite set of characters (left
unspecified). Sometimes, we clarify the domain being encoded
using a subscript: e.g., encN0(1). For s ∈ S, we let lenS(s) be
the length of encS(s). The length can vary: e.g., for an integer k,
lenN0(k) ∈ Θ(lg k). We use standard encodings (listed in [12, §C])
for return values encValτ of the data types τ we consider and assume
an arbitrary but fixed encoding of object states encDτ .Σ.

To distinguish metadata from the client-observable content of
the object, we assume that each data type has a special rd operation
that returns the latter, as is the case in the examples considered so
far. For a concrete executionC ∈ JDτ K over the object x and a read
event e ∈ (C.E)|rd, we define state(e) to be the state of the object
accessed at e: state(e) = R(x,C.repl(e)) for (R,) = C.pre(e).

We now define the metadata overhead as a ratio, by dividing the
size of the object state by the size of the observable state. We then
quantify the worst-case overhead by taking the maximum of this
ratio over all read operations in all executions with given numbers
of replicas n and update operations m. To define the latter, we
assume that each data type τ specifies a set Updτ ⊂ Opτ of update
operations; for all examples in this paper Updτ = Opτ \ {rd}.
DEFINITION 11. The maximum metadata overhead of an execu-
tion C ∈ JDτ K of an implementation Dτ is

mmo(Dτ , C) = max

{
lenDτ .Σ(state(e))

lenValτ (C.rval(e))
| e ∈ (C.E)|rd

}
.

The worst-case metadata overhead of an implementation Dτ
over all executions with n replicas and m updates (2 ≤ n ≤ m) is

wcmo(Dτ , n,m) = max{mmo(Dτ , C) | C ∈ JDτ K ∧
n = |{C.repl(e) | e ∈ C.E}| ∧
m = |{e ∈ C.E | C.oper(e) ∈ Updτ}|}.

We consider only executions with m ≥ n, since we are inter-
ested in the asymptotic overhead of executions where all replicas
are mutated (i.e., perform at least one update operation).

Figure 10. Summary of bounds on metadata overhead for stated-based
implementations, as functions of the number of replicas n and updates m

Type
Existing implementation Any implementation

algorithm ref. overhead overhead

ctr Fig. 2(b) [32] Θ̂(n) Ω̂(n)

orset
Fig. 7 [6] Θ̂(n lgm)

Ω̂(n lgm)
Fig. 15, [12, §A] [32] Θ̂(m lgm)

intreg Fig. 2(c) [32] Θ̂(lgm)† Ω̂(lgm)

mvr
Fig. 17, [12, §A] new‡ Θ̂(n lgm)

Ω̂(n lgm)
Fig. 16, [12, §A] [32] Θ̂(n2 lgm)

† Assuming timestamp encoding is O(lgm), satisfied by Lamport clocks.
‡ An optimization of [32] discovered during the optimality proof.

DEFINITION 12. Assume Dτ and a positive function f(n,m).
• f is an asymptotic upper bound (Dτ ∈ Ô(f(n,m))) if

supn,m→∞(wcmo(Dτ , n,m)/f(n,m)) <∞, i.e.,

∃K > 0. ∀m ≥ n ≥ 2.wcmo(Dτ , n,m) < Kf(n,m);

• f is an asymptotic lower bound (Dτ ∈ Ω̂(f(n,m))) if
limn,m→∞(wcmo(Dτ , n,m)/f(n,m)) 6= 0, i.e.,

∃K > 0. ∀m0 ≥ n0 ≥ 2. ∃n ≥ n0,m ≥ n0.

wcmo(Dτ , n,m) > Kf(n,m);

• f is an asymptotically tight bound (Dτ ∈ Θ̂(f(n,m))) if it is
both an upper and a lower asymptotic bound.
Fig. 10 summarizes our results; as described in §5, we have

proved all the implementations correct. Matching lower and upper
bounds indicate worst-case optimality of an implementation (note
that this is different from optimality in all cases). The derivation of
upper bounds relies on standard techniques and is deferred to [12,
§C]. We now proceed to the main challenge: how to derive lower
bounds that apply to any implementation of τ . We present proofs
for ctr and orset; intreg and mvr are covered in [12, §C].

6.2 Experiment Families
The goal is to show that for any correct implementation Dτ (i.e.,
such that Dτ sat[V state,T-Any] Fτ), the object state must store
some minimum amount of information. We achieve this by con-
structing an experiment family, which is a collection of executions
Cα, where α ∈ Q for some index set Q. Each experiment contains
a distinguished read event eα. The experiments are designed in
such a way that the object states state(eα) must be distinct, which
then implies a lower bound lg|Λ| |Q| on the size of their encoding.
To prove that they are distinct, we construct black-box tests that
execute the methods of Dτ on the states and show that the tests
must produce different results for each state(eα) provided Dτ is
correct. Formally, the tests induce a read-back function rb that sat-
isfies rb(state(eα)) = α. We encapsulate the core argument in the
following lemma.
DEFINITION 13. An experiment family for an implementation Dτ
is a tuple (Q,n,m,C, e, rb) where Q is a finite set, 2 ≤ n ≤ m,
and for each α ∈ Q, Cα ∈ JDτ K is an execution with n replicas
andm updates, eα ∈ (Cα.E)|rd and rb : Dτ .Σ→ Q is a function
satisfying rb(state(eα)) = α.
LEMMA 14. If (Q,n,m,C, e, rb) is an experiment family, then

wcmo(Dτ , n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα))).

PROOF. Since rb(state(eα)) = α, the states state(eα) are pair-
wise distinct and so are their encodings enc(state(eα)). Since there
are fewer than |Q| strings of length strictly less than blg|Λ| |Q|c, for

some α ∈ Q we have len(enc(state(eα))) ≥ blg|Λ| |Q|c. Then

wcmo(Dτ , n,m) ≥ mmo(Dτ ,Cα) ≥
len(state(eα))

len(Cα.rval(eα))
≥

blg|Λ| |Q|c
maxα′∈Q len(Cα′ .rval(eα′))

. ut

To apply this lemma to the best effect, we need to find experi-
ment families with |Q| as large as possible and len(Cα′ .rval(eα′))
as small as possible. Finding such families is challenging, as there
is no systematic way to derive them. We relied on intuitions about
“which situations force replicas to store a lot of information” when
searching for experiment families.

Driver programs. We define experiment families using driver
programs (e.g., see Fig. 11). These are written in imperative pseu-
docode and use traditional constructs like loops and conditionals.
As they execute, they construct concrete executions of the data type
library [τ 7→ Dτ] by means of the following instructions, each of
which triggers a uniquely-determined transition from Fig. 3:
dor o

t do operation o on x at replica r with timestamp t
u← dor o

t same, but assign the return value to u
sendr(mid) send a message for x with identifier mid at r
receiver(mid) receive the message mid at replica r

Programs explicitly supply timestamps for do and message
identifiers for send and receive. We require that they do this cor-
rectly, e.g., respect uniqueness of timestamps. When a driver pro-
gram terminates, it may produce a return value. For a program
P , an implementation Dτ , and a configuration (R, T), we let
exec(Dτ , (R, T), P) be the concrete execution of the data type li-
brary [τ 7→ Dτ] starting in (R, T) that results from running P ; we
define result(Dτ , (R, T), P) as the return value of P in this run.

6.3 Lower Bound for State-Based Counter (ctr)

THEOREM 15. IfDctr sat[V state,T-Any] Fctr, thenDctr is Ω̂(n).
We start by formulating a suitable experiment family.

LEMMA 16. If Dctr sat[V state,T-Any] Fctr, n ≥ 2 and m ≥ n is
a multiple of (n − 1), then tuple (Q,n,m,C, e, rb) as defined in
the left column of Fig. 11 is an experiment family.

The idea of the experiments is to force replica 1 to remember
one number for each of the other replicas in the system, which then
introduces an overhead proportional to n; cf. the implementation
in Fig. 2(b). We show one experiment in Fig. 12. All experiments
start with a common initialization phase, defined by init , where
each of the replicas 2..n performsm/(n−1) increments and sends
a message after each increment. All messages remain undelivered
until the second phase, defined by exp(α). There replica 1 receives
exactly one message from each replica r = 2..n, selected using
α(r). An experiment concludes with the read eα on the first replica.

The read-back works by performing separate tests for each of
the replicas r = 2..n, defined by test(r). For example, to deter-
mine which message was sent by replica 2 during the experiment
in Fig. 12, the program test(2): reads the counter value at replica 1,
getting 12; delivers the final message by replica 2 to it; and reads
the counter value at replica 1 again, getting 14. By observing the
difference, the program can determine the message sent during the
experiment: α(2) = 5− (14− 12) = 3.

PROOF OF LEMMA 16. The only nontrivial obligation is to prove
rb(state(eα)) = α. Let (Rα, Tα) = final(Cα). Then

α(r)
(i)
= result(Dctr, (R0, T0), (init ; exp(α); test(r)))

= result(Dctr, (Rα, Tα), test(r))
(ii)
= result(Dctr, (Rinit [(x, 1) 7→ Rα(x, 1)], Tinit), test(r))

= rb(Rα(x, 1))(r) = rb(state(eα))(r),

Figure 11. Experiment families (Q,n,m,C, e, rb) used in the proofs of
Theorem 15 (ctr) and Theorem 17 (orset)

ctr orset

Conditions on n,m (number of replicas/updates)
m ≥ n ≥ 2 m ≥ n ≥ 2

m mod (n− 1) = 0 (m− 1) mod (n− 1) = 0

Index set Q
Q = ([2..n]→ [1.. m

n−1
]) Q = ([2..n]→ [1..m−1

n−1
])

Family size |Q|
|Q| = (m

n−1
)n−1 |Q| = (m−1

n−1
)n−1

Driver programs
procedure init

for all r ∈ [2..n]
for all i ∈ [1.. m

n−1
]

dor inc rm+i

sendr(midr,i)

procedure init
for all r ∈ [2..n]

for all i ∈ [1..m−1
n−1

]

dor add(0) rm+i

sendr(midr,i)
procedure exp(α)

for all r ∈ [2..n]
receive1(midr,α(r))

do1 rd (n+2)m // read eα

procedure exp(α)
for all r ∈ [2..n]

receive1(midr,α(r))

do1 remove(0) (n+2)m

do1 rd (n+3)m // read eα
procedure test(r)

u← do1 rd (n+3)m

receive1(midr, m
n−1

)

u′ ← do1 rd (n+4)m

return m
n−1

− (u′ − u)

procedure test(r)

for all i ∈ [1..(m−1
n−1

)]

receive1(midr,i)

u← do1 rd (n+4)m+i

if 0 ∈ u
return i− 1

return m−1
n−1

Definition of executions Cα
Cα = exec(Dτ , (R0, T0), init ; exp(α))

where (R0, T0) = ([x 7→ Dτ .~σ0], ∅)
Definition of read-back function rb : Dτ .Σ→ Q

rb(σ) = λr : [2..n].result(Dτ , (Rinit [(x, 1) 7→ σ], Tinit), test(r))

where (Rinit , Tinit) = post(exec(Dτ , (R0, T0), init))

Figure 12. Example experiment (n = 4 and m = 15) and test
for ctr. Gray dashed lines represent the configuration (Rinit [(x, 1) 7→
Rα(x, 1)], Tinit) where the test driver program is applied.

inc
mid2,3: send

e: 12 rd

receive

1 2 3 4

inc
mid2,4: sendinc
mid2,5: send

receive
receive

u 12 rd
receive

u’14 rd

inc
mid2,2: send

inc
mid2,1: send

inc
mid3,3: sendinc
mid3,4: sendinc

inc
mid3,2: send

inc
mid3,1: send

inc
mid4,3: sendinc
mid4,4: sendinc
mid4,5: send

inc
mid4,2: send

inc
mid4,1: send

mid3,5: send

in
it

ex
p

(
)

te
st

(2
)

(2

)=
3

(3

)=
4

(4

)=
5

where:
(i) This is due to Dctr sat[V state,T-Any] Fctr, as we explained

informally above. Let

C′α = exec(Dctr, (R0, T0), (init ; exp(α); test(r))).

Then the operation context in abs(C′α,V state) of the first read
in test(r) contains

∑n
r=2 α(r) increments, while that of the

second read contains (m/(n− 1))− α(r) more increments.
(ii) We have Tα = Tinit because exp(α) does not send any mes-

sages. Also, Rα and Rinit [(x, 1) 7→ Rα(x, 1)] can differ only

in the states of the replicas 2..n. These cannot influence the run
of test(r), since it performs events on replica 1 only. ut

PROOF OF THEOREM 15. Given n0,m0, we pick n = n0

and some m ≥ n0 such that m is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given by
Lemma 16. Then for any α, Cα.rval(eα) is at most the total num-
ber of increments m in Cα. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K3,K independent from n0,m0 we get:

wcmo(Dctr, n,m)≥blg|Λ| |Q|c/(maxα∈Q len(Cα.rval(eα)))≥

K1

lg|Λ|(
m
n−1

)n−1

lenN0(m)
≥ K2

n lg(m/n)

lgm
≥ K3

n lg
√
m

lgm
≥ Kn. ut

6.4 Lower Bound for State-Based OR-Set (orset)
THEOREM 17. If Dorset sat[V state,T-Any] Forset, then Dorset is
Ω̂(n lgm).
LEMMA 18. If Dorset sat[V state,T-Any] Forset, n ≥ 2 and m ≥
n is such that (m − 1) is a multiple of (n − 1), then the tuple
(Q,n,m,C, e, rb) on the right in Fig. 11 is an experiment family.
The proof is the same as that of Lemma 16, except for obligation
(i). We therefore give only informal explanations.

The main idea of the experiments defined in the lemma is to
force replica 1 to remember element instances even after they have
been removed at that replica; cf. our explanation of the challenges
of implementing the OR-set from §5.3. The experiments follow a
similar pattern to those for ctr, but use different operations. In the
common init phase, each replica 2..n performs m−1

n−1
operations

adding a designated element 0, which are interleaved with sending
messages. In the experiment phase exp(α), one message from each
replica r = 2..n, selected by α(r), is delivered to replica 1. At the
end of execution, replica 1 removes 0 from the set and performs the
read eα. The return value of this read is always the empty set.

To perform the read-back of α(r) for r = 2..n, test(r) delivers
all messages by replica r to replica 1 in the order they were sent
and, after each such delivery, checks if replica 1 now reports the
element 0 as part of the set. From Dorset sat[V state,T-Any] Forset

and the definition (5) of Forset, we get that exactly the first α(r)
such deliveries will have no effect on the contents of the set:
the respective add operations have already been observed by the
remove operation that replica 1 performed in the experiment phase.
Thus, if 0 appears in the set right after delivering the i-th message
of replica r, then α(r) = i−1, and if 0 does not appear by the time
the loop is finished, then α(r) = (m− 1)/(n− 1).

PROOF OF THEOREM 17. Given n0,m0, we pick n = n0 and
some m ≥ n0 such that (m − 1) is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given
by Lemma 18. For any α ∈ Q, Cα.rval(eα) = ∅, which can be
encoded with a constant length. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K we get:

wcmo(Dorset, n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))

≥ K1n lg(m/n) ≥ K2n lg
√
m ≥ Kn lgm. ut

7. Store Correctness and Consistency Axioms
Recall that we define a replicated store by a data type library
D and a transport layer specification T (§4), and we specify its
behavior by a function F from types τ ∈ dom(D) to data type
specifications and a set of consistency axioms (§3). The axioms
are just constraints over abstract executions, such as those shown
in Fig. 13; from now on we denote their sets by X. So far we
have concentrated on single data type specifications F(τ) and their
correspondence to implementations D(τ), as stated by Def. 7. In
this section we consider consistency axioms and formulate the

notion of correctness of the whole store (D, T) with respect to its
specification (F,X).

Our first goal is to lift the statement of correctness given by
Def. 7 to a store (D, T) with multiple objects of different data
types. To this end, we assume a function V mapping each type
τ ∈ dom(D) to its visibility witness V. This allows us to construct
the visibility relation for a concrete execution C ∈ JDK ∩ T by
applying V(τ) to its projection onto the events on every object of
type τ :

witness(V) = λC.
⋃{V(type(x))(C|x) | x ∈ Obj},

where ·|x projects to events over x. Then the correctness of every
separate data type τ in the store with respect to F(τ) according to
Def. 7 automatically ensures that the behavior of the whole store is
consistent with F in the sense of Def. 5.
PROPOSITION 19. (∀τ ∈ dom(D). D(τ) sat[V(τ), T] F(τ)) =⇒

(∀C ∈ JDK ∩ T . abs(C,witness(V)) |= F).
This motivates the following definition of store correctness. Let us
write A |= X when the abstract execution A satisfies the axioms X.
DEFINITION 20. A store (D, T) is correct with respect to a speci-
fication (F,X), if for some V:

(i) ∀τ ∈ dom(D). (D(τ) sat[V(τ), T] F(τ)); and
(ii) ∀C ∈ JDK ∩ T . (abs(C,witness(V)) |= X).
We showed how to discharge (i) in §5. The validity of axioms

X required by (ii) most often depends on the transport layer spec-
ification T : e.g., to disallow the anomaly (2) from §1, T needs to
provide guarantees on how messages pertaining to different objects
are delivered. However, data type implementations can also enforce
axioms by putting enough information into messages: e.g., imple-
mentations correct with respect to V state from §4 ensure that vis
is transitive regardless of the behavior of the transport layer. For-
tunately, to establish (ii) in practice, we do not need to consider
the internals of data type implementations in D—just knowing the
visibility witnesses used in the statements of their correctness is
enough, as formulated in the following definition.
DEFINITION 21. A set W of visibility witnesses and a transport
layer specification T validate axioms X, if

∀C,V. (C ∈ T) ∧ ({V(τ) | τ ∈ dom(V)} ⊆W) =⇒
(abs(C,witness(V)) |= X).

Since visibility witnesses are common to wide classes of data types
(e.g., state- or op-based), our proofs of the validity of axioms will
not have to be redone if we add new data type implementations to
the store from a class already considered.

We next present axioms formalizing several variants of eventual
consistency used in replicated stores (Fig. 13 and 14) and W and
T that validate them. We then use this as a basis for discussing
connections with weak shared-memory models. Due to space con-
straints, we defer technical details and proofs to [12, §D].

Basic eventual consistency. EVENTUAL and THINAIR define a
weak form of eventual consistency. EVENTUAL ensures that an
event cannot be invisible to infinitely many other events on the
same object and thus implies (1) from §1: informally, if updates
stop, then reads at all replicas will eventually see all updates and
will return the same values (§3.2). However, EVENTUAL is stronger
than quiescent consistency: the latter does not provide any guaran-
tees at all for executions with infinitely many updates to the store,
whereas our specification implies that the return values are com-
puted according to F(τ) using increasingly up-to-date view of the
store state. We formalize these relationships in [12, §D].

THINAIR prohibits values from appearing “out-of-thin-
air” [28], like 42 in Fig. 14(a) (recall that registers are initialized
to 0). Cycles in ro ∪ vis that lead to out-of-thin-airs usually arise

Figure 13. A selection of consistency axioms over an execution
(E, repl, obj, oper, rval, ro, vis, ar)

Auxiliary relations
sameobj(e, f) ⇐⇒ obj(e) = obj(f)
Per-object causality (aka happens-before) order:

hbo = ((ro ∩ sameobj) ∪ vis)+

Causality (aka happens-before) order: hb = (ro ∪ vis)+

Axioms
EVENTUAL:
∀e ∈ E.¬(∃ infinitely many f ∈ E. sameobj(e, f) ∧ ¬(e

vis−→ f))

THINAIR: ro ∪ vis is acyclic
POCV (Per-Object Causal Visibility): hbo ⊆ vis

POCA (Per-Object Causal Arbitration): hbo ⊆ ar

COCV (Cross-Object Causal Visibility): (hb ∩ sameobj) ⊆ vis

COCA (Cross-Object Causal Arbitration): hb ∪ ar is acyclic

Figure 14. Anomalies allowed or disallowed by different axioms

(a) Disallowed by THINAIR:
x, y : intreg

i = x.rd j = y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)

ro rovis vis

(b) Disallowed by POCV:
x : orset

x.add(1) i = x.rd j = x.rd
x.add(2) x.add(3)

x.add(1)

x.add(2)

ro

x.rd: {2}

x.add(3)

x.rd: {3}
vis

vis ro

(c) Allowed by COCV and COCA:

x, y : intreg

x.wr(1) y.wr(1)

i = y.rd j = x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0

ro ro

from effects of speculative computations, which are done by some
older replicated stores [36].

THINAIR is validated by {V state,Vop} and T-Any, and EVEN-
TUAL by {V state,Vop} and the following condition on C ensuring
that every message is eventually delivered to all other replicas and
every operation is followed by a message generation:

(∀e ∈ C.E. ∀r, r′. C.act(e) = send ∧ C.repl(e) = r ∧ r 6= r′

=⇒ ∃f. C.repl(f) = r′ ∧ e del(C)−−−−→ f) ∧
(∀e∈C.E.C.act(e) = do =⇒ ∃f. act(f) = send ∧ e roo(C)−−−−→ f),

where roo(C) is ro(C) projected to events on the same object.

Causality guarantees. Many replicated stores achieve availabil-
ity and partition tolerance while providing stronger guarantees,
which we formalize by the other axioms in Fig. 13. We call an ex-
ecution per-object, respectively, cross-object causally consistent,
if it is eventually consistent (as per above) and satisfies the ax-
ioms POCV and POCA, respectively, COCV and COCA. POCV
guarantees that an operation sees all operations connected to it by
a causal chain of events on the same object; COCV also consid-
ers causal chains via different objects. Thus, POCV disallows the
execution in Fig. 14(b), and COCV the one in §3.1, correspond-
ing to (2) from §1. POCA and COCA similarly require arbitration
to be consistent with causality. The axioms highlight the principle
of formalizing stronger consistency models: including more edges
into vis and ar, so that clients have more up-to-date information.

Cross-object causal consistency is implemented by, e.g.,
COPS [27] and Gemini [23]. It is weaker than strong consistency,
as it allows reading stale data. For example, it allows the execution
in Fig. 14(c), where both reads fetch the initial value of the register,
despite writes to it by the other replica. It is easy to check that this

outcome cannot be produced by any interleaving of the events at
the two replicas, and is thus not strongly consistent.

An interesting feature of per-object causal consistency is that
state-based data types ensure most of it just by the definition of
V state: POCV is validated by {V state} and T-Any. If the witness
set is {V state,Vop}, then we need T to guarantee the following: in-
formally, if a send event e and another event f are connected by
a causal chain of events on the same object, then the message cre-
ated by e is delivered to C.repl(f) by the time f is done. POCA
is validated by {V state,Vop} and the transport layer specification
(roo(C) ∪ del(C))+|do ⊆ ar(C). This states that timestamps of
events on every object behave like a Lamport clock [22]. Condi-
tions for COCV and COCA are similar.

There also exist consistency levels in between basic eventual
consistency and per-object causal consistency, defined using so-
called session guarantees [35]. We cover them in [12, §D].

Comparison with shared-memory consistency models. Inter-
estingly, the specializations of the consistency levels defined by the
axioms in Fig. 13 to the type intreg of LWW-registers are very
close to those adopted by the memory model in the 2011 C and
C++ standards [5]. Thus, POCA and POCV define the semantics
of the fragment of C/C++ restricted to so-called relaxed operations;
there this semantics is defined using coherence axioms, which are
analogous to session guarantees [35]. COCV and COCA are close
to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-

shot timestamp objects [20] and counting protocols [15, 30]. These
works have considered either programming models or metrics sig-
nificantly different from ours. An exception is the work of Charron-
Bost [14], who proved that the size of vector clocks [29] is optimal
to represent the happens-before relation of a computation (similar
to the visibility relation in our model). Specifications of mvr and
orset rely on visibility; however, Charron-Bost’s result does not
directly translate into a lower bound on their implementation com-
plexity, since a specification may not require complete knowledge
about the relation and an implementation may represent it in an
arbitrary manner, not necessarily using a vector.

9. Conclusion and Future Work
We have presented a comprehensive theoretical toolkit to advance
the study of replicated eventually consistent stores, by proposing
methods for (1) specifying the semantics of replicated data types
and stores abstractly, (2) verifying implementations of replicated
data types, and (3) proving that such implementations have optimal
metadata overhead. By proving both correctness and optimality of
four nontrivial data type implementations, we have demonstrated
that our methods can indeed be productively applied to the kinds of
patterns used by practitioners and researchers in this area.

Although our work marks a big step forward, it is only a be-
ginning, and creates plenty of opportunities for future research.
We have already made the first steps in extending our specification
framework with more features, such as mixtures of consistency lev-
els [23] and transactions [34, 37]; see [11]. In the future we would
also like to study more data types, such as lists used for collab-
orative editing [32], and to investigate metadata bounds for data
type implementations other than state-based ones, including more
detailed overhead metrics capturing optimizations invisible to the
worst-case overhead analysis. Even though our execution model
for replicated stores follows the one used by replicated data type
designers [33], there are opportunities for bringing it closer to ac-
tual implementations. Thus, we would like to verify the algorithms
used by store implementations [27, 34, 37] that our semantics ab-
stracts from. This includes fail-over and session migration proto-
cols, which permit clients to interact with multiple physical repli-
cas, while being provided the illusion of a single virtual replica.

Finally, by bringing together prior work on shared-memory
models and data replication, we wish to promote an exchange of
ideas and results between the research communities of program-
ming languages and verification on one side and distributed sys-
tems on the other.

Acknowledgements. We thank Hagit Attiya, Anindya Banerjee,
Carlos Baquero, Lindsey Kuper and Marc Shapiro for comments
that helped improve the paper. Gotsman was supported by the EU
FET project ADVENT, and Yang by EPSRC.

References
[1] Riak key-value store. http://basho.com/products/riak-overview/.
[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12), 1996.
[3] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software

verification for weak memory via program transformation. In ESOP,
2013.

[4] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[6] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. An optimized conflict-free replicated set.
Technical Report 8083, INRIA, 2012.

[7] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. Brief announcement: Semantics of eventu-
ally consistent replicated sets. In DISC, 2012.

[8] A.-M. Bosneag and M. Brockmeyer. A formal model for eventual
consistency semantics. In IASTED PDCS, 2002.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
PLDI, 2007.

[10] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types
for eventual consistency. In ECOOP, 2012.

[11] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual con-
sistency. Technical Report MSR-TR-2013-39, Microsoft Research,
2013.

[12] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: specification, verification, optimality (extended version),
2013. http://research.microsoft.com/apps/pubs/?id=201602.

[13] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[14] B. Charron-Bost. Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39(1), 1991.

[15] J.-Y. Chen and G. Pandurangan. Optimal gossip-based aggregate
computation. In SPAA, 2010.

[16] N. Conway, R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. In SOCC, 2012.

[17] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman.
Eventually-serializable data services. In PODC, 1996.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2), 2002.

[20] M. Helmi, L. Higham, E. Pacheco, and P. Woelfel. The space complex-
ity of long-lived and one-shot timestamp implementations. In PODC,
2011.

[21] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf.,
1, 1972.

[22] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

[23] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke.
Making geo-replicated systems fast if possible, consistent when nec-
essary. In OSDI, 2012.

[24] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL, 2012.

[25] B. Liskov and S. Zilles. Programming with abstract data types. In
ACM Symposium on Very High Level Languages, 1974.

[26] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav. Dy-
namic synthesis for relaxed memory models. In PLDI, 2012.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In SOSP, 2011.

[28] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, 2005.

[29] F. Mattern. Virtual time and global states of distributed systems.
Parallel and Distributed Algorithms, 1989.

[30] S. Moran, G. Taubenfeld, and I. Yadin. Concurrent counting. In
PODC, 1992.

[31] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract
data types: Building blocks for collaborative applications. J. Parallel
Distrib. Comput., 71(3), 2011.

[32] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506, INRIA, 2011.

[33] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In SSS, 2011.

[34] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, 2011.

[35] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session guarantees for weakly consistent replicated data.
In PDIS, 1994.

[36] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In SOSP, 1995.

[37] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça. SwiftCloud: Fault-tolerant geo-
replication integrated all the way to the client machine. Technical
Report 8347, INRIA, 2013.

Understanding Eventual Consistency

Sebastian Burckhardt
Microsoft Research

Alexey Gotsman
IMDEA Software Institute

Hongseok Yang
University of Oxford

Abstract. Modern geo-replicated databases underlying large-scale In-
ternet services guarantee immediate availability and tolerate network
partitions at the expense of providing only weak forms of consistency,
commonly dubbed eventual consistency. At the moment there is a lot
of confusion about the semantics of eventual consistency, as different
systems implement it with different sets of features and in subtly dif-
ferent forms, stated either informally or using disparate and low-level
formalisms.

We address this problem by proposing a framework for formal and
declarative specification of the semantics of eventually consistent sys-
tems using axioms. Our framework is fully customisable: by varying
the set of axioms, we can rigorously define the semantics of systems
that combine any subset of typical guarantees or features, including
conflict resolution policies, session guarantees, causality guarantees,
multiple consistency levels and transactions. We prove that our speci-
fications are validated by an example abstract implementation, based
on algorithms used in real-world systems. These results demonstrate
that our framework provides system architects with a tool for explor-
ing the design space, and lays the foundation for formal reasoning
about eventually consistent systems.

1. Introduction
Modern large-scale Internet services rely on distributed
database systems that maintain multiple replicas of data. Often
such systems are geo-replicated, meaning that the replicas are
located in geographically distinct locations. Geo-replication re-
quires the systems to tolerate network partitions, yet end-user
applications also require them to provide immediate availabil-
ity. Ideally, we would like to achieve these two requirements
while also providing strong consistency, which roughly guar-
antees that the outcome of a set of concurrent requests to the
database is the same as what one can obtain by executing these
requests atomically in some sequence. Unfortunately, the fa-
mous CAP theorem [18] shows that this is impossible. For this
reason, modern geo-replicated systems provide weaker forms
of consistency, commonly dubbed eventual consistency [32].
Here the word ‘eventual’ refers to the guarantee that

if update requests stop arriving to the database,
then it will eventually reach a consistent state. (1)

Geo-replication is a hot research area, and new architectures
for eventually consistent systems appear every year [5, 14, 15,
17, 21, 24, 29, 30]. Unfortunately, whereas consistency models
of classical relational databases have been well-studied [9, 26],
those of geo-replicated systems are poorly understood. The
very term eventual consistency is a catch-all buzzword, and
different systems claiming to be eventually consistent actually
provide subtly different guarantees and features. Commonly
used ways of their specification are inadequate for several
reasons:

• Disparate and low-level formalisms. Specifications of
consistency models proposed for various systems are stated
informally or using disparate formalisms, often tied to sys-
tem implementations. This makes it hard to compare guar-
antees provided by different systems or apply ideas from one
of them in another.

• Weak guarantees. More declarative attempts to formalise
eventual consistency [29] have identified it with prop-
erty (1), which actually corresponds to a form of quiescent
consistency from distributed computing [19]. However, such
reading of eventual consistency does not allow making con-
clusions about the behaviour of the database in realistic sce-
narios, when updates never stop arriving.

• Conflict resolution policies. To satisfy the requirement of
availability, geo-replicated systems have to allow making
updates to the same object on different, potentially dis-
connected replicas. The systems then have to resolve con-
flicts, arising when replicas exchange the updates, accord-
ing to certain policies, often encapsulated in replicated data
types [27, 29]. The use of such policies complicates the
semantics provided by eventually consistent systems and
makes its formal specification challenging.

• Combinations of different consistency levels. Even in ap-
plications where basic eventual consistency is sufficient
most of the time, stronger consistency may be needed oc-
casionally. This has given rise to a wide variety of features
for strengthening consistency on demand. Thus, some sys-
tems now provide a mixture of eventual and strong consis-
tency [1, 13, 21], and researchers have argued for doing the
same with different forms of eventual consistency [5]. Other
systems have allowed strengthening consistency by imple-
menting transactions, usually not provided by geo-replicated
systems [14, 24, 30]. Understanding the semantics of such
features and their combinations is very difficult.

The absence of a uniform and widely applicable specifica-
tion formalism complicates the development and use of even-
tually consistent systems. Currently, there is no easy way for
developers of such systems to answer basic questions when
designing their programming interfaces: Are the requirements
of my application okay with a given form of eventual consis-
tency? Can I use a replicated data type implemented in a system
X in a different system Y? What is the semantics of combining
two given forms of eventual consistency?

We address this problem by proposing a formal and declara-
tive framework for specifying the semantics of eventually con-
sistent systems. In our proposal, the specification of a consis-
tency model consists of the following components:

• Replicated data type specifications define the basic data
types supported by the database and determine the conflict
resolution policies at the level of individual objects (§2).
We show how to specify abstractly a variety of data types,
including registers, counters, multi-value registers [17] and
observed-remove sets [28].

• Consistency specification extends the semantics of individ-
ual objects to that of the entire database (§3). It is defined
by a set of axioms, constraining requests submitted to the
database by its clients and relations on these requests that
abstract the way the database processes them. We show how
to specify consistency guarantees implemented by a range of
existing eventually consistent systems, including weak forms
of eventual consistency [2, 17], session guarantees [31] and
different kinds of causal consistency [14, 24, 29, 30].

• Interfaces for strengthening consistency can include con-
sistency annotations, which allow users to specify the con-
sistency level of a single operation (§4.1), fences, which af-
fect the consistency level of multiple operations (§4.2), and
transactions, which ensure that a group of operations exe-
cutes atomically (§5). We provide the analysis of the trade-
offs between some of these features (§4.3).

The main technical challenge we have to deal with is that
the above aspects of the system behaviour interact in subtle
ways, making it difficult to specify each of them separately.
We resolve this problem by representing the information about
the database execution that all of the specification components
rely on abstractly, in a way not tied to the database imple-
mentation (visibility and arbitration relations in §2). This inter-
face between different specification components yields a fully
customisable framework, which can define the semantics of
any combination of typical guarantees or features of eventu-
ally consistent systems. Our technique is a generalisation of
approaches used in the context of weak shared-memory consis-
tency models [3, 8], which have been extensively studied by the
programming languages and verification communities1. Over-
all, we make the following contributions:

• We systematise the knowledge about the existing forms
of eventual consistency and provide a single specification
framework that can express many guarantees and features of
existing systems [2, 13, 14, 17, 21, 24, 29–31]. While some
of the concepts that we specify have been formally defined
before individually, to our best knowledge, our framework is
the first to allow handling all of them uniformly and draw-
ing conclusions about their interactions. This provides the
developers of eventually consistent systems with a tool for
exploring the design space.

• We justify the correspondence of our specifications to real-
world systems by proving that the specifications are validated
by an example abstract implementation, based on algorithms
used in such systems.

1 Although our axioms may appear different on the surface, we discover that,
when specialised to the integer register data type, common forms of even-
tual consistency correspond almost exactly to fragments of the memory model
adopted in the 2011 C and C++ standards [8] (§3.4). This suggests that exist-
ing techniques for testing and verifying programs running on weak memory
models [6, 12, 23] may prove beneficial for eventually consistent systems.

• We prove that our specifications are more powerful than qui-
escent consistency, allowing us to make conclusions about
the database behaviour even in the presence of a continuous
stream of updates arriving from its clients(§3.4).

• We prove several results demonstrating how our framework
supports rigorous comparisons between various features and
guarantees (Theorem 6, Theorem 8, Proposition 9). In partic-
ular, we establish that fences are sufficient to recover sequen-
tial consistency and serializable transactions in an eventually
consistent system. An analogous result for modern shared-
memory models was proved only recently [7].

Due to the volume of our technical development, we have
relegated all proofs to §A. The definition of the abstract imple-
mentation and the proof of its correspondence with our specifi-
cations are deferred to §B; however, we present the algorithms
used in the implementation informally throughout the paper.

2. Replicated Data Types
In this paper we consider a replicated database storing ob-
jects Obj = {x, y, . . . } that have values from a set Val. For
simplicity, we assume that the set of objects in the database
is fixed. Every object x 2 Obj has a type type(x) 2 Type
that determines the set Optype(x) of operations that clients of
the database can perform on it. For example, the data types
can include a counter ctr and an integer register intreg with
operations for reading, incrementing or writing an integer k:
Opctr = {rd, inc} and Opintreg = {rd} [{wr(k) | k 2 Z}.

Even though the database may store the same object on mul-
tiple replicas, its interface is agnostic to this: a client just re-
quests an operation on an object, without specifying a replica
it is stored on. We now present a way of defining the semantics
of common replicated data types that matches this level of ab-
straction by hiding implementation aspects, such as the replica-
tion strategy, network topology or transport layer. This allows
us to understand how the same data type can be implemented
on different system architectures. Our discussion focuses on
the behaviour of individual operations on a single object.

In strongly consistent systems, the outcome of a set of con-
current operations on an object can be obtained by executing
them atomically in some sequence. In this setting, the seman-
tics of a data type ⌧ can be completely specified by a function
S⌧ : Op+

⌧ ! Val, which, given a nonempty sequence of op-
erations performed on an object, specifies the return value of
the last operation (we assume that ? 2 Val is used for opera-
tions that return no value). For a counter, read operations return
the number of preceding increment operations. For an integer
register, read operations return the value of the last preceding
write, or zero if there was no prior write. We can thus define
Sctr and Sintreg as follows: for any sequence of operations �,

Sctr(� rd) = (the number of inc operations in �);
Sintreg(� rd) = k, if wr(0)� = �1 wr(k)�2 and

�2 does not contain wr operations;
Sctr(�wr(k)) = Sintreg(� inc) = ?.

In an eventually consistent system, data type semantics is
more complicated. In such a system, operations on the same

object can be issued concurrently at multiple replicas. To
achieve availability and partition tolerance, the system per-
forms operations at each replica immediately, and communi-
cates this to other replicas only after the fact. The following
diagram illustrates an execution of a system with integer regis-
ters by arranging labelled operations on several vertical time-
lines corresponding to replicas, with the delivery of updates to
other replicas shown as diagonal arrows:

A: wr(1)

B: wr(2)
C: wr(3)

D: rd()

E: rd()

F: rd()

Previous work has described a variety of implementations of
replicated data types that operate in this manner (see [28] for a
survey). Since replicas in these implementations cannot be im-
mediately aware of all operations, they may at times be incon-
sistent. The key challenge is to ensure that, once all updates are
delivered to all replicas, they resolve conflicts between them
uniformly and converge to the same state. Exactly how this is
achieved varies greatly; we identify the following strategies:

1. Make concurrent operations commutative. We require
that all operations be commutative, so that we can apply
them in any order using the standard sequential semantics.
This strategy works for counters, but not integer registers.

2. Order concurrent operations. The system totally orders all
concurrent operations in some disciplined way, e.g., using
timestamps. This allows applying the sequential semantics.

3. Flag conflicts. The system detects the presence of a conflict
and lets the user deal with it. For example, the multi-value
register used in Amazon’s Dynamo key-value store [17]
defines the return value of the read D in the above example
as the set {2, 3} of conflicting values.

4. Resolve conflicts semantically. The system detects a con-
flict and takes some data-type-dependent action to resolve
it [27, 29]. For example, a replicated data type of observed-
remove set [10] resolves conflicting operations trying to add
and remove the same element so that an add always wins.

We now present a single formalization that is sufficiently
general to represent all the four strategies and give an example
of a replicated data type for each of them. We specify a data
type ⌧ by a function F⌧ , generalizing S⌧ . Just like with S⌧ , we
want F⌧ to determine the return value of an operation based on
prior operations performed on the object. However, there are
some important differences:

1. In the sequential setting, an operation takes into account
the effect of all operations preceding it in the sequence. In
the concurrent setting, the result depends on what subset of
operations is visible in a given context. For example, in the
diagram above, C is visible to D, but not to E.

2. In the concurrent setting, the result may also depend on
additional information used to order events. For example,
the relative order of the concurrent writes B and C in the
diagram above may be determined using a timestamp, thus
guaranteeing that reads D and F return the same result, even
though they receive B and C in different orders.

The main insight of our formalisation is that we can spec-
ify the information about such relationships between events
declaratively, without referring to implementation-level con-
cepts, such as replicas or messages. Namely, F⌧ takes as a
parameter not a sequence, but an operation context, which en-
capsulates “all we need to know” about a system execution to
determine the return value of a given operation.

DEFINITION 1. An operation context for a data type ⌧ is a
tuple C = (f, V, ar, vis), where

• f 2 Op⌧ is the operation about to be performed.
• V is a set of operation events of the form (e, g), where e is a

unique event identifier and g 2 Op⌧ . The set V includes all
operations that are visible to f and can thus affect its result.

• vis ✓ V ⇥ V is a visibility relation, recording the relation-
ships between operations in V motivated by point 1 above.

• ar ✓ V ⇥ V is a total and irreflexive arbitration relation,
recording the relationships motivated by point 2 above.

For a relation r we write (u, v) 2 r and u
r�! v interchange-

ably. The vis relation describes the relative visibility of events
in V : u

vis�! v means that the effect of u is visible to v. As we
show below, it is needed to define certain data types. In imple-
mentation terms, an event u might be considered visible to an
event v if the update performed by u has been delivered to the
replica performing v before v is issued. The ar relation repre-
sents the ordering information provided by the system; u

ar�! v
means that u is ordered before v. In an implementation it can
be constructed using timestamps or tie-breaking mechanisms.

DEFINITION 2. A replicated data type specification for a type
⌧ is a function F⌧ that, given an operation context C for ⌧ ,
specifies a return value F⌧ (C) 2 Val, and that does not depend
on the operation identifiers in C.

Note that F⌧ (f, ;, ;, ;) returns the value resulting from per-
forming f on the default state for the data type (e.g., zero
for an integer register). Also, F⌧ is deterministic: all the non-
determinism present in the distributed system is resolved by
the operation context. We emphasise that our specifications do
not prescribe a particular way in which the visibility and arbi-
tration relations are actually represented in an implementation:
the above references to implementations are only illustrative.
Thus, the specifications can be viewed as generalising the con-
cept of an abstract data type [22] to the replicated case. We
now give several examples of data type specifications, corre-
sponding to the four implementation strategies mentioned ear-
lier.

Example 1: Counter (ctr) is defined by

Fctr(inc, V, vis, ar) = ?;
Fctr(rd, V, vis, ar) = (the number of inc operations in V).

Note that the result does not depend on ar or vis, but only on
V . Hence, this example is representative of strategy 1.

Example 2: Integer register (intreg) is defined by
Fintreg(f, V, vis, ar) = Sintreg(V

arf), where V ar denotes the
sequence obtained by ordering the operations in the set V of
events visible to f according to the arbitration relation ar. This
represents strategy 2: the return value is determined by estab-
lishing a total order of the visible operations and applying the
regular sequential semantics. Note that the relative visibility
between events in V , given by vis, is not used. We can simi-
larly obtain a concurrent semantics F⌧ of any data type ⌧ based
on its sequential semantics S⌧ . For example, Fctr as defined in
Example 1 is equivalent to what we obtain using this generic
construction. The next two examples go beyond this.

Example 3: Multi-value register (mvr). A multi-value reg-
ister has the same operations as the integer register, but its reads
return a set of values, rather than a single one:

Fmvr(rd, V, vis, ar) = {k | 9e. (e, wr(k)) is maximal in V },

where an element v 2 V is maximal in V if there exists no
v0 2 V such that v

vis�! v0. Here a read returns all versions of
the object that are not superseded by later writes, as determined
by vis; the ar relation is not used. A multi-value register thus
detects conflicting writes, as in strategy 3. For example, a rd
operation would return {2, 3} in the following context:

wr(0)

vis✏✏
wr(1)

vis

((
vis

vv
wr(2) wr(3)

Example 4: Observed-remove set (orset). Assume we want
to implement a set of integers. Consider the operation context

(rd, {(A, add(42)), (B, remove(42))}, vis, ar).

If we use the generic construction from Example 2, the result
of rd will depend on the arbitration relation: ; if A

ar�! B,
and {42} otherwise. In some cases, the application semantics
may require a different outcome, e.g., that an add operation
always win against concurrent remove operations. Bieniusa et
al. [10] propose the observed-remove set orset that achieves
this semantics by mandating that remove operations cancel out
only the add operations that are visible to them:

Forset(rd, V, vis, ar) = {k | 9 live v = (e, add(k)) 2 V },

where v = (e, add(k)) 2 V is live if there does not exist v0 =

(e0, remove(k)) 2 V such that v
vis�! v0. In the above operation

context rd will return ; if A
vis�! B, and {42} otherwise.

