
EUROPEAN COMMISSION
SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2011-C
Grant agreement no.: 308830

Deliverable D3.1

Intermediate report for WP3: Reasoning about
software/hardware interfaces

Project acronym ADVENT

Project title Architecture-driven verification of systems software

Funding scheme FP7 FET Young Explorers

Scientific coordinator Dr. Alexey Gotsman, IMDEA Software Institute,
Alexey.Gotsman@imdea.org, +34 911 01 22 02

1 Summary

Work Package 3 in the ADVENT project is concerned with reasoning about the soft-
ware/hardware interfaces, and specifically with how to deal the implications of low-level hard-
ware effects when reasoning about systems software. Through the first year of the project, we
have focused on relaxed or weak consistency as the most important hardware effect that affects
systems software and yet evades formal reasoning.

To enable formal reasoning about relaxed consistency, we have devised both decomposition
principles (abstraction theorems) as well as program logics for verifying concurrent programs run-
ning under various weak memory consistency models, such as the TSO memory model adopted
by the Sparc and x86 architectures and the C11 memory model adopted by C and C++ language
standards. In more detail, we have developed:

• An abstraction theorem for the C11 memory model [1], which allows us to decompose the
reasoning about concurrent programs into modular reasoning about each of its components.
In essence, our abstraction theorem extends the definition of linearisability to the C11
setting, where executions are not longer linear event sequences.

• Relaxed separation logic (RSL) [15], an extension of concurrent separation logic to C11
model, allowing threads to assert ownership of part of the shared state and to transfer
ownership by synchronisation operations.

• GPS [14], a more advanced program logic for C11 that incorporates adaptations of the
three features of the more modern concurrent program logics, namely ghost state, protocols,
and separation. GPS thus enables reasoning not only about shared state invariants, but
also about its evolution over time.

• A program logic for TSO [7] that is designed to reason effectively about certain common
synchronisation patterns that appear in TSO programs.

2 Motivation

In a sequential setting, the behavior of memory is simple: when a program reads a memory
location, it receives the value that it wrote most recently to that location. In a concurrent
setting, where the program does not define a total order on all memory accesses, however, this
simple rule no longer applies. The question of what values may be yielded by reads in concurrent
programs is known as the platform’s memory consistency model (or memory model for short).
In WP1, we identified three memory models as being of particular interest:

(1) the x86-TSO model followed by x86 and x64 architectures,

(2) the Power/ARM model, and

(3) the C11 memory model adopted by the 2011 revisions of the C and C++ standards.

In this work package, we have focused mainly on the C11 memory model because it is
what C/C++ programmers face and it is easily compilable to the x86-TSO and Power/ARM
hardware memory models. We have developed three logics, two for reasoning about concurrent
C11 the C11 memory model and one about x86-TSO. The general goal is to help programmers
by providing them with reasoning principles for concurrent programs that are sound despite the
rather weak consistency properties guaranteed by the memory models.

2

3 Reasoning Principles for C11 Concurrency

Library Decomposition [1] Our first contribution was to propose techniques for decompos-
ing the reasoning about programs using concurrent libraries on the C11 memory model into
separate reasoning about the libraries and their clients. (This work was done in between the
submission of the project proposal and the project start, and appeared at POPL’13. We briefly
described it here as it is relevant to the project.)

In more detail, we have proposed a criterion that allows to abstract a concurrent library by
a simpler library serving as its specification in reasoning about the client. This criterion satisfies
the Abstraction Theorem: if one library (a specification) abstracts another (an implementation),
then the behaviours of any client using the implementation are contained in the behaviours of
the client using the specification. This result allows complex library code to be replaced by
simpler specifications, for verification or informal reasoning. To justify the practicality of the
proposed criterion for library abstraction we have applied it two typical concurrent algorithms:
a non-blocking stack and an array-based queue.

The challenge in getting such a result on the C/C++ memory model lied in soundly capturing
the client-library interactions through the subtle synchronisation effects arising from the memory
model. This was made only more challenging by the fact that the C11 memory model is defined
axiomatically, whereas existing techniques for library abstraction, such as linearizability, have
focused on operational trace-based models. To deal with this, we proposed a novel notion of
a history, which records all interactions between a client and a library. Histories in our work
consist of several partial orders on call and return actions. This is in contrast to variants of
linearizability, where histories are linear sequences. We then defined an abstraction relation on
histories as inclusion over partial orders, and lift this relation to give our abstraction criterion
for libraries: one library abstracts another if any history of the former can be reproduced in
abstracted form by the latter.

During this work, we uncovered a problem with the C11 memory model: some aspects of the
model conflict with abstraction. The C11 model permits satisfaction cycles, where the effect of
actions executed down a conditional branch is what causes the branch to be taken in the first
place. This breaks the straightforward assumption that faults are confined to either client or
library code: a misbehaving client can cause misbehaviour in a library, which can in turn cause
the original client misbehaviour! For these reasons, we actually defined two distinct library
abstraction criteria: one for general C11, and one for a language without the feature leading to
satisfaction cycles. The former requires an a priori check that the client and the library do not
access each others’ internal memory locations, which hinders compositionality. The latter lifts
this restriction (albeit for a C11 model modified to admit incomplete program runs) and thus
provides evidence that satisfaction cycles are to blame for non-compositional behaviour. Our
results have motivated an ongoing effort to revise the memory model:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html

Relaxed separation logic (RSL) [15] While having developed decomposition principles is
clearly a very useful step for reasoning about complex software, we also need to have techniques
for verifying the individual components with respect to their specifications. To achieve this, we
have developed two program logics for C11 concurrency, RSL and GPS.

The goal of relaxed separation logic (RSL) was to show that C11 concurrency supports
resource reasoning in the style of concurrent separation logic (CSL) [11], and that proofs written
in CSL can easily be adapted to work under weaker consistency guarantees.

Specifically, we focused on the various different kinds of memory accesses supported by C11:
nonatomic, relaxed atomic, acquire atomic, release atomic, and sequentially consistent (SC)
atomic, each of which provides different consistency guarantees, and has different implementation
costs. On the one end of the spectrum, races on non-atomic accesses result in completely

3

undefined behaviour (they are treated as programming errors); on the other end, SC-atomic
accesses are globally synchronized. The implementation cost and the guarantees provided by
relaxed, acquire, and release accesses lie somewhere in between: different threads can observe
them happening in different orders, but fewer or no memory fences are needed (depending on
the architecture).

What we managed to show with RSL, is that ownership-based reasoning is sound, and
moreover that ownership can be transferred along acquire/release atomic memory accesses and
does not require the more expensive SC-accesses.

In more detail, RSL follows the resourceful reading of separation logic triples. As in standard
separation logic, when we assert the Hoare triple {P} C {Q}, we say that the command C will
not access any memory other than that given by its precondition, P , or subsequently acquired
during its execution. We thus support the parallel composition rule of separation logic,

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}

(Par)

which ensures that the two threads do not have any races on nonatomic memory accesses, a
condition required by C11. To handle acquire/release atomics, we introduce two new assertion
kinds, Rel(`,Q1) and Acq(`,Q2). These denote respectively the permissions to perform a release-
write of some value v at location ` and give away ownership of the resource described by Q1(v),
or an acquire-read and gain ownership of Q2(v). With these assertion forms we provide simple
proof rules for release writes and acquire reads, similar to those for releasing and acquiring
mutual exclusion locks in CSL.