Although replicated data types can simplify the program-
ming of eventually consistent systems, they are not by them-
selves sufficient for general systems that contain more than one
object. For example, consider a client program that updates a
set object friends and then a list object wall:

friends.remove(boss); wall.append(photo);

In this case, we may want the database to ensure that the order
of the updates is preserved. In terms of our framework, such
guarantees depend on properties of vis and ar relations that
are not defined by data type specifications. In the following
sections we provide means of their specification.

3. Axiomatic Specification Framework
We extend our framework for specifying replicated data types
(§2) to defining the semantics of the entire database. Our spec-
ifications can capture a range of forms of eventual consistency:

• Basic eventual consistency, which only guarantees that the
effect of every operation will eventually become visible to all
participants (§3.2).

• Ordering guarantees, which ensure that the system pre-
serves the order in which operations are performed (§3.3) .

• Interfaces for on-demand consistency strengthening,
which include consistency annotations and fences (§4), as
well as transactions (§5).

We start by formalising client-database interactions (§3.1). We
describe a run of the database by a history, which records all
(possibly infinitely many) such interactions. We then specify
its consistency model by a number of axioms (see Figure 1),
which define the set of all histories it can produce.

3.1 Client Interaction Model
Clients often wish to perform multiple operations within some
context, and to capture this, we introduce the notion of a ses-
sion, identified by session identifiers SId = {1, 2, 3, . . . }. Ses-
sions are different from transactions (introduced in §5): rather
than providing advanced guarantees, such as atomicity or isola-
tion, they are a means of tracking client identity across multiple
requests. The purpose of sessions is to satisfy basic ordering
expectations [31], such as whether a read following a write is
guaranteed to see the effects of that write. In some systems, this
is ensured by permanently binding a session to a single replica.

Each client operation is described in a history by an action,
which enriches operation events (Definition 1) with session
identifiers and return values.

DEFINITION 3. An action is a tuple (e, s, [x.f : k]), where e
is a unique action identifier, s 2 SId is the identifier of the
session the action takes place in, f 2 Optype(x) is an operation
performed on an object x 2 Obj, and k 2 Val is its return
value. We denote the set of actions by Act.

We omit return values equal to ?. For a = (e, s, [x.f : k]),
we let ses(a) = s, obj(a) = x, op(a) = f , rval(a) = k,
type(a) = type(x) and event(a) = (e, f). We also use the
event projection on sets of actions and relations over them.

A history consists of a set of actions, together with a session
order, relating actions within a session according to the order
in which they were issued by the client.

DEFINITION 4. A history is a pair (A, so), where A ✓ Act, A
has no duplicate action identifiers, so ✓ A⇥A, and so satisfies
the axiom SOWF in Figure 1.

Histories abstract from internal database execution com-
pletely. However, in order to define concepts arising in differ-

ent forms of eventual consistency, we need to know more about
how operations relate to each other. To this end, we enrich his-
tories with additional information about the internal database
execution. As in §2, we record this information in an abstract
form using the visibility and arbitration relations.

DEFINITION 5. An execution is a tuple X = (A, so, vis, ar),
where (A, so) is a history, and vis, ar ✓ A ⇥ A are such that
the axioms VISWF and ARWF from Figure 1 hold.

The vis and ar relations have the same intuitive meaning as
those in §2. The difference is that, previously, we only consid-
ered these relations on a set of events needed to determine the
outcome of a particular operation. In contrast, here the relations
are defined on the set of all operations on all objects accessed
in a run of a database. Given X = (A, so, vis, ar) and a 2 A,
we can easily extract the operation context of a by selecting all
actions visible to it according to vis:

ctxt(a) = (op(a), event(B), event(vis|B), event(ar|B)),

where B = vis�1(a). ARWF implies that the arbitration rela-
tion is sufficient to fully order all operations in vis�1(a), and,
thus, ctxt(a) is indeed an operation context.

Figure 2(a) shows an example of an execution, correspond-
ing to the scenario of posting a photo from §2, but expressed
using integer registers. In diagrams throughout this paper, we
omit action and session identifiers. In the execution, a session
first writes to a register x, setting the access permission to all.
Some time later, it changes the permission to noboss and then
writes to a register y to post a photo. The arbitration relation
ar states that any session that sees both writes to x should as-
sume that noboss overwrites all. However, as shown by the
vis edges, in this example another session sees the photo, but
not the updated access permission. In an implementation this
anomaly can happen when the replica that session is connected
to receives the updates corresponding to the writes of noboss
and photo out of the order they were issued in [2, 17].

Our notion of an execution is similar to structures used for
defining memory consistency models of hardware [3] and pro-
gramming languages [8]. In particular, the visibility relation is
similar to the “reads-from” relation used in such models. Un-
like “reads-from”, our visibility relation captures all delivered
updates, so as to handle replicated data types.

3.2 Axiomatic System Specifications
The notion of a history corresponds straightforwardly to runs
of a real-world database. Thus, we consider a system specifica-
tion to be simply a set of histories. We can check if a particular
database correctly implements the specification by determining
whether, for all its runs, the corresponding history is in the set.
In our specification framework, we obtain a system specifica-
tion by choosing a set of axioms A from Figure 1 that constrain
executions. The corresponding specification includes all histo-
ries that can be extended to an execution satisfying A:

(A, so) 2 JAK () 9vis, ar. (A, so, vis, ar) satisfies A.

The fewer axioms are chosen, the weaker the consistency
model is. The weakest sensible specification in our framework

is JSOWF, VISWF, ARWF, RVAL, EVENTUAL, THINAIRK.
We call it basic eventual consistency, and executions sat-
isfying its axioms, eventually consistent. The specification
includes no ordering guarantees, but satisfies basic expecta-
tions, and is implemented, e.g., by Dynamo [17]. Its axioms
have the following purpose:

• The well-formedness axioms SOWF, VISWF, ARWF state
basic properties of the relations that we are working with.

• RVAL ensures that data types behave according to their spec-
ifications, i.e., the return value of every action a is com-
puted on its operation context using the specification Ftype(a)

for the type of the object accessed in a (§2). For example,
in the execution in Figure 2(a) the operation context of the
read from x includes only the write of all, so by RVAL and
Fintreg, the read returns all. If the execution contained a vis
edge from the write of noboss to the read from x, then the
context would include both writes to x, with noboss taking
precedence over all according to ar. By RVAL and Fintreg,
the read would then have to return noboss.

• EVENTUAL ensures that an action cannot be invisible to
infinitely many other actions on the same object and thus
formalises (1) from §1.

• THINAIR rules out counterintuitive behaviours that are not
produced by most real-world eventually consistent systems.
For example, the execution in Figure 2(b) is allowed by RVAL
and EVENTUAL, but not by THINAIR. Here the value 42
appears “out-of-thin-air”, due to a cycle in so[vis (recall that
registers are initialised to 0). Such cycles usually arise from
effects of speculative computations, which are done by some
older eventually consistent systems [32], but not by modern
ones. In this paper, we restrict ourselves to forms of eventual
consistency implemented by the latter [29].

Our framework allows checking easily whether a given out-
come is allowed by the consistency model without considering
the system implementation: one just needs to ensure that all the
axioms are satisfied. For example, the execution in Figure 2(a)
is allowed by the axioms of basic eventual consistency.

Like in §2, our formalisation does not prescribe a particular
way of representing visibility and arbitration in an implementa-
tion. Hence, these relations form an abstract interface between
replicated data types used for conflict resolution and the under-
lying consistency model of the database. This makes our speci-
fication framework fully customisable and allows exploring the
design space of consistency models easily: each of these two
aspects can be varied separately, and the framework will de-
fine the semantics of any possible combination. We achieve this
level of modularity even though, in real-world systems, imple-
mentations of the two aspects are often tightly interlinked [28].

Abstract implementation. We justify the soundness of our
axioms by proving that they are validated by an abstract
implementation based on algorithms used in existing sys-
tems [2, 14, 17, 24, 30, 31]: the set of histories it produces
is included into the corresponding system specification (The-
orem 11, §B). Our implementation of basic eventual consis-
tency corresponds straightforwardly to the operational expla-
nations we have given so far. The database consists of an arbi-

Figure 1. Axioms of eventual consistency. Here r|B denotes the pro-
jection of a relation r to B: r|B = (r \ (B ⇥B)).

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWF: 8a, b. a
vis�! b =) obj(a) = obj(b)

ARWF: 8a, b. a
ar�! b =) obj(a) = obj(b),

ar is transitive and irreflexive, and
ar|vis�1(a) is a total order for all a 2 A

DATA TYPE AXIOM

RVAL: 8a 2 A. rval(a) = Ftype(a)(ctxt(a))

BASIC EVENTUAL CONSISTENCY AXIOMS

EVENTUAL:
8a 2 A. ¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a

vis�! b))

THINAIR: so [vis is acyclic

AUXILIARY RELATIONS

Per-object session order: soo = (so \ sameobj)

Per-object causality order: hbo = (soo [vis)+

Causality order: hb = (so [vis)+

SESSION GUARANTEES

RYW (Read Your Writes). An operation sees all previous operations
by the same session: soo ✓ vis

MR (Monotonic Reads). An operation sees all operations previously
seen by the same session: (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility). Operations are made
visible at other replicas after operations on the same object that were
previously seen by the same session: (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration). Arbitration orders an
operation after other operations previously seen by the same session:
(vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility). Operations are made visible
at other replicas after all previous operations on the same object by
the same session: (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration). Arbitration orders an oper-
ation after all previous operations by the same session: soo ✓ ar

CAUSALITY AXIOMS

POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ar is acyclic

trary number of replicas, each storing a log of actions. Every
client session is connected to some replica, although a session
can switch to another one at any time. When a session issues
an operation, its return value is computed immediately on the
basis of the state of the replica the session is connected to, and
the corresponding action is appended to its log. From time to
time, each replica broadcasts updates to the others, subject to
a fairness constraint that every update will eventually get de-
livered to every replica (needed to validate EVENTUAL). Then
a

vis�! b if a has been delivered to the replica performing b be-
fore b is issued. Thus, so and vis edges go forwards in time, so
that THINAIR is validated. The arbitration relation is computed
using Lamport timestamps [20].

Figure 2. Anomalies allowed or disallowed by different axioms from
Figure 1. In some cases, we show the code of client sessions that could
produce the execution (where i and j are client-local variables).
(a) Disallowed by COCV:

x, y: intreg

x.wr(all) i=y.rd

x.wr(noboss) j=x.rd

y.wr(photo)

x.wr(all)

x.wr(noboss)

y.wr(photo)

so

so

y.rd: photo

x.rd: all

soar

vis

vis

(b) Disallowed by THINAIR:
x, y: intreg

i=x.rd j=y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)
so sovis vis

(c) Disallowed by RYW: (d) Disallowed by MWV:

x.wr(1)

x.rd: 0
so

x: intreg y.add(1)

y.add(2)

so

y.rd: {2}vis

y: orset

(e) Disallowed by POCV:
x: orset

x.add(1) i=x.rd j=x.rd

x.add(2) x.add(3)

x.add(1)

x.add(2)

so

x.rd: {2}

x.add(3)

so x.rd: {3}
vis

vis

(f) Allowed by all axioms in Figure 1:

x, y: intreg

x.wr(1) y.wr(1)

i=y.rd j=x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0
so so

3.3 Classification of Ordering Guarantees
Basic eventual consistency provides very few guarantees to
clients, allowing the anomaly in Figure 2(a) and, in fact,
even more straightforward anomalies shown in Figures 2(c)
and 2(d). In Figure 2(c), a session does not see a write it made
(as signified by the absence of a vis edge) and thus reads the
initial value of the register x. In an implementation this can
happen when the read connects to another replica, which has
not yet received the update corresponding to the write opera-
tion. In Figure 2(d), a session inserts 1 and then 2 into a set y;
another session sees the first insertion, but not the second. In
an implementation this can happen when the two insertions are
propagated to other replicas out of order.

Many systems achieve availability and partition tolerance
while providing stronger guarantees on the ordering of opera-
tions. In this paper we formalise the following ones:

Form of eventual consistency Implementations
Basic eventual consistency [2, 17]
Session guarantees [31]
Per-object causal consistency [29]
(Cross-object) causal consistency [14, 21, 24, 30]

The differences can be subtle; it is one of our contributions
to provide a means for precise comparisons. The cornerstones
of our discussion are the axioms shown in Figure 1 and the
anomalies shown in Figure 2.

Session guarantees. Let r⇤ denote the reflexive and transitive
closure of a relation r, r1; r2 the composition of binary relations
r1 and r2, and let sameobj(a, b) , obj(a) = obj(b). For

an execution X = (A, so, vis, ar), we define the per-object
session order as follows: soo = (so \ sameobj).

The axioms RYW–MWA in Figure 1 formalise session
guarantees, ensuring that operations within a session observe
a view of the database that is consistent with their own actions,
even if, in an implementation, they can access various, poten-
tially inconsistent replicas. The guarantees are due to Terry et
al. [31], who defined them in a low-level operational frame-
work. Here we recast them into axioms appropriate for arbi-
trary replicated data types. However, we have preserved the
original terminology, and thus refer to reads and writes in the
names of the axioms. As an illustration, RYW and MWV
disallow the executions in Figures 2(c) and 2(d), respectively.
Note also that WFRV implies that vis is transitive, and WFRA
implies that vis ✓ ar. In our abstract implementation, we im-
plement session guarantees as proposed by Terry et al. [31]. For
example, to ensure RYW, each session maintains the “write
set” of actions it has issued; the session can then only connect
to replicas that contain all of its write set.

The axioms for session guarantees highlight the general
principle of formalising stronger consistency models: mandat-
ing that certain edges be included into vis and ar, so that clients
have more up-to-date information. We now use the same ap-
proach to formalise other models.

Per-object causal consistency. Let hbo = (soo [vis)+ be
the per-object causality order, which orders every action after
those that can affect it via a chain of computation involving
the same object; in other contexts, the name happens-before is
used instead of causality. For example, in Figure 2(e), add(1)
in the first session and rd in the third are related by hbo.

An execution is per-object causally consistent, if it is even-
tually consistent and satisfies the axioms POCV and POCA in
Figure 1. POCV guarantees that an operation sees all opera-
tions on the same object that causally affect it, and POCA cor-
respondingly restricts the arbitration relation. POCV disallows
the executions in Figures 2(c), 2(d) and 2(e). In fact, using our
formalisation we can show that per-object causal consistency
is equivalent to all of Terry et al.’s session guarantees.

THEOREM 6. POCV is equivalent to the conjunction of
RYW, MR, WFRV and MWV. POCA is equivalent to the
conjunction of WFRA and MWA.

(Cross-object) causal consistency. We define a consistency
model that preserves a stronger notion of causality than per-
object one, and is implemented, e.g., by COPS [24], Wal-
ter [30] and Concurrent Revisions [14]. Let the causality or-
der hb = (so [vis)+ be the transitive closure of the session
and visibility relations. Unlike hbo, this relation considers any
chain of computation, possibly involving multiple objects, to
be a causal dependency. For example, in Figure 2(a) the write
of noboss to x in the first session hb-precedes the read from x

in the second; these actions are not related by hbo.
An execution is (cross-object) causally consistent, if it

is eventually consistent and satisfies the axioms COCV and
COCA in Figure 1. These axioms are similar to those for per-
object causal consistency, but without restrictions to causal de-
pendencies via the same object (the use of acyclicity in COCA
is explained below). For example, the execution in Figure 2(a),

is allowed by per-object causal consistency, but not by cross-
object causal consistency. Causal consistency is weaker than
strong consistency, as it allows reading stale data—it is this fea-
ture that allows implementing it while guaranteeing availability
and partition tolerance. For example, it allows the execution in
Figure 2(f), where both reads fetch the initial value of the reg-
ister, despite writes to it by the other session. It is easy to check
that this outcome cannot be produced by any interleaving of the
sessions’ actions, and is thus not strongly consistent.

Abstract implementation of causal consistency. Our ab-
stract implementation of per-object and cross-object causal
consistency is based on the algorithm used in the COPS sys-
tem [24]. When propagating actions between replicas, the al-
gorithm tags every one of them with a list of other actions it
causally depends on: those preceding it in hbo for per-object
causal consistency, and in hb for cross-object one. A replica
receiving an update performed by an action must wait until it
receives all of the action’s dependencies before making it avail-
able to clients. For the case of cross-object causal consistency,
in Figure 2(a) the write of the photo by the first session will
depend on the write of noboss. Hence, when the replica the
second session is connected to receives the photo, it will have
to wait until it receives the write of noboss before making the
photo available to the client. The arbitration relation is com-
puted using a system-wide Lamport clock [20]. This guaran-
tees the acyclicity of hb[ar and is the reason for not formulat-
ing COCA in the same way as POCA, i.e., hb\sameobj ✓ ar.

3.4 Comparison to Other Definitions
Quiescent consistency. We now show that our specifications
of eventual consistency describe the semantics of the system
more precisely than quiescent consistency, as stated by (1). To
formalise the latter, assume that all operations are divided into
queries (Query) and updates (Update), and that return values
computed by F⌧ are insensitive to queries: F⌧ (f, V, vis, ar) =
F⌧ (f, Vu, visu, aru) where Vu, visu and aru are the restrictions
of V , vis and ar to update operations. The following straightfor-
ward proposition shows that even the basic notion of eventual
consistency in Figure 1 implies quiescent consistency.

PROPOSITION 7. Consider an eventually consistent execution
(A, so, vis, ar) with finitely many update actions. Then there are
only finitely many query actions a 2 A that do not see all
updates on the object they are accessing:

¬(8b 2 A. op(b) 2 Update ^ sameobj(a, b) =) b
vis�! a).

Furthermore, all other query actions return the same value.

The converse is not true. Consider a program with a counter
object x (initially zero), where the first session adds 1 to x, and
the second continuously adds 2 to x until it is odd:

x.add(1) do { x.add(2) } while(x.read() % 2 == 0)

Under basic eventual consistency as defined above, termination
is guaranteed: the axiom EVENTUAL guarantees that all but
finitely many reads of x must see the x.add(1) operation, and
thus the loop cannot repeat forever. However, under quiescent
consistency termination is not guaranteed: since x is updated
continuously, the system is not quiescent, and all bets are off.

Shared-memory consistency models. Interestingly, the spe-
cialisations of the consistency levels defined by the axioms in
Figure 1 to the type intreg from §2 correspond almost exactly
to those adopted by the memory model in the 2011 C and C++
standards [8]. Thus, POCA and POCV define the semantics
of so-called relaxed operations in C/C++, which provide the
weakest consistency. COCV and COCA are close to the se-
mantics of release-acquire operations, providing consistency
in between relaxed and strong. However, C/C++ does not vali-
date THINAIR, since it makes the effects of processor or com-
piler speculation visible to the programmer. We formalise the
correspondence to the C/C++ memory model in §C.

The similarity to C/C++ might come as a surprise. It stems
from the fact that modern multiprocessors have a complicated
microarchitecture, including a hierarchy of caches with coher-
ence maintained via message passing—under the hood, a pro-
cessor is really a distributed system. Optimisations that proces-
sors perform produce the same effects as delays and reorder-
ings of messages occurring in a distributed system.

4. Combining Different Consistency Levels
Even though a given flavour of eventual consistency may be
sufficient for many applications, stronger consistency levels are
needed from time to time. For example, consider a shopping
cart in an e-commerce application: while a user is shopping,
it is acceptable for the information about the items in the
shopping cart to be temporarily inconsistent; however, during a
check-out, we need to be sure the user is paying only for what
has actually been ordered. Therefore, Amazon’s Dynamo [1]
allows requesting strong consistency for some operations.

In a similar vein, causal consistency is desirable for many
applications, but algorithms used to implement it (§3.3) in-
crease the latency of propagating operations through the sys-
tem. Bailis et al. [5] have argued that, given the huge size of
causality graphs in real-world applications, this makes it prob-
lematic to provide causal consistency throughout the system
and suggested letting the programmer request it on demand.

Due to the complexity of eventually consistent models, for-
mulating their combinations precisely and choosing the pro-
gramming interfaces for requesting stronger consistency are
delicate. These issues have not been addressed by existing
proposals for combining different models of eventual consis-
tency [5]. Our contribution in this section is to show how, us-
ing our specification framework, we can define the semantics
of such combinations and assess the trade-offs between differ-
ent design choices. In particular, we present two mechanisms
for requesting stronger consistency, widely used in shared-
memory models [3, 8], and discuss their trade-offs in the con-
text of eventually consistent systems. We first illustrate the
techniques for combining consistency levels using the exam-
ple of requesting cross-object causal consistency on demand
in a system providing per-object causal consistency (§4.1). We
then add on-demand strong consistency (§4.2). Combinations
with weaker consistency levels could be handled similarly.

4.1 Consistency Annotations
Consider a system providing per-object causal consistency, i.e.,
satisfying the axioms SOWF–POCA in Figure 1. We wish to

give the programmer the ability to request cross-object causal
consistency on demand, as defined by COCV and COCA. One
way to achieve this is to annotate every operation accepted
by the database by a consistency annotation, which classifies
the operation as ordinary or causal. Accordingly, we change
the form of actions from §3 to a = (e, s, [x.fµ : k]), where
µ 2 {ORD, CSL}. We let level(a) = µ, and let the event
selector ignore µ. The intention is that, when an action a
annotated by CSL is visible to another action b, this establishes
a causal relationship between a and b. Formally, consider an
execution X = (A, so, vis, ar). We define a causal visibility
relation as follows:

8a, b. a
cvis��! b () a

vis�! b ^ level(a) = CSL.

We then redefine the causality order as the transitive closure of
the session and causal visibility relations: hb = (so [cvis)+.
Consistency annotations thus allow the programmer to specify
which visibility relationships represent causal dependencies
that the system has to preserve (we could similarly let the
programmer treat only a subset of so as causal dependencies).

The combined model is given by all of the axioms in Fig-
ure 1, but with hb defined as above. Note that, since hbo is still
defined as in Figure 1, per-object causal consistency is always
guaranteed. Also, if every access is annotated as causal, then
cvis = vis and hb becomes defined as in Figure 1, so we come
back to the causal consistency model from §3.3.

To illustrate the combined model, consider the execution
in Figure 2(a), previously discussed in §3. To rule out this
execution and make sure that a session that sees the photo
will also see the updated access permission, we do not need to
require all accesses to be causally consistent: only posting the
photo has to be a causal operation. Indeed, in this case, the vis
edge from the write to y in the first session to the read from it
in the second will be included into cvis. Since the so ✓ hb, the
write of noboss to x in the first session will causally precede
the read from x in the second. Then, by COCV, the read from x

in the second session will see the write of noboss and fetch the
correct permission. This is ensured even though the write to x

is annotated as ordinary. Note that, if we performed additional
ordinary operations in between the writes to x and y in the first
session and then read them in the second, we would get the
same guarantees.

Abstract implementation. To provide the combined consis-
tency model in our abstract implementation, we modify the
COPS algorithm (§3.3) to tag actions with their (hb [hbo)-
predecessors. Because of the tigher definition of hb, this de-
creases the number of dependencies in comparison to provid-
ing causal consistency throughout the system.

4.2 Fences
We now extend the the consistency model from §4.1 to allow
the programmer to request strong consistency as well. Here we
illustrate a different approach: instead of consistency annota-
tions, we use fences, which affect multiple actions instead of a
single one. We extend the set of actions with a = (e, s, fence),
for which we let op(a) = fence.

In our abstract implementation, we treat a fence as a two-
phase commit across all replicas, whereby the replica that ex-

ecutes it propagates all the updates it knows about to the other
replicas, and does not proceed further until they acknowledge
the receipt. Note that, as expected, this violates the availability
requirement: if some replica becomes disconnected, the execu-
tion of a fence will have to wait until it reconnects.

We show the axioms for the consistency model with fences
in Figure 3, where we also integrated the new axioms from
§4.1. To define the semantics of fences, we adjust the notion
of an execution to contain an additional relation sc satisfy-
ing the SCWF axiom: X = (A, so, vis, ar, sc). In implemen-
tation terms, sc can be viewed as the total order in which the
two-phase commits initiated by fences take place. We modify
VISWF and ARWF so that vis and ar relations did not relate
fence actions, as they do not make sense for fences; we also
assume that the sameobj relation from Figure 1 does not relate
fence actions. We adjust THINAIR to take sc into account.

The role of fences is to provide additional guarantees about
the visibility of certain actions, which we capture in our axioms
two ways. First, we redefine the hb relation to include sc. It
is then used by COCV and COCA, which allows taking sc
into account when determining visibility and arbitration. To
illustrate this, consider the execution in Figure 2(f), which is
causally consistent, but not strongly consistent. If each session
executes a fence after its write, then the outcome shown will be
disallowed. This is because, by SCWF, the total order sc has to
order the two fences one way or another; then by COCV, the
write of the session whose fence comes first in sc is guaranteed
to be seen by the read in the other session. Fences can thus
be used to avoid anomalies where sessions read stale values.
In implementation terms, we can justify including sc into hb
as follows: if fences are implemented by two-phase commits,
then a replica R1 that executed a fence after a replica R2 did is
guaranteed to see all the updates that were visible to R2 at the
time it issued the fence.

Another way in which fences strengthen consistency is cap-
tured by a new clause into the definition of cvis: if an operation
b hbo-follows an operation c in another session following a
fence, then it causally depends on the fence. In implementation
terms, this is justified as follows: a

so�! c
hbo��! b guarantees that

b executes after the two-phase commit triggered by the fence a
has been completed. This two-phase commit propagates all up-
dates known to the replica on which a was issued to all others,
including the replica of b, which lets us include (a, b) into hb.

To illustrate this guarantee provided by fences, consider the
execution in Figure 2(a) and assume that all writes are anno-
tated as ordinary, but the first session issues a fence in between
writing noboss and photo. In this case, by the definition of
cvis and COCV, the second session will be guaranteed to see
the correct access permissions. Thus, a fence subsumes the ef-
fect of annotating the write of the photo as causal. In fact, a
fence has a much stronger effect. For example, if the first ses-
sion posts several photos using ordinary write operations, then
the fence would ensure that a session reading any of these pho-
tos will see the updated permissions. To achieve the same effect
using consistency annotations, we would have to annotate all
the writes of the photos as causal. This is the fundamental dif-
ference between fences and consistency annotations: the latter
affect only a single operation, whereas the former affect many.

Figure 3. Axioms for a combination of per-object causal, cross-object
causal and strong consistency. The definition of hbo and the axioms
SOWF, RVAL, EVENTUAL, POCV, POCA, COCV, COCA are the
same as in Figure 1, but with hb defined here.

VISWF: 8a, b. a
vis�! b =) obj(a) = obj(b) and

vis does not have edges involving fence actions

ARWF: 8a, b. a
ar�! b =) obj(a) = obj(b),

ar is transitive and irreflexive, does not have edges involving
fence actions, and ar|vis�1(a) is a total order for all a 2 A

SCWF: sc is a total, transitive and irreflexive relation on fence actions

THINAIR: so [vis [sc is acyclic

Causal visibility relation:
8a, b. a

cvis��! b () (a
vis�! b ^ level(a) = CSL) _

(9c. op(a) = fence ^ a
so�! c

hbo��! b)

Causality order: hb = (so [cvis [sc)+

As we show in §4.3, choosing one over the other to request
stronger consistency impacts the implementation.

We now justify that fences enforce strong consistency: in a
system with integer registers, putting a fence in between every
pair of operations in a session guarantees strong consistency.

THEOREM 8. Assume an execution (A, so, vis, ar, sc) with only
intreg objects such that it satisfies the axioms in Figure 3 and
8a, b 2 A. op(a) 6= fence ^ op(b) 6= fence ^ a

so�! b =)
9c. op(c) = fence ^ a

so�! c
so�! b. Then there exists a total,

transitive and irreflexive order r on all actions in A such that
every read r from a register x fetches the value written by the
last write to x preceding r in r, or 0 if there is no such write.

4.3 Consistency Annotations vs Fences
In §4.1 and §4.2, we illustrated different mechanisms for re-
questing a stronger level of consistency: consistency annota-
tions for causal consistency and fences for strong consistency.
We now argue that the choice of the mechanisms impacts the
implementation significantly.

Consider a per-object causally consistent system. Instead of
using consistency annotations to request cross-object causal
consistency, we could introduce a special kind of a fence,
fenceCSL, and define cvis similarly to how it was done in §4.2:

8a, b. a
cvis��! b () 9c. op(a) = fenceCSL ^ a

so�! c
vis�! b.

Then a session that sees any operation c following a fence a is
guaranteed to see all operations preceding the fence. To achieve
this effect using consistency annotations, we would have to
annotate every such operation c as causal. Hence, requesting
causal consistency using fences makes it easier for the pro-
grammer to mark a series of operations as enforcing causal re-
lationships. However, this can potentially affect the efficiency
of the implementation. For the COPS algorithm (§3.3) to val-
idate the above axiom, we would have to tag every action fol-
lowing a fence in a session with the list of actions visible to it at
the time the fence was issued. A replica receiving such an ac-
tion would then have to wait until all its dependencies are satis-
fied before making it available to clients. Unlike a consistency
annotation, a fence thus increases the number of dependencies
for all actions following it, with a potential impact on latency.

Such considerations need to be taken into account when
designing programming interfaces for combined consistency
models. A system may also provide both consistency anno-
tations and fences (as done, e.g., in C/C++ [8]), to give the
programmer maximal control at the expense of complicating
the programming model. In all cases, our framework helps in
exploring this design space by allowing a system developer to
quickly establish the semantic consequences of various deci-
sions and their impact on programmability.

5. Transactions
The semantics of transactions has been extensively studied
in the context of databases, and various consistency models
have been proposed for them, including ANSI SQL isolation
levels, snapshot isolation [9] and serializability [26]. However,
classical consistency models, such as the latter two, cannot be
implemented while satisfying the requirements of availability
and partition tolerance. For this reason, eventually consistent
systems implement transactions with weaker guarantees [24,
30] that do not contradict these requirements. In this section,
we show how they can be specified in our framework.

We illustrate our approach by extending the combined con-
sistency model from §4 to accommodate transactions. The re-
sulting semantics is similar to snapshot isolation [9], but with-
out write-write conflict detection. Since we focus on the use of
replicated data types in this paper, we do not need to disallow
write-write conflicts: when an appropriate data type is used,
its semantics automatically resolves conflicts, merging the two
conflicting versions if needed, and the “lost update” anomaly
does not occur. Hence, we do not have to consider the conse-
quences of transactions aborting due to conflicts with others.

When a fence is used inside every transaction, our seman-
tics coincides with serializability (Proposition 9 below). When
specialised to causal consistency, it coincides with a variant of
parallel snapshot isolation, implemented in Walter [30] and,
for read-only transactions, in COPS [24]. We have not yet in-
corporated transactions into the single abstract implementation
we use for the other features (§2–4). Hence, we justify the cor-
respondence of our definitions to existing systems by a separate
proof that their specialisation to causal consistency is equiva-
lent to the abstract implementation of parallel snapshot isola-
tion given by Sovran et al. [30]. The main idea of this imple-
mentation is to append writes performed by a transaction to the
state of the replica it executes on atomically, and to propagate
these writes to other replicas together. This ensures that trans-
actions take effect atomically, but possibly with a delay. We
formalise and prove the correspondence in §D.

To define the semantics of transactions, we assume that
every action in an execution belongs to a transaction. Let us
again extend the set of actions with one that separates different
transactions: a = (e, s, commit), for which we let op(a) =
commit. We do not consider explicit abort operations. The
changes to the axioms from Figure 3 needed to accommodate
transactions are shown in Figure 4. We assume that vis, ar and
sameobj relations do not relate commit actions.

Intuitively, if several actions are executed within a trans-
action, then the system should treat them as a single atomic
action. Our key insight is that this can be captured by factor-

ing the relations in an execution over an equivalence relation
⇠, grouping actions in the same transaction. For a relation r,
its factoring r/⇠ includes the edges from r and those obtained
from such edges by relating any other actions coming from the
same transactions as their endpoints. The latter excludes the
case when the endpoints themselves are from the same trans-
action. For vis, ar and sc we require that they be preserved un-
der factoring (TRANSACT). We also include factoring explic-
itly into the definition of hb and COCA. Finally, ISOLATION
ensures that uncommitted transactions are invisible to other
sessions. In the following, we explain the semantics of transac-
tions and justify the particular ways in which we use factoring
over ⇠ to define it by examples, summarised in Figure 5.

We start by showing that our notion of transactions provides
basic isolation properties, ensured by factoring vis over ⇠.
Consider the execution in Figure 5(a), similar to the one in
Figure 2(a), but where the user posts a photo and changes
the access permission in a different order and within the same
transaction. This execution is disallowed by the clause for vis
in TRANSACT: even though both writes are ordinary, a session
that sees the photo is guaranteed to see the updated permission.
Thus, every session sees a transaction as happening either
completely, or not at all. Furthermore, if the first transaction in
the execution in Figure 5(a) also read the permission it wrote, it
would be guaranteed to see its own write, since we assume per-
object causality by default. If the second transaction read the
photo twice, it would be guaranteed to see the same result due
to the clause for vis in TRANSACT. Hence, transactions cannot
read uncommitted data or observe a non-repeatable read.

The execution in Figure 5(b), similar to the one in Fig-
ure 2(f), illustrates the analogy with snapshot isolation by
showing that our transactions allow the write skew anomaly
typical for it. There, each transaction reads the initial value of
a register, despite a write to it by the other transaction. This
outcome would not be allowed if transactions were serializ-
able. The execution in Figure 5(c) shows that, unlike classical
snapshot isolation, our notion allows the lost update anomaly
for integer registers. To eliminate this anomaly while satisfying
the requirements of availability and partition tolerance, we can
use an appropriate data type, as in the execution in Figure 5(d).

Finally, we illustrate how our notion of transactions inter-
acts with different consistency levels in the underlying consis-
tency model. If in the examples in Figures 2(a) and 2(f) ev-
ery write or read were a transaction writing to or reading from
multiple registers, then the anomalies shown in both examples
would still be allowed: transactions enforce atomicity, but do
not strengthen the causality guarantees among different trans-
actions in comparison to that provided by the underlying non-
transactional operations. However, ways of strengthening con-
sistency guarantees presented §4 achieve the same effect with
transactions. For example, if in the above transactional variant
of the execution in Figure 2(a) any write in the photo-writing
transaction were annotated as CSL, then the second session
would be guaranteed to see the updated permissions.

We can also use fences from §4.2 to achieve serializabil-
ity for transactions. Figure 5(e) illustrates this by implement-
ing an operation that atomically tests if a register has reach a
limit and, and if not, increments it, e.g., to make a reservation.

Figure 4. Changes to Figure 3 needed to accommodate transactions
“Same transaction” relation:
a ⇠ b () op(a) 6= commit ^ op(b) 6= commit ^

((a
so�!⇤ b ^ ¬9c. a so�! c

so�! b ^ op(c) = commit) _
(b

so�!⇤ a ^ ¬9c. b so�! c
so�! a ^ op(c) = commit))

Factoring:
r/⇠ = r [{(a, b) | a 6⇠ b ^ 9a0, b0. a⇠ a0 ^ b⇠ b0 ^ (a0, b0) 2 r}
TRANSACT: (vis/⇠) \ sameobj = vis, (ar/⇠) \ sameobj = ar,

(sc/⇠) \ ({a | op(a) = fence})2 = sc

Causality order: hb = ((so [cvis [sc)/⇠)+

COCA. (hb [ar)/⇠ is acyclic
ISOLATION: 8a, b 2 A. (a

vis�! b ^ ¬9c. a so�! c ^ op(c) = commit)
=) ses(a) = ses(b)

Figure 5. Anomalies allowed or disallowed by our transactions. We
have omitted unimportant vis edges.
(a) Disallowed by TRANSACT:

x, y: intreg

y.wrORD(photo) i=y.rdORD

x.wrORD(noboss) j=x.rdORD

commit commit

y.wr(photo)ORD

x.wr(noboss)ORD

commit

so

so

y.rdORD: photo

x.rdORD: default

commit

so
vis

so

(b) Write skew is allowed:

x, y: intreg

x.wrORD(1) y.wrORD(1)

i=y.rdORD j=x.rdORD

commit commit

x.wr(1)ORD

y.rdORD: 0

commit

so

so

y.wr(1)ORD

x.rdORD: 0

commit

so

so

(c) Lost update can happen with integer registers:

x: intreg

i=x.rdORD j=x.rdORD

x.wrORD x.wrORD k=x.

(i+1) (j+1) rdORD

commit commit commit

x.rdORD:0

x.wr(1)ORD

commit

so

so

x.rdORD:0

x.wr(1)ORD

commit

so

so
ar

x.rdORD:1

commit

so
vis

vis

(d) Lost update absent with an appropriate choice of data types:

x: ctr

x.incORD x.incORD i=x.rdORD

commit commit commit

x.incORD

commit

so

x.incORD

commit

so

x.rdORD:2

commit

so
vis

vis

(e) Fences ensure serializability:

x: intreg

i=x.rdORD j=x.rdORD

if(i<LIMIT) if(j<LIMIT)

x.wrORD(i+1) x.wrORD(j+1)

fence fence

commit commit

x.rdORD:0

x.wr(1)ORD

fence

commit

so

so

x.rdORD:1

fence

commit

sovis

so

so
sc

In that execution, which is allowed by our axioms, we assume
LIMIT = 1, and thus only one transaction can succeed in incre-
menting the register. This is ensured by the use of factoring in
the definition of hb: the sc edge between the fences yields an hb
edge from the write to x in the first transaction to the read from
it in the second; by COCV this means that the second transac-
tion is guaranteed to see the increment by the first one and will
thus not perform increment itself. Note that we cannot guar-

antee this result when using the replicated counter data type:
if in Figure 5(d) the first and the second transaction read the
counter before incrementing it, they would both read 0. Mak-
ing sure that only one transaction does an increment requires
the use of fences, and correspondingly, giving up availability
or partition tolerance. We formalise the guarantee provided by
fences for transactions as follows.

PROPOSITION 9. If an execution satisfies the consistency
model in Figure 4, contains only intreg objects and has at least
one fence inside every transaction, then it is serializable.

6. Related Work
There exist several formal definitions of eventually consistent
models, often proposed together with systems implementing
them. In a nutshell, the difference with our work is that such
specifications have so far been tied to particular data types or
consistency levels, and were often very low-level.

For example, Shapiro et al. [10, 28, 29] described algo-
rithms for a number of replicated data types on per-object
causal consistency. As the correctness criterion, they consider
quiescent consistency, which is less expressive than our specifi-
cations (§3.4). Bosneag and Brockmeyer [11] defined the con-
sistency model of Bayou [32], also concentrating on a form
of quiescent consistency. They handle Bayou’s speculative op-
eration execution, which we do not cover (§3.2). Fekete et
al. [16] specified an eventually consistent model in an opera-
tional style, similar to our abstract implementation. Burckhardt
et al. [14] defined the consistency model of the Concurrent
Revisions system. Like us, they use axioms, but handle only
causal consistency and data types with the semantics obtained
from the generic construction using arbitration (§2).

Causal consistency was originally defined by Ahamad et
al. [4]. However, their definition allows different replicas to
have different, though causally consistent, views on the sys-
tem evolution and thus diverge forever. Recently, Mahajan et
al. [25] and Lloyd et al. [24] defined a stronger version of
causal consistency that ensures convergence, which we use in
this paper. Mahajan et al. define convergence in an operational
model, and Lloyd et al. using explicit conflict handling func-
tions. We give a declarative specification, with conflict han-
dling encapsulated in a replicated data type.

Sovran et al. [30] defined a consistency model for trans-
actions called parallel snapshot isolation, which they imple-
mented in the Walter system. Our semantics of transactions for
the case of causal consistency is equivalent to the variant of par-
allel snapshot isolation that Sovran et al. define for a counting
set replicated data type (§5). In contrast to ours, their definition
is given in a low-level operational style.

There exist a number of specifications of shared-memory
models weaker than strong consistency [3], including those
combining several consistency levels (e.g., [8]). All such mod-
els assume read-write memory cells, corresponding to our
intreg data type. We handle arbitrary replicated data types and,
as a consequence, our notion of executions is somewhat differ-
ent from the one used to define shared-memory models (§3.1).

There have been some proposals for combining multi-
ple consistency levels within geo-replicated databases. Li et
al. [21] proposed red-blue consistency, similar to our on-

demand strong consistency (§4.2). In contrast to us, they as-
sume a particular strategy of resolving conflicts using commu-
tativity (§2). Bailis et al. [5] sketched an interface that allows
a programmer to specify causality explicitly. Our formalisation
of on-demand causal consistency in §4.1 and §4.3 complements
their proposal with a formal semantics and a discussion of the
trade-offs between different ways of specifying causality.

7. Conclusion
We have presented a flexible specification framework for even-
tually consistent systems that incorporates and unifies the guar-
antees and features that have appeared in a wide array of pre-
vious work [2, 13, 14, 17, 21, 24, 29–31]. In particular, our
framework supports replicated data types and conflict resolu-
tion, session guarantees, various causality guarantees, consis-
tency annotations, fences, and transactions.

We have illustrated how our specifications allow program-
mers to determine if a certain behavior is possible without con-
sidering the details of a system’s implementation. Moreover,
we have shown how our framework enables precise statements
and proofs about how various features and guarantees are re-
lated, thus providing system architects with a tool for exploring
the design space.

Finally, we hope that our use of shared-memory model tech-
niques will help to bridge research communities and promote
an exchange of ideas and results. For instance, we plan to ap-
ply several techniques developed for shared-memory models
to eventually consistent systems, such as the testing and ver-
ification of programs [12], automatic inference of consistency
annotations and fences [23] and compositional reasoning about
components [6].

References
[1] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.
[2] Basho Riak. http://basho.com/products/riak-overview/.
[3] S. V. Adve and K. Gharachorloo. Shared memory consistency

models: A tutorial. Computer, 29(12), 1996.
[4] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal

memory: definitions, implementation, and programming. Dis-
tributed Computing, 9, 1995.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
The potential dangers of causal consistency and an explicit solu-
tion (vision paper). In SOCC, 20012.

[6] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL, 2013. To appear.

[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: from C++11 to
POWER. In POPL, 2012.

[8] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathe-
matizing C++ concurrency. In POPL, 2011.

[9] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD,
1995.

[10] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Ba-
quero, V. Balegas, and S. Duarte. Brief announcement: Seman-
tics of eventually consistent replicated sets. In DISC, 2012.

[11] A.-M. Bosneag and M. Brockmeyer. A formal model for even-
tual consistency semantics. In IASTED PDCS, 2002.

[12] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:
checking consistency of concurrent data types on relaxed mem-

ory models. In PLDI, 2007.
[13] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud

types for eventual consistency. In ECOOP, 2012.
[14] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventu-

ally consistent transactions. In ESOP, 2012.
[15] N. Conway, R. Marczak, P. Alvaro, J. M. Hellerstein, and

D. Maier. Logic and lattices for distributed programming. In
SOCC, 2012.

[16] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvarts-
man. Eventually-serializable data services. In PODC, 1996.

[17] G. DeCandia et al. Dynamo: Amazon’s highly available key-
value store. In SOSP, 2007.

[18] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News, 33(2), 2002.

[19] M. Herlihy and N. Shavit. The art of multiprocessor program-
ming. 2008.

[20] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7), 1978.

[21] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and
J. Gehrke. Making geo-replicated systems fast if possible, con-
sistent when necessary. In OSDI, 2012.

[22] B. Liskov and S. Zilles. Programming with abstract data types.
In ACM Symposium on Very High Level Languages, 1974.

[23] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav.
Dynamic synthesis for relaxed memory models. In PLDI, 2012.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In SOSP, 2011.

[25] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability,
and convergence. Technical Report TR-11-22, UT Austin, 2011.

[26] C. Papadimitriou. The theory of database concurrency control.
1986.

[27] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract
data types: Building blocks for collaborative applications. J.
Parallel Distrib. Comput., 71(3), 2011.

[28] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A com-
prehensive study of Convergent and Commutative Replicated
Data Types. Technical Report 7506, INRIA, 2011.

[29] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In SSS, 2011.

[30] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, 2011.

[31] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. W. Welch. Session guarantees for weakly consistent
replicated data. In PDIS, 1994.

[32] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In SOSP, 1995.

A. Proofs
A.1 Proof of Theorem 6
POCV is equivalent to the conjunction of RYW, MR, WFRV and
MWV. Pick an excution X = (A, so, vis, ar). Let soo and hbo
be, respectively, the per-object session order and the per-object
causality order, both induced by X . Consider binary relations
r on actions in A that access the same object, i.e.,

r ✓ {(a, b) 2 A⇥A | sameobj(a, b)}. (2)

We define two operators H, G on such relations as follows:

H(r) = soo [(r; soo) [(r; soo⇤; r) [(soo; r);

G(r) = (r [soo)+.

We will prove that for every r satisfying (2) we have

H(r) ✓ r () G(r) ✓ r.

This gives us the required, because POCV is equivalent to
G(vis) ✓ vis, and the conjunction of RYW, MR, WFRV and
MWV to H(vis) ✓ vis.

Since H(r) ✓ G(r) for every r satisfying (2), we have that
G(r) ✓ r =) H(r) ✓ r. For the other direction, assume that
H(r) ✓ r. We will now show that G(r) ✓ r. Pick a, a0 2 A
such that (a, a0) 2 G(r). We have to prove that (a, a0) 2 r. By
the definition of G and the transitivity of r and soo, we have
the following cases of (a, a0), which we handle separately in
this proof.

If (a, a0) 2 soo, then (a, a0) 2 H(r), because soo ✓ H(r).
But H(r) ✓ r by our choice of r. Hence, (a, a0) 2 r, as
desired.

If (a, a0) 62 soo, then there exist a1, b1, . . . , an, bn with
n � 1 such that

(a, a1) 2 soo⇤ ^ (bn, a0) 2 soo⇤

^ (8i 2 {1, . . . , n}. (ai, bi) 2 r)

^ (8i 2 {1, . . . , n� 1}. (bi, ai+1) 2 soo).

Using our assumption that H(r) ✓ r, we can prove the desired
(a, a0) 2 r as follows:

(a, a1) 2 soo⇤ ^ (a1, b1) 2 r ^ (b1, a2) 2 soo ^ . . .

(an, bn) 2 r ^ (bn, a0) 2 soo⇤

=) (a, a1) 2 soo⇤ ^ (a1, bn) 2 r ^ (bn, a0) 2 soo⇤

=) (a, a1) 2 soo⇤ ^ (a1, a
0) 2 r

=) (a, a0) 2 r.

The first implication comes from the fact that (r; soo⇤; r) ✓
H(r), the second from (r; soo) ✓ H(r), and the third from
(soo; r) ✓ H(r).

POCA is equivalent to the conjunction of WFRA and MWA.
Pick an execution X = (A, so, vis, ar). Let soo and hbo be,
respectively, the per-object session order and the per-object
causality order, both induced by X . Then,

hbo = (soo [vis)+ = (soo [(vis; soo⇤))+.

Thus, the lower bound on ar set by WFRA and MWA is in-
cluded in that given by POCA. This means that POCA implies
WFRA and MWA. It remains to prove that WFRA and MWA
together imply POCA. Consider (a, b) 2 hbo. By the definition
of hbo, there exist a1, . . . , an with n � 2 such that

a1 = a ^ an = b ^
8i 2 {1, . . . , n� 1}. (ai, ai+1) 2 (soo [vis).

Since WFRA and MWA hold, the third conjunct above implies
that

8i 2 {1, . . . , n� 1}. (ai, ai+1) 2 ar.

Furthermore, ar is transitive. Hence, we have (a, b) 2 ar, as
desired. ut

A.2 Proof of Theorem 8
In the following r ranges over read actions, w over write
actions and f over fence actions. Consider an execution X =
(A, so, vis, ar, sc) satisfying the assumptions of the theorem.
For simplicity, we consider only the case when every read in
the execution reads a non-default value. Let

vis0 = {(w, r) 2 vis | op(w) = wr ^ op(r) = rd};
ar0 = {(w1, w2) 2 ar | op(w1) = wr ^ op(w2) = wr}.

Let us show that ar0 [vis0 [so[sc is acyclic. Assume there
is a cycle in this relation. By the assumptions of the theorem,
we can assume that any so edge on the cycle has a fence as
one of its endpoints. Then there is at least one fence on the
cycle, since ar0 and vis0 cannot form one due to the types of
their endpoints. Consider any segment of the cycle starting an
ending with a fence that has no fences in the middle. If this
segment has edges other than so and sc, then it has to have one
of the following forms:

• f1
so�! w1

ar0�! w2
vis0��! r

so�! f2;

• f1
so�! w1

ar0�! w2
so�! f2;

• f1
so�! w1

so�! f2.

Assume (f2, f1) 2 sc. Then the second configuration contra-
dicts COCA, and the last one THINAIR. By POCV and the
transitivity of vis, the first configuration yields (w2, w1) 2 vis,
which contradicts POCA. Hence (f1, f2) 2 sc. We can thus
convert the cycle into one in so [sc, contradicting THINAIR.

Let ar00 be any relation that is total on write actions to the
same object and contains ar0 [vis0 [so[sc. Then ar00 [vis0 [
so [sc is acyclic. Let

fr = {(r, w) | 9w0. (w0, r) 2 vis ^ (w0, w) 2 ar ^
¬9w00. (w00, r) 2 vis ^ (w0, w00) 2 ar}.

We now show that

ar00 [vis0 [so [sc [fr (3)

is acyclic. Assume the contrary. Then the cycle contains at least
one fr edge.

Consider first the case when the cycle does not contain so
or sc edges. We can assume that the cycle does not have any ar

edges, as they can only follow fr edges and can be merged with
them.

Let us show that fr; vis0; fr ✓ fr. Take (r1, w4) 2 fr; vis0; fr,
then for some w1, w2, r2, w3 we have

r1
vis0 �� w1

ar00��! w2
vis0��! r2

vis0 �� w3
ar00��! w4

and (w2, w3) 2 ar, ¬9w0. (w0, r1) 2 vis0^(w1, w
0) 2 ar. Then

(w1, w4) 2 ar and hence, (r1, w4) 2 fr.
Thus, we can assume that the cycle has only a single fr edge.

Then it also has a single vis0 edge. Hence, for some r, w we
have (r, w) 2 fr and (w, r) 2 vis0. But the former implies
that for some w0 we have (w0, r) 2 vis0, (w0, w) 2 ar and
¬9w00. (w00, r) 2 vis0^(w0, w00) 2 ar, which is a contradiction.

Assume now that the cycle in (3) has at least one so or sc
edge. Consider any segment of the cycle starting and ending
by a fence that does not contain fences in the middle. Then the
segment does not contain any so or sc edges, except the first
and the last one. Any ar edges except possibly the second one
on the segment can only follow fr edges and can be merged
with them. Since fr; vis0; fr ✓ fr, we can thus assume that the
segment has a single fr edge. Hence, the segment can only be
of one of the following forms:

1. f1
so�! w1

(ar00)⇤����! w2
vis0��! r1

fr�! w3
vis0��! r2

so�! f2;

2. f1
so�! w1

(ar00)⇤����! w2
vis0��! r1

fr�! w3
so�! f2;

3. f1
so�! r1

fr�! w3
vis0��! r2

so�! f2;

4. f1
so�! r1

fr�! w3
so�! f2;

5. f1
so�! f2;

6. f1
sc�! f2;

7. f1
so�! w1

(ar00)⇤����! w2
so�! f2;

8. f1
so�! w1

(ar00)⇤����! w2
vis0��! r1

so�! f2.

We now show that in all cases we must have (f1, f2) 2 sc. Note
that this means that we can convert the cycle into one in so[sc,
contradicting THINAIR and thus implying the acyclicity of (3).

Assume the contrary, i.e., (f2, f1) 2 sc. Then cases 5 and 6
contradict THINAIR, and case 7 contradicts COCA. By POCV
and the transitivity of vis, case 8 contradict POCA. By the
definition of hbo, in cases 1 and 2 the segment has the form

f1
so�! w1

(ar00)⇤����! w2
vis0��! r1

vis0 �� w4
ar00��! w3

(vis0;so)[so�������! f2

and (w2, w4) 2 ar00. Hence,

f1
so�! w1

ar00��! w3
(vis0;so)[so�������! f2

By POCV, COCV and the transitivity of vis, (f2, f1) 2 sc
entails (w3, w1) 2 vis ✓ hbo, which contradicts POCA.

In cases 3 and 4 the segment has the form

f1
so�! r1

vis0 �� w4
ar00��! w3

(vis0;so)[so�������! f2

and ¬9w0. (r1, w
0) 2 vis0^(w4, w

0) 2 ar00. By POCV, COCV
and the transitivity of vis, (f2, f1) 2 sc entails (w3, r1) 2 vis0,
which yields a contradiction.

Hence, (3) is acyclic. Let us take any total relation includ-
ing (3) as the desired r. Assume that for some r, w, w0 2 A such
that obj(w) = obj(w0) we have (w, r) 2 vis and (w, w0) 2 r.
Then (w, r) 2 r, (w, w0) 2 ar, and hence, (r, w0) 2 fr. From
this it follows that (r, w0) 2 r. Thus, every read reads the most
recent value according to r. ut

A.3 Proof of Proposition 9
Consider an execution X = (A, so, vis, ar, sc). Due to the use
of factoring in the definition of hb, from the assumption of the
theorem we have

8a, b 2 A. a 6⇠ b =)
((8a0, b0 2 A. a ⇠ a0 ^ b ⇠ b0 =) (a0, b0) 2 hb) _

(8a0, b0 2 A. a ⇠ a0 ^ b ⇠ b0 =) (b0, a0) 2 hb)).

Hence, hb is total on A and every transaction is contiguous in
it, which for the case of integer registers implies serializability.

B. Abstract Implementation and
Correspondence Theorem

THEOREM 10. Our abstract implementation generates execu-
tions satisfying axioms in the main text of the paper, when
its parameters satisfy appropriate conditions. These conditions
are described in Propositions 21, 22, 23, 24, 25, 26, 27 and 28.

In this section, we describe an abstract implementation of an
eventually-consistent database system, and show that it corre-
sponds to the axiomatic specification given in the main text of
the paper. Our implementation is highly parameterised. When
instantiated with appropriate parameters, it meets different lev-
els of eventual consistency, which we have described axiomat-
ically in the paper. The implementation is defined in terms
of rules for transforming sessions and replicas. One of such
rules is concerned with the interaction between a session and a
replica, and it supports the availability of a replica to a session
in the sense that the rule does not involve any communication
among replicas.

Throughout this section, we assume a finite totally-ordered
set of replica ids:

(DId, <), ranged over by d.

Also, we call a relation r is functional if

8x, y1, . . . , yn, y0
1, . . . , y

0
n.

(x, y1, . . . , yn) 2 r ^ (x, y0
1, . . . , y

0
n) 2 r

=) y1 = y0
1 ^ . . . ^ yn = y0

n.

Finally, for any set X , we let Pfin(X) be the collection of all
finite subsets of X .

B.1 Three Main Components
We start with three main components of our implementation:
distributed time, message and data type implementation.

A distributed time is a totally-ordered set of the form

LTime⇥ DId.

Here LTime is a countably-infinite totally-ordered set with a
function next : LTime! LTime satisfying

8t, t0 2 LTime. next(t) = t0 =) t < t0

and (LTime ⇥ DId) is ordered lexicographically. We call ele-
ments in (LTime⇥ DId) distributed timestamps.

Our abstract implementation assumes that the set of action
ids is defined by a distributed time:

AId = LTime⇥ DId.

A message is a tuple m = (x, e, f, W, E) in the following
set:

Obj⇥ AId⇥ (
[

⌧

Op⌧)⇥ Pfin(AId)⇥ Pfin(AId).

In our intended usage, a message (x, e, f, W, E) represents
an operation f performed on the object x at the timestamp
e. When this operation was originally issued in a replica, the
message says, the actions with ids in W were visible in the
replica. When the operation is later propagated to another re-
mote replica, it will stay in the target replica without being ex-
ecuted until all the actions with ids in E are performed on the
replica. We will write Msg for the set of messages.

A data type implementation is a family of tuples

(St⌧ , init⌧ : St⌧ ,

eval⌧ : AId⇥ Op⌧ ⇥ Pfin(AId)⇥ St⌧ ! Val⇥ St⌧ ,

id⌧ : St⌧ ! Pfin(AId))

indexed by each data type ⌧ , such that for every ⌧ ,

(id⌧ (init⌧) = ;) ^
(8e, f, W. 8�,�0 2 St⌧ .

eval⌧ (e, f, W,�) = (,�0) =) id⌧ (�
0) = id⌧ (�) [{e}).

The init⌧ is the initial state of a data type ⌧ , the next
eval⌧ (e, f, W,�) describes the outcome of running the oper-
ation f on the state �, where the id of the associated action is
e and this action is issued when actions in W are visible from
the replica. The last id⌧ (�) returns the ids of all the actions that
have influenced on the computation leading to �.

B.2 Database Implementation
Our implementation of a distributed database assumes the three
components that we have just described. It defines the informa-
tion stored in sessions and replicas, and specifies a protocol that
these replicas and sessions need to follow in order to guaran-
tee a desired level of eventual consistency. In the following, we
describe the implementation step-by-step:

1. Firstly, we assume a distributed time, a next operator and a
data type implementation:

LTime⇥ DId, next : LTime! LTime,

{(St⌧ , init⌧ , eval⌧ , id⌧)}⌧ .

2. Secondly, we define configurations for replicas, sessions and
entire systems.

• The set of replica configurations, DB, is given by

Table = Obj!
[

⌧

St⌧ ,

DB = DId⇥ LTime⇥ Table⇥ Pfin(Msg)⇥ Pfin(Msg).

A tuple (d, t, ⇢, M, N) 2 DB represents a status of a
replica. The first component d is the id of the replica, and
(t, d) is the timestamp that the replica maintains for itself.
The next ⇢ is a table for storing objects. The following M
consists of messages about actions that were performed
on the replica and need to be propagated to other remote
replicas. The last component N contains the other kind
of messages, those that describe operations performed in
other remote replicas and are propagated from them to the
current replica.

• The set of session configurations, Session, is defined as
follows:

Session = SId⇥ SCtx, ranged over by ✓ or (s,),

Here SCtx is an unspecified set and it contains session
contexts, which store session-specific information. We do
not fix what goes into a session context. Various choices
of SCtx will emerge as we later consider axioms of even-
tual consistency.

• A system configuration is a pair

S | D

where S is a subset of Session and D is a subset of DB.
We require that both S and D be functional, and they meet
the following condition:

8e 2 id(S|D). 9t. 9(d, t0, , ,) 2 D.

e = (t, d) ^ e < (t0, d),

where the set id(S|D) consists of all action ids appearing
in S|D and is formally defined by:

id(S|D) =

{e | 9(, , ⇢, M, N) 2 D.

(9x 2 Obj. e 2 idtype(x)(⇢(x)))

_ 9(, e0, , W, E) 2M [N. e 2W [E [{e0}}.

This condition means that according to the distributed
time, every action in D are performed in the past, if we
use timestamps of replicas as our baseline.
We use comma to mean the disjoint union, and represent
a singleton set {x} simply by its element x. For instance,
(S, ✓) means the union of S and the singleton set {✓}
where ✓ does not belong to S . Also, we use the following
operation on system configurations:

time(S|D) = {(t, d) | (d, t, , ,) 2 D}.

3. Thirdly, we assume the presence of the following operations

for all data types ⌧ :

instr : Session! Obj⇥ Op

update⌧ : Obj⌧ ⇥ AId⇥ Op⌧ ⇥ St⌧ ⇥ Table⇥ SCtx! SCtx

depend⌧ : AId⇥ Op⌧ ⇥ St⌧ ⇥ Table⇥ SCtx! Pfin(AId)

enable : Obj⇥ Session⇥ DB! {true, false}

where Obj⌧ = {x 2 Obj | type(x) = ⌧} and the depend
operator is required to satisfy the condition below:

depend⌧ (e, f,�, ⇢,) ✓ (id⌧ (�) [
[

x2Obj

idtype(x)(⇢(x))).

The first operation selects the next instruction to be executed
by a session, and the second describes how running this
instruction changes the session’s status. The third operation
takes the id of an action, and computes the ids of other
actions that should be performed on a replica before the
given action. The last is a predicate that checks whether a
session can access a replica without violating a desired level
of eventual consistency.
The last three operations are the knobs on our abstract imple-
mentation, which can be adjusted to achieve a different level
of eventual consistency. The details will be given in the rest
of this section.

4. Finally, we define our implementation in terms of rules for
transforming system configurations:

�i = (di, ti, ⇢i, Mi, Ni) m = (x, e, f, W, E) 2M1

e 62 idtype(x)(⇢2(x))
�02 = (d2, max(next(t1), t2), ⇢2, M2, N2 [{m})

S | D, �1, �2
m�! S | D, �1, �

0
2

PROP

� = (d, t, ⇢, M, N) (x, e, f, W, E) 2 N
⌧ = type(x) E ✓ S

y2Obj idtype(y)(⇢(y))

e 62 id⌧ (⇢(x)) (,�0) = eval⌧ (e, f, W, ⇢(x))
�0 = (d, t, ⇢[x 7! �0], M, N)

S | D, �
()�! S | D, �0

OPD

✓ = (s,) � = (d, t, ⇢, M, N) e = (t, d)
instr(✓) = (x, f) ⌧ = type(x) enable(x, ✓, �)
0 = update⌧ (x, e, f, ⇢(x), ⇢,) ✓0 = (s,0)
W 0 = id⌧ (⇢(x)) E0 = depend⌧ (e, f, ⇢(x), ⇢,)
eval⌧ (e, f, W 0, ⇢(x)) = (w,�0) a = (e, s, [x.f : w])
�0 = (d, next(t), ⇢[x 7! �0], M [{(x, e, f, W 0, E0)}, N)

S, ✓ | D, �
(W 0,a)����! S, ✓0 | D, �0

OPS

The first rule describes the communication between two
replicas, which propagates a message from one replica to
another. When such a message arrives, the receiving replica
waits until an associated causality condition for the message
is met. Once this waiting condition is met, the replica up-
dates its local object table according to the second rule. The
last rule describes the access to a replica by a session. This
generates a new action, which is later propagated to other
replicas in the form of a message. Also, it changes the con-
figurations of session and replica that interact, as described
by the rule.

LEMMA 11. If S|D ◆�! S 0|D0 and S|D is well-formed, so is
S 0|D0.

Proof: Assume that S|D is well-formed and S|D ◆�! S 0|D0.
We should show that S 0|D0 is also well-formed. This means
two properties of S 0|D0. First, both S 0 and D0 are functional.
Second,

8e 2 id(S 0|D0). 9t. 9(d, t0, , ,) 2 D0.

e = (t, d) ^ e < (t0, d).

The first property follows from the well-formedness of S|D
and the fact that all three rules in our abstract implementation
do not create any session configurations nor replica configura-
tions. For the second property, we show it by case analysis on
the rule used to obtain S 0|D0.

• If the rule is PROP, we have

id(S|D) = id(S 0|D0)

^ (8(t, d) 2 time(S|D). 9t0.
(t0, d) 2 time(S 0|D0) ^ (t, d) (t0, d0)).

The desired property of S 0|D0 follows from these two con-
juncts and the well-formedness of S|D.

• If the rule is OPD, we have

id(S|D) = id(S 0|D0) ^ time(S|D) = time(S 0|D0). (4)

Here the second conjunct holds because the rule does not
change the timestamps of any replicas. The first conjunct
holds because the OPD rule changes only one replica by
running eval, but

(,�0) = eval⌧ (e, f, W, ⇢(x))

=) id⌧ (�
0) = id⌧ (⇢(x)) [{e}.

The second property of S 0|D0 follows from (4) and the well-
formedness of S|D.

• The remaining case is that the rule is OPS. By the definition
of OPS, we have

8(t, d) 2 time(S|D). 9t0.
(t0, d) 2 time(S 0|D0) ^ (t, d) (t0, d0).

(5)

Pick e0 2 id(S 0|D0). Let (x, e, f, W 0, E0) be a message
generated by the rule. If e0 does not belong to {e}[W 0[E0,
it should be in id(S|D), and the desired property of S 0|D0

follows from (5) and the well-formedness of S|D. If e0 = e,
by the definition of the rule, we have

9d, t. (t, d) = e0 ^ (d, next(t), , ,) 2 D0,

from which follows the desired property of S 0|D0. Finally, if
e0 2 (W 0 [E0) \ {e}, we use the condition on the depend
operator and the definition of W 0, and derive that

e0 2 ((W 0 [E0) \ {e}) ✓
[

y2Obj

idtype(y)(⇢(y))

✓ id(S|D),

where ⇢ is the fourth argument used for computing E0 in the
OPS rule. Now the well-formedness of S|D and the formula
in (5) give the desired property of S 0|D0.

⇤

Let id(◆) = {id(a) | (, a) = ◆}. We show that the rules of
our implementation increase the set of action ids occurring in
a system configuration.

LEMMA 12. If S|D ◆�! S 0|D0, then

id(S|D) ✓ id(S 0|D0) ^ id(S|D) [id(◆) = id(S 0|D0).

Proof: We do the case analysis on the rule used in the transi-
tion:

S|D ◆�! S 0|D0.

The first case is that the rule is PROP. The rule PROP only
delivers an existing message to a new target replica, and does
not change the object table of any replica. Furthermore, id(◆) =
;. The lemma follows from these properties of PROP.

The next case is OPS. As in the previous case, OPS only
adds a new message (x, e, f, W 0, E0) to some replica, where
all action ids in W 0 [E0 already appear in the same replica
before the rule. Also, although OPS changes the object table of
a replica, this change happens only via the execution of eval,
which satisfies the following property:

(,�0) = eval⌧ (e, f, W,�) =) id⌧ (�) [{e} = id⌧ (�
0).

Since id(◆) = {e}, the claim of this lemma follows from what
we have just described.

The final case is OPD. In this case, no message is removed
from or added to a replica. The object table of some replica is
changing by OPD, but this is done via the execution of eval.
Hence, as explained in the previous case, this change only in-
creases the set of action ids in the object table of a replica, and
this increment is the action id e of the message (x, e, f, W, E)
that is selected by the rule. Note that this message already ex-
ists in the replica before the application of the rule, so e is not
a new action id. From the observations that we have just made
follows that id(S|D) ✓ id(S 0|D0). Since id(◆) = ;, the claim
of this lemma holds. ⇤

A message (x, e, f, W, E) respects time if

8e0 2 E [W. e0 < e.

A system configuration S|D respects time if all messages in
the configuration respect time and the following condition is
met for every replica (d, t, ⇢, M, N) 2 D:

(8x 2 Obj. 8e 2 idtype(x)(⇢(x)). e < (t, d)) ^
(8(, e, , W, E) 2M [N. 8e0 2 {e} [W [E. e0 < (t, d)).

LEMMA 13. If S|D ◆�! S 0|D0 and S|D respects time, then
S 0|D0 also respects time.

Proof: We do the case analysis on the rule used in the transi-
tion:

S|D ◆�! S 0|D0.

The first case is PROP. The rule delivers a message
(x, e, f, W, E) from one replica to another, but it does not cre-
ate any new messages. Thus, all the messages in S 0|D0 are also

in S|D, so they should respect time. It remains to prove that
the condition on a replica’s timestamp holds for all replicas
in D0. If a replica in D0 is not modified by the application of
PROP, this condition follows from our assumption on S|D. Let
� = (d, t, ⇢, M, N) 2 D0 be the replica modified by PROP, and
let m = (x, e, f, W, E) be the message delivered by PROP.
Pick an action id e0 such that

(9(, e0, , W 0, E0) 2M [N. e0 2 {e0} [W 0 [E0)

_ (9x 2 Obj. e0 2 idtype(x)(⇢(x))).

If the second disjunct holds or the first disjunct is true with a
witness different from m, the condition on the timestamp of �
follows from our assumption on S|D. Otherwise,

e0 2 {e} [W [E.

Let (d0, t0) be the timestamp of a replica that sent the message
m in our application of PROP. By our assumption on S|D,

e0 < (t0, d0).

But by the definition of PROP, (t0, d0) < (t, d). Hence, e0 <
(t, d) as desired.

The second case is OPD. This rule does not create any new
messages. Since every message in S|D respects time, so do
the ones in S 0|D0. We can thus complete the proof of this case
if we show that the condition on the timestamp of a replica
holds for every replica in D0. Note that the OPD rule changes
only one replica. For all the other unchanged replicas in D0,
the condition on their timestamps holds, because these replicas
are already present in S|D and every replica in S|D satisfies
the condition on its timestamp. Let �, �0 be replicas in D and
D0, respectively, such that the OPD rule changes � to �0. Then,
there are d, t, ⇢, M, N, x, e, f, W, E,�0 such that

� = (d, t, ⇢, M, N)

^ �0 = (d, t, ⇢[x 7! �0], M, N)

^ (x, e, f, W, E) 2 N ^ (,�0) = evaltype(x)(e, f, W, ⇢(x)).

By the condition imposed on eval, the above formula implies
that every action id e0 appearing in �0 also occurs in �. By the
assumption on S|D, this implies that

e0 < (t, d)

which is precisely what we have to prove.
The final case is OPS. Let �, �0 be replicas in D and D0

such that the OPS rule transforms � to �0. Then, there exist
d, t, ⇢, M, N, x,�0, f, W 0, E0 satisfying the following proper-
ties:

(� = (d, t, ⇢, M, N)) ^
((,�0) = evaltype(x)(, , , ⇢(x))) ^
(W 0 = idtype(x)(⇢(x))) ^
(E0 = dependtype(x)(, , ⇢(x), ⇢,)) ^
(�0 = (d, next(t), ⇢[x 7! �0], M [{(x, (t, d), f, W 0, E0)}, N))

Every message in D0 other than m = (x, (t, d), f, W 0, E0)
exists in D, so it reflects time. By the condition imposed on
depend and the definition of W 0,

(E0 [W 0) ✓
[

y2Obj

idtype(y)(⇢(y))

Hence, by our assumption on S|D,

8e0 2 E0 [W 0. e0 < (t, d).

Hence, m also respects time. It remains to show the condition
on the timestamp of each replica in D0. This condition is met
for all replicas in D0 other than �0, because they are already
present in D and every replica in D satisfies the same condition
on its timestamp. Pick an action id e0 in �0. Then, e0 already
appears in �, or

e0 2 idtype(x)(�
0) [{(t, d)} [E0 [W 0

= {(t, d)} [
[

y2Obj

idtype(y)(⇢(y))

where the equality above uses the conditions on id and depend.
If e0 = (t, d), then

e0 = (t, d) < (next(t), d).

Otherwise, e0 appears in � already. So in this case, by our
assumption on S|D, we have

e0 < (t, d) < (next(t), d).

In both cases, we proved that the condition on the timestamp
of �0 holds, as desired. ⇤

A configuration S|D is empty if for all (, , ⇢, M, N) 2 D,

(M = N = ;) ^ (8x 2 Obj. ⇢(x) = inittype(x)).

COROLLARY 14. If S0|D0 is empty and

S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

then Sn|Dn respects time.

Proof: This corollary follows from Lemma 13 and the fact that
all empty system configurations respect time. ⇤

B.3 Fair Trace
We represent a computation of our implementation in terms of
a trace:

DEFINITION 15. A trace is a tuple

(S0, D0, {(◆k, Sk, Dk)}1kn)

for n 2 N [{!}, such that S0|D0 is empty and

8k. (1 k n) =) (Sk�1|Dk�1
◆k�! Sk|Dk).

We will often present traces in the following more readable
form:

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

LEMMA 16. Every trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn,

satisfies the following properties:

1. For every i,

id(Si|Di) = {id(a) | 9k. (, a) = ◆k ^ k i}.

This implies that id(Si|Di) ✓ id(Sj |Dj) for all i, j with
i < j.

2. For all i 2 {1, . . . , n} and a 2 Act, if (, a) = ◆i, then

id(a) 62 id(Si�1|Di�1) ^ id(a) 2 id(Si|Di).

3. For all i, j 2 {1, . . . , n} and a, b 2 Act, if

(, a) = ◆i ^ (, b) = ◆j ^ i 6= j

then id(a) 6= id(b).

Proof: The first property follows from Lemma 12 and the fact
that id(S0|D0) = ;. To prove the second, consider i, a such that
(, a) = ◆i. By the definition of our rules, id(a) should come
from the timestamp and the id of a replica in the configuration
Si�1|Di�1. By the well-formedness of Si�1|Di�1, this means
that id(a) is not in id(Si�1|Di�1). Also, by the definition of
our rules, id(a) should be in id(Si|Di). We have just shown
that the second property holds. The last property in the lemma
is a consequence of the other two properties. ⇤

LEMMA 17. Consider a trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

For all i, (, , , M, N) 2 Di and (, e, , W,) 2M[N , there
exist a, j such that

j i ^ (W, a) = ◆j ^ id(a) = e.

Proof: By our condition on the trace, there are no messages in
the initial configuration S0|D0. Hence, all messages in some
Di are generated by the application of the OPS rule. So, for
every replica (, , , M, N) 2 Di and every message m =
(, e, , W,) 2M [N in this replica, there is an index k such
that the message is generated by OPS in the k-th step. This k
and the action generated at this step are the desired j and a in
this lemma. ⇤

LEMMA 18. Consider a trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

For all i, e 2 id(Si|Di), (, , ⇢, M, N) 2 Di and x 2 Obj, if

e 2 idtype(x)(⇢(x)) _ (9W. (x, , , W,) 2M [N ^ e 2W)

then

9k i. 9a. (, a) = ◆k ^ id(a) = e ^ obj(a) = x.

Proof: Pick i, ⇢, M, N, e, x such that

((, , ⇢, M, N) 2 Di) ^
(e 2 idtype(x)(⇢(x)) _ 9W. (x, , , W,) 2M [N ^ e 2W).

By definition, the initial configuration of the trace ⌧ should be
empty. This implies that id(S0|D0) = ;. Hence, by Lemma 12,
there exist k, a such that

k i ^ (, a) = ◆k ^ id(a) = e.

It remains to show that obj(a) = x. We show this by induction
on i � k. Suppose that i = k. Then, by the well-formedness
of Si�1|Di�1, e is not in id(Si�1|Di�1). This means that the
state ⇢(x) or the message (x, , , W,) is produced by the rule
at the k-th step. This can happen only when x = obj(a).
Now suppose that i > k. If e appears in a message, this
message must already exist in Si�1|Di�1. In this case, by
induction hypothesis, we get x = obj(a). Otherwise, e is in
idtype(x)(⇢(x)). Let ⇢0 be the object table of the same replica
in Si�1|Di�1. If e is already in idtype(x)(⇢

0(x)), we can use
induction hypothesis and deduce that x = obj(a) as desired. If
not, this means that the OPD rule was applied at the i-th step to
⇢0(x) and some message (x, e, f 0, W 0, E0), and produced ⇢(x).
Now we can apply the induction hypothesis on the message
(x, e, f 0, W 0, E0), and obtain the desired conclusion that x =
obj(a). ⇤

LEMMA 19. Consider a trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Every configuration Si|Di respects time.

Proof: Every empty configuration respects time. Furthermore,
by Lemma 13, all the rules in our abstract implementation
transforms time-respecting configurations to time-respecting
ones. This lemma follows from these two observations. ⇤

DEFINITION 20. A trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

is fair if for every action a such that (, a) = ◆k for some
k, there is a threshold 1 k0 n satisfying the following
condition:

8i � k0. 8(, , ⇢, ,) 2 Di.

9x 2 Obj. x = obj(a) ^ id(a) 2 idtype(x)(⇢(x)).

B.4 Correspondence: Basic Axioms
We now relate the abstract implementation with the axiomatic
description given in the main part of this paper. Our plan is
to show that every fair trace generates an execution in our ax-
iomatic semantics that satisfies all the well-formedness axioms,
the data type axiom and the basic eventual consistency axioms
in Figure 1. Once this basic correspondence is established, we
describe further conditions on the parameters of our implemen-
tation, and show that they validate axioms for session guaran-
tees and causality.

Consider a fair trace

⌧ = (S0, D0, {(◆k, Sk, Dk)}k).

We generate an execution (A, so, vis, ar) from this trace ⌧ as
follows:

A = {a | 9k. (, a) = ◆k},

vis = {(a, b) 2 A⇥A | 9k, W. (W, b) = ◆k ^ id(a) 2W},

so = {(a, b) 2 A⇥A | 9k, l. k < l ^ (, a) = ◆k

^ (, b) = ◆l ^ ses(a) = ses(b)},

ar = {(a, b) 2 A⇥A | id(a) < id(b) ^ obj(a) = obj(b)}.

This execution assumes a replicated data type specification F
that is compatible with a data type implementation

{(St⌧ , init⌧ , eval⌧ , id⌧)}⌧

in the following sense: for every type ⌧ , there exists a relation
R⌧ between the last three components of contexts for the type
⌧ and data type states in St⌧ such that

1. ((;, ;, ;), init⌧) 2 R⌧ ;
2. if

((V, r0, r1),�) 2 R⌧

^ eval⌧ (e, f, W,�) = (w,�0) ^ (8g 2 Op⌧ . (e, g) 62 V)

^ r00 ◆ (r0 [{((e0, g), (e, f)) | e0 2W ^ (e0, g) 2 V })

^ r01 = r1 [{((e0, g), (e, f)) | e0 < e ^ (e0, g) 2 V }
[{((e, f), (e0, g)) | e < e0 ^ (e0, g) 2 V }

then

((V [{(e, f)}, r00, r
0
1),�

0) 2 R⌧ ^ F⌧ (f, V, r0, r1) = w;

PROPOSITION 21. All the fair traces generate executions sat-
isfying SOWF, VISWF, ARWF, EVENTUAL and THINAIR.

Proof: Pick a fair trace ⌧ :

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

where n 2 N [{!}. Let (A, vis, so, ar) be an execution
constructed from this trace according to our recipe described
above. We will show that this execution satisfies all the axioms
mentioned in the proposition.

Firstly, we show that SOWF holds. By the definition of so, if
a

so�! b, then ses(a) = ses(b). Furthermore, in this case, a 6= b
because of Lemma 16. Hence, so is irreflexive. Furthermore,
for every a, b 2 A, if a 6= b but ses(a) = ses(b), we have that

(a
so�! b) _ (a

so�! b)

by the definition of so. It remains to show that so is transitive.
Consider a, b, c 2 A such that a

so�! b and b
so�! c. By the

definition of so, there are i, j, k, l such that

i < j ^ k < l ^ ◆i = (, a) ^ ◆j = (, b)

^ ◆k = (, b) ^ ◆l = (, c).

But j = k because of Lemma 16. Hence, a
so�! c by the

definition of so.
Secondly, we consider the VISWF axiom. This follows from

Lemma 18 and the definition of the OPS rule.
Thirdly, we prove the ARWF axiom. Suppose that a

ar�! b.
By the definition of ar, obj(a) = obj(b). The irreflexivity and
the transitivity of ar follow from the same properties of < on
action ids. Since < is total and the ids of different actions
in A are different (Lemma 16), ar relates any two actions
in A that work on the same object. Furthermore, for every
a 2 A, vis�1(a) contains only those actions working on obj(a),
because of the VISWF axiom that we just proved above. Hence,
ar|vis�1(a) is a total order for every a 2 A, as required in the
last part of the ARWF axiom.

Fourthly, we show the EVENTUAL axiom. If A is finite, the
axiom becomes vacuous and it holds. Suppose that A is infinite.
Note that this supposition implies n = !. Pick an action a 2 A.
Let x = obj(a). Then, there exists k such that

(, a) = ◆k.

Since the trace is fair, there exists k0 such that

8i � k0. 8(, , ⇢, ,) 2 Di. id(a) 2 idtype(x)(⇢(x)).

To show the axiom holds for a, we should prove that there are
at most finitely many b 2 A satisfying the condition below:

obj(b) = x ^ ¬(a
vis�! b).

Notice that if an action b 2 A satisfies the condition above,

9k1. k1 k0 ^ (, b) = ◆k1
.

But the number of possible witnesses k1 in the above formula
is at most k0. So only finitely many b’s can satisfy the condition
above.

Fifthly, we prove that the THINAIR axiom is satisfied. We
define a total order <⌧ on A by

a <⌧ b () 9i, j. i < j ^ ◆i = (, a) ^ ◆j = (, b).

By Lemma 16, <⌧ is an irreflexive and transitive total order on
A. We will prove that

8a, b 2 A. (a
vis�! b _ a

so�! b) =) a <⌧ b. (6)

To see why the THINAIR axiom follows from this formula,
note that the formula implies

(vis [so)+ ✓ (<⌧)
+

but the RHS of this subset relationship is included in <⌧ be-
cause <⌧ is transitive. Now the irreflexivity of <⌧ implies that
(vis [so)+ is irreflexive as well, as required by the THINAIR
axiom. Let us go back to the proof of the formula in (6). Pick
a, b 2 A. If a

so�! b, then a <⌧ b by the definition of so. Now
suppose that a

vis�! b. This means that there exists i such that

a 2 id(Si|Di) ^ (, b) = ◆i+1.

By Lemma 12, there should be k such that

a 62 id(Sk|Dk) ^ (, a) = ◆k+1.

By Lemma 16,
k + 1 < i + 1.

Hence, a <⌧ b, as desired. ⇤

PROPOSITION 22. All the fair traces generate executions sat-
isfying RVAL.

Proof: Pick a trace ⌧ :

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

where n 2 N [{!}. Let (A, vis, so, ar) be an execution
constructed from this trace according to our recipe described
above.

We will first show that

8i. 8(, , ⇢, ,) 2 Di. 8x 2 Obj.

9⌧,�, B. ⌧ = type(x) ^ � = ⇢(x)

^B = {a 2 A | id(a) 2 id⌧ (�)}
^ ((event(B), event(vis|B), event(ar|B)),�) 2 R⌧ .

(7)

Our proof is by induction on i. Pick ⇢ and x as described in
the formula above, and define ⌧,�, B again as described in the
formula. We need to show that the last conjunct in the formula
holds. When i = 0,

� = init⌧ ^B = ;.

Hence, the claimed relationship by R⌧ in the formula becomes

((;, ;, ;), init⌧) 2 R⌧ ,

which holds because it is precisely one of the conditions as-
sumed on R⌧ . Now assume that i > 0, and that the formula
in (7) holds for all 0 j < i. We do the case analysis on the
rule used at the i-th step. If the rule is PROP, no object tables
of replicas change during the i-th step. The last conjunct in
(7) follows from induction hypothesis. The other cases are that
OPS and OPD are used. In these cases, the induction hypothe-
sis gives the desired conclusion except when ⇢ is the table of a
replica changed by the rule and x is the object affected by the
rule. To take care of this exception, assume that ⇢ and x are the
table and the object updated by the rule. Then, there exist e, f ,
W0, �0, B0 and a0 2 A such that

(eval⌧ (e, f, W0,�0) = (,�))

^B0 = {a 2 A | id(a) 2 id⌧ (�0)}
^ (8g. (e, g) 62 event(B0))

^ ((event(B0), event(vis|B0
), event(ar|B0

)),�0) 2 R⌧

^ event(a0) = (e, f)

^ (B0 [{a0} = B)

^ {b 2 B0 | id(b) 2W0} ✓ vis�1(a0).

(8)

The third conjunct comes from the well-formedness of config-
urations (OPS) or the conditions in the rule (OPD). The fourth

conjunct holds because of induction hypothesis. The fifth con-
junct is true since for every action id such as e in a fair trace,
there are a, k with ◆k = (, a) ^ id(a) = e (Lemma 12). The
sixth conjunct follows from our assumption on eval⌧ , the fact
that � is obtained from �0 and the following properties of B
and B0:

(B = {a 2 A | id(a) 2 id⌧ (�)})

^ (B0 = {a 2 A | id(a) 2 id⌧ (�0)}).

The seventh conjunct holds because of Lemma 17 (OPD) or
the definition of the rule (OPS). We note two consequences of
the formula in (8):

event(vis|B0
) [{((e0, f 0), (e, f)) | (e0, f 0) 2 event(B0)

^ e0 2W0}
= event(vis|B0)[event({(b, a0) | b2B0 ^ id(b)2W0})

✓ event(vis|B0[{a0})

= event(vis|B).

And

event(ar|B0
)

[{((e0, f 0), (e, f)) | (e0, f 0) 2 event(B0) ^ e0 < e}
[{((e, f), (e0, f 0)) | (e0, f 0) 2 event(B0) ^ e < e0}

= event(ar|B0
)

[event({(b, a0) | b 2 B0 ^ id(b) < id(a0)})
[event({(a0, b) | b 2 B0 ^ id(a0) < id(b)})

= event(ar|B0[{a0}) = event(ar|B).

By the second condition on R⌧ , what we have shown so far
imply that

((event(B), event(vis|B), event(ar|B)),�0) 2 R⌧ ,

as desired.
Next we use the formula in (7) and prove that this execution

satisfies the RVAL axiom. Pick a 2 A. By the definition of A,
there exists a unique k such that

◆k = (, a).

Let ⇢ and x be the table and the object that the OPS rule has
used for creating the action a in the k-th step. Define ⌧,�, B as
follows:

⌧ = type(x) ^ � = ⇢(x) ^B = {b 2 A | id(b) 2 id⌧ (�)}.

Then, by (7),

((event(B), event(vis|B), event(ar|B)),�) 2 R⌧ . (9)

Meanwhile, B = vis�1(a) by the definition of vis, so that

ctxt(a) = (op(a), event(B), event(vis|B), event(ar|B)).

Furthermore, id(a) 62 {id(b) | b 2 B} by the well-formedness
of the configuration at the (k�1)-th step and the definition of
the OPS rule. Hence, the relationship in (9) implies

(F⌧ (ctxt(a)),) = eval⌧ (id(a), op(a), id⌧ (�),�)).

Since rval(a) is defined to be the value computed by the RHS
function above in the definition of OPS, this in turn gives
rval(a) = F⌧ (ctxt(a)), as desired. ⇤

B.5 Correspondence: Axioms for Session Guarantees
Next, we consider axioms about session guarantees. To do so,
we make a few assumptions:

1. We assume that SCtx has the following form:

SCtx = (Obj! Pfin(AId))⇥ (Obj! Pfin(AId))⇥ Code

A session context is a tuple of two tables and code,
(R, U, K), where R records all the actions read for each ob-
ject, U does the same for actions performed by the session
and K is the piece of the remaining code to be executed by
the session.

2. We require the following condition on update:

update⌧ (x, e, f,�, ⇢, (R, U, K)) w
(R[x 7! R(x) [id⌧ (�)], U [x 7! U(x) [{e}], K).

where (R0, U 0, K 0) w (R00, U 00, K 00) means that

8x 2 Obj. R0(x) ◆ R00(x) ^ U 0(x) ◆ U 00(x).

PROPOSITION 23. The following conditions on the enable
predicate imply corresponding session-guarantee axioms as
described:

1. For every fair trace ⌧ , the RYW axiom holds for the execu-
tion generated from ⌧ if

8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x)).

2. For every fair trace ⌧ , the MR axiom holds for the execution
generated from ⌧ if

8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x)).

3. For every fair trace ⌧ , the WFRA axiom holds for the
execution generated from ⌧ if

8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x)).

4. For every fair trace ⌧ , the MWA axiom holds for the execu-
tion generated from ⌧ if

8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x)).

Proof: Consider a fair trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Let (A, so, vis, ar) be the execution constructed from this trace
⌧ according to our recipe. We go through each item of the list
in the proposition, and show that if the condition in the item
holds, this execution satisfies the axiom mentioned in the item.

Let us start with the first item. Suppose that

8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x)).

Pick a, b 2 A such that

a
soo��! b.

By the definition of soo,

(a
so�! b) ^ (obj(a) = obj(b)).

We unpack the definition of so in the first conjunct:

9k, l. k < l ^ (, a) = ◆k ^ (, b) = ◆l ^ ses(a) = ses(b).

Then, there are

✓ 2 Sl�1 and � 2 Dl�1

such that the OpS rule is applied for ✓ and � at the l step in the
trace ⌧ . We note one simple consequence:

(ses(a),) = (ses(b),) = ✓.

Let U and ⇢ be the write table and the object table of ✓ and �,
respectively:

(, (, U,)) = ✓ ^ (, , ⇢, ,) = �.

The rules in our abstract implementation only increase sets
stored in the U tables of all sessions. Furthermore, the U table
of a session contains the ids of all the operations performed in
the session. These two facts imply that

id(a) 2 U(obj(a)) = U(obj(b)).