The main challenge in this work was to prove the soundness of the program logic, as there
were two really significant obstacles we had to overcome.

1. No global notions of state and time: Traditionally, {P} C {Q} asserts that if we execute C
in an initial state satisfying P and it terminates, then the final state will satisfy Q. In C11
concurrency, however, the terms “initial state” and “final state” are ill-defined, because
there exist no global notions of time or state. To interpret triples, we thus resorted to
logical local notions of time and state. We defined a logical notion of local state at each
event of a program execution, and thread the logical state through C11 “happens-before”
edges.

2. No operational semantics: Concurrent program logics are typically proved sound over an
operational or a trace semantics. In either case, the meaning of Hoare triples can be
defined in terms of an auxiliary predicate by induction over the length of an execution
trace. These definitions cannot directly be extended to the C11 axiomatic model as there
is no obvious total order for the induction. Our solution was to order the C11 events
according to the total number of events that happen before them.

The paper introducing RSL was published at OOPSLA 2013 [15] and is attached. We are
currently working on extensions of RSL to handle memory barriers.

GPS [14] Our next contribution was GPS, a more advanced program logic for C11 concur-
rency, published as a MPI-SWS technical report. A slightly updated version of the technical
report is currently under submission to OOPSLA 2014.

Generally, the goal of most program logics is to prove “deep” correctness properties of code,
and to do so in a modular fashion, whereby different components of a program can be verified
in isolation, given only logical specifications of the other components. Modern logics for SC
concurrency meet this goal through a variety of mechanisms—among the most widespread and
effective are the following:

4

• Ownership and separation. Concurrent programs are often inherently modular in the sense
that different threads within a program control (or “own”) disjoint pieces of the program
state. This modularity is important for simplifying verification: if a thread owns a piece
of state, one should be able to verify the thread’s manipulations of that state without
worrying about interference from other threads. Modern logics encapsulate this kind of
reasoning through the mechanisms of ownership and separation.

• Protocols. Separation lets one dispense with interference implicitly when threads do not
in fact interfere. But sometimes explicit reasoning about interference is unavoidable, e.g.,
when reasoning about racy (lock-free) data structures. In such cases, the most basic
mechanism for restoring modular reasoning is the invariant, which describes a property
holding of a piece of shared state at all times. With an invariant installed, different threads
can be verified modularly so long as they all respect the invariant.

More generally, since invariants can be overly restrictive, modern logics support various
forms of protocols for legislating interference. The best-known protocol mechanism is rely-
guarantee [8], which describes the state transitions a thread may perform (the guarantee)
vs. those its environment may perform (the rely). Recent protocol mechanisms improve
upon rely-guarantee by supporting more abstract/concise forms of shared state transition
systems [13].

• Ghost state. Last but not least, ghost (or auxiliary) state refers generally to any behavior-
preserving instrumentation of a program (or its proof) with additional “logical” state
for the purposes of verification. Ghost state is often used to expose control flow, or to
summarize execution history, in a way that could not be done just in terms of the “physical”
state manipulated by the program. Furthermore, it is essential for the completeness of basic
concurrency logics.

In newer logics, ghost state, protocols, and separation are used in tandem to great effect.
For example, ghost state can be used to encode logical “permissions” (or “tokens”), which are
ownable resources that control the ability to make certain transitions in shared state protocols.
Ownership of permissions can then be transferred back and forth between threads via the same
shared protocols, in turn providing a way to model the dynamic “role-playing” that occurs in
realistic concurrent code. Logics such as RGSep [16], LRG [6], Deny-Guarantee [5], VCC [2],
Chalice [9], CAP [4], CaReSL [13], FCSL [10], iCAP [12], and TaDA [3] depend on such a
synthesis of ghost state, protocols, and separation.

While the aforementioned mechanisms provide powerful, modular reasoning about concur-
rency, there are serious obstacles to adapting them to weak memory models. Besides those
mentioned in the section about RSL, we also have:

• Protocol obstacles. Most logics support protocols that govern multiple memory locations
simultaneously, connecting the value of one location to another. But even this simple
mechanism is unsound for weak memory: updates to different locations may appear in
contradictory orders to different threads, so a thread can appear to be following the pro-
tocol from its own point of view while violating it from the point of view of other threads.

• Ghost state obstacles. Traditional ghost state is incorporated by introducing explicit reads
and writes to a program text, with the constraint that these operations must not change
the code’s observable behavior. But in weak memory models it is not clear how to usefully
incorporate such reads and writes without also introducing events and ordering into the
event graph that ultimately affect the program’s behavior.

GPS is the first logic that properly supports ghost state, protocols and separation in a weak
memory setting. GPS builds on the groundwork laid by RSL, extending it as follows:

5

• Protocols. GPS supports per-location (PL) protocols, which are modeled after the protocols
in recent concurrency logics but restricted in order to be sound under weak memory. The
key to regaining soundness is to insist that a protocol may only precisely dictate the
evolution of a single shared memory location, although it may make bounded assertions
about the state of other memory locations, e.g., “x’s value may only grow over time, and
when x contains n, y must contain at least n as well.”

• Ghost state. The states of PL-protocols already constitute a useful form of ghost state for
summarizing, e.g., the history of an execution. To support ownable logical resources (e.g.,
permissions), GPS offers an additional facility called ghosts. Ghosts enable one to create
and manipulate whatever kind of logical resource one needs for a particular verification,
so long as it can be formulated as a partial commutative monoid.

As with RSL, the entire logic, model and soundness proof of GPS have been formalized in Coq
and are available online.

4 Reasoning Principles for x86-TSO

Besides reasoning about the C11 memory model, we have also developed a program logic for
reasoning about concurrent programs running under the TSO memory model. We have extended
separation logic with a notion of TSO spaces. TSO spaces are similar to the shared resources
of Concurrent Separation Logic (CSL) [11], except that memory owned by a TSO space may be
accessed directly via TSO operations (memory accesses with TSO semantics) rather than using
classical critical sections. Also, where CSL associates a resource invariant with each resource,
we associate an abstract state space with each TSO space, as well as an abstraction predicate
that associates each abstract state with a corresponding separation logic formula. The abstract
state space is equipped with an abstract reachability pre-order �.

Knowledge about the state of a TSO space in the proof of a thread is represented as an
abstract state, representing the thread’s view of the state of the TSO space. A thread’s view is
a lower bound (under the abstract reachability pre-order) on the actual state of the TSO space.

Each TSO write operation is associated with an abstract state transition function, mapping
an abstract pre-state to an abstract post-state. These abstract state transition functions must
respect the abstract reachability relation and properly abstract the concrete behavior of the TSO
operation. Also, crucially, to account for TSO’s relaxed behavior, the abstract state transition
functions must be monotonic: they must respect reachability and be sound with respect to
concrete behavior not only in the current abstract state, but also in all reachable future abstract
states. In a thread’s proof, when the thread performs a TSO write operation, its local view of
the TSO space is updated per the abstract state transition function.