Since the OpS rule is applied at the l step, the following check
by the enable predicate should hold:

enable(obj(b), ✓, �).

Hence, by our supposition on the predicate,

id(a) 2 U(obj(b)) ✓ idtype(obj(b))(⇢(obj(b))).

Recall that the definition of the vis relation says that

8a0 2 A. (id(a0) 2 idtype(obj(b))(⇢(obj(b)))) =) (a0 vis�! b).

Since id(a) 2 idtype(obj(b))(⇢(obj(b))), we have (a
vis�! b), as

desired.
Next, we prove the item about the MR axiom. Suppose that

8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x)).

Consider actions a, b, c 2 A such that

a
vis�! b

soo��! c.

By the definition of the soo relation, there are k, l such that

k < l ^ (, b) = ◆k ^ (, c) = ◆l

^ ses(b) = ses(c) ^ obj(b) = obj(c).

Let ✓k and �k be the session in Sk�1 and the replica in Dk�1

used in the k-th step of our trace. Similarly, let ✓l and �l be the
session in Sl�1 and the replica in Dl�1 engaged in the l-th step
of our trace. Let Rk, Rl and ⇢k, ⇢l be tables such that

(, (Rk, ,)) = ✓k ^ (, , ⇢k, ,) = �k

^ (, (Rl, ,)) = ✓l ^ (, , ⇢l, ,) = �l.

By our supposition on the enable predicate,

Rl(obj(c)) ✓ idtype(obj(c))(⇢l(obj(c))).

Hence, to complete this case, we only need to show that

id(a) 2 Rl(obj(c)),

because every action with its id in ⇢l(obj(c)) becomes related
to c by the vis relation. Since a

vis�! b, by the definition of the
OPS rule,

id(a) 2 idtype(obj(b))(⇢k(obj(b))).

This means that a gets included in the obj(b) entry of the R
table of the session ses(b) after the k-th step. But ses(b) =
ses(c) and the R table of each session only grows by the rules
of our abstract implementation. Hence, id(a) 2 Rl(obj(b)).
Since obj(b) = obj(c), we get the desired membership of a.

We move on to the WFRA axiom. Suppose that

8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x)).

Consider actions a, b, c 2 A such that

a
vis�! b(

soo��!)⇤c.

We should show that a
ar�! c. That is,

id(a) < id(c) ^ obj(a) = obj(c).

By the definition of vis and Lemma 18,

obj(a) = obj(b).

Also, by the definition of soo,

obj(b) = obj(c).

Hence, obj(a) = obj(c). It remains to show that

id(a) < id(c).

Let k, l be indices of the trace ⌧ such that

k l ^ (, b) = ◆k ^ (, c) = ◆l.

Also, let

(, (R, ,)) = ✓l 2 Sl�1 and (, , ⇢, ,) = �l 2 Dl�1

be the session and the replica that get transformed by the l-th
step of the trace ⌧ . Since the OPS rule is applied on these ✓l

and �l with respect to the object obj(c), we should have

enable(obj(c), ✓l, �l).

Because of our supposition on the enable predicate, this im-
plies that

R(obj(c)) ✓ idtype(obj(c))(⇢l(obj(c))).

Note that since all configurations in ⌧ respect time (Lemma 19)
and id(c) is the timestamp of �l, the above subset relationship
entails that

8a0 2 R(obj(c)). id(a0) < id(c). (10)

Since b and c are related by soo, they should have the same
session id. This means that R(obj(c)) includes the ids of all
actions read in the k-th step, which has produced the action b.
Since a

vis�! b, the action a is one of those read actions, so its
id should be in R(obj(c)). Now from (10), we can infer that
id(a) < id(c), as desired.

Finally, we prove the item on the MWA axiom. Suppose
that

8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x)).

Consider a, b 2 A such that

a
soo��! b.

By the definition of soo, there exist indices k, l of the trace ⌧
such that

k < l ^ (, a) = ◆k ^ (, b) = ◆l

^ ses(a) = ses(b) ^ obj(a) = obj(b).

Let

(, (, U,)) = ✓l 2 Sl�1 and (, , ⇢, ,) = �l 2 Dl�1

be the session and the replica that are transformed by the l-th
step of the trace ⌧ . Since the OPS rule applies to these session
and replica, we should have that

enable(obj(b), ✓l, �l).

By the supposition on the enable predicate, this implies that

U(obj(b)) ✓ ⇢(obj(b)).

Furthermore, since all configurations in the trace ⌧ respect time
(Lemma 19) and the timestamp of �l is id(b), we have that

8a0 2 U(obj(b)). id(a0) < id(b).

Recall that all the rules in our implementation only increase
the sets stored in the U part of each session, and they store all
actions performed by the session in its U component. These
properties and the fact that ses(a) = ses(b) imply that

a 2 U(obj(a)).

Since obj(a) = obj(b), this in turn entails a 2 U(obj(b)).
Hence,

id(a) < id(b),

from which follows the desired a
ar�! b. ⇤

PROPOSITION 24. The following conditions on the enable
predicate imply corresponding session-guarantee axioms as
described:

1. For every fair trace ⌧ , the WFRV axiom holds for the
execution generated from ⌧ if

(8x, e, f,�, ⇢,. idtype(x)(�) ✓ dependtype(x)(e, f,�, ⇢,))

^ (8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x))).

2. For every fair trace ⌧ , the MWV axiom holds for the execu-
tion generated from ⌧ if

(8x, e, f,�, ⇢,. idtype(x)(�) ✓ dependtype(x)(e, f,�, ⇢,))

^ (8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x))).

Proof: Consider a fair trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace ⌧ .
We go through both items in the proposition, and show that
if the condition in the item holds, this generated execution
satisfies the axiom mentioned in the item.

First, we prove the case of the WFRV axiom. Suppose that

(8x, e, f,�, ⇢,. id⌧ (�) ✓ dependtype(x)(e, f,�, ⇢,))

^ (8x, R, ⇢. enable(x, (, (R, ,)), (, , ⇢, ,))

=) R(x) ✓ idtype(x)(⇢(x))).

Consider actions a, b, c, d 2 A such that

a
vis�! b(

soo��!)⇤c
vis�! d

Let i, j, k, l be indices of ⌧ and Wi, Wj , Wk, Wl sets of actions
such that

(Wi, a) = ◆i ^ (Wj , b) = ◆j ^ (Wk, c) = ◆k ^ (Wl, d) = ◆l.

We should show a
vis�! d, equivalently,

id(a) 2Wl.

Since a
vis�! b and c

vis�! d,

(id(a) 2Wj) ^ (id(c) 2Wl).

Hence, it suffices to show that

Wj ✓Wk ^Wk ✓Wl. (11)

Let

(, (Rk, ,)) = ✓k 2 Sk�1 and (, , ⇢k, ,) = �k 2 Dk�1

be the session and the replica that are updated by the OPS rule
at the k-th step of ⌧ . By the definition of the rule, we should
have

enable(obj(c), ✓k, �k)

which by our supposition implies that

Rk(obj(c)) ✓ idtype(obj(c))(⇢k(obj(c))). (12)

The set Rk(obj(c)) includes the ids of all the actions on obj(c)
that have been read up to the (k�1)-th step. Since ses(b) =
ses(c) and obj(b) = obj(c), this implies that

Wj ✓ Rk(obj(c)).

Furthermore, ⇢k(obj(c)) = Wk, so we have

Wj ✓Wk,

which is the first conjunct of our proof obligation (11). It
remains to show the second conjunct in (11). Let

(, , ⇢l, ,) = �l 2 Dl�1

be the replica that was used to create the action d in the l-th
step. Then,

Wl = idtype(obj(d))(⇢l(obj(d))).

Since c
vis�! d, we have that k < l. Also, by the VISWF axiom

(Proposition 21),
obj(c) = obj(d).

If �l and �k are about the same replica,

Wk = idtype(obj(c))(⇢k(obj(c)))

= idtype(obj(d))(⇢k(obj(d)))

✓ idtype(obj(d))(⇢l(obj(d))) = Wl,

because the ids associated with object tables only grow by the
rules in our abstract implementation. Suppose that �l and �k
are configurations of different replicas. Recall that id(c) 2 Wl

because c
vis�! d. In order for this to happen, a message

(x0, id(c), f 0, W 0, E0)

for some x0, f 0, W 0, E0 must have been incorporated into the
replica ⇢l by the application of the OPD rule before the l-th
step. But the only message with the action id id(c) in the trace
is the one generated by the k-th step in the trace ⌧ . Hence,

E0 = dependtype(obj(c))(id(c), , ⇢k(obj(c)), ,)

◆ idtype(obj(c))(⇢k(obj(c)))

= Wk.

When the OPD rule was applied, it must have shown that every
action id in Wk was incorporated into the obj(c) entry of the
object table in an updated replica. Since the set of actions
associated with the object table of a replica only grows and
obj(c) = obj(d), we can conclude that

Wk ✓ idtype(obj(d))(⇢l(obj(d))) = Wl,

as desired.

Next, we prove the item on the WMV axiom. Suppose that

(8x, e, f,�, ⇢,. id⌧ (�) ✓ dependtype(x)(e, f,�, ⇢,))

^ (8x, U, ⇢. enable(x, (, (, U,)), (, , ⇢, ,))

=) U(x) ✓ idtype(x)(⇢(x))).

Consider a, b, c 2 A such that

a
soo��! b

vis�! c.

Then,
ses(a) = ses(b) ^ obj(a) = obj(b).

Let i, j, k be indices of the trace ⌧ and Wi, Wj , Wk sets of
action ids such that

(Wi, a) = ◆i ^ (Wj , b) = ◆j ^ (Wk, c) = ◆k.

We should show that

id(a) 2Wk.

Let

(, (, Uj ,)) = ✓j 2 Sj�1 and (, , ⇢j , ,) = �j 2 Dj�1

be the session and the replica involved in the application of the
OPS rule in the j-th step. By our supposition,

Uj(obj(b)) ✓ idtype(obj(b))(⇢j(obj(b))) = Wj .

Since a
soo��! b and Uj stores all the updates on the session ✓j ,

id(a) 2 Uj(obj(b)) ✓Wj .

Hence, we can discharge our proof obligation simply by show-
ing that

Wj ✓Wk.

Let

(, (, Uk,)) = ✓j 2 Sk�1 and (, , ⇢k, ,) = �k 2 Dk�1

be the session and the replica involved in the application of the
OPS rule in the k-th step. Since b

vis�! c,

(k < l) ^ (obj(b) = obj(c)).

If �l and �k are configurations of the same replica, we have

Wl = idtype(obj(b))(⇢l(obj(b)))

✓ idtype(obj(c))(⇢k(obj(c))) = Wk,

because the set of action ids associated with the object table
of a replica only grows by the rules of our abstract implemen-
tation. Suppose that �l and �k are configurations of different
replicas. In order for id(b) to appear in Wk, a message of the
form

(x0, id(b), f 0, W 0, E0)

for some x0, f 0, W 0, E0 must have been incorporated into the
replica �k before the k-th step. But if a message stores the

action id id(b), it should be the one generated by the l-th step.
Hence,

E0 = dependtype(obj(b))(id(b), , ⇢l(obj(b)), ,)

◆ idtype(obj(b))(⇢l(obj(b))).

= Wl.

Recall that whenever a message gets incorporated by our OPD
rule, we check that every action ids in the message’s E part
appear in the corresponding entry of the object table of a replica
updated by the rule. Furthermore, the action ids associated with
any entry in the object table of a replica only increase by the
rules of our abstract implementation. Hence,

Wl ✓ E0

✓ idtype(obj(b))(⇢k(obj(b)))

= idtype(obj(c))(⇢k(obj(c))) = Wk,

which is the conclusion that we are looking for. ⇤

B.6 Correspondence: Causality Axioms
PROPOSITION 25. For every fair trace ⌧ , the COCV and
the COCA axioms hold for the execution generated from the
trace ⌧ if

(8x, e, f,�, ⇢, R, U, K.

idtype(x)(�) [
[

y2Obj

U(y)

✓ dependtype(x)(e, f,�, ⇢, (R, U, K))) ^
(8U, ⇢. enable(, (, (, U,)), (, , ⇢, ,))

=) 8x. U(x) ✓ idtype(x)(⇢(x)))

Proof: Consider a fair trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace ⌧ .
We need to show that the execution satisfies the COCV and
the COCA axioms.

For each binary relation r on A, we say that a set X of action
ids is r-closed if

8a, b 2 A. (id(b) 2 X ^ (a, b) 2 r =) id(a) 2 X).

The key observation behind our proof is that every configura-
tion Si|Di in the trace ⌧ satisfies the following property:

(8(, , ⇢, ,) 2 Di.
[

x2Obj

idtype(x)(⇢(x)) is hb-closed) ^

(8(, , , M, N)2Di.8a, a0 2A. 8(, id(a), , , E)2M [N.

(a0, a) 2 (vis [so) =) id(a0) 2 E).

This property can be proven by induction on i. When i = 0, the
property holds because S0|D0 is empty. Now consider the case
that i > 0, and suppose that the property holds for all j < i. We
do the case analysis on the rule used in the i-th step. If the rule
is PROP, no new messages are generated, and the object tables
of replicas remain unchanged by the rule. Hence, the property

holds by induction hypothesis. If the rule is OPD, the situation
is similar to the previous case. The only difference lies in one
replica that gets affected by the rule. Let

� = (, , ⇢, ,) and m = (x, e, , , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let �0 be the new state of a
data type computed by OPD, and a an action in A that has e as
its id. By induction hypothesis, the set

[

y2Obj

idtype(y)(⇢(y))

is hb-closed, and

8a0 2 A. (a0, a) 2 (vis [so) =) id(a0) 2 E.

Furthermore, by the definition of OPD,

E ✓
[

y2Obj

idtype(y)(⇢(y)).

By the condition on eval and the definition of OPD,

idtype(x)(�
0) = idtype(x)(⇢(x)) [{e}.

Recall that hb = (so [vis)+. From what we have proved
follows that the below set is hb-closed as well:

[

y2Obj

idtype(y)(⇢[x 7! �0](y)).

The remaining case is OPS. Let

✓ = (, (, U,)), and � = (d, t, ⇢, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, f, W 0, E0) and a

be the message and the action generated by the rule. Note that
id(a) = e. By the definition of the rule,

9y. enable(y, ✓, �).

But because of the assumption in the proposition, this implies
that

8y. U(y) ✓ idtype(y)(⇢(y)). (13)

Also, because of the assumption on depend in the proposition,

idtype(x)(⇢(x)) [
[

y2Obj

U(y) ✓ E0.

This implies that

8a0 2 A. (a0, a) 2 (vis [so) =) id(a0) 2 E0.

Furthermore, from what we have just shown, the condition on
eval and the definition of OPS, it follows that the set of action
ids associated with the updated replica is the following set:

Y = {(t, d)} [
[

y2Obj

idtype(y)(⇢(y)).

By the definition of vis, the ids of actions in vis�1(a) are
included in the second argument of the above union. Also,
by (13), those of actions in so�1(a) are also included in the
second argument. These two facts, the definition of hb and the
hb-closedness of the second argument imply that the set Y is
also hb-closed, as desired.

Let us go back to the proof that the execution (A, so, vis, ar)
satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c 2 A such that

(a
hb�! c) ^ obj(a) = obj(c).

By the definition of hb, there exists b 2 A such that

(a(
hb�!)⇤b

so�! c) _ (a(
hb�!)⇤b

vis�! c). (14)

Let i, j, k, Wi, Wj , Wk be indices and sets of action ids such
that

(Wi, a) = ◆i ^ (Wj , b) = ◆j ^ (Wk, c) = ◆k.

Let
✓k = (, (, U,)) and �k = (d, t, ⇢, ,)

be the configurations of the session and the replica used by the
k-th step of the trace ⌧ . Assume that the first disjunct of (14)
holds. Then,

(j < k) ^ (id(b) 2
[

x2Obj

U(x)).

By the assumption in the proposition,
[

x2Obj

U(x) ✓
[

x2Obj

idtype(x)(⇢(x)).

Hence,
id(b) 2

[

x2Obj

idtype(x)(⇢(x)).

By what we proved about the hb closedness in the first half of
this proof, the set

S
x2Obj idtype(x)(⇢(x)) is hb-closed. Hence,

id(a) 2
[

x2Obj

idtype(x)(⇢(x)).

By Lemma 18,

id(a) 2 idtype(obj(a))(⇢(obj(a))) = Wk.

Hence, a vis�! c as desired. Now assume that the second disjunct
of (14) holds. Then,

id(b) 2 idtype(obj(c))(⇢(obj(c))) = Wk.

By what we proved about the hb closedness in the first half of
this proof, the set

[

x2Obj

idtype(x)(⇢(x))

is hb-closed. Hence,

id(a) 2
[

x2Obj

idtype(x)(⇢(x)).

But obj(a) = obj(c), so by Lemma 18,

id(a) 2 idtype(obj(c))(⇢(obj(c))) = Wk,

from which follows a
vis�! c as desired.

Next, we handle the COCA axiom. Define a total order <⌧

on all actions in A as follows:

a <⌧ b () id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids
(Lemma 16). We will show that

8a, b 2 A. (a
ar�! b _ a

vis�! b _ a
so�! b) =) a <⌧ b. (15)

Then, from the transitivity and irreflexivity of <⌧ follows that

(ar [vis [so)+ = (ar [hb)+

is irreflexive, as desired. Pick a, b 2 A such that

a
ar�! b _ a

vis�! b _ a
so�! b.

Let i, j, Wi, Wj be indices and sets of action ids such that

(Wi, a) = ◆i ^ (Wj , b) = ◆j .

If a
ar�! b, then a <⌧ b by the definition of ar. If a

vis�! b,

id(a) 2Wj .

Since the configuration Si�1|Di�1 of the trace right before the
i-th step respects time (Lemma 19),

id(a) < id(b).

Hence, a <⌧ b. The remaining case is that a
so�! b. Let

✓j = (, (, U,)) and �j = (d, t, ⇢, ,)

be the configurations of the session and the replica used in the
j-th step of the trace ⌧ . Then, since ses(a) = ses(b),

id(a) 2
[

x2Obj

U(x).

By the assumption of the proposition,
[

x2Obj

U(x) ✓
[

x2Obj

idtype(x)(⇢(x))

Since the configuration Si�1|Di�1 of the trace right before the
i-th step respects time (Lemma 19),

8a0 2
[

x2Obj

idtype(x)(⇢(x)). id(a0) < (t, d) = id(b).

From what we have proven so far, it follows that

id(a) < id(b),

which gives a <⌧ b as desired. ⇤

B.7 Correspondence: On-demand Cross Object
Causality

We assume that each operation f is annotated with µ 2
{ORD, CSL}, as explained in the main text of the paper. Also,
we assume the following two operations for each data type ⌧ :

idc⌧ : St⌧ ! Pfin(AId), ido⌧ : St⌧ ! Pfin(AId)

such that for every ⌧ and all �,�0 2 St⌧ ,

(idc⌧ (�) \ ido⌧ (�) = ; ^ idc⌧ (�) [ido⌧ (�) = id⌧ (�)) ^
(8e, fµ, W. eval⌧ (e, fµ, W,�) = (,�0) =)

((µ = ORD =) ido⌧ (�
0) = ido⌧ (�) [{e}) ^

(µ = CSL =) ido⌧ (�
0) = ido⌧ (�) [{e})).

PROPOSITION 26. For every fair trace ⌧ , the on-demand-
causality versions of the COCV and the COCA axioms hold
for the execution generated from the trace ⌧ if

(8x, e, fµ,�, ⇢, R, U, K.

idctype(x)(�) [
[

y2Obj

U(y)

✓ dependtype(x)(e, f,�, ⇢, (R, U, K))) ^
(8U, ⇢. enable(, (, (, U,)), (, , ⇢, ,))

=) 8x. U(x) ✓ idtype(x)(⇢(x))).

Proof: The proof is almost identical to that of Proposition 25,
except a few changes due to a new definition of hb. We re-
peat the proof of Proposition 25 here but with these required
changes. Consider a fair trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace ⌧ .
We need to show that the execution satisfies the versions of the
COCV and the COCA axioms for the new definition of hb.

We remind the reader that for each binary relation r on A, a
set X of action ids is said to be r-closed if

8a, b 2 A. (id(b) 2 X ^ (a, b) 2 r =) id(a) 2 X).

The key observation behind our proof is that every configura-
tion Si|Di in the trace ⌧ satisfies the following property:

(8(, , ⇢, ,) 2 Di.
[

x2Obj

idtype(x)(⇢(x)) is hb-closed) ^

(8(, , , M, N)2Di.8a, a0 2A.8(, id(a), fµ, , E)2M [N.

(a0, a) 2 (so [cvis) =) id(a0) 2 E)

Note that hb here is (so [cvis)+, not (so [vis)+ in Proposi-
tion 25. This property can be proven by induction on i. When
i = 0, the property holds because S0|D0 is empty. Now con-
sider the case that i > 0, and suppose that the property holds
for all j < i. We do the case analysis on the rule used in the
i-th step. If the rule is PROP, no new messages are generated,
and the object tables of replicas remain unchanged by the rule.
Hence, the property holds by induction hypothesis. If the rule

is OPD, the situation is similar to the previous case. The only
difference lies in one replica that gets affected by the rule. Let

� = (, , ⇢, ,) and m = (x, e, fµ, , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let �0 be the new state of a
data type computed by OPD, and a an action in A that has e as
its id. By induction hypothesis, the set

[

y2Obj

idtype(y)(⇢(y))

is hb-closed, and

8a0 2 A. (a0, a) 2 (cvis [so) =) id(a0) 2 E.

Furthermore, by the definition of OPD,

E ✓
[

y2Obj

idtype(y)(⇢(y)).

By the condition on eval and the definition of OPD,

idtype(x)(�
0) = idtype(x)(⇢(x)) [{e}.

Recall that hb = (so [cvis)+. From what we have proved
follows that the below set is hb-closed as well:

[

y2Obj

idtype(y)(⇢[x 7! �0](y)).

The remaining case is OPS. Let

✓ = (, (, U,)), and � = (d, t, ⇢, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, fµ, W 0, E0) and a

be the message and the action generated by the rule. Note that
id(a) = e. By the definition of the rule,

9y. enable(y, ✓, �).

But because of the assumption in the proposition, this implies
that

8y. U(y) ✓ idtype(y)(⇢(y)). (16)

Also, because of the assumption on depend in the proposition,
�
idctype(x)(⇢(x)) [

[

y2Obj

U(y)
�
✓ E0.

Since idctype(x)(⇢(x)) contains the ids of all actions that are
cvis-related to a, the above subset relationship implies that

8a0 2 A. (a0, a) 2 (cvis [so) =) id(a0) 2 E0.

Furthermore, from what we have just shown, the condition on
eval and the definition of OPS, it follows that the set of action
ids associated with the updated replica is the following set:

Y = {(t, d)} [
[

y2Obj

idtype(y)(⇢(y)).

By the definition of vis, the ids of actions in vis�1(a) are in-
cluded in the second argument of the above union. This means
that those of actions in cvis�1(a) should also be included, be-
cause cvis�1(a) ✓ vis�1(a). Also, by (16), the ids of actions in
so�1(a) are also included in the second argument. These two
facts, the definition of hb and the hb-closedness of the second
argument imply that the set Y is also hb-closed, as desired.

Let us go back to the proof that the execution (A, so, vis, ar)
satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c 2 A such that

(a
hb�! c) ^ obj(a) = obj(c).

By the definition of hb, there exists b 2 A such that

(a(
hb�!)⇤b

so�! c) _ (a(
hb�!)⇤b

cvis��! c). (17)

Let i, j, k, Wi, Wj , Wk be indices and sets of action ids such
that

(Wi, a) = ◆i ^ (Wj , b) = ◆j ^ (Wk, c) = ◆k.

Let
✓k = (, (, U,)) and �k = (d, t, ⇢, ,)

be the configurations of the session and the replica used by the
k-th step of the trace ⌧ . Assume that the first disjunct of (17)
holds. Then,

(j < k) ^ (id(b) 2
[

x2Obj

U(x)).

By the assumption in the proposition,
[

x2Obj

U(x) ✓
[

x2Obj

idtype(x)(⇢(x)).

Hence,
id(b) 2

[

x2Obj

idtype(x)(⇢(x)).

By what we proved about the hb closedness in the first half of
this proof, the set

S
x2Obj idtype(x)(⇢(x)) is hb-closed. Hence,

id(a) 2
[

x2Obj

idtype(x)(⇢(x)).

By Lemma 18,

id(a) 2 idtype(obj(a))(⇢(obj(a))) = Wk.

Hence, a vis�! c as desired. Now assume that the second disjunct
of (17) holds. Then,

id(b) 2 idtype(obj(c))(⇢(obj(c))) = Wk.

By what we proved about the hb closedness in the first half of
this proof, the set

[

x2Obj

idtype(x)(⇢(x))

is hb-closed. Hence,

id(a) 2
[

x2Obj

idtype(x)(⇢(x)).

But obj(a) = obj(c), so by Lemma 18,

id(a) 2 idtype(obj(c))(⇢(obj(c))) = Wk,

from which follows a
vis�! c as desired.

Next, we handle the COCA axiom. Define a total order <⌧

on all actions in A as follows:

a <⌧ b () id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids
(Lemma 16). We will show that

8a, b 2 A. (a
ar�! b _ a

cvis��! b _ a
so�! b) =) a <⌧ b. (18)

Then, from the transitivity and irreflexivity of <⌧ follows that

(ar [cvis [so)+ = (ar [hb)+

is irreflexive, as desired. Pick a, b 2 A such that

a
ar�! b _ a

cvis��! b _ a
so�! b.

Let i, j, Wi, Wj be indices and sets of action ids such that

(Wi, a) = ◆i ^ (Wj , b) = ◆j .

If a
ar�! b, then a <⌧ b by the definition of ar. If a

cvis��! b,

id(a) 2Wj .

Since the configuration Si�1|Di�1 of the trace right before the
i-th step respects time (Lemma 19),

id(a) < id(b).

Hence, a <⌧ b. The remaining case is that a
so�! b. Let

✓j = (, (, U,)) and �j = (d, t, ⇢, ,)

be the configurations of the session and the replica used in the
j-th step of the trace ⌧ . Then, since ses(a) = ses(b),

id(a) 2
[

x2Obj

U(x).

By the assumption of the proposition,
[

x2Obj

U(x) ✓
[

x2Obj

idtype(x)(⇢(x))

Since the configuration Si�1|Di�1 of the trace right before the
i-th step respects time (Lemma 19),

8e0 2
[

x2Obj

idtype(x)(⇢(x)). e0 < (t, d) = id(b).

From what we have proven so far, it follows that

id(a) < id(b),

which gives a <⌧ b as desired. ⇤

B.8 Correspondence: Fence
To accommodate fences in our abstract implementation, we
need to allow sessions to issue fence instructions. This amounts
to four changes. The first is that the instr function can return not
just operations on objects, but also the fence instruction:

instr : Session! (Obj⇥ Op) [{fence}.

The second change is the addition of a new function on ses-
sions:

nextCode : Code! Code.

Given a code part K of a session, this function updates the part
so that it is ready to execute the next command of K. The third
change is the introduction of a new rule for fence:

� = (d, t, ⇢, M, N) �i = (di, ti, ⇢i, Mi, Ni)
✓ = (s, (R, U, K)) instr(✓) = fence
8y 2 Obj. U(y) ✓ idtype(y)⇢(y)
8i. 8y 2 Obj. idtype(y)⇢(y) ✓ idtype(y)⇢i(y)
a = ((t, d), s, fence) ✓0 = (s, (R, U, nextCode(K)))
�0 = (d, next(t), ⇢, M, N)
�0i = (di, max(ti, next(t)), ⇢i, Mi, Ni)

S, ✓ | �, �1, . . . , �n a�! S, ✓0 | �0, �01, . . . , �0n
OPF

The fourth change lies in the construction of an execution from
a trace. Consider a fair trace:

⌧ = (S0, D0, {(◆k, Sk, Dk)}k).

We generate an execution (A, so, vis, ar, sc) from this trace ⌧
as follows:

A = {a | 9k. (, a) = ◆k _ a = ◆k},

vis = {(a, b) 2 A⇥A | 9k, W. (W, b) = ◆k ^ id(a) 2W},

so = {(a, b) 2 A⇥A | 9k, l. k < l ^ ses(a) = ses(b)

^ ((, a) = ◆k _ a = ◆k)

^ ((, b) = ◆l _ b = ◆l)},

ar = {(a, b) 2 A⇥A | 9k, l. (, a) = ◆k ^ (, b) = ◆l

^ id(a) < id(b) ^ obj(a) = obj(b)},

sc = {(a, b) 2 A⇥A | 9k, l. a = ◆k ^ b = ◆l ^ k < l}.

The soundness of most axioms can be proved by arguments
similar to what we presented so far. Hence, instead of going
through all the axioms, we focus on the four most important
ones: SCWF, THINAIR, COCV and COCA.

PROPOSITION 27. Every fair trace generates executions satis-
fying SCWF and THINAIR.

Proof: Pick a fair trace ⌧ :

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn

where n 2 N [{!}. Let (A, vis, so, ar, sc) be an execution
constructed from this trace. We will show that this execution
satisfies SCWF and THINAIR.

Firstly, we prove that the SCWF axiom holds for the execu-
tion. For all k, l, a, b, if

a = ◆k ^ b = ◆l ^ k 6= l

then
op(a) = op(b) = fence ^ a 6= b,

because of the definition of the rules in our abstract implemen-
tation. This immediately implies that sc is irreflexive. It also
implies the transitivity of sc. To see this, consider a, b, c such
that

a
sc�! b ^ b

sc�! c.

By the definition of sc, there exist i, j, k, l such that

i < j ^ k < l ^ a = ◆i ^ b = ◆j ^ b = ◆k ^ c = ◆l.

By what we have shown above, j = k. Hence, a
sc�! c,

as desired. Now it remains to show that sc is total. Consider
a, b 2 A such that op(a) = op(b) = fence and a 6= b. By
the definition of the rules in our abstract implementation, there
must exist i, j such that

a = ◆i ^ b = ◆j .

Since a 6= b, i must be different from j. Then, i < j or j < i.
Hence,

(a
sc�! b) _ (b

sc�! a),

as the totality requires.
Secondly, we prove that the execution satisfies the THINAIR

axiom. We note that for every action a 2 A, there exists a
unique index k such that

(, a) = ◆k _ a = ◆k.

This is because the timestamps of replicas are only increasing
by our rules, and every action in A uses the timestamp of the
accessed replica, which is increased right after the generation
of the action. We write index(a) for the unique index k, and
using this notation, we define a binary relation <⌧ on A:

a <⌧ b () index(a) < index(b).

By definition, <⌧ is a total order on A. Hence, we can prove
the required acyclicity of so [vis [sc by showing that

8a, b 2 A. (a
so�! b _ a

vis�! b _ a
sc�! b) =) a <⌧ b.

Consider actions a, b 2 A. Assume that a
so�! b or a

sc�! b. In
this case, by the definition of so and sc, we have that a <⌧ b, as
required. The remaining case is that a

vis�! b. By the definition
of vis, there exists a set of actions W such that

((W, b) = ◆index(b)) ^ (id(a) 2W). (19)

Recall that the initial configuration S0|D0 has to be empty
by the definition of trace. One consequence of this and the
definition of our rules is that

8i. 8(, , ⇢, ,) 2 Di. 8x 2 Obj. 8a 2 A.

id(a) 2 idtype(x)(⇢(x)) =) index(a) i.

Since W in (19) comes from ⇢ in Dindex(b)�1 and it contains
id(a), it follows from the above implication that index(a) <
index(b). This means that a <⌧ b, as desired. ⇤

PROPOSITION 28. For every fair trace ⌧ , the fence versions
of the COCV and the COCA axioms hold for the execution
generated from the trace ⌧ if

(8x, e, fµ,�, ⇢, R, U, K.

idctype(x)(�) [
[

y2Obj

U(y)

✓ dependtype(x)(e, f,�, ⇢, (R, U, K))) ^
(8U, ⇢. enable(, (, (, U,)), (, , ⇢, ,))

=) 8x. U(x) ✓ idtype(x)(⇢(x))).

Proof: The proof is similar to that of Proposition 26. Consider
a fair trace

⌧ = S0|D0
◆1�! S1|D1

◆2�! . . .
◆n�! Sn|Dn.

Let (A, so, vis, ar, sc) be an execution generated by this trace ⌧ .
We need to show that the execution satisfies the fence versions
of the COCV and the COCA axioms, which use the notion
of hb that accommodates both the fence operator and the on-
demand causal operations.

We remind the reader that for each binary relation r on A, a
set X of action ids is said to be r-closed if

8a, b 2 A. (id(b) 2 X ^ (a, b) 2 r =) id(a) 2 X).

For every a 2 A, we write index(a) for the unique index k such
that

(a = ◆k) _ ((, a) = ◆k).

Also, for each index i of the trace ⌧ , we let

Fi = {id(a) | a 2 A ^ op(a) = fence ^ index(a) i}.

The key observation behind our proof is that every configu-
ration Si|Di in the trace ⌧ satisfies the following property:

(8(, , ⇢, ,) 2 Di. Fi [
[

x2Obj

idtype(x)(⇢(x)) is hb-closed) ^

(8(, , , M, N)2Di.8a, a0 2A.8(, id(a), fµ, , E)2M [N.

(a0, a) 2 (so [cvis) =) id(a0) 2 E [Fi).

Note that hb here is (so [cvis [sc)+. This property can be
proven by induction on i. When i = 0, the property holds
because S0|D0 is empty and for every a 2 A, index(a) � 1.
We move on to the case that i > 0. Suppose that the property
holds for all j < i. We do the case analysis on the rule used in
the i-th step.

If the rule is PROP, no new messages nor fence actions are
generated, and the object tables of replicas remain unchanged
by the rule. Hence, the property holds by induction hypothesis
and the fact that Fk only increases as k gets larger.

If the rule is OPD, the situation is similar to the previous
case. The only difference lies in one replica that gets affected
by the rule. Let

� = (, , ⇢, ,) and m = (x, e, fµ, , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let �0 be the new state

of a data type computed by OPD, and a the action in A with
id(a) = e; such an action exists because all messages in a
trace are generated together with corresponding actions in our
abstract implementation. Since OPD does not generate a fence
action,

Fi�1 = Fi.

By induction hypothesis, the set

Fi�1 [
[

y2Obj

idtype(y)(⇢(y))

is hb-closed, and

8a0 2 A. (a0, a) 2 (cvis [so) =) id(a0) 2 E [Fi�1

Furthermore, by the definition of OPD,

E ✓
[

y2Obj

idtype(y)(⇢(y)).

By the condition on eval and the definition of OPD,

idtype(x)(�
0) = idtype(x)(⇢(x)) [{e}.

Recall that hb = (so [cvis [sc)+, and that op(a) 6= fence
by the definition of the rules in our abstract implementation.
From what we have proved follows that for every b 2 A, if
(b, a) 2 (so [cvis [sc), then id(b) belongs to the following
set:

Fi [
[

y2Obj

idtype(y)(⇢[x 7! �0](y)). (20)

This fact, Fi = Fi�1 and induction hypothesis imply that the
set above is hb-closed.

The next case is OPS. Let

✓ = (, (, U,)), and � = (d, t, ⇢, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, fµ, W 0, E0) and a

be the message and the action generated by the rule. By the
definition of the rule,

9y. enable(y, ✓, �).

But because of the assumption in the proposition, this implies
that

8y. U(y) ✓ idtype(y)(⇢(y)).

Also, because of the assumption on depend in the proposition,
�
idctype(x)(⇢(x)) [

[

y2Obj

U(y)
�
✓ E0

Since idctype(x)(⇢(x)) contains the ids of all actions that are
causal and vis-related to a, the above subset relationship im-
plies that

8a0 2 A.

level(a0) = CSL ^ (a0, a) 2 (vis [so) =) id(a0) 2 E0.

Also, for every a0 2 A, if

9c. op(a0) = fence ^ a0 so�! c
hbo��! a

then
index(a0) < index(a).

The details of this consequence are given in the second part of
the proof of Proposition 27. Hence, every such a0 should be in
Fi. From this membership and the fact on E0 above follows
that

8a0 2 A. (a0, a) 2 (so [cvis) =) id(a0) 2 E0 [Fi.

This means that the generated message by the rule satisfies the
property that we try to show. All the other messages satisfy
the property as well because of induction hypothesis and the
fact that Fi = Fi�1. By a similar reason, the object tables in
Di other than ⇢ also satisfy the desired property. It remains
to show that the object table ⇢ satisfies the property. By the
condition on eval and the definition of OPS, the set of action
ids associated with the updated replica is the following set:

{id(a)} [
[

y2Obj

idtype(y)(⇢(y)).

Also,
Fi�1 = Fi.

Now consider the set:

Fi [{id(a)} [
[

y2Obj

idtype(y)(⇢(y)). (21)

By the definition of vis, the ids of actions in vis�1(a) are
included in the above union. Also, for every a0 2 A, if

9c. op(a0) = fence ^ a0 so�! c
hbo��! a

then
a0 2 Fi�1 = Fi.

From what we just argued follows that the ids of actions in
cvis�1(a) are included in the set in (21). By the assumption of
the proposition, the ids of actions in so�1(a) are also included
in the same set in (21). Furthermore, sc does not relate non-
fence actions and op(a) 6= fence. Hence, the ids of the actions
in (so [cvis [sc)�1(a) are contained in the set in (21). This
membership and the induction hypothesis imply that the set in
(21) is hb-closed, as desired.

The remaining case is OPF. This rule does not generate
any messages, and Fi�1 ✓ Fi. So, the desired property on
messages follows from the induction hypothesis. Also, the
rule does not alter any object tables. Thus, it suffices to show
that the fence action generated by the rule does not lead to
the violation of the property on object tables. Let a be the
fence action generated by the rule in the i-th step of the trace.
Consider a0 2 A such that

(a0, a) 2 (so [cvis [sc).

This implies that

index(a0) < index(a). (22)

It suffices to show that

8(, , ⇢i, ,) 2 Di. id(a0) 2 Fi [
[

y2Obj

(idtype(y)(⇢i(y))).

This follows from (22), the assumption of the proposition on
the enable predicate, and the definitions of so, cvis and sc.

Let us go back to the proof that the execution

(A, so, vis, ar, sc)

satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c 2 A such that

(a
hb�! c) ^ obj(a) = obj(c).

Let i, k, Wi, Wk be indices and sets of action ids such that

(Wi, a) = ◆i ^ (Wk, c) = ◆k.

Then,
i < k

because b
hb�! b0 =) index(b) < index(b0); the details of

this implication are given in the second part of the proof of
Proposition 27. Let

✓k = (, (, U,)) and �k = (d, t, ⇢, ,)

be the configurations of the session and the replica used by
the k-th step of the trace ⌧ . By what we proved about the hb
closedness in the first half of this proof, the set

Fk [
[

x2Obj

idtype(x)(⇢(x))

is hb-closed. Furthermore, a is not a fence action, but a
hb�! c.

Hence,
id(a) 2

[

x2Obj

idtype(x)(⇢(x)).

This implies

id(a) 2 idtype(obj(a))(⇢(obj(a))) = Wk,

where we used the fact that obj(a) = obj(c). This gives a
vis�!

c, as desired.
Next, we handle the COCA axiom. Define a total order <⌧

on all actions in A as follows:

a <⌧ b () id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids.
We will show that

8a, b 2 A. (a
ar�! b _ a

cvis��! b _ a
so�! b _ a

sc�! b)

=) a <⌧ b.
(23)

Then, from the transitivity and irreflexivity of <⌧ follows that

(ar [cvis [so [sc)+ = (ar [hb)+

is irreflexive, as desired. Pick a, b 2 A such that

a
ar�! b _ a

cvis��! b _ a
so�! b _ a

sc�! b.

If a
ar�! b, then a <⌧ b by the definition of ar. If a

sc�! b, then a
and b must be fence actions and we should have that

index(a) < index(b).

The OPF rule ensures that the timestamp of the generated fence
action is smaller than the new timestamps of all replicas, and
no rules in our implementation decrease the timestamps of
replicas. Hence, the above relationship on the indices of a and
b implies that

id(a) < id(b),

which gives a <⌧ b as desired. By similar reasoning and the
assumption of the proposition on the enable predicate, we can
also conclude that if a

so�! b, then a <⌧ b. The only remaining
case is that

a
cvis��! b.

This case gets split into two subcases:

(9f. a
vis�! b ^ op(a) = fCSL) _

(9c. op(a) = fence ^ a
so�! c

hbo��! b).

If the second disjunct above holds, we can again use the similar
reasoning on the timestamps of replicas and the OPF rule.
Since index(a) < index(b) in this subcase, this reasoning
shows that id(a) < id(b). Hence, a <⌧ b. Now let us assume
that the first disjunct holds. Then, neither a nor b is a fence
action. Let i, j, Wi, Wj be indices and sets of action ids such
that

(Wi, a) = ◆i ^ (Wj , b) = ◆j .

Since a
vis�! b, the set Wj should contain id(a). The rules of

our implementation ensure that if an action is generated from
a replica in the trace, it gets an id that is larger than the ids of
any actions applied to the replica so far. Hence, id(a) < id(b),
which gives the desired a <⌧ b. ⇤

C. Comparison with the C/C++ Memory
Model

Our formalisation allows us to compare different forms of
eventual consistency with memory consistency models imple-
mented by common hardware and programming languages. To
this end, we specialise the axioms in Figure 1 to the case when
all objects are of the type intreg (§2), which corresponds to the
setting of the latter models (Figure 6). The notion of an execu-
tion can be simplified in this case: we define a shared-memory
execution as a tuple (A, so, vis, ar), where (A, so) is a history,
and vis and ar satisfy VISWF and ARWF from Figure 6. Now
write actions do not have incoming vis edges, and the ar rela-
tion totally orders writes to the same object. Read actions have
a single incoming vis edge from the write action it fetches its
value from. According to the RVAL axiom in Figure 6, a read
returns the value written by the vis-related write, or the default
value 0 in its absence. The EVENTUAL axiom is adjusted to
account for the changed type of vis: it prohibits infinitely many

reads to read from writes preceding any given one in ar.
The other axioms in Figure 6 are formulated in the ‘nega-

tive’ form, prohibiting certain configurations in an execution,
rather than in the ‘positive’ form, like in Figure 1, since here
this is more concise. For example, RYW says that a read r
that happened after a write w2 in a session cannot read from
a write w1 earlier in ar. This follows from the RYW axiom in
Figure 1: in an execution in the sense of Definition 5 satisfying
that axiom, the read r has to see the write w2; then according to
RVAL in Figure 1 and the definition of Fintreg, r cannot take its
value from w1. Similarly, the COCV axiom says that, if a read
r causally happens after a write w2, then it cannot read from a
write w1 earlier in ar. As before, this follows from COCV in
Figure 1, which in this case guarantees that, r sees both writes.
There are no axioms corresponding to the WFRV and MWV
session guarantees, because for integer registers, the session
guarantee axioms in Figure 6 are enough to imply per-object
causality: the conjunction of the axioms RYW–MWA in Fig-
ure 6 is equivalent to the conjunction of POCV and POCA.

The resulting consistency model maps to that of C/C++ [8]
as explained in §3.3. The only major difference is that C/C++
has the following weaker analogue of COCA:

¬9w1, w2. w1

hb **
w2

ar
jj

This does not allow ar to contradict hb, but allows ar edges
for different objects to form cycles with it. As we explained in
§3.3, the stronger version of COCA is validated by common
implementations of causal consistency.

PROPOSITION 29. The system specifications for the axioms of
basic eventual consistency, per-object causal consistency and
causal consistency as defined in Figure 6 and Figure 1 for
intreg are identical.

D. Comparison with Parallel Snapshot
Isolation

Figure 7 gives the pseudocode of the abstract implementation
of parallel snapshot isolation for replicated data types, similar
to the one given by Sovran et al. [30]. We have removed write-
write conflict detection and introduced sessions. See [30] for
the explanation of the implementation. We assume that each
session always accesses the same site. To validate EVENTUAL,
we also assume that the upon statement is subject to a fairness
constraint that every update is eventually delivered to every
site.

THEOREM 30. The set of histories produced by the implemen-
tation in Figure 7 is equal to the one produced by the specifi-
cation in Figure 4, assuming that all objects are of type intreg
and all actions are causal.

PROOF SKETCH. We first show that the set of histories pro-
duced by the implementation in Figure 7 is included into that
specified in Figure 4. Consider a run of the implementation in
Figure 7. We now construct a corresponding execution X and
show that it satisfies the axioms in 4. To construct the arbitra-
tion relation ar, we associate every action a with a timestamp

Figure 6. Eventual consistency axioms specialised to read-write reg-
isters. Variables r, r1, r2 and w, w1, w2 range over read and write ac-
tions, respectively; arg selects the argument of a write.

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWF: 8w, r. w
vis�! r =)

obj(w) = obj(r) ^ op(w) = wr ^ op(r) = rd ^
(8w1, w2. w1

vis�! r ^ w2
vis�! r =) w1 = w2)

ARWF: ar is the union of transitive, irreflexive and total orders
on writes to each object

DATA TYPE AXIOM

RVAL: 8r 2 A. (9w. w
vis�! r ^ rval(r) = arg(w)) _

((¬9w. w
vis�! r) ^ rval(r) = 0)

BASIC EVENTUAL CONSISTENCY AXIOMS

THINAIR: so [vis is acyclic

EVENTUAL:
8w 2 A. ¬(9 infinitely many r 2 A. 9w0. w0 vis�! r ^ w0 ar�! w)

SESSION GUARANTEES (A.K.A. COHERENCE AXIOMS)

RYW: ¬9r, w1, w2. MR: ¬9r1, r2, w1, w2.

w1
ar //

vis ''

w2

so✏✏
r

w1
vis // r1

so✏✏
w2

vis
//

ar
OO

r2

WFRA: ¬9r, w1, w2. MWA: ¬9w1, w2.

w2
vis // r

so✏✏
w1

ar

gg
w1

so))
w2

ar

ii

CAUSALITY AXIOMS

POCV: ¬9w1, w2, r. POCA: ¬9w1, w2.

w1
ar //

vis

33w2
hbo // r

w1

hbo))
w2

ar

ii

COCV: ¬9w1, w2, r. COCA:

w1
ar //

vis

33w2
hb // r hb [ar is acyclic

t(a), which is a pair of the time when its transaction was com-
mited on its original site and the order of the operation in the
transaction. Then ar is constructed by lexicographically order-
ing the resulting timestamps. Then ARWF and VISWF (for any
definition of vis) hold. To construct the visibility relation vis,
we first construct vis0 relation, relating writes to reads that took
them into account when computing their result in read(). We
then let vis = ((so [vis0)/⇠)+, so that COCV is satisfied au-
tomatically. Due to the causality clause in the upon statement,
it is easy to check that the projection of vis to pairs of writes
followed by reads is equal to vis0. Hence, RVAL is satisfied.

For all actions a and b, if a
so�! b or a

vis�! b, then
t(a) < t(b), and thus, THINAIR holds as well. EVENTUAL
is satisfied by the fairness condition associated with the upon
statement. Since all actions in a transaction receive the same
timestamp, the clause for ar in TRANSACT holds; since trans-
actions are appended to logs atomically, so does the clause for
vis. ISOLATION holds, since, in the implementation, operations

Figure 7. Abstract implementation of parallel snapshot isola-
tion by Sovran et al. [30]
Sites: 1..N
Log[N]: log of operations per site
Transaction attributes: site, sessionId, startTs, commitTs[N]

operation startTx(x)
x.startTs := new monotomic timestamp

operation write(x, obj, data)
append (obj, data) to x.updates

operation read(x, obj)
return state of obj from x.updates and Log[site(x)]

up to timestamp x.startTs

operation commitTx(x, obj, data)
x.commitTs[site(x)] := new monotonic timestamp
append x.updates to Log[site(x)] with

timestamp x.commitTs[site(x)]

upon [9x,s: x.commitTs[site(x)] != ? and
x.commitTs[s] = ? and 8y such that
y.commitTs[site(x)] < x.startTs : y.commitTs[s] != ?]

x.commitTs[s] := new monotonic timestamp
append x.updates to Log[s] with timestamp x.commitTs[s]

performed by an uncommitted transactions are only visible to
that transactions.

Assume that COCA does not hold, and thus, there is a
cycle in (so [vis [ar)/⇠. The cycle cannot contain actions
from a single transaction only, as this would contradict the
way we assign timestamps t(a) to actions a. Hence, the cycle
contains actions from multiple transactions. Then every time
we move from one transaction to another one on the cycle, the
first component of the timestamp of the corresponding actions
strictly increases, which yields a contradiction. Hence, COCA
holds, which completes the proof.

We now show that the set of histories produced by spec-
ification in Figure 4 is included into that of the implemen-
tation in Figure 7. To this end, consider an execution X =
(A, so, vis, ar) satisfying the axioms in 4. We construct the cor-
responding run of the implementation as follows. Let ar0 be any
total order on all transactions generated by (ar [vis [so)/⇠.
Such an order exists due to COCA. We assume that every ses-
sion has its own dedicated site. The action set A and the session
order so determine the sequences of operations performed by
every session. Every transaction executes atomically and com-
mits straight away in the order given by ar0. Then so, vis and
ar edges are consistent with the timestamps assigned to trans-
actions. Propagation in the upon statement is driven by the vis
edges: when an action a reads an object, we propagate all the
writes that it is supposed to see, as well as their causal prede-
cessors determined by the upon statement, to the site the action
executes on (except the writes that have already been propa-
gated to it). Since so, vis and ar edges are consistent with the
timestamps, all such actions have already been executed. Fur-
thermore, it is easy to check that this in fact propagates only the

actions visible to a. It remains to show that the return value of
read() in the implementation is consistent with the one speci-
fied by the reference execution. Suppose this were not the case.
Then at the time of execution of a read a in the implementation,
its site would contain a write b such that ¬(b

vis�! a). The write
b could only be propagated to the site as a consequence of an
hb dependency from b to a. But then COCV implies that b has
to be visible to a, yielding a contradiction. Hence, the run we
have constructed is indeed a run of the implementation. ut

JFP 23 (4): 452–514, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000075
452

Modular verification of preemptive OS kernels

A L E X E Y G O T S M A N
IMDEA Software Institute

(e-mail:)alexey.gotsman@imdea.org)

H O N G S E O K Y A N G
University of Oxford

(e-mail:)Hongseok.Yang@cs.ox.ac.uk)

Abstract

Most major OS kernels today run on multiprocessor systems and are preemptive: it is possible for
a process running in the kernel mode to get descheduled. Existing modular techniques for verifying
concurrent code are not directly applicable in this setting: they rely on scheduling being implemented
correctly, and in a preemptive kernel, the correctness of the scheduler is interdependent with the
correctness of the code it schedules. This interdependency is even stronger in mainstream kernels,
such as those of Linux, FreeBSD or Mac OS X, where the scheduler and processes interact in
complex ways. We propose the first logic that is able to decompose the verification of preemptive
multiprocessor kernel code into verifying the scheduler and the rest of the kernel separately, even in
the presence of complex interdependencies between the two components. The logic hides the ma-
nipulation of control by the scheduler when reasoning about preemptable code and soundly inherits
proof rules from concurrent separation logic to verify it thread-modularly. We illustrate the power of
our logic by verifying an example scheduler, which includes some of the key features of the scheduler
from Linux 2.6.11 challenging for verification.

1 Introduction

Developments in formal verification now allow us to consider the full verification of an
operating system (OS) kernel, one of the most crucial components in any system today.
Several recent projects have demonstrated that a formal verification of can tackle realistic
OS kernels, such as a variant of the L4 microkernel (Klein et al., 2009) and Microsoft’s
Hyper-V hypervisor (Cohen et al., 2010). However, these projects only dealt with relatively
small microkernels; tackling today’s mainstream operating systems, such as Windows
and Linux, remains a daunting task. A way to approach this problem is to verify OS
kernels modularly, i.e., by considering each of their components in isolation. In this paper,
we tackle a major challenge OS kernels present for modular reasoning—handling kernel
preemption in a multiprocessor system. Most major OS kernels are designed to run with
multiple CPUs and are preemptive: it is possible for a process running in the kernel mode
to get descheduled. Reasoning about such kernels is difficult for the following reasons.

First of all, in a multiprocessor system several invocations of a system call may be run-
ning concurrently in a shared address space, so reasoning about the call needs to consider
all possible interactions among them. This is a notoriously difficult problem; however,

Modular verification of preemptive OS kernels 453

we now have a number of logics that can reason about concurrent code (O’Hearn, 2007;
Gotsman et al., 2007; Feng et al., 2007a; Vafeiadis & Parkinson, 2007; Dinsdale-Young
et al., 2010; Cohen et al., 2010; Dinsdale-Young et al., 2013). The way the logics make
verification tractable is by using thread-modular reasoning principles that consider every
thread of computation in isolation under some assumptions about its environment and thus
avoid direct reasoning about all possible interactions (Jones, 1983; Pnueli, 1985).

The problem is that all these logics can verify code only under so-called interleaving
semantics, expressed by the well-known operational semantics rule:

Ck −→ C′
k

C1 ‖ . . . ‖ Ck ‖ . . . ‖ Cn −→ C1 ‖ . . . ‖ C′
k ‖ . . . ‖ Cn

This rule effectively assumes an abstract machine where every process Ck has its own
CPU, whereas in an OS, the processes are multiplexed onto available CPUs by a scheduler,
which is part of the OS kernel. Furthermore, in a preemptive kernel, the correctness of the
scheduler is interdependent with the correctness of the rest of the kernel (which, in the
following, we refer to as just the kernel). This is because, when reasoning about a system
call implementation in a preemptive kernel, we have to consider the possibility of context-
switch code getting executed at almost every program point. Upon a context switch, the
state of the system call will be stored in kernel data structures and subsequently loaded for
execution again, possibly on a different CPU. A bug in the context switch code can load an
incorrect state of the system call implementation upon a context switch, and a bug in the
system call can corrupt the scheduler’s data structures. It is, of course, possible to reason
about the kernel together with the scheduler as a whole, using one of the available logics.
However, in a mainstream kernel, where kernel preemption is enabled most of the time,
such reasoning would quickly become intractable.

Contributions. In this paper, we propose a logic that is able to decompose the verifica-
tion of safety properties of preemptive OS code into verifying preemptable code and the
scheduler (including the context-switch code) separately. This is the first logic that can
achieve this in the presence of interdependencies between the scheduler and the kernel
typical for mainstream OS kernels, such as those of Linux, FreeBSD and Mac OS X. The
modularity of the logic is reflected in the structure of its proof system, which is partitioned
into high-level and low-level parts. The high-level proof system verifies preemptable code
assuming that the scheduler is implemented correctly (Section 5.2). It hides the complex
manipulation of control by the context-switch code, which stores program counters of
processes, describing their continuations, and jumps to one of them. In this way, the high-
level proof system provides the illusion of an abstract machine where every process has its
own virtual CPU—the control moves from one program point in the process code to the
next without changing its state. This illusion is justified by verifying the scheduler code
separately from the kernel in the low-level proof system (Section 5.3). Achieving this level
of modularity requires us to cope with several technical challenges.

First, the setting of a preemptive OS kernel introduces an obligation to prove that the
scheduler and the kernel do not corrupt each other’s data structures. A common way to
achieve this is by introducing the notion of ownership of memory areas: only the compo-
nent owning an area of memory has the right to access it (Clarke et al., 2001; Reynolds,

454 A. Gotsman and H. Yang

2002). A major difficulty of decomposing the verification of the mainstream OS kernels
mentioned above lies in the fact that, in such kernels, there is no static address space
separation between data structures owned by the scheduler and the rest of the kernel: the
boundary between these changes according to a protocol for transferring the ownership
of memory cells and permissions to access them in a certain way. For example, when an
implementation of the fork system call asks the scheduler to make a new process runnable,
the scheduler usually gains the ownership of the process descriptor provided by the system
call implementation.

To deal with this, we base our proof systems on concurrent separation logic (O’Hearn,
2007), which we recap in Section 4. The logic allows us to track the dynamic memory parti-
tioning between the scheduler and the rest of the kernel and prohibit memory accesses that
cross the partitioning boundary. For example, assertions in the high-level proof system talk
only about the memory belonging to the kernel and completely hide the memory belonging
to the scheduler. A frame property, validated by concurrent separation logic, implies that
in this case any memory not mentioned in the assertions, e.g., the memory belonging to
the scheduler, is guaranteed not to be changed by the kernel. A realistic interface between
the scheduler and the kernel is supported by proof rules for ownership transfer of logical
assertions between the two components, describing permissions to access memory cells.

Using an off-the-shelf logic, however, is not enough to prove the correctness of a sched-
uler, as this requires domain-specific reasoning: e.g., we need to be able to check that a
scheduler restores the state of a preempted process correctly when it resumes the process.
To this end, the low-level proof system for reasoning about schedulers includes special
Process assertions about the continuation of every OS process the scheduler manages,
describing the states from which it can be safely resumed. A novelty of these assertions
is the semantics of the separating conjunction connective on them, which treats the as-
sertions affinely and allows us to interpret them as exclusive permissions to schedule the
corresponding processes. This enables reasoning about scheduling on multiprocessors, as
it allows checking that the scheduler invocations on different CPUs coordinate decisions
about process scheduling correctly. Another interesting feature of Process assertions is that
they describe only the part of the process state the scheduler is supposed to access and hide
the rest; this ensures that the scheduler indeed cannot corrupt the latter. In this our Process

assertions are similar to abstract predicates (Parkinson & Bierman, 2005).
Even though a scheduler is supposed to provide an illusion of running on a dedicated

virtual CPU to every process, in practice, some features available to the kernel code can
break through this abstraction: e.g., a process can disable preemption and become aware
of the physical CPU on which it is currently executing. For example, some OS kernels
use this to implement per-CPU data structures (Bovet & Cesati, 2005)—arrays indexed by
CPU identifiers such that a process can only access an entry in an array when it runs on the
corresponding CPU. We demonstrate that our approach can deal with such implementation
exposures by extending the high-level proof system for the kernel code with axioms that
allow reasoning about per-CPU data structures (Section 7).

In reasoning about mainstream operating systems, assertions describing the state trans-
ferred between the scheduler and the kernel can be complicated. The resulting ownership
transfers make even formalising the notion of scheduler correctness non-trivial, as they
are difficult to accommodate in an operational semantics of the abstract machine with

Modular verification of preemptive OS kernels 455

one CPU per process the scheduler is supposed to implement (Gotsman et al., 2011). We
resolve this problem in the following way. In our logic, the desired properties of OS code
are proved with respect to the abstract machine using the high-level proof system; the
low-level system then relates the concrete and the abstract machines. However, proofs in
neither of the two systems are interpreted with respect to any semantics alone. Instead, our
soundness statement (Section 8) interprets a proof of the kernel in the high-level system
and a proof of the scheduler in the low-level one together with respect to the semantics of
the concrete machine. To this end, the statement has to construct a global property of the
machine from local assertions about OS components in a non-trivial way.

Even though all of the OS verification projects carried out so far had to deal with a
scheduler (see Section 9 for a discussion), to our knowledge they have not produced
methods for handling practical multiprocessor schedulers with a complicated scheduler/
kernel interface. We illustrate the power of our logic by verifying an example scheduler
(Sections 2.2 and 6), which includes some of the key features of the scheduler from Linux
2.6.11 exhibiting the issues mentioned above.

Limitations. Our goal here is not to verify an industrial-strength preemptive OS kernel—
such an endeavour is beyond the scope of a single paper. Rather, we develop principles of
how a given logic for verifying concurrent programs can be extended to verify preemptive
kernel code with real-world features. These principles can then be used in verification
projects that target different operating systems. To communicate the proposed principles
cleanly and understandably, we present our results in a simplified setting:

• Instead of a realistic processor, such as x86, we consider an idealised machine
(Sections 2.1 and 3).

• Since we are primarily interested in interactions of components within an OS kernel,
our machine does not make a distinction between the user mode and the kernel mode.

• We base our logic for verifying OS kernels on one of the simplest logics for con-
current code—concurrent separation logic (O’Hearn, 2007). This logic would not be
able to handle complicated concurrency mechanisms employed in modern OS ker-
nels (Bovet & Cesati, 2005). However, as we argue in Section 8.2, our development
can be adapted to its more advanced derivatives (Feng et al., 2007a; Gotsman et al.,
2007; Vafeiadis & Parkinson, 2007; Dinsdale-Young et al., 2010; Dinsdale-Young
et al., 2013).

• Since we concentrate on modular reasoning about concurrency and preemptive
scheduling, our logic provides only rudimentary means of modular reasoning about
sequential code and, in particular, procedures. We discuss ways of addressing this
problem in Section 10.

• We consider scheduling interfaces providing only the basic services—context switch
and process creation. We discuss how our logic can be extended to schedulers with
more elaborate interfaces in Sections 5.5 and 10.

• Due to our focus on scheduling, we ignore many other aspects of an OS kernel, such
as virtual memory and interrupts not related to scheduling.

• Our logic is designed for proving safety properties only. Proof methods for liveness
properties usually rely on modular methods for safety properties. Thus, our logic is
a prerequisite for attacking liveness in the future.

456 A. Gotsman and H. Yang

ip if ss sp

gr1 . . . grm

CPU 1

interrupt: schedule

ip if ss sp

gr1 . . . grm

CPU NCPUS

interrupt: schedule

1

Locks:

n

...
. . .

RAM

Fig. 1. The target machine.

Even though we develop our logic in this simplified setting, we hope that its modular nature
makes it more likely that it will compose with logics for features and abstractions that we
currently do not handle. A preliminary indication of this is our ability to deal with per-CPU
data structures, despite the fact that these break through the abstraction implemented by a
scheduler.

2 Informal development

We first explain our results informally, sketching the machine we use for formalising them
(Section 2.1), illustrating the challenges of reasoning about schedulers by an example
(Section 2.2) and describing the approach we take in our program logic (Section 2.3).

2.1 Example machine

We formalise our results for a simple machine, defined in Section 3. Here, we present it
informally to the extent needed for understanding the rest of this section. We summarise
its features in Figure 1.

The machine has multiple CPUs, identified by integers from 1 to NCPUS, communicating
via the shared memory. We assume that the program the machine executes is stored sepa-
rately from the heap and may not be modified; its commands are identified by labels. For
simplicity, we also assume that programs can synchronise using a set of built-in locks
(in a real system they would be implemented as spin-locks). Every CPU has a single
interrupt, with its handler located at a distinguished label schedule (the same for all
CPUs). A scheduler can use the interrupt to trigger a context switch. There are four special-
purpose registers, ip, if, ss and sp, and m general-purpose ones, gr1, . . . ,grm. The ip

register is the instruction pointer. The if register controls interrupts: they are disabled on
the corresponding CPU when if stores zero, and enabled otherwise. As if affects only
one CPU, we might have several instances of the scheduler code executing in parallel on
different CPUs. Upon an interrupt, the CPU sets if to 0, which prevents nested interrupts.
The ss register keeps the starting address of the stack, and sp points to the top of the
stack, i.e., its first free slot. The stack grows upwards, so we always have ss ! sp. As
we noted before, our machine does not make a distinction between the user mode and the

Modular verification of preemptive OS kernels 457

kernel mode—all processes can potentially access all available memory and execute all
commands.

The machine executes programs in a minimalistic assembly-like programming language.
It is described in full in Section 3; for now it suffices to say that the language includes
standard commands for accessing registers and memory, and the following special ones:

• lock(!) and unlock(!) acquire and release the lock !.
• savecpuid(e) stores the identifier of the CPU executing it at the address e.
• call(l) is a call to the function that starts at the label l. It pushes the label of the

next instruction in the program and the values of the general-purpose registers onto
the stack, and jumps to the label l.

• icall(l) behaves the same as call(l), except that it also disables interrupts by
modifying the if register.

• ret is the return command. It pops the return label and the saved general-purpose
registers off the stack, updates the registers with the new values, and jumps to the
return label.

• iret is a variant of ret that additionally enables interrupts.

When the if register is set to a non-zero value, an interrupt can fire at any time. This has
the same effect as executing icall(schedule).

2.2 Motivating example

The challenge. Figures 2–3 present an implementation of the scheduler that we use as
a running example. Our goal is to be able to verify safety properties of OS processes
managed by this scheduler using off-the-shelf concurrency logics, i.e., as though every
process has its own virtual CPU. To show what this entails, consider the piece of code in
Figure 4, which could be a part of a system call implementation in the kernel (we explain
its proof later). The code removes some of the nodes from a cyclic doubly-linked list with a
sentinel head node pointed to by request_queue. Here and in the following, we use some
library functions: e.g., remove node deletes a node from the doubly-linked list it belongs
to. We assume that the code can be called concurrently by multiple processes, and thus
protect the list with a lock request_lock: the list can only be accessed by the process
that holds this lock.

There are a number of properties we might want to prove about this code: e.g., that
pointer manipulations done by the invocation of remove_node in line 25 in Figure 4 do
not overwrite a memory cell storing critical information elsewhere in the kernel, or that the
doubly-linked list shape of request_queue is preserved. Modern concurrency logics can
prove such properties by considering every process in isolation. Namely, every assertion
in Figure 4 describes information about the state of the program relevant to the process
executing the code. These assertions are justified using essentially sequential reasoning,
and in particular, using the classical proof rule for sequential composition:

{P1} C1 {P2} {P2} C2 {P3}
{P1} C1;C2 {P3}

(1)

We would like such reasoning (and the proof in Figure 4) to be sound even when the code is
managed by the scheduler in Figures 2–3. Hence, we need to be able to ignore the fact that

458 A. Gotsman and H. Yang

the control flow of the code in Figure 4 can jump to the schedule function in Figure 2 at
any time, with the state of the former stored in kernel data structures and loaded from them
again later. Furthermore, we need to achieve this even though the scheduler and the system
call implementation execute in a shared address space and can thus potentially access each
other’s data structures.

Example scheduler. The example scheduler in Figures 2–3 includes some of the key
features of the scheduler from Linux 2.6.11 (Bovet & Cesati, 2005) that are challenging
for verification, as detailed below.1

The scheduler’s interface consists of two functions: schedule and create. The former
is called as the interrupt handler or directly by a process and is responsible for switching
the process running on the CPU and migrating processes between CPUs. The latter can be
called by the kernel implementation of the fork system call and is responsible for inserting
a newly created process into the scheduler’s data structures, thereby making it runnable.
Both functions are called by processes using the icall command that disables interrupts,
so that the scheduler routines always execute with interrupts disabled.

Programming language. Even though we formalise our results for a machine executing
a minimalistic programming language, we present the example in C. We now explain how
a C program, such as the one in Figures 2–3, is mapped to our machine.

We assume that every global variable x is allocated at a fixed address &x in memory.
Local variable declarations allocate local variables on the stack in the activation records
of the corresponding procedures; these variables are then addressed via the sp register.
When the variables go out of scope, they are removed from the stack by decrementing
the sp register. The general-purpose registers are used to store intermediate values while
computing complex expressions. In our C programs, we allow the ss and sp registers to
be accessed directly as _ss and _sp. Function calls and returns are implemented using
the call and ret commands of the machine. By default, parameters and return values are
passed via the stack; in particular, a zero-filled slot for a return value is allocated on the
stack before calling a function. Parameters of functions annotated with _regparam (such
as create, line 64 in Figure 3) are passed via registers. We assume macros lock, unlock,
savecpuid and iret for the corresponding machine commands.

Data structures. Every process is associated with a process descriptor of type Process.
Its prev and next fields are used by the scheduler to connect descriptors into doubly-
linked lists of processes it manages (runqueues). The scheduler uses per-CPU runqueues
with dummy head nodes pointed to by the entries in the runqueue array. These are pro-
tected by the locks in the runqueue_lock array. The entries in the current array point
to the descriptors of the processes running on the corresponding CPUs; these descriptors
are not members of any runqueue. Thus, every process descriptor is either in the current
array or in some runqueue. Note that every CPU always has at least one process to run—the

1 We took an older version of the Linux kernel (from 2005) as a reference because its scheduler uses simpler
data structures. Newer versions use more efficient data structures (Love, 2010) that would only complicate our
running example without adding anything interesting.

Modular verification of preemptive OS kernels 459

1 #define StackSize ... // size of the stack
2 #define FORK_FRAME sizeof(Process*)

3 #define SCHED_FRAME sizeof(Process*)+sizeof(int)

4

5 struct Process {

6 Process *prev, *next;

7 word kernel_stack[StackSize];

8 word *saved_sp;

9 int timeslice;

10 };

11

12 Lock *runqueue_lock[NCPUS];

13 Process *runqueue[NCPUS];

14 Process *current[NCPUS];

15

16 void init() {

17 for (int cpu = 0; cpu < NCPUS; cpu++) {

18 Process* dummy = alloc(sizeof(Process));

19 Process* process0 = alloc(sizeof(Process));

20 dummy->prev = dummy->next = dummy;

21 process0->timeslice = SCHED_QUANTUM;

22 ... // initialise the stack of process0
23 runqueue[cpu] = dummy;

24 current[cpu] = process0;

25 }

26 }

27

28 void schedule() {

29 int cpu;

30 Process *old_process;

31 savecpuid(&cpu);

32 load_balance(cpu);

33 old_process = current[cpu];

34 ... // update the timeslice of old process
35 if (old_process->timeslice) iret();

36 old_process->timeslice = SCHED_QUANTUM;

37 lock(runqueue_lock[cpu]);

38 insert_node_after(runqueue[cpu]->prev, old_process);

39 current[cpu] = runqueue[cpu]->next;

40 remove_node(current[cpu]);

41 old_process->saved_sp = _sp;

42 _sp = current[cpu]->saved_sp;

43 savecpuid(&cpu);

44 _ss = current[cpu]->kernel_stack;

45 unlock(runqueue_lock[cpu]);

46 iret();

47 }

Fig. 2. The example scheduler (continued in Figure 3).

460 A. Gotsman and H. Yang

47 void load_balance(int cpu) {

48 int cpu2;

49 Process *proc;

50 if (random(0, 1)) return;

51 do { cpu2 = random(0, NCPUS-1); } while (cpu == cpu2);

52 if (cpu < cpu2) {

53 lock(runqueue_lock[cpu]); lock(runqueue_lock[cpu2]); }

54 else { lock(runqueue_lock[cpu2]); lock(runqueue_lock[cpu]); }

55 if (runqueue[cpu2]->next != runqueue[cpu2]) {

56 proc = runqueue[cpu2]->next;

57 remove_node(proc);

58 insert_node_after(runqueue[cpu], proc);

59 }

60 unlock(runqueue_lock[cpu]);

61 unlock(runqueue_lock[cpu2]);

62 }

63

64 _regparam void create(Process *new_process) {

65 int cpu;

66 savecpuid(&cpu);

67 new_process->timeslice = SCHED_QUANTUM;

68 lock(runqueue_lock[cpu]);

69 insert_node_after(runqueue[cpu], new_process);

70 unlock(runqueue_lock[cpu]);

71 iret();

72 }

73

74 int fork() {

75 Process *new_process;

76 new_process = alloc(sizeof(Process));

77 memcpy(new_process->kernel_stack, _ss, StackSize);

78 new_process->saved_sp = new_process->kernel_stack+

79 _sp-_ss-FORK_FRAME+SCHED_FRAME;

80 _icall create(new_process);

81 return 1;

82 }

Fig. 3. The example scheduler (continued).

one in the corresponding slot of the current array. Every process has its own kernel stack
of a fixed size StackSize, represented by the kernel_stack field of its descriptor. When
a process is preempted, the saved_sp field is used to save the value of the stack pointer
register sp; the other registers are saved on the stack. Finally, while a process is running,
the timeslice field gives the remaining time from its scheduling time quantum and is
periodically updated by the scheduler. The init function in Figure 2 sketches code that
could be used to initialise the scheduler data structures.

Apart from the data structures described above, a realistic kernel would contain many
others not related to scheduling, including additional fields in process descriptors. The ker-
nel data structures reside in the same address space as the ones belonging to the scheduler;

Modular verification of preemptive OS kernels 461

1 #define StackSize ... // size of the stack
2 struct Request {

3 Request *prev, *next;

4 int data;

5 };

6 Request *request_queue; // a cyclic doubly−linked list with a sentinel node
7 Lock *request_lock; // protects the list
8

9 ...

10 Request *req, *tmp;

11 {req " sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
12 lock(request_lock);

13 {req " ∃x,y,z.&request queue &→ z∗ z.prev &→ y∗ z.next &→ x∗ z.data &→ ∗
14 dllΛ(x,z,z,y)∗ locked(request lock)∗
15 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
16 req = request_queue->next;

17 {req " ∃y,z.&request queue &→ z∗ z.prev &→ y∗ z.next &→ req∗ z.data &→ ∗
18 dllΛ(req,z,z,y)∗ locked(request lock)∗
19 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
20 while (req != request_queue) {

21 {req " ∃x,y,z,u,v.&request queue &→ z∗ z.prev &→ v∗ z.next &→ x∗ z.data &→ ∗
22 dllΛ(x,z,req,y)∗ req.prev &→ y∗ req.next &→ u∗ req.data &→ ∗dllΛ(u,req,z,v)∗
23 locked(request lock)∗sp..(ss+StackSize−1) &→ ∧
24 sp = ss+2 ·sizeof(Request∗)}
25 if (stale_data(req->data)) remove_node(req);

26 {req " ∃x,y,z,u,v.&request queue &→ z∗ z.prev &→ v∗ z.next &→ x∗ z.data &→ ∗
27 dllΛ(x,z,u,y)∗ req.prev &→ y∗ req.next &→ u∗ req.data &→ ∗dllΛ(u,y,z,v)∗
28 locked(request lock)∗sp..(ss+StackSize−1) &→ ∧
29 sp = ss+2 ·sizeof(Request∗)}
30 tmp = req;

31 req = req->next;

32 free(tmp);

33 {req " ∃x,y,z,v.&request queue &→ z∗ z.prev &→ v∗ z.next &→ x∗ z.data &→ ∗
34 dllΛ(x,z,req,y)∗dllΛ(req,y,z,v)∗ locked(request lock)∗
35 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
36 }

37 {req " ∃x,y,z.&request queue &→ z∗ z.prev &→ y∗ z.next &→ x∗ z.data &→ ∗
38 dllΛ(x,z,z,y)∗ locked(request lock)∗
39 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
40 unlock(request_lock);

41 {req " sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
Fig. 4. An example system call part. The assertions are explained in Section 4.

thus, while verifying the OS, we have to prove that the two components do not corrupt each
other’s data structures.

The schedule function. According to the semantics of our machine, when schedule

starts executing, interrupts are disabled and the previous values of ip and the general-
purpose registers are saved on the top of the stack. The scheduler uses the empty slots
on the stack of the process it has preempted to store activation records of its procedures

462 A. Gotsman and H. Yang

activation records ip gr1 grm cpu old_process

saved_sp
memory addresses

......

saved upon interrupt
activation record of

schedule

Fig. 5. The invariant of the stack of a preempted process.

and thus expects the kernel to leave enough of these. Intuitively, while a process is running,
only this process has the right to access its stack, i.e., owns it. When the scheduler preempts
the process, the right to access the empty slots on the stack (their ownership) is transferred
to the scheduler. When the scheduler returns the control to this process, it transfers the
ownership of the stack slots back. This is one example of ownership transfer we have to
reason about.

The schedule function first calls load_balance (line 32 in Figure 2), which migrates
processes between CPUs to balance the load; we describe it below. It then updates the
timeslice of the currently running process, and if it becomes zero, proceeds to schedule
another one (line 35); here we abstract from the particular way the timeslice is updated.
The processes are scheduled in a round-robin fashion; thus, the function inserts the current
process at the end of the local runqueue (line 38) and dequeues the process at the front
of the runqueue, making it current (line 40).2 The former is done using a library function
insert node after, which inserts the node given as its second argument after the list
node given as its first argument. The schedule function also refills the scheduling quantum
of the process being descheduled (line 36). The runqueue manipulations are done with the
corresponding lock held (lines 37 and 45). Note that in a realistic OS choosing a process
to run would be more complicated, but still based on scheduler-private data structures
protected by runqueue locks.

To save the state of the process being preempted, schedule copies sp into the saved_sp
field of the process descriptor (line 41 in Figure 2). This field, together with the
kernel stack of the process, forms its saved state. The stack of a preempted process
contains the activation records of functions called before the process was preempted, the
label of the instruction to resume the process from and the values of general-purpose
registers, saved upon the interrupt, as well as the activation record of schedule, as shown
in Figure 5. This invariant holds for descriptors of all preempted processes.

The actual context switch is performed by the assignment to sp (line 42), which switches
the current stack to another one satisfying the invariant in Figure 5. Since this changes the
activation record of schedule, the function has to update the cpu variable (line 43), which
lets it then retrieve and load the new value of ss (line 44). The iret command at the end
of schedule (line 46) loads the values of the registers stored on the stack and enables
interrupts, thus completing the context switch.

2 Actually, in Linux 2.6.11 the descriptor of the current process stays in the runqueue. We dequeue it because
this simplifies the following formal treatment of the example.

Modular verification of preemptive OS kernels 463

The load balance function checks if the CPU given as its parameter is underloaded
and, if it is the case, tries to migrate a process from another CPU to this one. The particular
way the function performs the check and chooses the process is irrelevant for our purposes,
and is thus abstracted by a random choice (line 50 in Figure 3). To migrate a process, the
function chooses a runqueue to steal a process from (line 51) and locks it together with the
current runqueue in the order determined by the corresponding CPU identifiers, to avoid
deadlocks (lines 52–54). The function then removes one process from the victim runqueue
(line 57), if it is non-empty (line 55), and inserts the process into the runqueue of the CPU it
runs on (line 58). Note that two concurrent scheduler invocations executing load balance

on different CPUs may try to access the same runqueue. While verifying the scheduler, we
have to ensure that they synchronise their accesses correctly. We also need to deal with the
fact that, due to load balance, processes cannot be tied to a CPU statically.

The create function inserts the descriptor of a newly created process with the address
given as its parameter into the runqueue of the current CPU. We pass the parameter via a
register, as this simplifies the following treatment of the example. The descriptor must be
initialised like that of a preempted process, and hence its stack must satisfy the invariant
in Figure 5. Upon a call to create, the ownership of the descriptor is transferred from the
kernel to the scheduler. The create function must be called using icall, which disables
interrupts; if interrupts were enabled, schedule could be called while create holds the
lock for the current runqueue, resulting in a deadlock.

The fork function is formally not part of the scheduler. It illustrates how the rest of
the kernel can use create to implement a common system call that creates a clone of
the current process. This function allocates a new descriptor (line 76), copies the stack
of the current process to it (line 77) and initialises the stack as expected by create

(Figure 5). This amounts to discarding the topmost activation record of fork and pushing
a fake activation record of schedule (line 78). We do not initialise the latter record, since
schedule refreshes the values of the variables (line 43) when it receives control. Note that
the values of registers in the initial state of the new process have been saved on the stack
upon the call to fork. Since stack slots for return values are initialised with zeros, this is
what fork in the child process will return; we return 1 in the parent process.

The need for modularity. We could try to verify the scheduler and the rest of the kernel
(including, say, the system call in Figure 4) as a whole, modelling every CPU as a process
in one of the existing program logics for concurrency (O’Hearn, 2007; Gotsman et al.,
2007; Feng et al., 2007a; Vafeiadis & Parkinson, 2007; Dinsdale-Young et al., 2010; Cohen
et al., 2010; Dinsdale-Young et al., 2013). However, in this case our proofs would have to
consider the possibility of the control flow going from any statement in a process to the
schedule function, and from there to any other process. Thus, in reasoning about the
system call implementation in Figure 4 we would end up having to reason explicitly about
invariants and actions of both schedule and all other processes, making the reasoning
non-modular and, most likely, intractable. In the rest of the paper, we propose a logic that
avoids this pitfall.

464 A. Gotsman and H. Yang

2.3 Approach

Before presenting our logic for preemptive kernels in detail, we give an informal overview
of the reasoning principles behind it. The goal of the logic is to reason about the kernel and
the scheduler separately. Following previous work on OS verification (Feng et al., 2008b;
Yang & Hawblitzel, 2010), our logic uses different proof systems for this purpose: the
high-level one for the kernel and the low-level one for the scheduler.

Modular reasoning via memory partitioning. The first challenge we have to deal with
in separating the reasoning about the kernel and the scheduler is the fact that they share the
same address space. To this end, our logic partitions the memory into two disjoint parts.
The memory cells in each of the parts are owned by the corresponding component, meaning
that only this component can access them. In our running example, the runqueues from
Figure 2 will belong to the scheduler, and the request queue from Figure 4 to the kernel.
It is important to note that this partitioning does not exist in the semantics, but is enforced
by proofs in the logic to enable modular reasoning about the system. Modular reasoning
becomes possible because, while reasoning about one component, one does not have to
consider the memory partition owned by the other, since it cannot influence the behaviour
of the component. An important feature of our logic, required for handling schedulers from
mainstream kernels, is that the memory partitioning is not required to be static: the logic
permits ownership transfer of memory cells between the areas owned by the scheduler
and the kernel according to an axiomatically defined interface. For example, in reasoning
about the scheduler of Section 2.2, the logic permits the transfer of the descriptor for a
new process from the kernel to the scheduler at a call to create; this descriptor then
becomes part of a runqueue owned by the scheduler. Of course, assigning the ownership
of parts of memory to OS components requires checking that a component does not access
the memory it does not own. To this end, our logic implements a form of rely-guarantee
reasoning between the scheduler and the kernel, where one component assumes that the
other does not touch its memory partition and provides well-formed pieces of memory at
ownership transfer points.

Concurrent separation logic. Our logic is based on concurrent separation logic (O’Hearn,
2007), which we recap in Section 4. In particular, this logic provides us with means for
modular reasoning within a given component, i.e., either among concurrent OS processes
or concurrent scheduler invocations on different CPUs. The choice of concurrent separation
logic was guided by the convenience of presentation; see Section 8 for a discussion of
how more advanced logics can be integrated. However, the use of a version of sepa-
ration logic is crucial, because we inherently rely on the frame property validated by
the logic: the memory that is not mentioned by assertions in a proof of a command is
guaranteed not to be changed by it. As we have noted, while reasoning about a compo-
nent, we consider only the memory partition belonging to it. Hence, by the frame prop-
erty we automatically know that the component cannot modify the others. This makes
it easy to carry out the above-mentioned rely-guarantee reasoning between the sched-
uler and the kernel: one does not need to state assumptions about one component not

Modular verification of preemptive OS kernels 465

SchedulerKernel

CPU1

CPU2

lock1

lock2
process1

process2
process3

Fig. 6. The partitioning of the system state enforced by the logic. The memory is partitioned into
two parts, owned by the scheduler and the kernel, respectively. The memory of each component is
further partitioned into parts local to processes or scheduler invocations on a given CPU, and parts
protected by locks.

modifying the memory of the other explicitly, as they will be automatically validated by
the logic.

Concurrent separation logic lets us achieve modular reasoning within a given component
by further partitioning the memory owned by it into disjoint process-local parts (one for
each process or scheduler invocation on a given CPU) and protected parts (one for each
free lock). A process-local part can only be accessed by the corresponding process or
scheduler invocation, and a lock-protected part only when the process holds the lock. The
resulting partitioning of the system state is illustrated in Figure 6. The frame property
guarantees that a process cannot access the partition of the heap belonging to another one.
To reason modularly about parts of the state protected by locks, the logic associates with
every lock an assertion—its lock invariant—that describes the part of the state it protects.
Lock invariants restrict how processes can change the protected state and, hence, allow
reasoning about them in isolation. For example, in the program from Figure 4, the invariant
of request_lock can state that it protects the request_queue variable and the doubly-
linked list it identifies.

Scheduler-agnostic verification of kernel code. The high-level proof system
(Section 5.2) reasons about preemptable code assuming an abstract machine where every
process has its own virtual CPU with a dedicated set of registers. It relies on the partitioned
view of memory described above to hide the state of the scheduler, with all the remaining
state split among processes and locks accessible to them, as illustrated in Figure 7. We
have primed process identifiers in the figure to emphasise that the state of the process
can be represented differently in the abstract and physical machines: for example, if a
process is not running, the values of its local registers can be stored in scheduler-private
data structures, rather than in CPU registers.

Apart from hiding the state of the scheduler, the high-level system also hides the complex
manipulation of the control flow performed by its context-switch code: the proof system
assumes that the control moves from one point in the process code to the next without
changing its state, ignoring the possibility of the context-switch code getting executed upon
an interrupt. This is expressed by handling sequential composition in the proof system
essentially using the standard rule (1) from Hoare logic. Explicit calls to the scheduler are
treated as if they were executed atomically.

466 A. Gotsman and H. Yang

lock1
process1

process2

process3Kernel

Fig. 7. The state of the abstract system with one virtual CPU per process. Process identifiers are
primed to emphasise that the state of the process can be represented differently in the abstract and
physical machines (cf. Figure 6). Dark regions illustrate the parts of process state that are tracked by
a scheduler invocation running on a particular physical CPU.

Technically, the proof system is a straightforward adaptation of concurrent separation
logic, which is augmented with proof rules axiomatising the effect of scheduler routines
explicitly called by processes. The novelty here is that we can use such a scheduler-agnostic
logic in this context at all. This is made possible by verifying the scheduler implementation
using the low-level proof system (Section 5.3).

Proving schedulers correct. Intuitively, a correct scheduler provides an illusion of the
above-mentioned abstract machine with one CPU per process, but what formal obligations
does this entail? First, a process should not notice any effects of being preempted and
then scheduled again: whenever the scheduler sets up a process to run on a CPU, it has to
restore the state of the CPU registers to the one the process had last time it was preempted.
The low-level proof system ensures this by recording these values in a special predicate
Process, which can be viewed as an assertion about the continuation of a process describing
the states from which it can be safely resumed.

In more detail, when a process is preempted and the control is given to the context-switch
routine of the scheduler (schedule in the example from Section 2.2), a Process predicate
recording the current values of the CPU registers appears in its precondition. When the
context-switch routine terminates and the control is given to the process it resumes, the
proof system requires the postcondition of the routine to exhibit a Process predicate with
register values equal to the ones loaded onto the CPU. Roughly speaking, we thus require
the following judgement to hold of the context-switch routine schedule:

{∃"r.Process("r)∧"r ="r . . .} schedule {∃"r′.Process("r′)∧"r ="r′ . . .}, (2)

where"r is the vector of CPU register names. The Process predicate in the postcondition
may correspond to a different process than the predicate in the precondition. For example,
when the scheduler from Section 2.2 preempts a process and links its descriptor into a
runqueue, assertions about the runqueue in the proof system can record the corresponding
Process predicate with register values equal to the ones stored in the descriptor. This
predicate can then be used to establish the postcondition of the context-switch routine
when it decides to schedule the process again.

Modular verification of preemptive OS kernels 467

In the case of multiprocessors, ensuring that the scheduler preserves the state of a pre-
empted process is not enough for it to be correct. The scheduler should also be prevented
from duplicating processes at will: it would be incorrect to preempt one process and
then schedule two copies of it on two CPUs at the same time. To check that this does
not happen, the proof system interprets a Process predicate as not merely recording a
process state, but serving as an exclusive permission for the scheduler invocation owning
it to schedule the corresponding process. Technically, it treats Process predicates affinely,
prohibiting their duplication. Judgement (2) is then interpreted as stating that the scheduler
gets the ownership of a Process predicate when it preempts a process and gives it up when
scheduling that process again. This ensures that, at any time, only a scheduler invocation on
a single CPU can own a Process predicate for a given process and, hence, can schedule it.
In terms of Figure 6, a Process predicate can only belong to one partition in the scheduler-
owned memory at a time.

We note that the problem of interdependence between the correctness of the scheduler
and the rest of the kernel that we address in this paper also arises in preemptive unipro-
cessor kernels. The Process predicate also allows us to verify schedulers on uniprocessors;
however, its affine treatment described above is not relevant in this case.

Assertions of the low-level proof system can be thought of as relating the states of
the concrete machine and the abstract one the scheduler is supposed to implement. An
important feature of our logic is that this relation is local, in the sense that it does not
describe the whole state of the two machines. Namely, since we use concurrent separation
logic to reason about concurrent execution of scheduler invocations on different CPUs,
an assertion in the low-level proof system describes only the state owned by a scheduler
invocation on a particular CPU (e.g., the region marked CPU1 in Figure 6). Similarly, the
Process predicates describe only the registers of the processes a scheduler invocation has
permission to schedule (shown by the dark regions in Figure 7), but not the memory they
own. Since the assertions about the scheduler cannot talk about the memory owned by ker-
nel processes, the frame property automatically ensures that the scheduler cannot corrupt it.