Each TSO read operation is associated with a function, f , mapping result values to new
abstract states. This function must satisfy the property that for any result value, v, and for
any future abstract state, α′, if the target location may have value v in this abstract state, then
f(v) � α′. In a thread’s proof, when the thread performs a TSO read operation, its local view
of the TSO space is replaced with the (hopefully more precise) lower bound given by function
f .

For example, consider an implementation of a Java virtual machine, where field accesses are
implemented as TSO operations. Threads may create objects and leak references to those objects
to other threads without synchronization. The VM implementation must ensure nonetheless that
each thread only sees objects with properly initialized run-time type information (such as the
pointer to the virtual method dispatch table).

To verify such a JVM implementation using the proposed logic, we put the heap in a TSO
space. As the abstract state space, we adopt the powerset of addresses in this heap, each
state representing the set of the addresses of the currently allocated and initialized objects.

6

The subset relation serves as the reachability order. The abstraction predicate states (1) that
allocated objects occupy disjoint heap space, (2) that they properly point to an existing virtual
method dispatch table, and (3) that their fields point to allocated objects. Each thread is aware
of the addresses of objects it allocated itself, as well as addresses read from fields of known
objects. That is, reading a field updates the thread’s view by inserting the newly discovered
object address into the abstract state. After a thread allocates an object and initializes its
run-time type information, it performs a no-op operation on the TSO space to update its local
view of the set of allocated objects, inserting the newly allocated object into the abstract state.
Writing the value of a local variable to a field corresponds to the identity function at the abstract
level, since all object references a thread holds in local variables are already in the thread’s local
view.

The approach is described in more detail in [7]. Besides a definition and soundness argument
of the approach, this document also reports on a preliminary encoding of this approach into the
logic of the VeriFast program verifier, and on three example proofs: an example that captures
the virtual machine scenario, a lock implementation, and a producer-consumer example.

References

[1] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concurrency. In
POPL, pages 235–248. ACM, 2013.

[2] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs,
volume 5674 of LNCS, pages 23–42. Springer, 2009.

[3] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic for time and data
abstraction. In ECOOP, 2014.

[4] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Concurrent
abstract predicates. In ECOOP, 2010.

[5] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP,
2009.

[6] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.

[7] B. Jacobs. Verifying TSO programs. Technical Report CW-660, Department of Computer
Science, KU Leuven, 2014.

[8] C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.

[9] K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with Chalice.
In FOSAD, volume 5705 of LNCS, pages 195–222. Springer, 2009.

[10] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Communicating state transition
systems for fine-grained concurrent resources. In ESOP, 2014.

[11] P. O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.

[12] K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In ESOP, 2014.

[13] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-style reasoning in a
logic for higher-order concurrency. In ICFP, pages 377–390. ACM, 2013.

[14] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory with ghosts, proto-
cols, and separation. Technical Report MPI-SWS-2014-004, MPI-SWS, 2014.

7

[15] V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic for c11 concurrency.
In OOPSLA, pages 867–884, 2013.

[16] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. In
CONCUR, 2007.

List of Attached Papers

[15] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: a program logic for c11
concurrency. In OOPSLA’13, pages 867–884. ACM 2013.

[14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating weak memory with
ghosts, protocols, and separation. Technical Report MPI-SWS-2014-004, MPI-SWS, 2014.

[7] Bart Jacobs. Verifying TSO programs. Technical Report CW-660, Department of Com-
puter Science, KU Leuven, 2014.

8

Relaxed Separation Logic:
A Program Logic for C11 Concurrency

Viktor Vafeiadis
Max Planck Institute for Software Systems

(MPI-SWS)
viktor@mpi-sws.org

Chinmay Narayan
Indian Institute of Technology, Delhi

chinmay@cse.iitd.ac.in

Abstract
We introduce relaxed separation logic (RSL), the first pro-
gram logic for reasoning about concurrent programs running
under the C11 relaxed memory model. From a user’s per-
spective, RSL is an extension of concurrent separation logic
(CSL) with proof rules for the various kinds of C11 atomic
accesses. As in CSL, individual threads are allowed to access
non-atomically only the memory that they own, thus pre-
venting data races. Ownership can, however, be transferred
via certain atomic accesses. For SC-atomic accesses, we per-
mit arbitrary ownership transfer; for acquire/release atomic
accesses, we allow ownership transfer only in one direction;
whereas for relaxed atomic accesses, we rule out ownership
transfer completely. We illustrate RSL with a few simple ex-
amples and prove its soundness directly over the axiomatic
C11 weak memory model.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs

Keywords Concurrency; Weak memory models; C/C++;
Proof system; Separation logic

1. Introduction
Wanting to enable many hardware and software optimiza-
tions, modern programming language definitions provide
rather weak guarantees on the semantics of concurrent mem-
ory accesses allowing, for example, different threads to ob-
serve shared operations happening in different orders. One
such case is the concurrency model adopted by the 2011 re-
visions of the C and C++ standards (ISO/IEC 9899:2011;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509532

ISO/IEC 14882:2011), which we will study in this paper and
refer to as the C11 model.

C11 provides several kinds of memory accesses—non-
atomic, relaxed atomic, acquire atomic, release atomic, and
sequentially consistent (SC) atomic—each providing differ-
ent consistency guarantees. On the one end of the spectrum,
races on non-atomic accesses result in completely undefined
behaviour (they are treated as programming errors); on the
other end, SC-atomic accesses are globally synchronized.
The guarantees provided by relaxed, acquire, and release ac-
cesses lie somewhere in between: different threads can ob-
serve them happening in different orders.

The reason for having all these kinds of accesses is that
they map differently to the various common architectures,
and have very different implementation costs. Non-atomic
and relaxed atomic accesses are generally rather cheap as
they correspond to vanilla machine loads and stores, and
may be reordered by the compiler and/or by an out-of-order
execution unit. At the other end of the spectrum, SC accesses
are very expensive because their implementation involves a
full memory barrier. The cost of acquire and release accesses
depends a lot on the architecture. On x86, they are compiled
down to plain reads and writes (Batty et al. 2011) and are
therefore cheap. On PowerPC and ARM, the cost is some-
what higher as they induce a memory barrier, but of a weaker
kind than full memory barriers (Sarkar et al. 2012).

Our goal is to help C11 programmers by providing them
with sound reasoning principles for concurrent programs.
We show that C11 concurrency supports resource reasoning
in the style of separation logic (O’Hearn 2007); in particular,
ownership can be transferred along acquire/release atomic
memory accesses and does not require SC-accesses.