Soundness. We establish the soundness of our logic using an approach atypical for the
kind of setting we consider. Since a scheduler is supposed to provide an illusion of an
abstract machine with one CPU per process, to formalise its correctness, we could define
an operational semantics of such an abstract machine and prove that it reproduces any be-
haviour of the concrete machine with the scheduler, thus establishing a refinement between
the two machines. However, for realistic OS schedulers defining a semantics for the ab-
stract machine that a scheduler implements is difficult. This is because, in reasoning about
mainstream operating systems, the state transferred between the scheduler and the kernel
can be described by complicated assertions; in such cases, defining ownership transfer
operationally is difficult (we discuss this further in Section 8).

To resolve this problem with stating soundness, we do not define the semantics of the
abstract machine operationally; instead, we describe its behaviour only by the high-level
proof system, thus giving it an axiomatic semantics. As expected, the low-level proof
system is used to reason about the correspondence between the concrete and the abstract
machines, with its assertions relating their states. However, proofs in neither of the two
systems are interpreted with respect to any semantics alone: our soundness statement

468 A. Gotsman and H. Yang

(Section 8) interprets a proof of the kernel in the high-level system and a proof of the
scheduler in the low-level one together with respect to the semantics of the concrete ma-
chine. Thus, instead of relating sets of executions of the two machines, like in the classical
refinement, the soundness statement relates logical statements about the abstract machine
(given by high-level proofs) to logical statements about the concrete one (given by a
constraint on concrete states). Note that in this case the soundness statement for the logic
does not yield a semantic statement of correctness for the scheduler being considered
in isolation. Rather, its correctness is established indirectly by the fact that reasoning in
the high-level proof system, which assumes the abstract one-CPU-per-process machine, is
sound with respect to the concrete machine.

To formulate the soundness statement in the above way, we need to construct a global
property about the whole system state shown in Figure 6 from local assertions about its
components, corresponding to partitions in Figure 6. This does not just boil down to
combining the assertions about the partitions using the separating conjunction, since the
high-level and low-level proof systems work on different levels of abstraction. In particular,
when conjoining assertions about the scheduler and the kernel, we need to make sure that
the view of the parts of kernel state in the assertions about the scheduler (dark regions
in Figure 7) is consistent with those about the kernel. This requires a delicate construc-
tion, combining relational composition and separating conjunction. Similar constructions
can potentially be used for justifying other program logics working on several levels of
abstraction at the same time.

3 Machine semantics

In this section, we give a formal semantics to the example machine informally presented
in Section 2.1.

3.1 Storage model

Figure 8 gives a model for the set of configurations Config that can arise during an execu-
tion of the machine. A machine configuration is a triple with the components describing
the values of registers of the CPUs in the machine (its global context), the state of the
heap and the set of locks taken by some CPU (the lockset of the machine). Note that we
allow the global context or the heap to be a partial function. However, the corresponding
configurations are not encountered in the semantics we define in this section. They come
in handy in Sections 5 and 8 to give a semantics to the assertion language and express the
soundness of our logic.

In this paper, we use the following notation for partial functions: f [x : y] is the function
that has the same value as f everywhere, except for x, where it has the value y; [] is a
nowhere-defined function; f *g is the union of the disjoint partial functions f and g.

3.2 Programming language

We consider a low-level language where programs are represented by structures similar
to control-flow graphs. The programs are constructed from primitive commands c, whose
syntax we define in Figure 9. In addition to the primitive commands listed in Section 2,

Modular verification of preemptive OS kernels 469

k ∈ CPUid = {1, . . . ,NCPUS} r ∈ Reg = {ip,if,ss,sp,gr1, . . . ,grm}
r ∈ Context = Reg → Val R ∈ GContext = CPUid ⇀ Context

! ∈ Lock = {!1,!2, . . . ,!n} L ∈ Lockset = P(Lock)

h ∈ Heap = Loc ⇀ Val (R,h,L) ∈ Config = GContext×Heap×Lockset

Fig. 8. The set of machine configurations Config. We assume sets Loc of valid memory addresses
and Val of values such that Loc ⊆ Val.

r ∈ Reg−{ip,if}
! ∈ Lock

l ∈ Label = !

e ::= r | 0 | 1 | 2 | . . . | e+ e | e− e

b ::= e = e | e ! e | b∧b | b∨b | ¬b

c ::= skip | r := e | r := [e] | [e] := e | assume(b) | lock(!) | unlock(!)
| savecpuid(e) | call(l) | icall(l) | ret | iret

Fig. 9. Primitive commands.

we have the following ones: skip and r := e have the standard meaning; r := [e] reads
the contents of a heap cell e and assigns the value read to r; [e] := e′ updates the contents
of cell e by e′; assume(b) acts as a filter on the state space of programs, choosing states
satisfying b. The assume command is used to treat branches in conditionals and loops
uniformly with the other primitive commands, as we explain below. We write PComm for
the set of primitive commands. Note that primitive commands cannot access the ip register
directly. Also, only icall and iret can affect the if register, a restriction that we lift in
Section 7.

Commands C are partial maps from Label to PComm×P(Label). Intuitively, if C(l) =

(c,X), then c is labelled by l in C and can be followed by any command with a label in
X . In this case, we let comm(C, l) = c and next(C, l) = X . We denote the domain of C by
labels(C) and the set of all commands by Comm.

The language constructs used in the example scheduler of Section 2, such as sequential
composition, loops and conditionals, can be expressed as commands in a standard way,
with conditions translated using assume. We illustrate this in Figure 10, where we repre-
sent the mapping C by a graph, with nodes annotated by labels and primitive commands
and edges defining the next function.

3.3 Operational semantics

We now give a standard operational semantics to our programming language. We interpret
primitive commands c using a transition relation !c of the following type:

State = Context×Heap×Lockset; (3)

!c ⊆
(
CPUid×State×Label×Label

)
×

(
(State×Label)∪{0}).

The input (k,(r,h,L), l, l′) to !c consists of the following components:

• k ∈ CPUid is the identifier of the CPU executing the command.

470 A. Gotsman and H. Yang

if (x > 0) {
 y = 1;
} else {
 z = 1;
}
w = 2;

1: assume(x > 0)

0: skip

2: assume(x <= 0)

3: y = 1 4: z = 1

5: skip

6: w = 2

Fig. 10. Representing sequential composition and conditionals in our low-level language.

• (r,h,L) is the configuration of the system projected to this CPU, which we call
a state. It includes the context of the CPU and the information about the shared
resources—the heap and locks.

• l ∈ Label is the label of the command c.
• l′ ∈ Label is the label of a primitive command following c in the program.

Given this input, the transition relation !c for c computes the next state of the CPU after
running c, together with the label of the primitive command to run next. The former may
be a special 0 state signalling a machine crash. The latter may be different from l′ when c
is a call or a return.

The relation !c is defined in Figure 11. In the figure and in the rest of the paper, we write
for an expression whose value is irrelevant and implicitly existentially quantified and "gr

for the vector of general-purpose registers. The relation follows the informal meaning of
primitive commands given in Sections 2.1 and 3.2. We have omitted standard definitions
for skip and most of assignments (Reynolds, 2002). We have also omitted them for icall
and iret: the definitions are the same as for call and ret, but additionally modify if.
Note that !c may yield no poststate for a given prestate. Unlike a transition to the 0 state,
this represents the command getting stuck. For example, according to Figure 11, acquiring
the same lock twice leads to a deadlock, and releasing a lock that is not held crashes the
system.

The program our machine executes is given by a command C that includes a primitive
command labelled schedule, serving as the entry point of the interrupt handler. For such
a command C, we give its meaning using a small-step operational semantics, formalised
by the transition relation →C ⊆ Config×(Config∪{0}) in Figure 12. The first rule in the
figure describes a normal execution, where the value l of the ip register of CPU k is used to
choose the primitive command c to run. After choosing c, the machine nondeterministically
picks a label l′ ∈ next(C, l) identifying the command to follow c, runs c according to the
semantics !c, and uses the result of this run to update the registers of CPU k and the
heap and the lockset of the machine. For example, when a CPU executes the program in
Figure 10 from label 0, both labels 1 and 2 following it will be explored; however, only the
branch where the assume condition evaluates to true will proceed further.

Modular verification of preemptive OS kernels 471

(k,(r,h[[[e]]r : u],L), l, l′) !
r:=[e] ((r[r : u],h[[[e]]r : u],L), l′)

(k,(r,h,L), l, l′) !
assume(b)

((r,h,L), l′), if [[b]]r = true

(k,(r,h,L), l, l′) 1!
assume(b)

if [[b]]r = false

(k,(r,h,L), l, l′) !
lock(!)

((r,h,L∪{!}), l′), if ! 1∈ L

(k,(r,h,L), l, l′) 1!
lock(!)

if ! ∈ L

(k,(r,h,L), l, l′) !
unlock(!)

((r,h,L−{!}), l′), if ! ∈ L

(k,(r,h[[[e]]r :],L), l, l′) !
savecpuid(e) ((r,h[[[e]]r : k],L), l′)

(k,(r,h[r(sp)..(r(sp)+m) :],L), l, l′) !
call(l′′)

((r[sp : r(sp)+m+1],h[r(sp) : l′,(r(sp)+1)..(r(sp)+m) : r("gr)],L), l′′)

(k,(r,h[r(sp)−m−1 : l′′,(r(sp)−m)..(r(sp)−1) :"g],L), l, l′) !ret

((r[sp : r(sp)−m−1, "gr :"g],h[r(sp)−m−1 : l′′,(r(sp)−m)..(r(sp)−1) :"g],L), l′′)

(k,(r,h,L), l, l′) !c 0, otherwise

Fig. 11. Semantics of primitive commands. The notation !c0 indicates that the command c crashes,
and 1!c that it does not crash, but gets stuck. The function [[·]]r evaluates expressions with respect to
the context r.

r(ip) = l ∈ labels(C) l′ ∈ next(C, l) (k,(r,h,L), l, l′) !
comm(C,l) ((r′,h′,L′), l′′)

(R[k : r],h,L) →C (R[k : r′[ip : l′′]],h′,L′)

r(ip) = l ∈ labels(C) r(if) = 1 (k,(r,h,L), l, l) !
icall(schedule)

((r′,h′,L′), l′′)

(R[k : r],h,L) →C (R[k : r′[ip : l′′]],h′,L′)

r(ip) = l ∈ labels(C) l′ ∈ next(C, l) (k,(r,h,L), l, l′) !
comm(C,l) 0

(R[k : r],h,L) →C 0
r(ip) 1∈ labels(C)

(R[k : r],h,L) →C 0
r(if) = 1 {r(sp), . . . ,r(sp)+m} 1⊆ dom(h)

(R[k : r],h,L) →C 0

Fig. 12. Operational semantics of the machine.

The second rule in Figure 12 concerns interrupts. Upon an interrupt, the interrupt handler
label schedule is loaded into ip, and the label of the command to execute after the handler
returns is pushed onto the stack together with the values of the general-purpose registers.
The remaining rules deal with crashes arising from erroneous execution of primitive com-
mands, undefined command labels and a stack overflow upon an interrupt.

4 Baseline concurrency logic

We start by presenting the variation of concurrent separation logic on which our logic for
verifying preemptive kernels is based (Section 5). The logic we present in this section
assumes that interrupts are disabled on all CPUs. Thus, we assume that all if registers
are initially set to zero and only consider programs that do not use icall, iret and
savecpuid commands. One can thus think of a single process having been pinned to every

472 A. Gotsman and H. Yang

x,y ∈ NVar

γ ∈ CVar

r ∈ Reg−{ip,if}
r ∈ {ip, if,ss,sp,gr1, . . . ,grm}
E ::= x | r | 0 | 1 | . . . | E +E | E −E | G(r)

G ::= γ | [ip : E, if : E,ss : E,sp : E, "gr : "E]

Σ ::= ε | E | ΣΣ
B ::= E = E | Σ = Σ | G = G | E ! E | B∧B | B∨B | ¬B

P ::= B | true | P∧P | ¬P | ∃x.P | ∃γ.P

| emp | E &→ E | E..E &→ Σ | P∗P | dllΛ(E,E,E,E) | locked(!)

(r,h,L) |=η B iff [[B]]η r = true
(r,h,L) |=η P1 ∧P2 iff (r,h,L) |=η P1 and (r,h,L) |=η P2
(r,h,L) |=η emp iff h = [] and L = /0
(r,h,L) |=η E0 &→ E1 iff h = [[[E0]]η r : [[E1]]η r] and L = /0
(r,h,L) |=η E0..E1 &→ Σ iff ∃ j # 0.∃u1, . . . ,u j ∈ Val. L = /0, j = [[E1]]η r − [[E0]]η r +1,

u1u2 . . .u j = [[Σ]]η r and h = [[[E0]]η r : u1, . . . , [[E1]]η r : u j]

(r,h,L) |=η locked(!) iff h = [] and L = {!}
(r,h,L) |=η P1 ∗P2 iff ∃h1,h2,L1,L2. h = h1 *h2, L = L1 *L2,

(r,h1,L1) |=η P1 and (r,h2,L2) |=η P2

Predicate dllΛ is the least one satisfying the equivalence below:

dllΛ(Eh,Ep,En,Et) ⇐⇒ ∃x.(Eh = En ∧Ep = Et ∧ emp)∨
Eh.prev&→Ep ∗Eh.next&→x∗Λ(Eh)∗dllΛ(x,Eh,En,Et)

Fig. 13. Syntax and semantics of assertions of the baseline logic. We have omitted the standard
clauses for most of the first-order connectives. The function [[·]]η r evaluates expressions with respect
to the context r and the logical variable environment η .

CPU, so that we do not have to consider scheduling. Our logic for preemptive kernels in
Section 5 lifts this restriction.

4.1 Assertion language

Mathematically, assertions denote sets of states as defined by (3). However, they describe
properties of a single process, rather than the whole machine. Hence, unlike in Section 3.3,
here a heap can be a partial function, with its domain defining the part of the heap owned
by the process. Similarly, a lockset is now meant to contain only the set of locks that the
process has permission to release.

We use a minor extension of the assertion language of separation logic (Reynolds, 2002),
whose syntax and semantics are defined in Figure 13. We denote the set of assertions by
AssertH. We assume disjoint sets NVar and CVar containing logical variables for values
and contexts, respectively. The latter is needed for the extension of the current logic to
reasoning about preemptive kernels (Section 5). A context G is either a logical variable or

Modular verification of preemptive OS kernels 473

Eh

Ep Et

En

Fig. 14. An illustration of the dllΛ(Eh,Ep,En,Et) predicate.

a finite map from register labels r to expressions. Note that we use r to range over register
names in context expressions, but r elsewhere in assertions and in programs. Expressions
E and Booleans B are similar to those in programs, except that they allow logical variables
to appear and include the lookup G(r) of the value of the register r in the context G. Let
a logical variable environment η be a mapping from NVar ∪ CVar to Val ∪ Context that
respects the types of variables. Assertions denote sets of states from State as defined by
the satisfaction relation |=η in Figure 13. For an environment η and an assertion P, we
denote the set of states satisfying P by [[P]]η .

The assertions in the first line of the definition of P are connectives from the first-
order logic with the standard semantics. We can define the missing connectives from
the given ones. The assertions in the second line up to dllΛ are standard assertions of
separation logic (Reynolds, 2002). Informally, emp describes the empty heap, and E &→ E ′

the heap with only one cell at the address E containing E ′. The assertion E..E ′ &→ Σ is
the generalisation of the latter to several consecutive cells at the addresses from E to E ′

inclusive containing the sequence of values Σ. For a value u of a C type t taking several
cells, we shorten E..(E +sizeof(t)−1) &→ u to just E &→ u. For a field f of a C structure,
we use E.f &→ E ′ as a shorthand for (E + off) &→ E ′, where off is the offset of f in the
structure. The separating conjunction P1 ∗ P2 talks about the splitting of the local state,
which consists of the heap and the lockset of the process. It says that a pair (h,L) can be
split into two disjoint parts, such that one part (h1,L1) satisfies P1 and the other (h2,L2)

satisfies P2.
The assertion dllΛ(Eh,Ep,En,Et) is an inductive predicate describing a segment of a

doubly-linked list (Figure 14). We included it to describe the runqueues of the scheduler in
our example; predicates for other data structures can be added straightforwardly (Reynolds,
2002). The predicate assumes a C structure definition with fields prev and next. Here, Eh
is the address of the head of the list, Et is the address of its tail, Ep is the pointer in the
prev field of the head node, and En is the pointer in the next field of the tail node. The
Λ parameter is a formula with one free logical variable describing the shape of each node
in the list, excluding the prev and next fields; the logical variable defines the address of
the node. For instance, the request queue from Figure 4 can be described by the following
assertion:

∃x,y,z.&request queue &→ z∗z.prev &→ y∗z.next &→ x∗z.data &→ ∗dllΛ(x,z,z,y), (4)

where Λ(x) = x.data &→ .
Finally, the assertion locked(!) is specific to reasoning about concurrent programs and

denotes states with an empty local heap and the lockset consisting of !, i.e., it denotes a
permission to release the lock !. Note that locked(!)∗ locked(!) is inconsistent: acquiring
the same lock twice leads to a deadlock.

In the following, we write var " P for a local C variable or procedure parameter var
instead of ∃var.(sp− var off) &→ var ∗ P, where var off is the offset of var with respect

474 A. Gotsman and H. Yang

to the top of the stack in the activation record of the function where it is declared (note that
here var is a program variable, whereas var is a logical one). Thus, the assertion at line 13
of Figure 4 states that the local state of a process executing the system call consists of the
local variables req and tmp, stored on its stack, the free part of the stack, the doubly-linked
list request queue and a permission to release request lock.

To summarise, our assertion language extends that of concurrent separation logic with
expressions to denote contexts and locked assertions to keep track of permissions to release
locks.

4.2 Proof system

The proof system for the baseline logic is obtained by adapting concurrent separation logic
to our low-level language. The judgements of the proof system are of the form I,∆ 4 C.
Here, C specifies the code executed by processes on all CPUs; note that even though C is
the same for all of them, the processes can still execute different programs if they start from
different program points in C. We explain I below. The parameter ∆ : Label → AssertH in
our judgement specifies local states of a process given the program point it is at; these
states correspond to process partitions in Figure 7. It thus induces pre- and postconditions
for all primitive commands in C. The top-level rule PROG of the proof system requires us
to prove I,∆ "l′ {∆(l)} c {∆(l′)} for every primitive command c in C and the label l′ of a
command following c. This informally means that if c is run from an initial state satisfying
∆(l), then it accesses only the memory specified by ∆(l) and either terminates normally
and ends up in a state satisfying ∆(l′), or jumps to a label l′′ whose assertion ∆(l′′) holds
in the current state. The proof rules for the above kind of judgements are also given in
Figure 15. They include the standard separation logic axioms for primitive commands,
such as ASSUME and STORE; see Reynolds (2002) for the others. Note that PROG treats
sequential composition, represented by ∆ as illustrated in Figure 10, in the same way as
the classical proof rule (1).

The fact that I,∆"l′ {∆(l)} c {∆(l′)} guarantees that c accesses only the memory spec-
ified by ∆(l) validates the frame property (Section 2.3): a process will not step out of the
boundaries of its partition in Figure 7. This also allows us to include the FRAME rule of
separation logic, which states that executing a command in a bigger local state does not
change its behaviour. The rule is useful to restrict the reasoning about primitive commands
to the memory they actually access. The rules CONSEQ, DISJ and EXISTS are standard
rules of Hoare logic. To keep the logic sound we have to forbid applying EXISTS and
FRAME to calls or returns.

The LOCK and UNLOCK axioms are inherited from concurrent separation logic and
provide tools for modular reasoning about concurrent processes. They use the mapping
I : Lock ⇀ AssertH, which specifies the invariants of locks that can be used in C (see
Section 2.3). An example of a lock invariant is the assertion (4), which states that the lock
request_lock from Figure 4 protects a non-empty cyclic doubly-linked list of Request
nodes with the head node at address request_queue. We do not allow lock invariants
to contain registers or free occurrences of logical variables and require them to have
an empty lockset: ∀!,η ,(r,h,L) ∈ [[I(!)]]η .L = /0. The latter does not allow us to prove
programs where a lock is released by a CPU other than the one that acquired it, which our
machine semantics allows. We put this restriction to simplify the explanation of soundness

Modular verification of preemptive OS kernels 475

∀l ∈ labels(C).∀l′ ∈ next(C, l).(I,∆ "l′ {∆(l)} comm(C, l) {∆(l′)})

I,∆ 4 C
PROG

I,∆ "l {P} assume(b) {P∧b} ASSUME

I,∆"l {e &→ }[e]:=e′{e &→ e′} STORE

I,∆"l {P}c{Q} mod(c)∩ free(F) = /0 c is not one of call, icall, ret and iret

I,∆"l {P∗F}c{Q∗F} FRAME

P =⇒ P′ I,∆ "l {P′} c {Q′} Q′ =⇒ Q

I,∆ "l {P} c {Q} CONSEQ

I,∆ "l {P} c {Q} c is not one of call, icall, ret and iret

I,∆ "l {∃x.P} c {∃x.Q} EXISTS

I,∆ "l {P1} c {Q1} I,∆ "l {P2} c {Q2}
I,∆ "l {P1 ∨P2} c {Q1 ∨Q2}

DISJ

I,∆ "l {emp} lock(!) {I(!)∗ locked(!)} LOCK

I,∆ "l {I(!)∗ locked(!)} unlock(!) {emp} UNLOCK

(P∗ (sp..(sp+m) &→ l gr1 . . .grm)) =⇒ (∆(l′)[(sp+m+1)/sp])

I,∆ "l {P∗ (sp..(sp+m) &→)} call(l′) {Q} CALL

∀l′ ∈ Label.(P∗ ((sp−m−1)..(sp−1) &→ E ′"E)∧E ′=l′) =⇒ (∆(l′)[(sp−m−1)/sp]["E/"gr])

I,∆"l {P∗ ((sp−m−1)..(sp−1) &→ E ′"E)}ret{Q}
RET

Fig. 15. Proof system of the baseline logic. Here, mod(c) is the set of registers modified by c, and
free(F) is the set of registers appearing in F .

in Section 8. We consider a version of concurrent separation logic where lock invariants
are allowed to be imprecise (O’Hearn, 2007) at the expense of excluding the conjunction
rule from the proof system (Gotsman et al., 2011).

The LOCK axiom says that upon acquiring a lock, the process gets the ownership of
its invariant and a permission to release it. In terms of Figure 7, we can think of the
corresponding lock partition becoming part of the process-local one, allowing the process
to modify it at will. According to UNLOCK, before releasing the lock, the process must
have the corresponding permission and must re-establish the lock invariant. When the lock
is released, the process gives up the ownership of the permission and the invariant. In terms
of Figure 7, the lock partition gets split off the process-local one.

The CALL and RET axioms mirror the operational semantics of call and ret (see
Section 2.1 and Figure 11). CALL requires us to provide enough space on the stack to store
the values of registers before a call. The precondition together with the modified stack then
has to establish the assertion given by ∆ at the target label. The premiss of RET requires
us to make a case-split on all possible labels l′ we could return to; the precondition has to
establish the assertion at every such label after the values of general-purpose registers and
ip (denoted by "E and E ′) have been loaded from the stack.

476 A. Gotsman and H. Yang

The axioms CALL and RET provide only a very rudimentary treatment of procedures.
In particular, our logic does not have analogues of the usual modular Hoare proof rules for
procedures and does not allow applying the EXISTS and FRAME rules over a procedure
call. This is because soundly formulating such proof rules in the setting where the stack
is visible to procedure code and can potentially be modified by it is non-trivial. Since we
are concerned with scheduler verification, in this paper we opted for a simplistic solution
and did not include more powerful proof rules for procedures (Feng et al., 2006). As we
discuss in Section 10, this issue also represents a promising direction of future work.

The soundness statement of the logic (presented in Section 8.1) constrains the states
obtained by running the machine with interrupts disabled: when CPUs are at given program
points l1, . . . , lNCPUS, the state of the machine can be obtained by combining the assertions
∆(l1), . . . ,∆(lNCPUS), describing their local states, and the lock invariants of free locks, as per
Figure 7. The set of free locks can be determined based on occurrences of locked predicates
in the assertions ∆(l1), . . . ,∆(lNCPUS).

Figure 4 gives an example proof of a concurrent program in the baseline logic, where
every CPU executes the code shown in the figure. The assertions shown define the local
state of a process and thus the required mapping ∆; the lock invariant of request_lock
is (4). Note that the assertions describe the stack of a process explicitly. We introduced the
" notation in Section 4.1. When a process acquires request_lock, it gets the ownership
of the doubly-linked list it protects, together with the corresponding locked predicate. After
performing manipulations on the list, the process gives up its ownership upon releasing the
lock. Our proof ensures that the code in Figure 4 preserves the doubly-linked list shape
of request_queue and does not access memory cells other than those specified by the
assertions.

5 Logic for preemptive kernels

In this paper we consider schedulers whose interface consists of two routines: create and
schedule. Like in our example scheduler (Section 2.2), create makes a new process
runnable, and schedule performs a context switch. We discuss how our results can be
extended when new scheduler routines are introduced in Section 5.5 below. Our logic thus
reasons about programs of the form:

C* [lc : (iret,{lc +1})]*S* [ls : (iret,{ls +1})]*K. (OS)

where C and S are pieces of code implementing the create and schedule routines of the
scheduler, lc and ls are their exit points, and K is the rest of the kernel code. Our high-level
proof system is designed for proving K, and the low-level system for proving C and S.

We make several assumptions about programs:

• We require that C and S define primitive commands labelled create and schedule,
which are meant to be the entry points for the corresponding scheduler routines. The
create routine expects the address of the descriptor of the new process to be stored
in the register gr1. By our convention schedule also marks the entry point of the

Modular verification of preemptive OS kernels 477

interrupt handler. Thus, schedule may be called both directly by a process or by an
interrupt.

• For now, we ensure that the kernel may not affect the status of interrupts, become
aware of the particular CPU it is executing on, or change the stack address. Thus, K

may not contain savecpuid, icall and iret (except calls to the scheduler routines
schedule and create), and assignments writing to ss. In reality, a kernel might
need to disable interrupts, and we generalise our results to handle this in Section 7.

• To ensure that the scheduler routines execute with interrupts disabled, we require
that C and S may not contain icall and iret.

• We require that the kernel K and the scheduler C and S access disjoint sets of locks.
This condition simplifies the soundness statement in Section 8 and can be lifted.

• For simplicity, we assume that the scheduler data structures are properly initialised
when the program starts executing.

5.1 Interface parameters

As we noted in Section 2.3, our logic can be viewed as implementing a form of rely-
guarantee reasoning between the scheduler and the kernel. In particular, interactions be-
tween them involve ownership transfer of memory cells at points where the control crosses
the boundary between the two components. Hence, the high- and low-level proof systems
have to agree on the description of the memory areas being transferred and the properties
they have to satisfy. These descriptions form the specification of the interface between the
scheduler and the kernel and, correspondingly, between the two proof systems. Here we
describe parameters used to formulate it.

When the kernel calls the create routine of the scheduler, the latter might need to get the
ownership of the process descriptor supplied as the parameter. In the two proof systems,
we specify this descriptor using an assertion desc(d,γ) ∈ AssertH with two free logical
variables and no register occurrences. Our intention is that it describes the descriptor of
a process with the context γ , allocated at the address d. However, the user of our logic is
free to choose any assertion, depending on a particular scheduler implementation being
verified. This flexibility has an impact on the soundness statement of the logic, as we
discuss in Section 8. Since the scheduler and the kernel access disjoint sets of locks, we
require that [[desc(d,γ)]] have an empty lockset (Section 4.2). We assume that create does
not transfer anything back to the kernel at its return, and thus do not introduce an interface
parameter for this case.

The schedule routine can be called by the kernel explicitly, or as a consequence of an
interrupt at any time. Due to the latter case, schedule cannot make that many assumptions
about the state in which it is called. Therefore, rather than specifying the state to be
transferred from the kernel to schedule upon an interrupt abstractly, like in the case
of create, we fix it to be the free part of the stack of the process being preempted—
the minimum schedule needs to execute. The scheduler returns the ownership of this
memory to the process when it schedules the process again. The corresponding interface
parameters determine the size of the part of the stack being transferred: the size of the
stack StackSize ∈ ! and the upper bound StackBound ∈ ! on the stack usage by the
kernel (excluding the scheduler). To ensure that the stack does not overflow while calling

478 A. Gotsman and H. Yang

∀l ∈ labels(C).∀l′ ∈ next(C, l).(I,∆ "l′ {∆(l)} comm(C, l) {∆(l′)})

∀l ∈ Label(C).∃P ∈ AssertH.∆(l) ⇐⇒
((0 ! sp−ss ! StackBound)∧ (sp..(ss+StackSize−1) &→)∗P)

I,∆ 4 C
PROG-H

I,∆ "l {P} icall (schedule) {P} SCHED

free(P)∩Reg = /0
P has an empty lockset

∀l′ ∈ Label.(∃γ. id = γ ∧ γ(ip) = l′ ∧sp..(ss+StackSize−1) &→ ∗P) =⇒ ∆(l′)
I,∆ "l {∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q} icall(create) {∃γ.Q} CREATE

Fig. 16. The rules specific to the high-level proof system. Here,
id = [ip : , if : 1,ss : ss,sp : sp, "gr : "gr].

an interrupt hander, we require that StackSize− StackBound # m + 1, where m is the
number of general-purpose registers.

In the following, we first present the high-level proof system used for verifying kernel
code, which adapts the baseline concurrency logic from Section 4. We then present the
low-level proof system for verifying scheduler code, which extends the high-level system.

5.2 High-level proof system

The high-level proof system is obtained from that of Section 4 with minimal changes.
The proof system reasons under an illusion that every process runs on a separate virtual
CPU with its own registers (but not memory), and its assertions now describe properties
of processes under this assumption, as illustrated in Figure 7. Whereas in Section 4 we
justified such reasoning by requiring processes to be pinned to physical CPUs by disabling
interrupts, here we do not make this assumption.

The judgements of the proof system are of the same form as before: I,∆ 4 C, where
C specifies all the code executed by kernel processes. As before, different processes can
execute different programs by starting at different program points in C. The high-level
proof system is meant for verifying the K part of the OS program and, hence, ∆ in I,∆ 4 C
is now meant to give assertions only for the kernel code. When combining proofs in the
high-level and low-level proof systems in Section 5.4, we enforce this by restricting ∆
so that it is false everywhere except at labels in the kernel code. Similarly, I describes
invariants for locks accessible in the kernel code only.

The changes to the logic from Section 4 are as follows. The PROG rule from Figure 15
gets replaced by a similar rule PROG-H, shown in Figure 16, and the rest of the rules
in Figure 15 are left without changes. PROG-H inherits the premiss of PROG, and thus
subsumes the usual sequential composition rule of Hoare logic: it assumes that the control
follows the structure of the process code, even though the scheduler code can get executed
due to an interrupt at any time. This possibility is accounted for by the second premiss of
PROG-H. Recall from Section 5.1 that the kernel is supposed to transfer the ownership of
the free part of the stack to the scheduler at an interrupt, and get it back when it is scheduled
again. The second premiss of PROG-H ensures this by requiring all assertions in ∆ to

Modular verification of preemptive OS kernels 479

satisfy some restrictions regarding stack usage, formulated using parameters StackSize
and StackBound from Section 5.1:

• the free part of the stack of the process must always be in its local state so that it can
be transferred to the interrupt handler at any time;

• this part must always be large enough for the handler to run without a stack overflow;
and

• the assertions should be independent of any changes to the empty slots of the stack,
which may be modified by the handler.

The latter condition is similar to that of stability in logics based on rely-guarantee
(Feng et al., 2007a; Vafeiadis & Parkinson, 2007).

To complete the illusion of uninterrupted control flow in a process, the high-level proof
system treats explicit calls to the create and schedule routines of the scheduler as
primitive commands, axiomatising their effect using SCHED and CREATE. These axioms
are formulated as if after the corresponding icall commands the control just proceeded to
the next statement in the program, instead of jumping to the implementation of the routines.
This is despite the fact that, after a call to schedule, the process may be preempted and
the control given to any other process in the system. In this way, the axioms abstract from
the scheduler implementation.

The SCHED axiom states that invoking schedule has no effect from the point of view
of the process—if it is preempted, the scheduler resumes it in the same context, and no
other process can touch its local state. The axiom does not place any requirements on the
process, as the preconditions necessary for the execution of schedule, which can anyway
be invoked at any time as the interrupt handler, are established by the second premiss of
PROG-H.

The CREATE axiom is more complicated. First, it requires the caller of create to
provide a new descriptor desc(gr1,γ) for the process being created with the context γ .
We pass the parameter via the register gr1 and not via the stack, as this simplifies the
following technical presentation. The context is required to have if set, since after the
context switch is finished, the process starts executing with interrupts enabled. Note that
the descriptor is not present in the postcondition: it gets transferred to the scheduler and
reappears in the precondition of the implementation of create (Section 5.4). The axiom
also allows us to transfer the ownership of the part of the heap given by P to the newly
created process, thus providing it with an initial local state. This is a typical idiom for high-
level reasoning about processes in separation logics (Gotsman et al., 2007). The premiss
of the rule correspondingly requires that, after the registers and the stack are properly
initialised, the state P we are transferring should establish the assertion at the label the
process starts executing from. The effect of loading registers from γ is formulated using
the context id.

For the example scheduler in Section 2.2, desc(d,γ) should describe a process descriptor
with the stack initialised according to the invariant of a preempted process pictured in
Figure 5:

desc(d,γ) = d.prev &→ ∗d.next &→ ∗desc0(d,γ),

480 A. Gotsman and H. Yang

where

desc0(d,γ) = (γ(if) = 1)∧ (γ(ss) = d.kernel stack)∧
(0 ! γ(sp)− γ(ss) ! StackBound)∧d.timeslice &→ ∗
d.saved sp &→ (γ(sp)+m+1+SCHED FRAME)∗
γ(sp)..(γ(sp)+m) &→ γ(ip)γ("gr)∗
(γ(sp)+m+1)..(γ(ss)+StackSize−1) &→

and SCHED FRAME is the size of the activation record of schedule (Figure 2). The de-
scriptor does not include filled stack slots; they can be passed to the process directly in the
precondition P.

Now assume that we want to create a process that will start executing from a label l0
with an empty stack and the ownership of a cell at the address stored in the register gr1, so
that

∆(l0) = (ss = sp∧ss..(ss+StackSize−1) &→ ∗gr1 &→).

To apply CREATE, we let

P = (γ(ip) = l0 ∧ γ(ss) = γ(sp)∧ γ(gr1) &→).

Then the left-hand side of the implication in the last premiss of CREATE is false for all
l′ 1= l0, and in this case the implication holds trivially; it is easy to check that the implication
also holds for l′ = l0.

The proof in Figure 4, previously done using the baseline concurrency logic, is also a
valid proof in the high-level logic for StackBound = 2 ·sizeof(Request∗).

To summarise, the high-level proof system provides modern tools for modular reasoning
about concurrent processes using proof rules of concurrent separation logic and hides the
control flow of the scheduler by treating its routines as primitive commands. The soundness
of such an illusion is established by verifying the scheduler code using a low-level proof
system, which we describe next.

5.3 Low-level proof system

The low-level proof system is used for proving that the commands C and S of the OS

program implement scheduling correctly. This boils down to checking the two obligations
explained in Section 2.3:

1. A scheduler resumes a process with the state of the CPU registers it had the last time
it was preempted.

2. A scheduler does not duplicate processes arbitrarily.

To reason about these, we extend the assertion language of Section 4.1 with an additional
predicate:

P ::= . . . | Process(G),

where G ranges over context expressions. The predicate records the reference values G of
registers in between the time a process is preempted and scheduled again. In Section 5.4
below, we use it to formulate the proof obligation on the context-switch routine of the

Modular verification of preemptive OS kernels 481

(r,h,L),M |=η Process(G) iff h = [], L = /0, M = {[[G]]η r}
(r,h,L),M |=η P∗Q iff ∃h1,h2,L1,L2,M1,M2.h=h1 *h2,L = L1 *L2,M = M1 *M2,

(r,h1,L1),M1 |=η P and (r,h2,L2),M2 |=η Q
(r,h,L),M |=η emp iff h = [], L = /0 and M = /0
(r,h,L),M |=η P∧Q iff (r,h,L),M |=η P and (r,h,L),M |=η Q

Fig. 17. Semantics of low-level assertions. The * operation on multisets adds up the number of
occurrences of each element in its operands.

scheduler formalising (2) from Section 2.3 and thus ensuring property 1 above. We denote
the extended set of assertions by AssertL.

The addition of the Process predicate changes objects described by assertions: they now
denote relations defined by subsets of

SchedState = State×M (Context),

where M (Context) is the set of all finite multisets of contexts. Here, an element of
State describes a state local to a scheduler invocation on a CPU (Figure 6) and that of
M (Context) interprets Process predicates. We give the formal semantics of assertions
using the satisfaction relation |=η in Figure 17, parameterised by environments η . The first
two cases in the figure are the most interesting ones. The assertion Process(G) describes
a scheduler invocation having the empty heap and lockset and a permission to schedule a
single process with the register values G. The separating conjunction P∗Q splits all parts of
the state-multiset pair except the current scheduler context such that the first part satisfies
P and the second Q. This definition of ∗ prohibits duplicating Process and thus ensures
property 2 above:

¬(Process(G) =⇒ Process(G)∗Process(G)).

The semantic definitions for the remaining assertions are obtained from the corresponding
cases in our high-level proof system (Figure 13) either by requiring the multiset component
M to be empty, like in the case of emp, or by propagating M to their sub-assertions,
like in the case of P ∧ Q. For example, the assertion ∃γ.desc(d,γ) ∗ Process(γ) denotes
a descriptor of a preempted process with a Process predicate matching the state stored in
it and thus certifying its validity. We denote the set of states satisfying P by [[P]]η .

Relations in SchedState can be thought of as connecting the states of the concrete ma-
chine and the abstract machine with one CPU per process. As we have noted in Section 2.3,
these relations do not describe the full state of the machines. The first component in a
relation describes the local state of a scheduler invocation running on a CPU, including its
context and the heap and the lockset local to it (e.g., the region marked CPU1 in Figure 6).
The multiset in the second part records information about the states of processes described
by Process predicates in the assertion (cf. the dark regions in Figure 7), which includes
their contexts, but excludes local heaps and locksets. The low-level logic we present in this
section is based on separation logic and, hence, the invisibility of these parts of process
state to the scheduler automatically guarantees that it cannot access them.

The judgements of the low-level proof system have the form I,∆ 4k C, where k ∈ CPUid,
I : Lock ⇀ AssertL is a vector of invariants for locks accessible to the scheduler, and

482 A. Gotsman and H. Yang

∆ : Label → AssertL is a mapping from program positions to low-level assertions. When
considering a complete system in Section 5.4, we restrict ∆ so that it is false everywhere
except at labels in the scheduler code. Since we allow the scheduler to use the savecpuid
command, the judgement includes the identifier k of the CPU executing the code C.

The intuitive meaning of the judgements is the same as in the high-level system (Sec-
tion 5.2), with the component describing process states unchanged during the execution
of scheduler commands. The judgements thus express how the scheduler code changes
the relationship between the state of the scheduler on the CPU k and those of processes
running on the machine. The proof rule for deriving our judgements is identical to PROG

from Figure 15, modulo the addition of k:

∀l ∈ labels(C).∀l′ ∈ next(C, l). I,∆ "k
l′ {∆(l)} comm(C, l) {∆(l′)}

I,∆ 4k C PROG-L

Note that the syntactic structure of the OS program (see the beginning of Section 5) ensures
that the scheduler always executes with interrupts disabled. Thus, in the rule we are able
to follow the control flow of C. The low-level system inherits the proof rules for deriving
judgements for primitive commands I,∆ "l {P} c {Q} in Figure 15, adding the superscript
k to "l and ignoring the rules for icall(schedule) and icall(create). It also has a rule
for savecpuid, which makes use of the index k:

I,∆ "k
l {e &→ } savecpuid(e) {e &→ k} CPUID

5.4 Putting the two proof systems together

The proof systems presented in Sections 5.2 and 5.3 allow us to reason about the kernel
and the scheduler code. We now describe a rule for combining judgements from the two
systems, which defines proof obligations for the OS components. This allows us to prove
the OS program defined at the beginning of Section 5.

As can be seen from the example of Section 2.2, a scheduler might need to maintain
some data structures related to every CPU, which can be accessed by a scheduler invocation
running on it. A data structure of this kind in our example scheduler is the element of
the current array corresponding to the current CPU. Let Jk be an invariant of such data
structures for CPU k, which is meant to hold when the scheduler is not running on it.
Similar to lock invariants, we do not allow Jk to contain free logical variables or registers,
except ss. In this case, we can allow ss because we have previously required that the
kernel cannot modify it. We denote the vector of invariants Jk by J.

Consider assertions IK,∆K and IS,∆k
S for all k ∈ CPUid, corresponding to the kernel and

the scheduler code, respectively:

• dom(IK)∩dom(IS) = /0;

• ∀l. l 1∈ dom(K) =⇒ ∆K(l) = false;

• ∀l. l 1∈ dom(S)*dom(C)*{ls, lc} =⇒ ∆k
S(l) = false.

Modular verification of preemptive OS kernels 483

The proof rule for the program OS is as follows:

IK,∆K 4 K

∀k ∈ CPUid. IS,∆k
S 4k S, IS,∆k

S 4k C

∀k ∈ CPUid.∆k
S(schedule) = ∆k

S(ls) = ∆k
S(lc) = SchedStatek

∀k ∈ CPUid.∆k
S(create)=(∃γ.γ(if)=1∧SchedStatek∗desc(gr1,γ)∗Process(γ))

IK,∆K | IS,{∆k
S}k∈CPUid | J 4 (S,C,K)

OS

where

SchedStatek = ∃l,"g.0 ! sp−ss−m−1 ! StackBound∧
(sp−m−1)..(sp−1) &→ l"g∗sp..(ss+StackSize−1) &→ ∗

Jk ∗Process([ip : l, if : 1,ss : ss,sp : sp−m−1, "gr :"g]).

The first two premisses require us to prove the kernel and the scheduler code in their respec-
tive proof systems. The rest define pre- and postconditions for schedule and create by
fixing the assertions at the corresponding labels. This is done using the predicate
SchedStatek, which describes the state of a scheduler invocation at CPU k just after it
is called using icall or before it returns by executing iret.

According to the penultimate premiss of the proof rule, when schedule is called the
stack satisfies the bound on stack usage. The scheduler gets the ownership of the per-
CPU data structure Jk, a part of the stack of the process being preempted (which contains
the values of registers saved upon the call together with the empty slots), and a Process

predicate consistent with the registers saved on the stack. The predicate certifies that,
when the scheduler starts executing, the state of the preempted process in the machine
corresponds to its state in the abstract machine. The schedule routine has to re-establish
the same assertion before returning. In the case when it schedules a different process, this
will be done using a different Process predicate. However, since the scheduler can only get
a Process predicate in the precondition of schedule (and when a new process is created;
see below), its postcondition guarantees that the process being scheduled has the same
register values it had last time it was preempted. Note that the pre- and postconditions of
schedule mirror the second premiss of the PROG-H rule. Thus, the assumptions it makes
about the kernel are justified by the proof of the latter in the high-level system. Also, the
per-CPU state of the scheduler Jk is treated similarly to a piece of state protected by a lock:
a scheduler invocation gets its ownership when the scheduler starts executing, and gives it
up after giving the control back to a process.

The precondition of create is similar to that of schedule, but additionally assumes a
process descriptor for a new process with the address in gr1, and a corresponding Process

assertion initialised according to the information in the descriptor. This descriptor is guar-
anteed to be provided by the kernel by the precondition of the CREATE rule. Adding the
new Process assertion can be understood intuitively as creating a fresh virtual CPU for the
new process in the abstract machine.

484 A. Gotsman and H. Yang

5.5 Extending the logic

Our logic considers scheduling interfaces providing only the fundamental routines for
context switch and process creation. However, our simple treatment of scheduler routines
allows extending the logic when routines are added to its interface by:

• adding axioms, similar to SCHED and CREATE, for the new routines to the high-
level proof system, specifying the pieces of state transferred between the scheduler
and the kernel at calls to and returns from the routines; and

• adding new obligations for the routines to the proof rule from Section 5.4, to be
discharged using the low-level proof system.