We develop relaxed separation logic (RSL), a program
logic that follows the resourceful reading of separation logic
triples. When we assert the Hoare triple

{
P
}
Cmd

{
Q
}

, we
say that the command Cmd will not access any memory
other than that given by its precondition, P , or subsequently
acquired during its execution. We thus support the parallel
composition rule of separation logic,

{
P1

}
Cmd1

{
Q1

} {
P2

}
Cmd2

{
Q2

}
{
P1 ∗ P2

}
Cmd1‖Cmd2

{
Q1 ∗Q2

} (PAR)

which ensures that the two threads do not have any races on
non-atomic memory accesses, a condition required by C11.

To handle acquire/release atomics, we introduce two new
assertion kinds, Rel(`,Q1) and Acq(`,Q2). These denote
respectively the permissions to perform a release-write of
some value v at location ` and give away ownership of
the resource described by Q1(v), or an acquire-read and
gain ownership of Q2(v). With these assertion forms we
provide simple proof rules for release writes and acquire
reads, similar to those for releasing and acquiring mutual
exclusion locks in concurrent separation logic.

Besides RSL itself, the main contribution of this work
was to define the meaning of Hoare triples in a relaxed
memory model setting, so as to prove the soundness of RSL.
This was rather challenging for three main reasons.

No global state/time: Traditionally,
{
P
}
Cmd

{
Q
}

asserts
that if we execute Cmd in an initial state satisfying P
and it terminates, then the final state will satisfy Q. In
C11 concurrency, however, the terms “initial state” and
“final state” are ill-defined, because there exist no global
notions of time or state.
To interpret triples, we thus resort to logical local notions
of time and state. We define a logical notion of local
state at each event of a program execution, and thread
the logical state through C11 “happens-before” edges.

Assertions in heaps: Our assertions for dealing with ac-
quire and release atomics require that the logical heaps
used to interpret them contain assertions. This results in
a circularity in the model of assertions, which for sim-
plicity we resolve by storing syntactic assertions.

No operational semantics: Concurrent program logics are
typically proved sound over an operational or a trace se-
mantics. In either case, the meaning of Hoare triples can
be defined in terms of an auxiliary predicate by induction
over the length of an execution trace. These definitions
cannot directly be extended to the C11 model as there is
no obvious total order for the induction. Our solution is
to order the C11 events according to the total number of
events that happen before them.

As a secondary contribution, we observed that the seman-
tics of relaxed atomic memory accesses in C11 is too weak to
permit even the most basic reasoning principles about them,
which in turn renders basic compiler optimizations unsound.
In order to allow such reasoning principles, we proposed a
crude fix to C11, which we discuss in Section 6.

In the remainder of this paper, we define a minimal con-
current programming language (§2), review the C11 concur-
rency model (§3), describe the assertions and proofs rules
of RSL (§4), verify a few examples using RSL (§5), explain
the problems caused by relaxed accesses and their resolution
(§6), present the semantics of assertions and Hoare triples
and sketch the main parts of the soundness proof (§7). We
conclude with a discussion of related and future work (§8).

A Coq formalization of the soundness proof of RSL can
be found at the following URL.

http://www.mpi-sws.org/~viktor/rsl/

2. Programming Language
In order to focus on the concurrency aspects of C11 and to
avoid the inherent complexity of a large language like C,
we introduce a minimal concurrent programming language
featuring the various kinds of memory accesses supported
by C11. Following Batty et al. (2012), we omit consume
reads from the model, because they are relevant only for
a few architectures (PowerPC and ARM) and substantially
complicate the model. For simplicity, we also omit memory
fences.

To make the local sequential execution order explicit, we
present the grammar of expressions in A-normal form (cf.
Flanagan et al. 1993). Atomic expressions, e ∈ AExp,
consist of variables and values (locations and numbers).
Program expressions, E ∈ Exp, consist of atomic expres-
sions, let-bound computations, conditionals, loops, parallel
composition, memory allocation, loads, stores, and atomic
compare-and-swap (CAS) instructions.

v ∈ Val ::= ` | n where ` ∈ Loc, n ∈ N
e ∈ AExp ::= x | v where x ∈ Var
E ∈ Exp ::= e | let x = E in E′ | if e then E else E′

| repeat E end | E1‖E2 | alloc()
| [e]X | [e]Y := e′ | CASZ,W (e, e′, e′′)

where X ∈ {sc, acq, rlx,na}, Y ∈ {sc, rel, rlx,na},
Z ∈ {sc, rel_acq, acq, rel, rlx},W ∈ {sc, acq, rlx}

As in C, in conditional expressions we treat zero as false
and non-zero values as true. The construct repeat E end
executes E repeatedly until it returns a non-zero value.

Memory accesses are annotated by their mode: sequen-
tially consistent (sc), acquire (acq), release (rel), combined
release-acquire (rel_acq), relaxed (rlx), or non-atomic (na).
According to the C standard, not all modes are available for
all accesses: reads cannot be releases, writes cannot be ac-
quires, CASs cannot be non-atomic. These restrictions are
to avoid redundancy in the language. For example, an ac-
quire write, if such a thing were allowed, would behave ex-
actly the same as a relaxed write.

CAS is an atomic operation used to heavily in lock-free
concurrent algorithms. It takes a location, `, and two values,
v′ and v′′, as arguments. It atomically checks if the value at
location is v′ or not. If the value is same as v′, then CAS
succeeds: it atomically writes v′′ to ` and returns the old
value. If the value is different, CAS fails: it returns that
value and does not modify the location. CAS is annotated
with two access modes: one to be used for the successful
case, and one for the unsuccessful case.

For conciseness in examples, we will often write expres-
sions such as [E]na instead of let x = E in [x]na. We also
writeE1;E2 instead of let x = E1 inE2 when x /∈ fv(E2).

new_lock() = let x = alloc() in [x]rel := 1;x

spin(x) = repeat [x]rlx end

lock(x) = repeat spin(x);CASacq,rlx(x, 1, 0) end

unlock(x) = [x]rel := 1

Figure 1. Simple spinlock implementation.

Spinlock Example There are two important uses of ac-
quire/release accesses: in implementing locks, and in mes-
sage passing. Relaxed accesses are useful in cases of opti-
mistic reads, where the value read, if it is of interest to the
algorithm, will be read again by an acquire read, or an ac-
quire fence will be issued. For example, in the simple CAS-
based spinlock implementation shown in Figure 1, lock(x)
performs an acquire-on-success CAS and unlock(x) does
a release write. The optimistic spin(x) loop that waits for
the lock to become free, in contrast, does relaxed reads.
The combined release-acquire CAS is supposed to be used
for operations that atomically release one lock and acquire
another—this is possible, for example, if the locks are repre-
sented as different bits of the same word. Further examples
can be found in McKenney and Garst (2011).

3. The C11 Memory Model
The C11 memory model is defined axiomatically in terms of
program executions. A program execution consists of a set
of actions and several binary relations over them. Actions
describe the memory operations performed by the program,
and are labelled with information about the memory order
of the operation, the address accessed and the values read
and/or written.

Act ::= skip |W(sc|rel|rlx|na)(`, v) | R(sc|acq|rlx|na)(`, v)
| RMW(sc|rel_acq|acq|rel|rlx)(`, v, v

′) | A(`)

In summary, we have a no-op action; SC, release, relaxed
and non-atomic writes; SC, acquire, relaxed, and non-atomic
reads; atomic read-modify-write actions; and allocations.
The no-op (skip) action represents local computations,
thread forks and joins.