In this case, the pre- and postconditions of the routines in the low-level proof system should
mirror those of the axioms in the high-level proof system, similarly to how this is the case
for schedule and create. In Section 7 we demonstrate how a similar approach can be
used to deal with features that break through the virtual CPU abstraction implemented by
a scheduler, such as access to the interrupt status flag by the kernel.

6 Verifying the example scheduler

We have used the logic to manually construct a proof of the example scheduler of Sec-
tion 2.2, establishing the judgements about schedule and create required by the OS
proof rule from Section 5.4.3 By the soundness theorem for our logic (presented in Sec-
tion 8), this implies that any property of a piece of high-level code proved in concurrent
separation logic, including memory safety and functional correctness, holds of the code
when it is managed by the example scheduler. In particular, this is true of the properties
of the code in Figure 4 described in Section 4. The full proof is given in a Supplementary
Appendix available at http://dx.doi.org/10.1017/S0956796813000075 (Gotsman & Yang,
2013). Here, we present only lock and per-CPU scheduler invariants, together with a sketch
of the proof of schedule.

The invariants of runqueue locks are as follows:

I(runqueue lock[k]) = ∃x,y,z.runqueue[k] &→ z∗
desc0(z,)∗ z.prev &→ y∗ z.next &→ x∗dllΛ(x,z,z,y),

where Λ(d) = ∃γ.desc0(d,γ) ∗ Process(γ) and desc0 is defined in Section 5.2. Thus, a
runqueue for a CPU k contains a list of descriptors of preempted processes together with
Process predicates matching the state stored in them. The per-CPU scheduler invariants
are:

Jk = ∃d.(d.kernel stack = ss)∧current[k] &→ d ∗
d.prev &→ ∗d.next &→ ∗d.timeslice &→ ∗d.saved sp &→ .

Thus, the invariant for CPU k includes the descriptor of the process currently running on
the CPU. We also know that the current stack is the one identified by its descriptor (recall
that the kernel cannot modify the ss register).

3 Since we do not support modular reasoning about procedures, we constructed a proof schema for the body of
fork in Figure 3, which is meant to be instantiated and inlined at every use.

Modular verification of preemptive OS kernels 485

Below we give a sketch of the proof of the context-switch routine schedule with
the following main idea. When an invocation of schedule acquires the runqueue lock
and removes a descriptor from the runqueue, it gets the ownership of the corresponding
Process predicate, which lets it schedule the process by establishing the postcondition
SchedStatek of schedule. When the process is preempted again, schedule receives the
Process predicate in its precondition SchedStatek. This predicate and the state in Jk let the
scheduler insert the descriptor back into the runqueue while maintaining its invariant.

To make sure that the kernel leaves enough space on the stack for the activation records
of schedule and load_balance or create, we assume that

StackSize−StackBound # 2 ·m+2+4 ·sizeof(int)+2 ·sizeof(Process∗).

We abbreviate SCHED_FRAME to s. Below k is the identifier of the CPU for which the proof
is done.

{SchedStatek}
int cpu;

Process *old_process;

{cpu,old process " ∃l,"g,d.if = 0∧ Unpack SchedStatek.
d.kernel stack = ss∧ Local variables cpu and old_process

0 ! sp−ss−m− s−1 ! StackBound∧ are allocated on the stack.
current[k] &→ d ∗d.prev &→ ∗d.next &→ ∗ The assertion d.timeslice &→ allows
d.timeslice &→ ∗d.saved sp &→ ∗ us to prove the following commands
(sp− s−m−1)..(sp− s−1) &→ l"g∗ manipulating the timeslice field of
sp..(ss+StackSize−1) &→ ∗ the current descriptor.
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])}

savecpuid(&cpu);

load_balance(cpu);

old_process = current[cpu];

... // update the timeslice of old process
if (old_process->timeslice) iret();

old_process->timeslice = SCHED_QUANTUM;

{cpu,old process " ∃l,"g.if = 0∧ cpu is now equal to k, and
old process.kernel stack = ss∧ old_process points to the descriptor
cpu = k ∧0 ! sp−ss−m− s−1 ! StackBound∧ of the current process.
current[k] &→ old process∗
old process.prev &→ ∗old process.next &→ ∗
old process.timeslice &→ ∗
old process.saved sp &→ ∗
(sp− s−m−1)..(sp− s−1) &→ l"g∗
sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])}

lock(runqueue_lock[cpu]);

{cpu,old process " locked(runqueue lock[k])∗ Acquiring the lock gets us ownership
∃l,"g.if = 0∧old process.kernel stack = ss∧ of the locked predicate and the lock
cpu = k ∧0 ! sp−ss−m− s−1 ! StackBound∧ invariant.
current[k] &→ old process∗ This allows us to prove the commands
old process.prev &→ ∗old process.next &→ ∗ below that manipulate the runqueue.
old process.timeslice &→ ∗
old process.saved sp &→ ∗
(sp− s−m−1)..(sp− s−1) &→ l"g∗
sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])∗

486 A. Gotsman and H. Yang

∃x,y,z.runqueue[k] &→ z∗
desc0(z,)∗ z.prev &→ y∗ z.next &→ x∗dllΛ(x,z,z,y)}

insert_node_after(runqueue[cpu]->prev,

old_process);

current[cpu] = runqueue[cpu]->next;

remove_node(current[cpu]);

old_process->saved_sp = _sp;

{(cpu,old process " locked(runqueue lock[k])∗ old_process is now at the end of
∃l,"g.if = 0∧old process.kernel stack = ss∧ the runqueue, and process that was
cpu = k ∧0 ! sp−ss−m− s−1 ! StackBound∧ at the front is now the current one.
current[k] &→ x∗old process.prev &→ y∗ We are still using the stack of
old process.next &→ z∗old process.timeslice &→ ∗ the old process.
old process.saved sp &→ sp∗
(sp− s−m−1)..(sp− s−1) &→ l"g∗
sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])∗
∃x,y,z,w,γ.runqueue[k] &→ z∗desc0(z,)∗
z.prev &→ old process∗ z.next &→ w∗ We have omitted the case
desc0(x,γ)∗Process(γ)∗ x.prev &→ ∗ x.next &→ ∗ corresponding to the runqueue
dllΛ(w,z,old process,y))∨ . . .} being originally empty.

_sp = current[cpu]->saved_sp;

savecpuid(&cpu);

_ss = current[cpu]->kernel_stack;

{(cpu,old process " locked(runqueue lock[k])∗ We are now using the stack of the new
∃l,"g,d.if = 0∧d.kernel stack = ss∧ process.
cpu = k ∧0 ! sp−ss−m− s−1 ! StackBound∧ The descriptor of the old process has
current[k] &→ d ∗d.prev &→ ∗d.next &→ ∗ been merged into the dll predicate
d.timeslice &→ ∗d.saved sp &→ sp∗ representing the runqueue.
(sp− s−m−1)..(sp− s−1) &→ l"g∗
sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])∗
∃x,y,z.runqueue[k] &→ z∗
desc0(z,)∗ z.prev &→ y∗ z.next &→ x∗dllΛ(x,z,z,y)}

unlock(runqueue_lock[cpu]);

{cpu,old process " ∃l,"g,d.if = 0∧ After releasing the lock, we give up
d.kernel stack = ss∧ the ownership of the runqueue
0 ! sp−ss−m− s−1 ! StackBound∧ and the locked predicate.
current[k] &→ d ∗d.prev &→ ∗d.next &→ ∗
d.timeslice &→ ∗d.saved sp &→ ∗
(sp− s−m−1)..(sp− s−1) &→ l"g∗
sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, "gr :"g])}

// We deallocate local variables here

{SchedStatek}
iret();

Note that the above proof would not go through if we forgot to acquire the runqueue
lock before accessing it in schedule. This is because, according to the STORE axiom
from Figure 15, we need to have ownership of a memory cell in order to access it. Without
acquiring the lock, we would not get the ownership of the doubly-linked list representing
the runqueue and, hence, would not be able to justify the correctness of runqueue manipu-
lations.

Modular verification of preemptive OS kernels 487

Our logic is not tied to the particular scheduler implementation we consider here. For
example, if we represented the runqueue using a red-black tree sorted by process priorities,
like in the newer versions of the Linux kernel (Love, 2010), then we would be able to verify
the resulting scheduler as above, but with a new runqueue lock invariant.

7 Breaking through the scheduler abstraction: per-CPU data structures

Even though a scheduler is supposed to provide an illusion of running on a dedicated virtual
CPU to every process, in practice, some features available to the kernel code can break
through this abstraction: e.g., a process can disable preemption (which for our machine
corresponds to disabling interrupts) and become aware of the physical CPU on which it
is currently executing. So far we have ignored this possibility by not allowing the kernel
to access the if register or execute the savecpuid command (Section 5). One way in
which OS kernels, such as Linux, use preemption disabling is for implementing so-called
per-CPU data structures (Bovet & Cesati, 2005)—arrays indexed by CPU identifiers such
that a process can only access an entry in an array when it runs on the corresponding CPU.
This is widely used to implement CPU-local caches of data, which can be accessed without
synchronisation with processes running on other CPUs.

The code in Figure 18, whose proof we explain below, illustrates this by the example of
a memory allocator, whose routines can be called concurrently by multiple processes. The
allocator manages nodes of type Node, which it stores in a doubly-linked list free_list.
Since multiple invocations of the allocator routines can try to access the free list concur-
rently, such accesses have to be protected by list_lock. To avoid this synchronisation in
most cases, the deallocation routine shown in Figure 18 first stores nodes in a CPU-local
cache; only when this cache overflows does the routine acquire list_lock and move the
nodes from the cache to the free list. An allocation routine, which we have omitted, could
benefit from a similar optimisation, by trying to allocate a node from the CPU-local cache
first and accessing the shared free list only when this fails. For the manipulations of a
CPU-local cache to be safe, we need to make sure that at most one allocator invocation can
access it at a time. We achieve this by disabling interrupts, and hence, preemption, for the
duration of the access, using a pair of new commands cli (for disabling interrupts) and
sti (for enabling them). We also use the savecpuid command to index into the array of
per-CPU caches.

The use of per-CPU data structures makes it more challenging to separate the verification
of the kernel from that of the scheduler, as this exposes the notion of a physical CPU that
a scheduler is meant to hide. We now show that we can deal with such implementation
exposures while preserving the level of abstraction our logic has enabled so far. Instead of
exposing the low-level meaning of concepts such as interrupts and physical CPUs in the
logic, our approach is to hide them behind an axiomatic interface that allows only reasoning
about their intended uses in the kernel, such as per-CPU data structures.

We extend the set of primitive commands from Figure 9 with the above-mentioned
commands for disabling and enabling interrupts, meant for the use by the kernel code
only:

c ::= . . . | cli | sti

488 A. Gotsman and H. Yang

1 struct Node {

2 Node *prev, *next;

3 int data;

4 };

5

6 Node *free_list; // a cyclic doubly−linked list with a sentinel node
7 Lock *list_lock; // protects the list
8 Node *free_cache[NCPUS]; // CPU−local caches of free nodes
9 // (cyclic doubly−linked lists with sentinel nodes)

10 int count[NCPUS]; // number of nodes in each CPU−local cache
11

12 void free(Node *n) {

13 int cpu;

14 {n,cpu " n.prev &→ ∗n.next &→ ∗n.data &→ ∗
15 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
16 cli();

17 {n,cpu " ∃x,y,z, i,k.&count[k] &→ i∗&free cache[k] &→ z∗ z.prev &→ y∗ z.next &→ x∗
18 z.data &→ ∗dlliΛ(x,z,z,y)∗CPU(k)∗n.prev &→ ∗n.next &→ ∗n.data &→ ∗
19 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
20 savecpuid(&cpu);

21 {n,cpu " ∃x,y,z, i.&count[cpu] &→ i∗&free cache[cpu] &→ z∗ z.prev &→ y∗ z.next &→ x∗
22 z.data &→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗n.prev &→ ∗n.next &→ ∗n.data &→ ∗
23 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
24 insert_node_after(free_cache[cpu], n);

25 count[cpu]++;

26 {n,cpu " ∃x,y,z, i.&count[cpu] &→ i∗&free cache[cpu] &→ z∗ z.prev &→ y∗ z.next &→ x∗
27 z.data &→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
28 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
29 if (count[cpu] > LIMIT) {

30 lock(list_lock);

31 {n,cpu " ∃x,y,z, i.&count[cpu] &→ i∗&free cache[cpu] &→ z∗ z.prev &→ y∗ z.next &→ x∗
32 z.data &→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
33 ∃x′,y′,z′.&free list &→ z′ ∗ z′.prev &→ y′ ∗ z′.next &→ x′ ∗ z′.data &→ ∗dllΛ(x′,z′,z′,y′)∗
34 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
35 move_contents(free_cache[cpu], free_list);

36 {n,cpu " ∃z.&count[cpu] &→ ∗&free cache[cpu] &→ z∗ z.prev &→ z∗ z.next &→ z∗
37 z.data &→ ∗CPU(cpu)∗
38 ∃x′,y′,z′.&free list &→ z′ ∗ z′.prev &→ y′ ∗ z′.next &→ x′ ∗ z′.data &→ ∗dllΛ(x′,z′,z′,y′)∗
39 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
40 unlock(list_lock);

41 count[cpu] = 0;

42 }

43 {n,cpu " ∃x,y,z, i.&count[cpu] &→ i∗&free cache[cpu] &→ z∗ z.prev &→ y∗ z.next &→ x∗
44 z.data &→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
45 sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
46 sti();

47 {n,cpu " sp..(ss+StackSize−1) &→ ∧sp = ss+2 ·sizeof(Request∗)}
48 }

Fig. 18. A memory deallocation routine using per-CPU caches of free nodes.

Modular verification of preemptive OS kernels 489

For v1,v2 ∈ CPUid∪{⊥} let v1 ◦ v2 = v ⇐⇒ (v1 = v∧ v2 = ⊥)∨ (v1 = ⊥∧ v2 = v)

(r,h,L,v) |=η CPU(e) iff h = [], L = /0, [[e]]r = v and v ∈ CPUid

(r,h,L,v) |=η P1 ∗P2 iff ∃h1,h2,L1,L2,v1,v2. h = h1 *h2, L = L1 *L2, v = v1 ◦ v2,

(r,h1,L1,v1) |=η P1 and (r,h2,L2,v2) |=η P2
(r,h,L,v) |=η emp iff h = [], L = /0 and v = ⊥
(r,h,L,v) |=η P∧Q iff (r,h,L,v) |=η P and (r,h,L,v) |=η Q

Fig. 19. Semantics of high-level assertions adjusted for handling per-CPU data structures. The
semantics of assertions not shown is adjusted similarly.

We furthermore lift the restriction we made in Section 5 that prohibits the kernel code from
using the savecpuid command. The semantics of our programming language is adjusted
by adding the following clauses for the new commands to the transition relation from
Figure 11:

(k,(r[if : 1],h,L), l, l′) !cli ((r[if : 0],h,L), l′); (k,(r[if : 0],h,L), l, l′) 1!cli ;

(k,(r[if : 0],h,L), l, l′) !sti ((r[if : 1],h,L), l′); (k,(r[if : 1],h,L), l, l′) !sti 0.

Note that according to this semantics, calling cli twice on a CPU freezes it and calling
sti twice crashes the system.

To handle the new commands in the high-level proof system, we extend its assertion lan-
guage from Figure 13 with the predicate CPU(e), which certifies that the process owning
it is running on the CPU with the identifier e:

P ::= . . . | CPU(e)

This requires us to adjust the domain over which assertions of the high-level proof system
are interpreted, replacing State defined in (3) by

StateI = Context×Heap×Lockset× (CPUid∪{⊥}).

The last component records the CPU that the current process is executing on, or ⊥ if
the assertion does not carry such information. The assertion semantics from Figure 13
is adjusted as shown in Figure 19. Note that, according to this semantics, the assertion
CPU(k1) ∗ CPU(k2) is inconsistent for all k1,k2 ∈ CPUid. This ensures that an assertion
can denote at most one CPU(e) predicate: a process cannot be at two CPUs at the same
time. We denote the extended set of assertions by AssertI.

Judgements of the high-level proof system now have the forms I,H,∆ 4 C or I,H,∆ "l
{P} c {Q}, where the additional component H is a vector of invariants describing the
kernel data structures local to every CPU in the system. We do not allow invariants in H
to contain registers or free occurrences of logical variables and require them to have an
empty lockset (Section 4.2). We also require that invariants in I and H do not own CPU

predicates: ∀η ,(r,h,L,v) ∈ [[I(!)]]η .v = ⊥ and the same for H. To preserve the soundness
of the CREATE proof rule from Figure 16, we have to impose the same requirement on the
desc(d,γ) predicate and the assertion P used in the rule. All these restrictions ensure that a
CPU predicate never gets transferred between processes. This is necessary for soundness,

490 A. Gotsman and H. Yang

I,H,∆"l {emp} cli {∃k.CPU(k)∗Hk}
STI

I,H,∆"l {∃k.CPU(k)∗Hk} sti {emp} CLI

I,H,∆"l {e &→ ∗CPU()} savecpuid(e) {∃k.e &→ k ∗CPU(k)} CPUID-FIXED

I,H,∆"l {e &→ } savecpuid(e) {e &→ } CPUID-ANY

Fig. 20. Proof rules for per-CPU data structures.

since such a predicate makes a statement about the physical CPU that only a particular
process is executing on.

The proof rules for the new commands accessible to kernel code are given in Fig-
ure 20; these extend the rules in Figures 15 and 16. The rules express a simple rea-
soning method similar to that used for lock invariants (Section 4): a process executing
cli gets the ownership of a CPU predicate for some CPU identifier and the correspond-
ing per-CPU data structure (CLI); it gives both up when it executes sti (STI). In be-
tween calling cli and sti, the process may modify the CPU-local data structure in any
way. The last two axioms are similar to CPUID from Section 5.3. CPUID-FIXED en-
sures that the savecpuid command returns the value consistent with the CPU predi-
cate owned by the process. According to CPUID-ANY, we cannot make any constraints
on the value returned by savecpuid without such a predicate. We note that our proof
rules for interrupts are essentially identical to those in Feng et al. (2008a). Our goal
here is not to propose a new logic for interrupts, but to demonstrate how natural reason-
ing methods for such low-level features can be integrated into our logic for preemptive
kernels.

Figure 18 gives a proof of the example deallocation routine using our proof rules. We
assume the following lock and per-CPU data structure invariants:

I(list lock) = ∃x,y,z.&free list &→ z∗
z.prev &→ y∗ z.next &→ x∗ z.data &→ ∗dllΛ(x,z,z,y);

Hk = ∃x,y,z, i.&count[k] &→ i∗&free cache[k] &→ z∗
z.prev &→ y∗ z.next &→ x∗ z.data &→ ∗dlliΛ(x,z,z,y),

where Λ(x) = x.data &→ and dlliΛ is the straightforward generalisation of the dllΛ predicate
from Figure 13 that specifies the number i of nodes in the list.

The soundness statement for our logic, which we discuss next, includes the extension
presented in this section.

8 Soundness

A typical approach to proving the soundness of a logic such as ours would be to define
an operational semantics of the abstract machine with one CPU per process the scheduler
is supposed to implement. Then, the soundness statement of the high-level proof system
could restrict the behaviour of this machine, and that of the low-level proof system would
establish that any behaviour of the concrete machine with the scheduler is reproducible in

Modular verification of preemptive OS kernels 491

the abstract one. As a corollary, the statements about the behaviour of the kernel proved in
the high-level proof system would be carried over to the concrete machine.

Following this approach is difficult in our case for the following reason. In our logic,
the pieces of state whose ownership is transferred between the scheduler and the kernel
can be described by arbitrary logical assertions, e.g., desc(d,γ) from Section 5.1. In some
cases, e.g., when these assertions are imprecise (O’Hearn, 2007), their transfer from the
kernel to the scheduler is hard to express operationally when defining a semantics of the
abstract machine; see Gotsman et al. (2011) for a discussion. The situation would be worse
had we based our logic on a more advanced modular concurrency logic, such as deny-
guarantee (Dinsdale-Young et al., 2010), which would be needed to handle real OS code.
This is because proofs of soundness for such logics do not give an operational semantics
to separate components of a program.

For this reason, we do not define an operational semantics of the abstract machine,
and neither of the two proof systems of our logic is proved sound with respect to any
semantics alone. Instead, our soundness statement interprets a proof of the kernel in the
high-level system and a proof of the scheduler in the low-level one together with respect
to the semantics of the concrete machine. This makes it convenient for us to prove the
soundness of the fragment of our logic inherited from concurrent separation logic in a
way (Gotsman et al., 2011) other than its original proof (Brookes, 2007), as the latter relied
on giving a semantics to separate processes of the program in isolation. We therefore start
by formulating the soundness statement of the baseline concurrency logic from Section 4,
which allows us to introduce the basic techniques we use in stating soundness.

8.1 Soundness of the baseline logic

Assume a proof I,∆ 4C in the logic of Section 4 and an environment η giving the values of
the logical variables used in this proof. Consider a point in an execution of the machine of
Section 3 when the CPUs are at program positions l1, . . . , lNCPUS ∈ labels(C). We formulate
the soundness of the logic by extracting the set of configurations that the machine can be
in at this point from the proof of C. We achieve this by combining the process-local states,
defined by ∆, and the states protected by the free locks, defined by I, as per Figure 7. This
formalises the intuitive explanations of the reasoning approach of concurrent separation
logic given in Section 2.3.

The mapping ∆ describes the states that can be owned by processes at the program posi-
tions l1, . . . , lNCPUS: [[∆(l1)]]η , . . . , [[∆(lNCPUS)]]η ∈ P(State). We now combine these states to
get a configuration from Config (Figure 8) that describes the contexts of all CPUs and the
part of the heap and the lockset of the machine belonging to the local state of any process.
To this end, we lift states to configurations using the operation 9·:BA

k in Figure 22 below,
which tags their contexts with a CPU identifier k ∈ CPUid. We then combine the resulting
configurations using the operation $B in Figure 23 below, which merges the contexts for
different CPUs and takes the union of the heaps and locksets. In Figures 22 and 23 we also
summarise all other operations for lifting states to configurations and combining the latter
that we use in formulating soundness.

492 A. Gotsman and H. Yang

Using the above operations, the set of configurations describing the process-local part of
the machine state is thus given by the following predicate over Config:

IProcη(l1, . . . , lNCPUS) = $B#
k∈CPUid

9[[∆(lk)]]η:BA
k ,

where $B# is the iterated version of $B. This predicate, however, does not describe the
whole heap and lockset of the machine, as we have not taken into account their parts
belonging to the invariants of free locks, which are not included into the local state of any
process (Figure 7). In any configuration (R,h,L) ∈ IProcη(l1, . . . , lNCPUS), L gives the set
of locks held by any process, so that the set of free locks is Lock − L. To combine their
invariants, we use the operation 9·:BL in Figure 22, which lifts states, meant to come from
lock invariants, to configurations by discarding the context and assuming an empty lockset
(recall that lock invariants cannot have free register occurrences and are required to have
an empty lockset; see Section 4). The following predicate on configurations describes the
part of the machine state belonging to all locks from a set L′:

ILockL′ = $B#
!∈L′

9[[I(!)]]:BL.

Here, we omit an environment defining the values of logical variables from [[I(!)]], since
lock invariants are insensitive to these variables. The set of all configurations the machine
can be in when CPUs are at program positions l1, . . . , lNCPUS is obtained by combining the
above predicate with IProcη(l1, . . . , lNCPUS):

IProgη(l1, . . . , lNCPUS) = {(R,h1 *h2,L) |
(R,h1,L) ∈ IProcη(l1, . . . , lNCPUS)∧ ([],h2, /0) ∈ ILockLock−L}.

Theorem 1
Assume I,∆ 4 C in the logic of Section 4, (R,h,L) →C (R′,h′,L′) and R(k,if) = 0 for
k = 1..NCPUS. Then for all environments η ,

(R,h,L) ∈ IProgη(R(1,ip), . . . ,R(NCPUS,ip)),

entails

(R′,h′,L′) ∈ IProgη(R′(1,ip), . . . ,R′(NCPUS,ip)).

Theorem 1 shows that IProgη defines an inductive invariant of the system. Since it excludes
the error configuration 0, the provability of a program in our logic implies its safety.

To summarise, we obtain an overapproximation of the set of machine configurations in
two stages: first, we look up the local states at the program positions given in ∆; second,
we look up the lock-protected states using the lockset information extracted from the local
states. Although this formulation using lookups is easy to understand, it gets unwieldy for
more complicated logics, such as our logic for preemptive kernels. We therefore show how
to reformulate Theorem 1 in a somewhat less intuitive, but more compact way. First, we
replace the map IProcη from program positions to process-local parts of configurations by
a relation. Let

IProc′
η = $B#

k∈CPUid

⋃

l∈labels(C)

9[[∆(l)]]η ∩atB(l):BA
k ,

Modular verification of preemptive OS kernels 493

where atB(l) = {(r,h,L) ∈ State | r(ip) = l}. The predicate IProc′
η ⊆ Config describes

the part of the machine state belonging to processes for all possible program positions; it
can thus be viewed as an invariant of the process-local state. Since assertions in ∆ do not
restrict the value of the ip register (Section 4.1), we have to do this explicitly using atB.
Then the set of configurations that the machine can be in at any time is now given by the
following predicate:

IProg′
η =

⋃

L*L′=Lock

((IProcη $B ILockL′)∩heldB(L)),

where heldB(L) = {(R,h,L) ∈ Config}. Here we branch over all sets of locks L that could
be held by processes and compute the lock-protected state for its complement L′. We then
ensure that L is indeed the set of all held locks by intersecting the result with heldB(L).
The following theorem is equivalent to Theorem 1.

Theorem 2
If I,∆ 4 C in the logic of Section 4, then for all environments η , the set of configurations
IProg′

η ∩{(R,h,L) | ∀k = 1..CPUid.R(k,if) = 0} is preserved by →C.

Theorems 1 and 2 follow from the proof of the soundness statement of our logic for
preemptive kernels, which we now formulate using the approach just presented.

8.2 Soundness of the logic for preemptive kernels

Consider a program OS of the form introduced in Section 5 and assume its proof

IK,H,∆K | IS,{∆k
S}k∈CPUid | J 4 (S,C,K)

in our logic for preemptive kernels, including the extension to per-CPU data structures from
Section 7. We also assume an environment η giving the values of the logical variables
used in the proof. To explain the soundness statement informally, let us fix a point in a
machine execution and assume for simplicity that every CPU is executing the scheduler
code. We construct an inductive system invariant by conjoining the descriptions of pieces
of the machine state owned by different OS components, as per Figure 6. We extract these
descriptions from the proof as follows:

• If a CPU k is at a program position l in the scheduler code, then [[∆k
S(l)]]η ∈

P(SchedState) describes the state local to the scheduler invocation running on the
CPU, including its context, heap and lockset, and the contexts of the processes it has
a permission to schedule.

• The combined lockset of all these states tells us which of the locks accessible to the
scheduler are free. As in Section 8.1, this allows us to obtain a description of the
whole scheduler state by combining the local states with the invariants of all free
scheduler locks given by IS.

• The combined scheduler state contains not only the part of the heap belonging to it,
but also the contexts of all the processes that exist in the machine, including their
program positions. By looking up the assertions at these positions in ∆K, we obtain
a description of the local states of the processes, including their heaps and locksets.

494 A. Gotsman and H. Yang

State = Context×Heap×Lockset

SchedState = State×M (Context)

Config = (CPUid → Context)×Heap×Lockset

SchedConfig = Config×M (Context)×P(CPUid)

KernelConfig = M (Context)×Heap×Lockset×P(CPUid)

Fig. 21. A summary of the semantic domains used in formulating soundness.

9pB:BA
k = {([k : r],h,L) ∈ Config | (r,h,L) ∈ pB}

9pB:BL = {([],h, /0) ∈ Config | (r,h, /0) ∈ pB}
9pS:SA

k,V = {(([k : r],h,L),M,V) ∈ SchedConfig | ((r,h,L),M) ∈ pS}
9pS:SL = {(([],h, /0),M, /0) ∈ SchedConfig | ((r,h, /0),M) ∈ pS}
9pK:KA

r = {({r},h,L,{v}−{⊥}) ∈ KernelConfig |
(r,h* [r(sp)..(r(ss)+StackSize−1) :],L,v) ∈ pK ∧ (r(if) = 0 ⇐⇒ v 1= ⊥)}

9pK:KL = {(/0,h, /0, /0) ∈ KernelConfig | (r,h, /0,⊥) ∈ pK}
Fig. 22. Operations lifting states to configurations. Here, pB ∈ P(State), pS ∈ P(SchedState),
pK ∈ P(StateI), k ∈ CPUid, V ∈ P(CPUid) and r ∈ Context. We have a pair of operations for
every domain of states, one for states coming from assertions in the code (marked by A) and another
for states coming from lock or per-CPU invariants (marked by L).

• Again, their combined lockset tells us which of the locks accessible to the kernel are
free, allowing us to obtain a description of all lock-protected kernel state from the
invariants IK.

We now define this construction formally and for the general case. As we have noted in
Section 8.1, we do this by packaging the results of all the lookups mentioned in the above
explanation into relations and then performing a relational composition on them.

We start by defining an invariant of the part of the machine state owned by the scheduler.
Let us again consider a point in a machine execution when every CPU is executing the
scheduler code. To combine the scheduler-local states given by ∆k

S for all CPUs k ∈ CPUid,
we lift them to configurations in the set SchedConfig defined in Figure 21 (in the figure
we also summarise all the other domains used in formulating soundness). A configuration
((R,h,L),M,V) describes the combined state of multiple scheduler invocations: R defines
the contexts on the corresponding CPUs, h and L the combined heap and lockset, and M
the contexts of the processes that the invocations have a permission to schedule. To handle
per-CPU data structures, we also add a component V describing the set of CPUs on which
processes have disabled interrupts using cli. When every CPU is executing the scheduler
code, this set is empty; we use the general case below. We lift states in SchedState to
configurations in SchedConfig using the operation 9·:SA

k,V , defined in Figure 22 for k ∈
CPUid and V ∈ P(CPUid). We combine the resulting configurations using the operation
$S in Figure 23. This is similar to $B, but additionally combines the information about the
processes the scheduler invocations know about.

Thus, at those points in the machine execution when all CPUs are executing scheduler
invocations, the part of the machine state local to these invocations is described by the

Modular verification of preemptive OS kernels 495

•B : Config×Config ⇀ Config

•S : SchedConfig×SchedConfig ⇀ SchedConfig

•K : KernelConfig×KernelConfig ⇀ KernelConfig

•SK : SchedConfig×KernelConfig ⇀ Config

(R1,h1,L1)•B (R2,h2,L2) = (R1 *R2,h1 *h2,L1 *L2)

((R1,h1,L1),M1,V1)•S ((R2,h2,L2),M2,V2) = ((R1 *R2,h1 *h2,L1 *L2),M1 *M2,V1 *V2)

(M1,h1,L1,V1)•K (M2,h2,L2,V2) = (M1 *M2,h1 *h2,L1 *L2,V1 *V2)

((R,h1,L1),M1,V1)•SK (M2,h2,L2,V2) = (R,h1 *h2,L1 *L2), if M1 = M2 and V1 = V2

((R,h1,L1),M1,V1)•SK (M2,h2,L2,V2) undefined, otherwise

Let $B, $S, $K, $SK be the pointwise liftings of •B, •S, •K, •SK to sets of configurations. For
example, for p1, p2 ∈ P(Config), we define $B : P(Config)×P(Config) → P(Config) as
follows: p1 $B p2 = {(R1,h1,L1)•B (R2,h2,L2) | (R1,h1,L1) ∈ p1 ∧ (R2,h2,L2) ∈ p2}.

Fig. 23. Operations for combining configurations. Recall that the * operation on multisets adds up
the number of occurrences of each element in its operands.

following predicate over SchedConfig:

$S#
k∈CPUid

⋃

l∈(labels(S*C)*{ls,lc})

9[[∆k
S(l)]]η ∩atS(l)∩ ifS(0):SA

k, /0,

where atS(l) = {((r,h,L),M) ∈ SchedState | r(ip) = l} and ifS(v) = {((r,h,L),M) ∈
SchedState | r(if) = v}. Like in the definition of IProc′

η in Section 8.1, we branch over
all program positions in the scheduler code and combine the local states at these positions
given by ∆k

S; we also restrict the value of the ip and if registers explicitly.
We now need to consider the case when a process is running on some CPU k. Let l be its

program position. In this case, the scheduler still owns some state associated with the CPU,
e.g., the per-CPU scheduler invariant Jk. We describe this state by the following predicate
over SchedState:

SchedSleepk(l) = Jk ∗sp..(ss+StackSize−1) &→ ∗
Process([ip : l, if : if,ss : ss,sp : sp, "gr : "gr]).

Note that, when a scheduler invocation starts executing on a CPU, the invariant Jk is added
to its local state, which is why previously we did not have to take it into account when
defining the state local to active scheduler invocations. Although assertions in the high-
level proof system mention the empty slots of the process stack, the slots in fact belong
to the scheduler when the process is preempted. For the sake of uniformity, we choose
to count them in the scheduler state even when the process is running and, hence, add
them to SchedSleepk(l). The Process predicate in SchedSleepk(l) describes the currently
running process; it corresponds to the Process predicate that the scheduler lost when it
transferred the control to the process (see the postcondition of schedule in the OS proof
rule from Section 5.4). We took the liberty of using if in SchedSleepk(l), even though this
is prohibited in our logic, since this assertion is used only for formulating soundness.

496 A. Gotsman and H. Yang

The following predicate over SchedConfig describes the scheduler state excluding that
protected by free locks:

ISchedη =
⋃

VI⊆VK,

VS*VK=CPUid

 $S#

k∈VS

⋃

l∈(labels(S*C)*{ls,lc})

9[[∆k
S(l)]]η ∩atS(l)∩ ifS(0):SA

k, /0

$S

 $S#

k∈VI

⋃

l∈labels(K)

9[[SchedSleepk(l)]]η ∩atS(l)∩ ifS(0):SA
k,{k}

$S

 $S#

k∈VK−VI

⋃

l∈labels(K)

9[[SchedSleepk(l)]]η ∩atS(l)∩ ifS(1):SA
k, /0

.

Here, we branch over all splittings of CPUs into those executing the scheduler and the
kernel code, given by VS and VK. We also branch over all sets VI ⊆ VK of CPUs where
processes have disabled interrupts. For every CPU k, we then branch over all possible
program positions l. Depending on whether l is in the scheduler or the kernel code, we use
either the assertion in the scheduler proof or the invariant SchedSleepk. In the latter case,
VI determines the last component of the resulting configurations.

To obtain the whole state owned by the scheduler, we take into account the invariants
of free locks accessible to it, similarly to how it was done in the definition of IProg′

η in
Section 8.1. To this end, we use the operation 9·:SL in Figure 22 that converts states in
SchedState, meant to come from lock invariants, to configurations in SchedConfig. Then
the part of the machine state belonging to the scheduler locks from a set L′ is defined by
the following predicate:

ISchedLockL′ = $S#
!∈L′

9[[IS(!)]]:SL.

Hence, the invariant of the whole scheduler state is
⋃

L*L′=dom(IS)

((ISchedη $S ISchedLockL′)∩heldS(L)), (5)

where heldS(L) = {((R,h,L),M,V) ∈ SchedConfig}. In a configuration ((R,h,L),

M,V) from the set (5), the components M and V give the information about all processes
that exist in the system, whether running or preempted, with the former taken into account
due to the inclusion of the corresponding Process predicate into SchedSleepk. In the fol-
lowing, we use this fact to connect the invariant of the scheduler with that of the kernel.
We now proceed to define the latter.

Consider a process with a context r, which could come from a configuration in the
scheduler invariant (5). Then its local state is given by [[∆K(r(ip))]]η ∈ P(StateI). We now
combine such states for different processes in a form appropriate for composing with the
scheduler invariant (5). We start by lifting them to configurations in the set KernelConfig

defined in Figure 21. A configuration (M,h,L,V) ∈ KernelConfig describes the combined
state of multiple processes, with the contexts M, the combined heap h and lockset L and the
set V of CPUs on which they have disabled interrupts. We perform the lifting using the op-
eration 9·:KA

r in Figure 22 that selects the states with the context r ∈ Context and removes
the empty slots of the process stack, accounted for in the scheduler state (in SchedSleepk, if

Modular verification of preemptive OS kernels 497

the process is running, and in ∆k
S and IS, if it is preempted). We then combine the resulting

configurations using the operation $K in Figure 23. The invariant of the process-local part
of the machine state is thus given by the following predicate over KernelConfig:

IKernelη =
⋃

M∈M (Context)

$K#
r∈M

9[[∆K(r(ip))]]η:KA
r .

Here we branch over all possible finite multisets M of contexts of processes that may run on
the machine. For every context r in M, the local state of the corresponding process is then
determined by the assertion in the proof of the kernel at the program point r(ip), restricted
to the states with the context r. Note that the comprehension r ∈ M over a multiset M
considers every instance of an element in the multiset separately.

As before, to obtain the invariant of the whole kernel state, we need to take into account
the invariants of free locks accessible to the kernel. Additionally, we need to include kernel
per-CPU invariants Hk for all CPUs k where processes have not disabled interrupts (for
those where they have, the per-CPU data structures have been merged into their local
states). We use the operation 9·:KL in Figure 22 to convert states in StateI, meant to come
from kernel lock invariants or kernel per-CPU data structure invariants, to configurations
in KernelConfig. Since the invariants cannot contain CPU predicates (Section 7), the oper-
ation assumes that the last component of the states it is given is always ⊥. Then the part of
the machine state belonging to kernel locks from a set L′ or per-CPU invariants for the set
of CPUs V are respectively given by

IKernelLockL′ = $K#
!∈L′

9[[IK(!)]]:KL; IPercpuV = $K#
k∈V

9[[Hk]]:KL.

Hence, the invariant of the whole kernel state is
⋃

L*L′=dom(IK)

V*V ′=CPUid

((IKernelη $K IKernelLockL′ $K IPercpuV ′)∩heldK(L)∩disabled(V)),

where

heldK(L) = {(M,h,L,V) ∈ KernelConfig};

disabled(V) = {(M,h,L,V) ∈ KernelConfig}.

Finally, we compose the above invariant of the kernel with that of the scheduler (5) to
obtain an invariant of the whole system. To this end, we use the operation $SK in Fig-
ure 23, which combines heaps and locksets, provided that the contexts of processes and
sets of CPUs on which they disabled interrupts match in both arguments. Then the system
invariant is given by the following predicate over Config:

IOsη =

 ⋃

L*L′=dom(IS)

((ISchedη $S ISchedLockL′)∩heldS(L))

$SK

⋃

L*L′=dom(IK)

V*V ′=CPUid

((IKernelη $K IKernelLockL′ $K IPercpuV ′)∩heldK(L)∩disabled(V))

 .

498 A. Gotsman and H. Yang

The following theorem, proved in Appendix A, states the soundness of our logic for pre-
emptive kernels.

Theorem 3
If IK,H,∆K | IS,{∆k

S}k∈CPUid | J 4 (S,C,K), then for all environments η , the set of config-
urations IOsη is preserved by →OS.

Consequences. Theorem 3 allows carrying over statements proved in the high-level proof
system about the abstract machine with one virtual CPU per process to the concrete ma-
chine. For example, it implies that the properties of the code in Figure 4 described in
Section 4 hold when it is managed by the example scheduler. To demonstrate this formally,
assume that the initial machine configuration satisfies IOsη . Then the soundness statement
ensures that the machine cannot reach an error label le on any CPU, provided that the
assertion at this program point in all high-level proofs is false. Indeed, in this case the
invariant IOsη does not contain any states where one of the CPUs is at le. Note that the
functional correctness of an OS kernel is usually formulated as a refinement between the
kernel and its specification. As an OS kernel does not usually make any assumptions about
user processes, complications with formulating this refinement that necessitate the unusual
soundness statement of our logic do not arise, and thus proving that it can be reduced to
proving an invariance property relating the kernel and its specification (Gargano et al.,
2005; Klein et al., 2009). Thus, Theorem 3 can also be used to justify such proofs.

Ownership transfer. It is instructive to analyse how the ownership transfer between the
scheduler and the kernel is handled by our soundness statement. For example, consider a
transfer of a new process descriptor desc(d,γ) from the kernel to the scheduler at a call
to create. Since the CREATE axiom requires the descriptor in its precondition, before
the kernel calls create, the state partitioning defined by IOsη counts the descriptor as
part of IKernelη . Since, by the OS proof rule, the implementation of create receives the
descriptor in its precondition, in the configuration immediately after the call to create,
IOsη defines it to be part of ISchedη . Thus, ownership transfer repartitions program state
among the parts defined above.

Proof idea and other concurrency logics. The proof of Theorem 3 is relatively straight-
forward, if technical. When the transition in →OS considered in the theorem corresponds
to a command associated with an ownership transfer in our logic, we prove that the tar-
get configuration belongs to IOsη by redistributing the state among components used to
construct this invariant, following the above explanation of ownership transfers. When the
transition in →OS corresponds to a command that is not associated with an ownership
transfer between components, such as an assignment, we first ‘unpack’ the IOsη invariant
to get the local state of the process or the scheduler invocation executing the command. We
then replace this local state with the new one specified by the proof and show that we can
‘pack’ the invariant back to obtain the target state of the machine.

We based our logic for preemptable code on concurrent separation logic, which would
not be able to handle complicated concurrency mechanisms employed in modern OS ker-
nels (Bovet & Cesati, 2005). The approach we take in stating and proving the soundness
of our logic has been applied extensively to various concurrent derivatives of separation

Modular verification of preemptive OS kernels 499

logic (Gotsman, 2009; Gotsman et al., 2011). This leads us to believe that we can integrate
more advanced logics from this class (Feng et al., 2007a; Vafeiadis & Parkinson, 2007;
Dinsdale-Young et al., 2010; Dinsdale-Young et al., 2013) without problems.

9 Related work

There have been a number of OS verification projects; see Klein (2009) for a survey. To our
knowledge, none of these has included the verification of a scheduler in a preemptive kernel
with the realistic features we consider. A representative example is the seL4 project (Klein
et al., 2009), which verified a variant of the L4 microkernel as a whole, together with the
scheduler. There, proofs about kernel components other than the scheduler had to ensure
the preservation of its invariants, e.g., the well-formedness of its runqueue. The proof
was still tractable because the kernel was running on a uniprocessor and used an event-
based execution model, so that preemption was disabled most of the time. However, such
architecture is not used by mainstream operating systems. If fact, as noted by Klein et
al. (2009), the absence of verification technology dealing with preemption was one of the
reasons for the choice of this architecture in seL4.

The closest work to ours is the one by Feng et al. (2007b; 2008a; 2008b), who proposed
a logic for verifying OS kernels, also based on separation logic. Like us, they structure
the logic into separate proof systems for the scheduler and preemptable code. We thus
share their vision (Feng et al., 2008b; Shao, 2010) of verifying different components of
systems software using specialised logics that allow reasoning on an appropriate level of
abstraction. However, there are differences between our work and theirs in the OS features
handled and in the general approach to formulating the logic and proving it sound.

As far as OS features are concerned, Feng et al. consider a uniprocessor and verify
an idealised scheduler without dynamic process creation or ownership transfer between
the scheduler and processes. As a consequence, they do not have an analogue of our affine
Process predicate needed to handle multiprocessing. On the other hand, Feng et al. support
modular reasoning about procedures, which we do not. As for the general approach, Feng et
al. formulate the logics for the scheduler and preemptive code and justify their soundness
by embedding them into OCAP (Feng et al., 2007b), a logic supporting first-class code
pointers. This support is then used to handle transfers of control between the scheduler
and the kernel and to reason modularly about procedures. In contrast, we establish the
soundness of our proof systems by a direct correspondence to an operational semantics,
without going through an intermediate logic.