For the subset of C11 we consider, an execution contains
the following relations:1

• Sequenced-before (sb) relates actions of the same thread
that follow one another in control flow. We have sb(a, b)
if a and b belong to the same thread and a immediately
precedes b in the thread’s control flow, or a is a fork
action and b the first action of the forked thread, or b is a
join action and a the last action of the joined thread.
• The reads-from map (rf) maps every read action r to the

write action w that wrote the value read by r.

1 The full model includes two additional relations, dd (data dependency)
and dob (dependency ordered before), used to define the happens-before
relation for consume reads.

• The memory-order relation (mo) is a total order on the
store actions writing to the same atomic location.
• The sequential-consistency order (sc) is a total order over

all SC-atomic actions.

Formally, let AName be a countably infinite of action
names. Then, an execution, X , is represented as a tuple,
〈A, lab, sb, rf,mo, sc〉, where A ⊆fin AName is the set of
action names included in the execution, lab ∈ A → Act
maps every action identifier to its label, rf ∈ A ⇀ A
is the reads-from map, and sb,mo, sc ∈ P(A × A) are
the sequenced-before relation, the memory order, and the
sequential consistency order respectively.

From these relations, C11 defines a number of derived
relations, the most important of which are: the synchronizes-
with relation and the happens-before order.

• Synchronizes-with (sw) relates acquire reads with the re-
lease writes that precede in mo order the write whose
value was read by the acquire read provided that all
the writes between these two writes belong to the same
thread or are RMW operations.
• Happens-before (hb) is a partial order on actions formal-

izing the intuition that one action was completed before
the other. In the C11 subset we consider, hb = (sb∪sw)+.

The semantics of a program is given by the set of con-
sistent executions. An execution is said to be consistent if
it satisfies the axioms of the memory model, which will be
presented shortly. If, however, any of these consistent execu-
tions contains a data race on non-atomic actions, i.e. events
generated from two conflicting operations on the same non-
atomic location not ordered by hb in either direction, then
the program is deemed to have arbitrary semantics. Thus,
any sound program logic for C11 concurrency must ensure
its specifications imply race-freedom for non-atomic actions.

Expression Semantics Let CExp denote closed expres-
sions (i.e., ones with no free variables). The semantics of
such closed expressions, JEK, is given in Figure 2 as a set of
tuples 〈res,A, lab, sb, fst , lst〉. These tuples represent finite
complete executions as well as finite incomplete execution
prefixes (used to model infinite executions), where:
(1) res is the result of evaluating the expression or ⊥ if the

execution is incomplete;
(2) A is the set of all actions contained in the execution;
(3) lab labels the actions with the corresponding operations;
(4) sb represents the sequenced-before relation; and
(5) fst and lst are the first and last actions in the sb-order.
For uniformity, we record the last action even in incomplete
executions. In the parallel composition case, the auxiliary
function combine(res1, res2) returns res1 if res2 6= ⊥ and
⊥ otherwise. In the JEK semantics, allocations can return an
arbitrary new location, and reads can read an arbitrary value.
These will later be constrained by the consistency axioms.

J−K : CExp→ P(〈res : Val ∪ {⊥},A : P(AName), lab : A → Act, sb : P(A×A), fst : A, lst : A〉)
JvK def

= {〈v, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = skip}
Jalloc()K def

= {〈`, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ ` ∈ Loc ∧ lab(a) = A(`)}
J[v]Z := v′K def

= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = WZ(v, v
′)}

J[v]ZK def
= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ v′ ∈ Val ∧ lab(a) = RZ(v, v

′)}
JCASX,Y (v, vo, vn)K def

= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ v′ ∈ Val ∧ v′ 6= vo ∧ lab(a) = RY (v, v
′)}

∪ {〈vo, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = RMWX(v, vo, vn)}
Jlet x = E1 in E2K def

= {〈⊥,A1, lab1, sb1, fst1, lst1〉 | 〈⊥,A1, lab1, sb1, fst1, lst1〉 ∈ JE1K}
∪ {〈res2,A1] A2, lab1 ∪ lab2, sb1 ∪ sb2 ∪ {(lst1, fst2)}, fst1, lst2〉 |
〈v1,A1, lab1, sb1, fst1, lst1〉 ∈ JE1K ∧ 〈res2,A2, lab2, sb2, fst2, lst2〉 ∈ JE2[v1/x]K}

Jrepeat E endK def
= {〈resN ,

⊎
i∈[1..N]Ai,

⋃
i∈[1..N] labi,

⋃
i∈[1..N] sbi ∪ {(lst1, fst2), . . . , (lstN−1, fstN)}, fst1, lstN 〉 |

∀i. 〈resi,Ai, labi, sbi, fst i, lst i〉 ∈ JEK ∧ (i 6= N =⇒ resi = 0) ∧ resN 6= 0}
JE1‖E2K def

= {〈combine(res1, res2),A1] A2] {afork, ajoin}, lab1 ∪ lab2 ∪ {afork 7→ skip, ajoin 7→ skip},
sb1 ∪ sb2 ∪ {(afork, fst1), (afork, fst2), (lst1, ajoin), (lst2, ajoin)}, afork, ajoin〉 |
〈res1,A1, sb1, fst1, lst1〉 ∈ JE1K ∧ 〈res2,A2, sb2, fst2, lst2〉 ∈ JE2K ∧ afork, ajoin ∈ AName}

Figure 2. Semantics of closed program expressions.
@x. hb(x, x) (IrreflexiveHB)

∀`. totalorder({a ∈ A | iswrite`(a)},mo) ∧ hb` ⊆ mo (ConsistentMO)

totalorder({a ∈ A | isSeqCst(a)}, sc) ∧ hbSeqCst ⊆ sc ∧moSeqCst ⊆ sc (ConsistentSC)

∀b. rf(b) 6= ⊥ ⇐⇒ ∃`, a. iswrite`(a) ∧ isread`(b) ∧ hb(a, b) (ConsistentRFdom)

∀a, b. rf(b) = a =⇒ ∃`, v. iswrite`,v(a) ∧ isread`,v(b) ∧ ¬hb(b, a) (ConsistentRF)

∀a, b. rf(b) = a ∧ (mode(a) = na ∨mode(b) = na) =⇒ hb(a, b) (ConsistentRFna)

∀a, b. rf(b) = a ∧ isSeqCst(b) =⇒ isc(a, b) ∨ ¬isSeqCst(a) ∧ (∀x. isc(x, b)⇒ ¬hb(a, x)) (RestrSCReads)

@a, b. hb(a, b) ∧mo(rf(b), rf(a)) ∧ locs(a) = locs(b) (CoherentRR)

@a, b. hb(a, b) ∧mo(rf(b), a) ∧ iswrite(a) ∧ locs(a) = locs(b) (CoherentWR)

@a, b. hb(a, b) ∧mo(b, rf(a)) ∧ iswrite(b) ∧ locs(a) = locs(b) (CoherentRW)

∀a. isrmw(a) ∧ rf(a) 6= ⊥ =⇒ mo(rf(a), a) ∧ @c. mo(rf(a), c) ∧mo(c, a) (AtomicRMW)

∀a, b, `. lab(a) = lab(b) = A(`) =⇒ a = b (ConsistentAlloc)

where iswrite`,v(a)
def
= ∃X, vold. lab(a) ∈ {WX(`, v),RMWX(`, vold, v)} iswrite`(a)

def
= ∃v. iswrite`,v(a)

isread`,v(a)
def
= ∃X, vnew. lab(a) ∈ {RX(`, v),RMWX(`, v, vnew)} etc.

rsElem(a, b)
def
= sameThread(a, b) ∨ isrmw(b)

rseq(a)
def
= {a} ∪ {b | rsElem(a, b) ∧mo(a, b) ∧ (∀c. mo(a, c) ∧mo(c, b)⇒ rsElem(a, c))}

sw
def
= {(a, b) | mode(a) ∈ {rel, rel_acq, sc} ∧mode(b) ∈ {acq, rel_acq, sc} ∧ rf(b) ∈ rseq(a)}

hb
def
= (sb ∪ sw)+

hb`
def
= {(a, b) ∈ hb | iswrite`(a) ∧ iswrite`(b)}

XSeqCst
def
= {(a, b) ∈ X | isSeqCst(a) ∧ isSeqCst(b)}

isc(a, b)
def
= iswritelocs(b)(a) ∧ sc(a, b) ∧ @c. sc(a, c) ∧ sc(c, b) ∧ iswritelocs(b)(c)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A, lab, sb, rf,mo, sc).

c : W(`, 1)
rf
// a : R(`, 1)

hb ��
d : W(`, 2)

mo
OO

rf
// b : R(`, 2)

c : W(`, 2)

rf ((

mo
// a : W(`, 1)

hb ��
b : R(`, 2)

c : W(`, 1)
rf
// a : R(`, 1)

hb ��
b : W(`, 2)

mo

hh a
rf−→ b means a = rf(b)

a
mo−−→ b means mo(a, b)

a
hb−→ b means hb(a, b)violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

Consistent Executions According to the C11 model, an
execution is consistent, Consistent(A, lab, sb, rf,mo, sc), if
all of the properties shown in Figure 3 hold.

(IrreflexiveHB) The happens-before order, hb, must be ir-
reflexive: an action cannot happen before itself.

(ConsistentMO) All write actions on an atomic location `
must be totally ordered by mo, and be consistently or-
dered by hb (restricted to the location `).

(ConsistentSC) The sc relation must be a total order and
include both hb and mo restricted to SC actions. This in
effect means that SC actions are globally synchronized.

(ConsistentRFdom) The reads-from map, rf, is defined for
those read (or RMW) actions for which the execution
contains an earlier write (or RMW) to the same location.

(ConsistentRF) Each entry in the reads-from map, rf, should
map a read to an earlier or concurrent write to the same
location and with the same value.

(ConsistentRFna) Further, if a read reads from a write and
either the read or write are non-atomic, then the write
must have happened before the read. Batty et al. (2011)
also require the write to be visible: i.e. not to have been
overwritten by another write that happened before the
read. This extra condition is unnecessary, as it follows
from CoherentWR.

(RestrSCReads) SC reads are further restricted to read only
from the immediately preceding SC write to the same
location in sc order or from a non-SC write that has not
happened before that immediately preceding SC write.

(CoherentRR,CoherentWR,CoherentRW) Next, we have
three per-location coherence properties relating mo, hb,
and rf. These properties require that mo never contra-
dicts hb or the observed read order, and that rf never
reads values that have been overwritten by more recent
actions that happened before the read. These coherence
properties are depicted in Figure 4.

(AtomicRMW) Each read-modify-write action should exe-
cute atomically: it should read from the immediately pre-
ceding write in mo.

(ConsistentAlloc) Finally, the same location cannot be allo-
cated twice by different allocation actions.2

Remark Our model differs in a few minor ways from that
of Batty et al. (2011, 2012). First, we have incorporated the
C standard’s “additional synchronized with” (asw) relation
in sb rather than in sw, because it describes synchronization
induced by control flow rather than by data flow.

Second, our sw-relation also relates acquire reads with
release writes (whenever the read returns a value written by
or after the release write), even if the two actions belong

2 This axiom suffices, because we do not support deallocation. Had we in-
cluded deallocation, we would instead require there to be a deallocation
actions between any two allocation actions of the same location. The for-
malized C11 model by Batty et al. (2011, 2012) does not model allocation.

let a = alloc() in
let c = alloc() in
[c]rlx := 0;(

[a]na := 7;
[c]rel := 1

repeat [c]acq end;
[a]na := [a]na + 1

)

Figure 5. Message passing example showing transfer of
ownership of the non-atomic location a.

to the same thread (and are thus sb-related), whereas Batty
et al. (2012) do not add any sb-related actions to the sw-
relation. Since relating such actions also by sw does not
affect execution consistency, we do so for uniformity, which
eases the definition of validity of Hoare triples in §7.

Finally, in the standard, the sb and sw relations are taken
to be strict partial orders, corresponding to the transitive
closure of our relations. Conversely, our sb relation can
be defined in terms of the sb order from the C and C++
standards as follows, sbour = {(a, b) ∈ sbstd ∪ aswstd |
@c. (a, c) ∈ sbstd ∪ aswstd ∧ (c, b) ∈ sbstd ∪ aswstd}.
Again, we found the non-transitive versions slightly more
convenient when defining the meaning of Hoare triples.

4. Relaxed Separation Logic
To motivate RSL, consider the message passing program
shown in Figure 5. The thread on the left updates some
data structure using non-atomic memory accesses (here, the
location a), and then signals to other threads that the data
structure has been updated by performing a release write to
c. The thread on the right repeatedly performs acquire reads
until it notices that [c] 6= 0. Then, it can conclude that the
thread on the left has finished its work, and so may safely
access the data structure without interfering with it.

This message passing idiom is correct (i.e., race-free)
because whenever an acquire read sees the value written by a
release write, the write “synchronizes with” the acquire read.
Thus, as hb is transitive, any event that happened before
the write (e.g., by being sequenced before it), also happens
before the read. This, in turn, justifies the ownership transfer
from the writing thread to the reading thread.