The verification of realistic kernels requires supporting modular reasoning about pro-
cedures as well as multiprocessing and ownership transfer. Thus, both the logic of Feng
et al. and ours would need to be extended before they are up to the task. In the case
of Feng et al.’s logic, this would require extending OCAP to accommodate multipro-
cessing. This is not completely trivial, since on a multiprocessor, the scheduler and the
kernel can run at the same time on different CPUs, and OCAP currently requires the
control to be within a single component at any point of time. One would also need to
extend OCAP to treat assertions about code pointers affinely, as our Process predicates.
Conversely, to provide support for modular reasoning about procedures in our logic, we
would have to borrow the corresponding proof rules from one of the available logics

500 A. Gotsman and H. Yang

for storable code, possibly a relative of OCAP (Feng et al., 2006; Feng et al., 2007b;
Ni & Shao, 2006; Schwinghammer et al., 2009; Charlton, 2011). The soundness could
still be proved by a correspondence to an operational semantics, but our current proof
would have to be adjusted. Thus, both our approach and the one of Feng et al. can po-
tentially be extended to cover a wider range of OS features, possibly by exploiting tech-
niques from the other. It remains to be seen in which settings a given approach works
better.

Even though in this paper we focus on a low-level programming language, the reasoning
principles we propose are high level and analogous to those developed for control flow in
functional programs. For example, the Process predicate in our low-level proof system
can be viewed as an assertion about an affine continuation, providing a clean model for
capturing and resuming process state. Our use of separating conjunction over such pred-
icates is analogous to the use of linear typing in the study of continuations in functional
programs (Berdine et al., 2002; Hasegawa, 2002; Thielecke, 2003; Hasegawa, 2004; Laird,
2005). One can thus think of our work as layering clean functional reasoning on top of low-
level OS code.

Maeda and Yonezawa have proved a simple context-switch routine using an extension
of alias types (Maeda & Yonezawa, 2009). Their proof expresses the disjointness of data
structures belonging to the scheduler and the rest of the kernel using the tensor operator of
alias types, which corresponds to our separating conjunction. However, their type system
does not hide the internal data structures of the scheduler while proving the rest of the
kernel, and is thus non-modular.

Yang and Hawblitzel have recently developed a kernel where most of the codebase is
typechecked and therefore cannot directly access data structures belonging to the core part
of the kernel, including the scheduler (Yang & Hawblitzel, 2010). However, the guarantees
established by the type system do not take into account the contents of data structures,
so the kernel can still subvert the scheduler by leaving them in an inconsistent state.
The OS resorts to runtime checks in such cases, introducing a performance penalty. The
relationship to this work is that of a trade-off: type safety guarantees are easier to get, but
are not as strong as those provided by a program logic.

Refinement is a well-known approach in the verification of both operating systems
and general concurrent programs (Back, 1981; Gargano et al., 2005; Jones, 2007; Klein
et al., 2009; Turon & Wand, 2011). Our logic can be viewed as implementing a form of
refinement where the semantics of the abstract system is defined axiomatically by the high-
level proof system and refinement relations, defined by the low-level proof system, focus
only on the relevant state of the systems related. We thus advance the refinement theory to
systems with complex ownership transfers.

10 Conclusion

In this paper, we have neither verified a complete operating system nor built an automatic
tool. Instead, we have proposed a proof rule that allows decomposing the verification of
a preemptive OS kernel into two simpler tasks—verifying the scheduler and preemptable
code separately. Furthermore, we have, for the first time, achieved this for the patterns of
interaction between the scheduler and the kernel present in mainstream operating systems.

Modular verification of preemptive OS kernels 501

Such a result is relevant no matter what type of formal analysis of OS code one is per-
forming: manual or automatic verification, or even bug-finding. Moreover, as we argued in
Section 2.2, the straightforward approach of verifying the scheduler together with the rest
of the kernel makes reasoning intractable; thus, a result such as ours is in fact indispensable
for verifying realistic OS kernels.

Despite our development being carried out for a particular baseline concurrency logic
and a class of scheduling interfaces, the key technical methods we proposed in this paper
are transferable and can be reused in OS verification projects. These include:

• exploiting a logic validating the frame property to hide the state of the scheduler
while verifying the kernel and vice versa;

• using the Process assertions to reason about the correct treatment of process states
by the scheduler and the affine semantics of ∗ on them to reason about scheduling
on multiprocessors;

• dealing with features breaking through the scheduler abstraction, such as interrupt
disabling, by axiomatising their intended uses when reasoning about the kernel; and

• formulating soundness by constructing a global property from local assertions on
different levels of abstraction using a combination of the separating conjunction and
relational composition.

Acknowledgments

We thank Anindya Banerjee, Xinyu Feng, Boris Köpf, Mark Marron, Peter O’Hearn,
Matthew Parkinson, Noam Rinetzky, Zhong Shao, Viktor Vafeiadis and Jules Villard for
comments and discussions that helped improve the paper. Gotsman was supported by the
EU FET ADVENT project. Yang was supported by EPSRC.

Supplementary materials

For supplementary material for this article, please visit dx.doi.org/10.1017/
S0956796813000075.

A Appendix. Proof of soundness

Auxiliary definitions. In the following, we write {E()}, where E is an expression with
occurrences of , to mean the set of values arising from evaluating E with substituted for
any values from the corresponding domains.

For a set Σ let P(Σ)0 be the domain of subsets of Σ with a special element 0. The
order ; in the domain P(Σ)0 is subset inclusion with 0 being the greatest element. We
define two partial operations interpreting the ∗ connectives in the high- and low-level proof
systems, respectively:

∗K : P(State)0 ×P(State)0 → P(State)0;
∗S : P(SchedState)0 ×P(SchedState)0 → P(SchedState)0.

502 A. Gotsman and H. Yang

For p,q ∈ P(State) we let

p∗K q = {(r,h1 *h2,L1 *L2) | (r,h1,L1) ∈ p∧ (r,h2,L2) ∈ q}; 0∗ p = p∗0 = 0.

For p,q ∈ P(SchedState) we let

p∗S q = {((r,h1 *h2,L1 *L2),M1 *M2) | ((r,h1,L1),M1) ∈ p∧ ((r,h2,L2),M2) ∈ q};

0∗ p = p∗0 = 0.

We use the following definitions: for p ⊆ StateI, q ⊆ SchedState, l ∈ Label, k ∈ CPUid,
! ∈ Lock let

atK(l) = {(r,h,L,v) ∈ StateI | r(ip) = l};
lkK(!) = {(r, [],{!},⊥) ∈ StateI};
lkS(!) = {((r, [],{!}), /0) ∈ SchedState};
int(k) = {(r, [], /0,k) ∈ StateI};

toK(l, p) = {(r[ip : l],h,L,v) ∈ StateI | (r,h,L,v) ∈ p};
toS(l,q) = {((r[ip : l],h,L),M) ∈ SchedState | ((r,h,L),M) ∈ q}.

Finally, consider a process descriptor predicate desc(d,γ) with free logical variables d
and γ and an environment η . We define descη : Val × Context → State as follows: for
u ∈ Val and r ∈ Context we let descη(u,r) = [[desc(d,γ)]]η [d:u,γ:r].

Transformers for primitive commands. It is convenient for us to reformulate the seman-
tics of primitive commands c in Figure 11 and Section 7 in terms of transformers

f k
c : Label×Label×State → P(State)0, k ∈ CPUid

for c ∈ PComm, defined as follows: f k
c (l, l′,(r,h,L)) = 0, if k,(r,h,L), l, l′ !c 0; other-

wise,

f k
c (l, l′,(r,h,L)) =

⋃{
(r′[ip : l′′],h′,L′) | (k,(r,h,L), l, l′) !c ((r′,h′,L′), l′′)

}
.

We extend the transformers to operate on states in SchedState and StateI:

f k
c : Label×Label×SchedState → P(SchedState)0, k ∈ CPUid;

f k
c : Label×Label×StateI → P(StateI)

0, k ∈ CPUid.

We let

f k
c (l, l′,((r,h,L),M)) = {((r′,h′,L′),M) | (r′,h′,L′) ∈ f k

c (l, l′,(r,h,L))}, (A 1)

if f k
c (l, l′,(r,h,L)) 1= 0, and f k

c (l, l′,((r,h,L),M)) = 0, otherwise. We let

f k
c (l, l′,(r,h,L,v)) = {(r′,h′,L′,v) | (r′,h′,L′) ∈ f k

c (l, l′,(r,h,L))}, (A 2)

if f k
c (l, l′,(r,h,L)) 1= 0, and f k

c (l, l′,(r,h,L,v)) = 0, otherwise. We then lift these trans-
formers to the corresponding domains pointwise. For example, for p ∈ P(StateI)

0 we
let

f k
c (l, l′, p) =

{⊔{ f k
c (l, l′,(r,h,L,v)) | (r,h,L,v) ∈ p}, if p 1= 0;

0, if p = 0.

Modular verification of preemptive OS kernels 503

The transformers thus defined satisfy the property of locality (Calcagno et al., 2007)
with respect to the operations ∗S and ∗K:

∀p,q ∈ P(SchedState). f k
c (p∗S q) ; f k

c (p)∗S q; (A 3)

∀p,q ∈ P(StateI). f k
c (p∗K q) ; f k

c (p)∗K q. (A 4)

Semantic proofs. To prove Theorem 3, we translate a syntactic proof in our logic into a
semantic form, which annotates every program point in the OS code with a description of
the state local to the process or the scheduler invocation executing the code. Namely, given
an environment η , a semantic proof (Gotsman et al., 2011) of the OS program is defined
as a tuple (GS,GK,IS,IK,H ,J), where

• Gk
S : Label → P(SchedState), k ∈ CPUid;

• GK : Label → P(StateI);
• IS ∈ Lock ⇀ P(SchedState);
• IK ∈ Lock ⇀ P(StateI);
• Hk ∈ P(StateI), k ∈ CPUid,
• Jk ∈ P(SchedState), k ∈ CPUid,

such that IK, IS, H , J satisfy the analogues of the well-formedness restrictions previ-
ously imposed on IK, IS , H, J, and the conditions in Figure A 1 hold. The latter conditions
are semantic counterparts of the axioms in the high- and low-level proof systems. The
following lemma shows that a syntactic proof can be converted into a semantic one.

Lemma 1
Given a proof IK,H,∆K | IS,{∆k

S}k∈CPUid | J 4 (S,C,K) and an environment η , there exists
a semantic proof (GS,GK, [[IS]]η , [[IK]]η , [[H]]η , [[J]]η) such that for all l ∈ Label and k ∈
CPUid we have GK(l) = [[∆K(l)]]η ∩atK(l) and Gk

S(l) = [[∆k
S(l)]]η ∩atS(l).

We omit the straightforward proof of the lemma and proceed to prove the main soundness
theorem.

Proof of Theorem 3. Let us fix an environment η . We first apply Lemma 1 to construct a
semantic proof (GS,GK,IS,IK,H ,J) from the given syntactic one. Assume now that
σ ∈ IOsη and σ →OS σ ′ for some σ ′ ∈ Config ∪ {0}. We need to show that σ ′ ∈ IOsη .
Let the command in σ →OS σ ′ be executed by CPU k. We can thus assume

σ = (R[k : r],h,L), R(k) is undefined, r(ip) = l, c = comm(OS, l), l′ ∈ next(OS, l).

By the definition of IOsη , there exist

h1,h2 ∈ Heap, L1 ⊆ dom(IS), L2 ⊆ dom(IK), M ∈ M (Context), V ∈ P(CPUid)

such that

((R[k : r],h1,L1),M,V) ∈ ISchedη $S ISchedLock
dom(IS)−L1

; (A 24)

(M,h2,L2,V) ∈ IKernelη $K IKernelLock
dom(IK)−L2

$K IPercpuCPUid−V (A 25)

h = h1 *h2, L = L1 *L2. (A 26)

We now consider several cases of how σ ′ may be obtained.

504 A. Gotsman and H. Yang

∀l ∈ Label. l 1∈ dom(K) =⇒ GK(l) = /0; (A 5)

∀l ∈ Label,k ∈ CPUid. l 1∈ dom(S)*dom(C)*{ls, lc} =⇒ Gk
S(l) = /0; (A 6)

∀k ∈ CPUid.Gk
S(schedule) = [[SchedStatek]]η ∩atS(schedule); (A 7)

∀k ∈ CPUid.Gk
S(ls) = [[SchedStatek]]η ∩atS(ls); (A 8)

∀k ∈ CPUid.Gk
S(create) =

!∃γ.γ(if) = 1∧SchedStatek ∗desc(gr1,γ)∗Process(γ)"η ∩atS(create); (A 9)

∀k ∈ CPUid.Gk
S(lc) = [[SchedStatek]]η ∩atS(lc); (A 10)

∀l ∈ Label,(r,h,L,v) ∈ GK(l).0 ! r(sp)− r(ss) ! StackBound∧
dom(h) ⊇ {r(sp), . . . ,r(ss)+StackSize−1}∧

∀h′.(∀u 1∈ {r(sp), . . . ,r(ss)+StackSize−1}.h(u) = h′(u)) =⇒ (r,h′,L,v) ∈ GK(l),
(A 11)

and for all l ∈ labels(OS), l′ ∈ next(OS, l), c = comm(OS, l) and k ∈ CPUid, we have:

• if c is not lock or unlock, and l ∈ labels(S)* labels(C), then

f k
c (l, l′,Gk

S(l)) 1= 0∧∀((r,h,L),M) ∈ f k
c (l, l′,Gk

S(l)).((r,h,L),M) ∈ Gk
S(r(ip)); (A 12)

• if c is not lock, unlock, icall, cli or sti and l ∈ labels(K), then

f k
c (l, l′,GK(l)) 1= 0∧∀(r,h,L,v) ∈ f k

c (l, l′,GK(l)).(r,h,L,v) ∈ GK(r(ip)); (A 13)

• if c is lock(!) and l ∈ labels(S)* labels(C), then

toS(l′,(Gk
S(l)∗S IS(!)∗S lkS(!))) ⊆ Gk

S(l′); (A 14)

• if c is lock(!) and l ∈ labels(K), then

toK(l′,(GK(l)∗K IK(!)∗K lkK(!))) ⊆ GK(l′); (A 15)

• if c is unlock(!) and l ∈ labels(S)* labels(C), then

toS(l′,Gk
S(l)) ⊆ Gk

S(l′)∗S IS(!)∗S lkS(!); (A 16)

• if c is unlock(!) and l ∈ labels(K), then

toK(l′,GK(l)) ⊆ GK(l′)∗K IK(!)∗K lkK(!); (A 17)

• if c is cli and l ∈ labels(K), then

toK(l′,(GK(l)∗K Hk ∗K int(k))) ⊆ GK(l′); (A 18)

• if c is sti and l ∈ labels(K), then

toK(l′,GK(l)) ⊆ GK(l′)∗K Hk ∗K int(k); (A 19)

• if c is icall(schedule), then

toK(l′,GK(l)) ⊆ GK(l′); (A 20)

• if c is icall(create), then for some P,Q ∈ AssertI such that free(P)∩Reg = /0, P does not own
CPU predicates and has an empty lockset, we have

GK(l) ⊆ [[∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q]]η ∩atK(l); (A 21)

GK(l′) ⊇ [[∃γ.Q]]η ∩atK(l′); (A 22)

∀r ∈ Context.{(r, [r(sp)..(r(ss)+StackSize−1) :], /0,⊥)}∗K[[P]]η [γ:r] ⊆ GK(r(ip)).

(A 23)

Fig. A 1. Conditions for a semantic proof (GS,GK,IS,IK,H ,J).

Modular verification of preemptive OS kernels 505

Case 1. σ ′ is obtained by applying the fourth rule in Figure 12. This case is impossible,
since by (A 24) and the definition of ISchedη we have l = r(ip) ∈ labels(OS).

Case 2. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
command executed by the scheduler and different from lock, unlock or iret. In this
case, l ∈ labels(S)* labels(C) and

(f k
c (l, l′,(r,h,L)) = 0 =⇒ σ ′ = 0)∧

(f k
c (l, l′,(r,h,L)) 1= 0 =⇒ σ ′ ∈ ({(R, [], /0)}$B 9 f k

c (l, l′,(r,h,L)):BA
k)).

(A 27)

From (A 24), for some hS ∈Heap, LS ∈ Lockset, MS ∈M (Context), VS,VK ∈P(CPUid)

we have VS *VK *{k} = CPUid, V ⊆ VK, r(if) = 0,

((r,h1,L1),M) ∈ Gk
S(l)∗S{((,hS,LS),MS)} (A 28)

and for W = V and W1 = L1 we have

((R,hS,LS),MS,W) ∈

 $S#

j∈VS

⋃

l∈(labels(S*C)*{ls,lc})

9[[∆ j
S
(l)]]η ∩atS(l)∩ ifS(0):SA

j, /0

$S

$S#

j∈VI

⋃

l∈labels(K)

9[[SchedSleep j(l)]]η ∩atS(l)∩ ifS(0):SA
j,{ j}

$S

 $S#

j∈VK−VI

⋃

l∈labels(K)

9[[SchedSleep j(l)]]η ∩atS(l)∩ ifS(1):SA
j, /0

$S

ISchedLock
dom(IS)−W1

.

(A 29)
We have:

f k
c (l, l′,((r,h,L),M))

= f k
c (l, l′,{((r,h1,L1),M)}∗S{((,h2,L2), /0)}) by (A 26)

; f k
c (l, l′,Gk

S(l)∗S{((,h2 *hS,L2 *LS),MS)}) by (A 28)
; f k

c (l, l′,Gk
S(l))∗S{((,h2 *hS,L2 *LS),MS)} by (A 3)

From this and (A 12), f k
c (l, l′,Gk

S(l)) 1= 0, hence, by (A 1) and (A 27), σ ′ 1= 0. Let σ ′ =

(R[k : r′],h′,L). Then, r′(if) = r(if) = 0 and from the above, (A 27) and (A 12), we have

((R[k : r′],h′,L),M,V) ∈ {((R, [], /0), /0, /0)}$S

9(Gk
S(r

′(ip))∩ ifS(0))∗S{((,h2 *hS,L2 *LS),MS)}:SA
k,V .

From this and (A 6) we get r′(ip) ∈ dom(S)*dom(C)*{ls, lc}. Hence, by (A 29) we have

((R[k : r′],h′,L),M,V) ∈ ISchedη $S ISchedLock
dom(IS)−L1

$S {(([],h2,L2), /0, /0)}.

Then, from (A 25) and the definition of $SK we get σ ′ ∈ IOsη .

Case 3. σ ′ is obtained by applying the first rule in Figure 12, with the scheduler execut-
ing lock. In this case

l ∈ labels(S)* labels(C), c = lock(!), ! 1∈ L, σ ′ = (R[k : r[ip : l′]],h,L∪{!}).

506 A. Gotsman and H. Yang

From (A 24), for some hS,LS,MS,VS,VK we have VS * VK * {k} = CPUid, V ⊆ VK,
r(if) = 0,

((r,h1,L1),M) ∈ Gk
S(l)∗S IS(!)∗S{((,hS,LS),MS)}

and (A 29) holds for W = V and W1 = L1 ∪{!}. Then,

((r[ip : l′],h1,L1 ∪{!}),M) ∈ toS(l
′,(Gk

S(l)∗S IS(!)∗S lkS(!)))∗S{((,hS,LS),MS)}.

By (A 14), this implies

((r[ip : l′],h1,L1 ∪{!}),M) ∈ Gk
S(l

′)∗S{((,hS,LS),MS)}.

From this and (A 6) we get l′ ∈ dom(S)*dom(C)* {ls, lc}. Hence, by (A 29) for W = V
and W1 = L1 ∪{!},

((R[k : r[ip : l′]],h1,L1 ∪{!}),M,V) ∈ ISchedη $S ISchedLock
dom(IS)−(L1∪{!}).

Then, from (A 25) and the definition of $SK we get σ ′ ∈ IOsη .

Case 4. σ ′ is obtained by applying the first or the third rule in Figure 12, with the sched-
uler executing unlock. In this case, l ∈ labels(S)* labels(C), c = unlock(!) and (A 27)
holds.

From (A 24), there exist hS,LS,MS,VS,VK such that VS *VK * {k} = CPUid, V ⊆ VK,
r(if) = 0 and (A 28) and (A 29) hold for W = V and W1 = L1. From (A 28) we then get

((r[ip : l′],h1,L1),M) ∈ toS(l
′,Gk

S(l))∗S{((,hS,LS),MS)}.

Then by (A 16)

((r[ip : l′],h1,L1),M) ∈ Gk
S(l

′)∗S IS(!)∗S lkS(!)∗S{((,hS,LS),MS)}.

Hence, ! ∈ L1, which by (A 27) implies σ ′ 1= 0. Then, σ ′ = (R[k : r[ip : l′]],h,L − {!}).
The above also implies

((r[ip : l′],h1,L1 −{!}),M) ∈ Gk
S(l

′)∗S IS(!)∗S{((,hS,LS),MS)}.

From this and (A 6) we get l′ ∈ dom(S)*dom(C)*{ls, lc}. Hence, by (A 29)

(R[k : r[ip : l′]],h1,L1 −{!}) ∈ ISchedη $S ISchedLock
dom(IS)−(L1−{!}).

Then, from (A 25) and the definition of $SK we get σ ′ ∈ IOsη .

Case 5. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
command executed by the kernel and different from lock, unlock, icall, sti or cli. In
this case, l ∈ labels(K) and (A 27) holds.

From (A 24), there exist hS,LS,MS,VS,VK such that VS *VK * {k} = CPUid, V ⊆ VK ∪
{k}, r(if) = 0 ⇐⇒ k ∈ V , (A 29) holds for W = V −{k} and W1 = L1 and

((r,h1,L1),M) ∈ ([[SchedSleepk(l)]]η ∩atS(l))∗S{((,hS,LS),MS)}. (A 30)

The latter implies

((r,h1,L1),M) ∈ Jk ∗S{((, [r(sp)..(r(ss)+StackSize−1 :)]*hS,LS),{r}*MS)}.

Modular verification of preemptive OS kernels 507

Then, for some h′
1 ∈ Heap and

h0 ∈ {[r(sp)..(r(ss)+StackSize−1) :]}
we have h1 = h′

1 *h0 and

((r,h′
1,L1),M) ∈ Jk ∗S{((,hS,LS),{r}*MS)}. (A 31)

Let h′
2 = h2 *h0, then

h = h′
1 *h′

2, L = L1 *L2. (A 32)

Also, let v = k, if k ∈ V , and v = ⊥, otherwise.
Note that from (A 30) it follows that r ∈ M. Then by (A 25) and (A 11) for some hK ∈

Heap and LK ∈ Lockset we have

(r,h′
2,L2,v) ∈ GK(l)∗K{(,hK,LK, /0)} (A 33)

and4

(M −{r},hK,LK,V −{k}) ∈ $K#
r′′∈M−{r}

9[[∆K(r′′(ip))]]η:KA
r′′ $K

IKernelLock
dom(IK)−L2

$K IPercpuCPUid−V . (A 34)

We have:

f k
c (l, l′,(r,h,L,v))

= f k
c (l, l′,{(r,h′

2,L2,v)}∗K{(,h′
1,L1,⊥)}) by (A 32)

; f k
c (l, l′,GK(l)∗K{(,h′

1 *hK,L1 *LK,⊥)}) by (A 33)
; f k

c (l, l′,GK(l))∗K{(,h′
1 *hK,L1 *LK,⊥)} by (A 4)

By (A 13), f k
c (l, l′,GK(l)) 1= 0, hence, by (A 2) and (A 27), σ ′ 1= 0. Let σ ′ = (R[k :

r′],h′,L). Then, by (A 27) and (A 13), for some h3 ∈ Heap and L3 ∈ Lockset, we have
h′ = h3 *h′

1 *hK, L = L3 *L1 *LK and (r′,h3,L3) ∈ GK(r′(ip)). Using (A 11), we conclude
that for some h′′

2 ∈ Heap and

h′
0 ∈ [r′(sp)..(r′(ss)+StackSize−1) :]

we have h′ = h′′
2 *h′

0 *h′
1 and

({r′},h′′
2 ,L2,{k}− (CPUid−V)) ∈ 9[[∆K(r′(ip))]]η:KA

r′ $K {(/0,hK,LK, /0)}.

From this and (A 5), we get r′(ip) ∈ dom(K). Let M′ = (M −{r})*{r′}. Then by (A 34)
this implies

(M′,h′′
2 ,L2,V) ∈ IKernelη $K IKernelLock

dom(IK)−L2
$K IPercpuCPUid−V . (A 35)

Let h′′
1 = h′

1 *h′
0. Then from (A 31) we get

((r′,h′′
1 ,L1),M

′) ∈ ([[SchedSleepk(r
′(ip))]]η ∩atS(r

′(ip)))∗S{((,hS,LS),MS)}.

Since r′(ip) ∈ dom(K), together with (A 29) for W = V and W1 = L1, this implies

((R[k : r′],h′′
1 ,L1),M

′,V) ∈ ISchedη $S ISchedLock
dom(IS)−L1

.

4 Note that if there are several occurrences of r in M, M −{r} removes only one of them.

508 A. Gotsman and H. Yang

By the definition of $SK, from this and (A 35) we get σ ′ ∈ IOsη .

Case 6. σ ′ is obtained by applying the first rule in Figure 12, with the kernel executing
lock. In this case

l ∈ labels(K), c = lock(!), ! 1∈ L, σ ′ = (R[k : r[ip : l′]],h,L∪{!}).

As in Case 5, there exist hS,LS,MS,VS,VK,h′
1,h0,h

′
2,v satisfying the conditions stated

there. Additionally, from (A 25) for some hK,LK we get

(r,h′
2,L2,v) ∈ GK(l)∗K IK(!)∗K{(,hK,LK,⊥)}

and

(M −{r},hK,LK,V −{k}) ∈ $K#
r′′∈M−{r}

9[[∆K(r′′(ip))]]η:KA
r′′ $K

IKernelLock
dom(IK)−(L2∪{!}) $K IPercpuCPUid−V . (A 36)

This implies

(r[ip : l′],h′
2,L2 ∪{!},v) ∈ toK(l′,(GK(l)∗K IK(!)∗K lkK(!)))∗K{(,hK,LK,⊥)}.

Hence, by (A 15)

(r[ip : l′],h′
2,L2 ∪{!},v) ∈ GK(l′)∗K{(,hK,LK,⊥)}.

Then from (A 11) it follows that

({r[ip : l′]},h2,L2 ∪{!},{k}− (CPUid−V)) ∈ 9[[∆K(l′)]]η:KA
r[ip:l′] $K {(/0,hK,LK, /0)}.

From this and (A 5), we get l′ ∈ dom(K). Let M′ = (M −{r})*{r[ip : l′]}. Then by (A 36)
we get

(M′,h2,L2 ∪{!},V) ∈ IKernelη $K IKernelLock
dom(IK)−(L2∪{!}) $K IPercpuCPUid−V .

(A 37)
From (A 30) we get

((r[ip : l′],h1,L1),M
′) ∈ ([[SchedSleepk(l

′)]]η ∩atS(l
′))∗S{((,hS,LS),MS)}.

Since l′ ∈ dom(K), together with (A 29) for W = V −{k} and W1 = L1, this implies

((R[k : r[ip : l′]],h1,L1),M
′,V) ∈ ISchedη $S ISchedLock

dom(IS)−L1
. (A 38)

By the definition of $SK, from this and (A 37) we get σ ′ ∈ IOsη .

Case 7. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing unlock. In this case, l ∈ labels(K), c = unlock(!) and (A 27) holds.

As in Case 5, there exist hS,LS,MS,VS,VK,h′
1,h0,h

′
2,v,hK,LK satisfying the conditions

stated there. Then using (A 33), we get

(r[ip : l′],h′
2,L2,v) ∈ toK(l′,GK(l))∗K{(,hK,LK,⊥)}.

Hence, by (A 17)

(r[ip : l′],h′
2,L2,v) ∈ GK(l′)∗K IK(!)∗K lkK(!)∗K{(,hK,LK,⊥)}.

Modular verification of preemptive OS kernels 509

Hence, ! ∈ L2, which means that σ ′ 1= 0. Then σ ′ = (R[k : r[ip : l′]],h,L−{!}). The above
also implies

(r[ip : l′],h′
2,L2 −{!},v) ∈ GK(l′)∗K IK(!)∗K{(,hK,LK,⊥)}.

Then from (A 11) it follows that

({r[ip : l′]},h2,L2 −{!},{k}− (CPUid−V)) ∈
9[[∆K(l′)]]η:KA

r[ip:l′] $K 9IK(!)∗K{(,hK,LK,⊥)}:KL.

From this and (A 5) we get l′ ∈ dom(K). Let M′ = (M −{r})*{r[ip : l′]}. Then by (A 34)
we get

(M′,h2,L2 −{!},V) ∈ IKernelη $K IKernelLock
dom(IK)−(L2−{!}) $K IPercpuCPUid−V .

As in the previous case, from (A 30) and (A 29) for W = V − {k} and W1 = L1, we can
establish (A 38). Together with the last inclusion, this implies σ ′ ∈ IOsη .

Case 8. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing cli or sti. These cases are similar to the previous two and are omitted. They
rely on (A 18) and (A 19) instead of (A 15) and (A 17).

Case 9. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
kernel executing icall(schedule). In this case, l ∈ labels(K), c = icall(schedule)

and (A 27) holds.
As in Case 5, there exist hS,LS,MS,VS,VK,h′

1,h0,h
′
2,v,hK,LK satisfying the conditions

stated there. Additionally, r(if) = 1 and hence, k 1∈ V and v = ⊥. From (A 33) we then get

(r[ip : l′],h′
2,L2,⊥) ∈ toK(l′,GK(l))∗K{(,hK,LK,⊥)}.

By (A 20), this implies

(r[ip : l′],h′
2,L2,⊥) ∈ GK(l′)∗K{(,hK,LK,⊥)}.

Then using (A 11) we get

({r[ip : l′]},h2,L2, /0) ∈ 9[[∆K(l′)]]η:KA
r[ip:l′] $K {(,hK,LK, /0)}.

Let M′ = (M −{r})*{r[ip : l′]}. Then by (A 34) we have

(M′,h2,L2,V) ∈ IKernelη $S IKernelLock
dom(IK)−L2

$S IPercpuCPUid−V . (A 39)

From (A 30) we get dom(h) ⊇ {r(sp), . . . ,r(sp)+ m + 1}, which implies that σ ′ 1= 0.
Then σ ′ = (R[k : r′′],h′′

1 *h2,L), where

r′′ = r[ip : schedule,sp : (r(sp)+m+1),if : 0]

and

h′′
1 = h1[r(sp) : l′,(r(sp)+1) : r(gr1), . . . ,(r(sp)+m) : r(grm)]. (A 40)

From (A 30) we also get

((r,h1,L1),M
′) ∈ Jk ∗S

{((, [r(sp)..(r(ss)+StackSize−1) :]*hS,LS),{r[ip : l′]}*MS)}.

510 A. Gotsman and H. Yang

Hence,

((r′′,h′′
1 ,L1),M

′) ∈ Jk ∗S{((, [(r′′(sp)−m−1)..(r′′(sp)−1) : l′r(gr1) . . .r(grm),

r′′(sp)..(r′′(ss)+StackSize−1) :]*hS,LS),{r[ip : l′]}*MS)}.

From (A 33) and (A 11) we get 0 ! r(sp)− r(ss) ! StackBound, so that 0 ! r′′(sp)−
r′′(ss)−m−1 ! StackBound. Thus,

((r′′,h′′
1 ,L1),M

′) ∈ ([[SchedStatek]]η ∩atS(schedule))∗S{((,hS,LS),MS)}.

Together with (A 29) for W = V −{k} and W1 = L1 and (A 7), this implies

((R[k : r′′],h′′
1 ,L1),M

′) ∈ ISchedη $S ISchedLock
dom(IS)−L1

.

By the definition of $SK, from this and (A 39) we get σ ′ ∈ IOsη .

Case 10. σ ′ is obtained by applying the second or the last rule in Figure 12, i.e., by
executing an interrupt. This case is virtually identical to the previous one and is omitted.

Case 11. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
scheduler executing iret at ls or lc. In this case

l ∈ {ls, lc}, l′ ∈ {ls +1, lc +1}, c = iret

and (A 27) holds.
From (A 24), there exist hS,LS,MS,VS,VK satisfying the conditions stated there, in par-

ticular, (A 28) and (A 29) for W = V and W1 = L1. Then from (A 28), (A 8) and (A 10) we
get

((r,h1,L1),M) ∈ ([[SchedStatek]]η ∩ (atS(ls)∪atS(lc)))∗S{((,hS,LS),MS)}. (A 41)

Hence, dom(h1) ⊇ {r(sp)−m−1, . . . ,r(sp)−1} and σ ′ 1= 0. Let

l′′ = h1(r(sp)−m−1), g1 = h1(r(sp)−m), . . . , gm = h1(r(sp)−1).

Then, σ ′ = (R[k : r′],h,L), where

r′ = r[ip : l′′,sp : (r(sp)−m−1),gr1 : g1, . . . ,grm : gm,if : 1].

From (A 41) we now obtain

((r[ip : l′′],h1,L1),M) ∈ ([[SchedStatek]]η ∩atS(l
′′))∗S{((,hS,LS),MS)}.

Hence,

((r′,h1,L1),M) ∈
atS(l

′′)∩ ({((, [sp..(ss+StackSize−1) :]*hS,LS),{r′}*MS)}∗S Jk),

which is equivalent to

((r′,h1,L1),M) ∈ ([[SchedSleepk(l
′′)]]η ∩atS(l

′′))∗S{((,hS,LS),MS)}.

Note that r′ ∈ M. Hence, from (A 25) and (A 5) we get l′′ ∈ labels(K). By (A 29) for W =V
and W1 = L1 we then have

((R[k : r′],h1,L1),M) ∈ ISchedη $S ISchedLock
dom(IS)−L1

.

Modular verification of preemptive OS kernels 511

From (A 25) and the definition of $SK, we get σ ′ ∈ IOsη .

Case 12. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing icall(create). In this case, l ∈ labels(K), c = icall(create) and (A 27)
holds.

As in Case 5, there exist hS,LS,MS,VS,VK,h′
1,h0,h

′
2,hK,LK satisfying the conditions

stated there. Additionally, r(if) = 1 and hence, k 1∈ V and v = ⊥. From (A 33) and (A 21)
we get

(r,h′
2,L2,⊥) ∈ {(,hK,LK)}∗K[[∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q]]η .

Hence, there exists r′ such that r′(if) = 1 and

(r,h′
2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K[[Q]]η ′ ∗K{(,hK,LK,⊥)},

where u = r(gr1) and η ′ = η [γ : r′]. Since free(P)∩Reg = /0 and free(desc(d,γ))∩Reg =

/0, we have

(r[ip : l′],h′
2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K toK(l′, [[Q]]η ′)∗K{(,hK,LK,⊥)}.

Using (A 22), we then get

(r[ip : l′],h′
2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K GK(l′)∗K{(,hK,LK,⊥)}.

According to (A 11), this implies

({r[ip : l′]},h2,L2, /0) ∈ 9descη(u,r′):KL $K 9[[P]]η ′ :KL $K

9[[∆K(l′)]]η:KA
r[ip:l′] $K {(/0,hK,LK, /0)}.

Then for some h′′
2 ,hd ∈ Heap such that h2 = h′′

2 *hd we have {(,hd , /0,⊥)} ⊆ descη(u,r′)
(recall that all states from descη(u,r′) have an empty lockset) and

({r[ip : l′]},h′′
2 ,L2, /0) ∈ 9[[P]]η ′ :KL $K 9[[∆K(l′)]]η:KA

r[ip:l′] $K {(/0,hK,LK, /0)}.

Then from (A 23) and (A 11) we get

({r[ip : l′],r′},h′′
2 ,L2, /0) ∈ 9[[∆K(r′(ip))]]η:KA

r′ $K 9[[∆K(l′)]]η:KA
r[ip:l′] $K {(/0,hK,LK, /0)}.

Let M′ = (M −{r})*{r[ip : l′],r′}. Then by (A 34) we have

(M′,h′′
2 ,L2,V) ∈ IKernelη $S IKernelLock

dom(IK)−L2
$S IPercpuCPUid−V . (A 42)

As in Case 9, we can assume that

σ ′ = (R[k : r′′],h′′
1 *h2,L) = (R[k : r′′],h′′

1 *hd *h′′
2 ,L),

where

r′′ = r[ip : create,sp : (r(sp)+m+1),if : 0]

and h′′
1 is defined by (A 40). Let h′′′

1 = h′′
1 *hd . Then from (A 30) we get

((r,h′′′
1 ,L1),M

′) ∈ Jk ∗S(descη(u,r′)×{ /0})∗S

{((, [r(sp)..(r(sp)+m) : l′r(gr1) . . .r(grm),

(r(sp)+m+1)..(r(ss)+StackSize−1) :]*hS,LS),{r[ip : l′],r′}*MS)}.

512 A. Gotsman and H. Yang

Similar to how it was done in Case 9, using (A 9) we now establish

((r′′,h′′′
1 ,L1),M

′) ∈ Gk
S(create)∗S{((,hS,LS),MS)}.

Together with (A 29) for W = V and W1 = L1, this implies

((R[k : r′′],h′′′
1 ,L1),M

′,V) ∈ ISchedη $S ISchedLock
dom(IS)−L1

.

By the definition of $SK, from this and (A 42) we get σ ′ ∈ IOsη . $

References

Back, R.-J. (1981) On correct refinement of programs. J. Comput. Syst. Sci. 23, 49–68.
Berdine, J., O’Hearn, P. W., Reddy, U. S. & Thielecke, H. (2002) Linear continuation-passing.

Higher-order Symb. Comput. 15(2–3), 181–208.
Bovet, D. & Cesati, M. (2005) Understanding the Linux Kernel, 3rd ed. O’Reilly.
Brookes, S. D. (2007) A semantics of concurrent separation logic. Theor. Comput. Sci. 375(1–3),

227–270.
Calcagno, C., O’Hearn, P. W. & Yang, H. (2007) Local action and abstract separation logic. In

Symposium on Logic in Computer Science (LICS’07). IEEE, pp. 366–378.
Charlton, N. (2011) Hoare logic for higher order store using simple semantics. In Conference on

Logic, Language, Information and Computation (WoLLIC’11). LNCS, vol. 6642. Springer, pp.
52–66.

Clarke, D. G., Noble, J. & Potter, J. (2001) Simple ownership types for object containment.
In European Conference on Object-Oriented Programming (ECOOP’01). LNCS, vol. 2072.
Springer, pp. 53–76.

Cohen, E., Schulte, W. & Tobies, S. (2010) Local verification of global invariants in concurrent
programs. In Conference on Computer-Aided Verification (CAV’10). LNCS, vol. 6174. Springer,
pp. 480–494.

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. & Yang, H. (2013) Views:
Compositional reasoning for concurrent programs. In Symposium on Principles of Programming
Languages (POPL’13). ACM, pp. 287–300.

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. & Vafeiadis, V. (2010) Concurrent
abstract predicates. In European Conference on Object-Oriented Programming (ECOOP’10).
LNCS, vol. 6183. Springer, pp. 504–528.

Feng, X., Ferreira, R. & Shao, Z. (2007a) On the relationship between concurrent separation logic
and assume-guarantee reasoning. In European Conference on Programming (ESOP’07). LNCS,
vol. 4421. Springer, pp. 173–188.

Feng, X., Ni, Z., Shao, Z. & Guo, Y. (2007b) An open framework for foundational proof-carrying
code. In Workshop on Types in Language Design and Implementation (TLDI’07). ACM, pp.
67–78.

Feng, X., Shao, Z., Dong, Y. & Guo, Y. (2008a) Certifying low-level programs with hardware
interrupts and preemptive threads. In Conference on Programming Language Design and
Implementation (PLDI’08). ACM, pp. 170–182.

Feng, X., Shao, Z., Guo, Y. & Dong, Y. (2008b) Combining domain-specific and foundational
logics to verify complete software systems. In Conference on Verified Software: Theories, Tools,
Experiments (VSTTE’08). LNCS, vol. 5295. Springer, pp. 54–69.

Feng, X., Shao, Z., Vaynberg, A., Xiang, S. & Ni, Z. (2006) Modular verification of assembly code
with stack-based control abstractions. In Conference on Programming Language Design and
Implementation (PLDI’06). ACM, pp. 401–414.

Modular verification of preemptive OS kernels 513

Gargano, M., Hillebrand, M., Leinenbach, D. & Paul, W. (2005) On the correctness of operating
system kernels. In Conference on Theorem Proving in Higher-Order Logics (TPHOLs’05).
LNCS, vol. 3603. Springer, pp. 1–16.

Gotsman, A. (2009) Logics and Analyses for Concurrent Heap-Manipulating Programs. PhD Thesis,
University of Cambridge.

Gotsman, A., Berdine, J. & Cook, B. (2011) Precision and the conjunction rule in concurrent
separation logic. ENTCS 276(1), 171–190. MFPS’11: Mathematical Foundations of Programming
Semantics.

Gotsman, A., Berdine, J., Cook, B., Rinetzky, N. & Sagiv, M. (2007) Local reasoning for storable
locks and threads. In Asian Symposium on Programming Languages and Systems (APLAS’07).
LNCS, vol. 4807. Springer, pp. 19–37.

Gotsman, A. & Yang, H. (2013) Electronic Appendix for This Paper. Available from
http://dx.doi.org/10.1017/S0956796813000075.

Hasegawa, M. (2002) Linearly used effects: Monadic and CPS transformations into the linear lambda
calculus. In International Symposium on Functional and Logic Programming (FLOPS’02).
LNCS, vol. 2441. Springer, pp. 167–182.

Hasegawa, M. (2004) Semantics of linear continuation-passing in call-by-name. In
International Symposium on Functional and Logic Programming (FLOPS’04). LNCS,
vol. 2998. Springer, pp. 229–243.

Jones, C. (2007) Splitting atoms safely. Theor. Comput. Sci. 375, 109–119.

Jones, C. B. (1983) Specification and design of (parallel) programs. In IFIP Congress,
pp. 321–332.

Klein, G. (2009) Operating system verification–an overview. Sādhanā 34, 26–69.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt,
K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. & Winwood, S. (2009) seL4: Formal
verification of an OS kernel. In Symposium on Operating Systems Principles (SOSP’09). ACM,
pp. 207–220.

Laird, J. (2005) Game semantics and linear CPS interpretation. Theor. Comput. Sci. 333(1–2), 199–
224.

Love, R. (2010) Linux Kernel Development, 3rd ed. Addison Wesley.

Maeda, T. & Yonezawa, A. (2009) Writing an OS kernel in a strictly and statically typed language.
In Formal to Practical Security. LNCS, vol. 5458. Springer, pp. 181–197.

Ni, Z. & Shao, Z. (2006) Certified assembly programming with embedded code pointers. In
Symposium on Principles of Programming Languages (POPL’06). ACM, pp. 320–333.

O’Hearn, P. W. (2007) Resources, concurrency and local reasoning. Theor. Comput. Sci. 375, 271–
307.

Parkinson, M. & Bierman, G. (2005) Separation logic and abstraction. In Symposium on Principles
of Programming Languages (POPL’05). ACM, pp. 247–258.

Pnueli, A. (1985) In transition from global to modular temporal reasoning about programs. In Logics
and Models of Concurrent Systems. Springer, pp. 123–144.

Reynolds, J. C. (2002) Separation logic: A logic for shared mutable data structures. In Symposium
on Logic in Computer Science (LICS’02). IEEE, pp. 55–74.

Schwinghammer, J., Birkedal, L., Reus, B. & Yang, H. (2009) Nested Hoare triples and frame rules
for higher-order store. In Conference on Computer Science Logic (CSL’09). LNCS, vol. 5771.
Springer, pp. 440–454.

Shao, Z. (2010) Certified software. Commun. ACM 53(12), 56–66.

Thielecke, H. (2003) From control effects to typed continuation passing. In Symposium on
Principles of Programming Languages (POPL’03). ACM, pp. 139–149.

514 A. Gotsman and H. Yang

Turon, A. & Wand, M. (2011) A separation logic for refining concurrent objects. In Symposium on
Principles of Programming Languages (POPL’11). ACM, pp. 247–258.

Vafeiadis, V. & Parkinson, M. J. (2007) A marriage of rely/guarantee and separation logic.
In Conference on Concurrency Theory (CONCUR’07). LNCS, vol. 4703. Springer,
pp. 256–271.

Yang, J. & Hawblitzel, C. (2010) Safe to the last instruction: Automated verification of a type-
safe operating system. In Conference on Programming Language Design and Implementation
(PLDI’10). ACM, pp. 99–110.