To model such ownership transfers, RSL extends the
grammar of separation logic assertions, P , with three new
assertion forms, Rel(e,Q), Acq(e,Q), and RMWAcq(e,Q),
where Q ranges over functions from values to assertions.
Formally, RSL assertions are given by following grammar:

P,Q ::= false | P ⇒ Q | ∀x. P | emp | e k7→ e′ | P ∗Q
| Rel(e,Q) | Acq(e,Q) | RMWAcq(e,Q)
| Init(e) | Uninit(e)

where k ranges over fractional permissions (Perm = (0, 1],
see Boyland 2003). We have the usual classical first order
logic constructs (the three primitive ones and the derived:
true, ∧, ∨, ¬, ∃), the three assertions forms pertinent to
separation logic (empty heap, a single memory cell with

{
P
}
e
{
y. P ∧ y = e

}
{
P
}
E1

{
x.Q

}
∀x.
{
Q
}
E2

{
y.R

}
{
P
}
let x = E1 in E2

{
y. R

}
{
P ∧ b

}
E1

{
y. Q

}
{
P ∧ ¬b

}
E2

{
y. Q

}
{
P
}
if b then E1 else E2

{
y. Q

}
{
P
}
E
{
y. Q

}
Q[0/y]⇒ P{

P
}
repeat E end

{
y. Q ∧ y 6=0

}
{
P1

}
E1

{
y. Q1

} {
P2

}
E2

{
Q2

}
{
P1 ∗ P2

}
E1‖E2

{
y. Q1 ∗Q2

}

{
P
}
E
{
y. Q

}
{
P ∗R

}
E
{
y. Q ∗R

}
{
P
}
E
{
y. Q

}

P ′ ⇒ P ∀y. Q⇒ Q′
{
P ′}E

{
y. Q′}

{
P
}
E
{
y. Q

}
{
P ′}E

{
y. Q′}

{
P ∨P ′}E

{
y. Q∨Q′}

{
P
}
E
{
y. Q

}
{
∃x. P

}
E
{
y. ∃x. Q

}

Figure 6. Standard proof rules supported by RSL.

fractional permission k, and separating conjunction), and
five new forms, which we will explain shortly.

RSL judgements are of the form
{
P
}
E
{
y. Q

}
, where P

and Q are assertions respectively denoting the precondition
and the postcondition of the expression E. The postcondi-
tion, Q, also describes the return value of the expression E,
which is bound by the variable y. In cases where the post-
condition does not describe the return value, we often omit
the y binder. With this setup, we support all the standard
rules from Hoare and separation logic (see Figure 6) includ-
ing the so-called ‘structural’ rules: the frame, consequence,
disjunction, and existential rules.

Another generic rule we support is the RELAX rule be-
low. Generally, when reasoning about a program E, we are
always allowed to reason about a relaxation of the program
E′ v E, which is identical to E except on the atomic access
annotations, which may be weaker than those of E accord-
ing to the partial order: rlx v rel v sc, rlx v acq v sc.

{
P
}
E′
{
y. Q

}
E′ v E{

P
}
E
{
y. Q

} (RELAX)

Atomic Writes We return to the treatment of atomic mem-
ory accesses and the new assertion forms. The first one,
Rel(`,Q), represents a permission to write any value v to
location `, provided the assertionQ(v) holds separately. Per-
forming the write consumes theQ(v) assertion so that it can
be transferred to the reader(s).

{
Q(v) ∗
Rel(`,Q)

}
[`]rel := v

{
Init(`) ∗
Rel(`,Q)

}
(W-REL)

In order for the ownership transfer to be valid, the writer
must synchronize with the reader(s), which means that the
write must be at least of release kind (or stronger, namely
SC). Besides the ownership transfer, the write also initializes
the location `. Keeping track of initialized locations is neces-
sary for subsequent proof rules. In the special case when no
ownership transfer occurs (i.e., when P = emp), intuitively
we can also use a relaxed write as in the following rule.

{
Rel(`, v, emp)

}
[`]rlx := v

{
Init(`)

}
(W-RLX*)

In this rule, we used the following shorthand notation

Rel(`, v, P)
def
= Rel(`, λx. if x= v then P else false)

for representing the permission to write only the value v and
release ownership of P (in this case emp). Intuitive though
this rule is, it is unfortunately unsound in C11, as we will
explain in Section 6, where we also show that we can restore
its soundness by mildly strengthening the model.

In RSL, we allow multiple concurrent writes to the same
atomic location by making the permission to perform an
atomic write splittable as follows:

Rel(`,Q1) ∗ Rel(`,Q2)
⇐⇒ Rel(`, λv. Q1(v) ∨Q2(v))

(REL-SPLIT)

Of course, programs that perform multiple concurrent writes
to same location and transfer away ownership may leak
memory, as some of the writes may be overwritten and thus
never read. In this paper, however, we do not regard such
memory leaks as an error. If desired, the programmer may
explicitly count the number of allocations and deallocations
in order to prove that the program has no memory leaks.

Similar to write permissions, the fact that a location has
been initialized—captured by Init(`)—can be freely dupli-
cated. Once a location is initialized, it remains initialized: it
cannot be de-initialized.

Init(`) ⇐⇒ Init(`) ∗ Init(`) (INIT-SPLIT)

Atomic Reads The second assertion form, Acq(`,Q), de-
notes a permission to perform an acquire read of location `
and obtain ownership of Q(v), where v is the value read.

∀x. precise(Q(x)){
Init(`) ∗
Acq(`,Q)

}
[`]acq

{
v. Q(v) ∗
Acq(`,Q[v:=emp])

} (R-ACQ)

The premise of the rule (that Q should be precise) is a tech-
nical requirement that will be explained in Section 7 and
may be ignored for the time being. As a precondition, we
require not only the permission to perform an acquire read
from `, but also the knowledge that the location has been
initialized. The latter is needed because reading from unini-
tialized locations may return any arbitrary value and thus we
cannot ensure thatQ(v) was ever established. When reading
a value, we acquire Q(v) and give up the permission to read
the same value again with ownership transfer, because oth-
erwise it would have been possible to acquire the sameQ(v)
multiple times. Therefore, in the postcondition the assertion
attached to the acquire predicate becomes

Q[v:=emp]
def
= λy. if y=v then emp else Q(y) .

This allows further reads of the same value, but consequent
reads will simply not gain any ownership. At any point, it is
also possible to do a relaxed read and acquire no ownership.

{
Init(`) ∗ Acq(`,Q)

}
[`]rlx

{
Acq(`,Q)

}
(R-RLX)

Note that this rule does not assert anything about the value
read. A more useful rule is the following, which asserts that
the value read must be one that may have been written.

{
Init(`) ∗
Acq(`,Q)

}
[`]rlx

{
v. Acq(`,Q) ∧

(Q(v) 6= false)

}
(R-RLX*)

Similar to W-RLX*, this latter rule is not sound in C11, but
is so in the strengthened model of Section 6.

In RSL, we permit multiple readers to read the value writ-
ten by a single release write. Concretely, consider the sce-
nario where thread A initializes two data structures and sig-
nals by a release write that it has finished its work. Then
thread B can do an acquire read and notice that A has fin-
ished its initialization and then access the first data structure
non-atomically. Likewise, thread C can do an acquire read
and access the second data structure non-atomically. Such
an execution does not have data races and should therefore
be permitted. In terms of our program logic, this means that
acquire read permissions should be splittable and joinable as
follows:

Acq(`,Q1) ∗ Acq(`,Q2)
⇐⇒ Acq(`, λv. Q1(v) ∗ Q2(v))

(ACQ-SPLIT)

Read-Modify-Write Instructions The next new assertion
form, RMWAcq(`,Q), is used in the following proof rule
for atomic compare-and-swaps.

P ⇒ Init(`) ∗ RMWAcq(`,Q) ∗ true
P ∗ Q(v)⇒ Rel(`,Q′) ∗ Q′(v′) ∗R[v/y]

X ∈ {rel, rlx} ⇒ Q(v) = emp
X ∈ {acq, rlx} ⇒ Q′(v′) = emp{

P
}
[`]Y

{
y. y 6= v ⇒ R

}
{
P
}
CASX,Y (`, v, v′)

{
y. R

} (CAS*)

The rule has five premises. First, the precondition must
ensure that we have permission to do a RMW-read from `
and acquire ownership of Q(v). Second, we require the up-
date performed by the successful CAS to be valid: that is,
to have the necessary release permission, to satisfy Q′(v′),
the assertion that is to be transferred away, and to separately
also satisfy the postcondition. As a precondition for this up-
date, we get to assume not only that the initial precondition
holds, but also that we have access to the state acquired by
ownership transfer, Q(v).

The next two premises take the access modes into ac-
count, suitably restricting the ownership that can be acquired
or released. If the successful CAS is of release or relaxed
kind, then it does not synchronize with the write whose value
it read, so it should not acquire any ownership. This is en-
sured by demanding that Q(v) = emp. Symmetrically, if
the successful CAS is of acquire or relaxed kind, it does
not synchronize with the reads seeing the value it produced,
so it should not release any ownership. This is ensured by
demanding that Q′(v′) = emp.

Finally, we require that failed CASs also satisfy the
postcondition,R, under the assumption that a value different
from the expected one was read.

In its general form, the CAS* rule is sound in the strength-
ened model of Section 6. In the standard model, it is sound
only when X ∈ {rel_acq, sc}.

Unlike multiple normal reads, multiple successful CAS
instructions cannot all read from (and therefore potentially
synchronize with) the same write. This follows from the
AtomicRMW axiom, which requires RMW actions to read
from the immediately preceding write in mo-order. There-
fore, it is sound to duplicate the RMW-acquire permission,

RMWAcq(`,Q)
⇐⇒ RMWAcq(`,Q) ∗ RMWAcq(`,Q) (RMW-SPLIT)

because the semantics ensures that at most one process will
effectively be able to use this permission at any given instant.

In order to be able to prove the last premise of the CAS*
rule, we also support the following rule, allowing us to carve
out a plain acquire permission from an RMW-acquire one.

∀v. Q′(v)= emp ∨Q(v)=Q′(v)= false

RMWAcq(`,Q) ⇐⇒ RMWAcq(`,Q) ∗ Acq(`,Q′)
(RMW-ACQ-SPLIT)

The premise of RMW-ACQ-SPLIT ensures that the assertion
that we have carved out for plain reads is empty, except
perhaps for the values where Q(v) is false, in which case
Q′(v) may also be false.

Allocation of Atomic Locations Whenever a new atomic
location is allocated, the verifier is free to choose a suitable
ownership assertion Q and attach it to the newly allocated
location, and moreover to choose whether the ownership of
Q will be acquired using plain reads or using successful
CASs. We thus have the following two rules.
{
emp

}
alloc()

{
`. Rel(`,Q) ∗ Acq(`,Q)

}
(A-R){

emp
}
alloc()

{
`. Rel(`,Q) ∗ RMWAcq(`,Q)

}
(A-M)

Following the C standard, newly allocated locations are not
initialized, and thus do not generate the Init(`) permission
required for reading them. To enable reading from these lo-
cations, the programmer must first initialize them by per-
forming a plain write as we have already seen.

Non-Atomic Locations Finally, the rules for non-atomic
accesses are exactly as in concurrent separation logic. Al-
location returns an uninitialized new cell with full permis-
sion; writing requires full permission of a location (whether
initialized or not), whereas reading works also with partial
permission but requires the location to be initialized.

{
emp

}
alloc()

{
x. Uninit(x)

}
(A-NA){

`
17→ _ ∨ Uninit(`)

}
[`]na := v

{
`

17→ v
}

(W-NA)
{
`

k7→ v

}
[`]na

{
x. x = v ∧ ` k7→ v

}
(R-NA)

Let QJ(v)
def
= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)

Lock(x, J)
def
= Rel(x,QJ) ∗RMWAcq(x,QJ) ∗ Init(x)

new_lock() def
={

J
}

let x = alloc() in{
J ∗ Rel(x,QJ) ∗
RMWAcq(x,QJ)

}

[x]rel := 1{
Lock(x, J)

}

unlock(x)
def
={

J ∗ Lock(x, J)
}

[x]rel := 1{
Init(x) ∗ Lock(x, J)

}
{
Lock(x, J)

}

lock(x)
def
={

Lock(x, J)
}

repeat{
Lock(x, J)

}

spin(x);{
Lock(x, J)

}

CASacq,rlx(x, 1, 0)

y. Lock(x, J) ∗(

y = 1 ∧ J ∨
y = 0 ∧ emp

)

end{
J ∗ Lock(x, J)

}

Figure 7. Verification of the lock module.

Let Q(x) def
= if x = 0 then emp else a 7→ 7{

emp
}

let a = alloc() in{
Uninit(a)

}

let c = alloc() in{
Uninit(a) ∗ Rel(c,Q) ∗ Acq(c,Q)

}

[c]rlx := 0;{
Uninit(a) ∗ Rel(c,Q) ∗ Acq(c,Q) ∗ Init(c)

}
{
Uninit(a) ∗ Rel(c,Q)

}

[a]na := 7{
a 7→ 7 ∗ Rel(c,Q)

}

[c]rel := 1{
Rel(c,Q)

}

{
Acq(c,Q) ∗ Init(c)

}

repeat [c]acq end{
true ∗ a 7→ 7

}

[a]na := [a]na + 1{
true ∗ a 7→ 8

}
{
a 7→ 8 ∗ true

}

Figure 8. Verification of the message passing example.

These rules ensure that all accessed location have been al-
located and there are no races on non-atomic memory loca-
tions, and moreover that only initialized locations are read.

5. Examples
We now illustrate RSL by proving simple race-free programs
involving release-acquire synchronization patterns. Owner-
ship transfer along those release-acquire synchronizations is
necessary to prove them correct, that is, to show that they
are memory safe and do not contain data races. To make the
proof outlines more concise, we define the following short-
hand notations.

Emp
def
= λv. emp

IAcq(`, v, P)
def
= Init(`) ∗ Acq(`,Emp[v := P])

IRMWAcq(`, v, P)
def
= Init(`) ∗ RMWAcq(`,Emp[v := P])

Figure 7: Lock Module As our first example, we consider
the lock module introduced in Figure 1. Here we show that

any invariant J may be attached to a lock so that we get the
same specifications as in concurrent separation logic:

{
J
}
new_lock()

{
x. Lock(x, J)

}
{
Lock(x, J)

}
lock(x)

{
J ∗ Lock(x, J)

}
{
J ∗ Lock(x, J)

}
unlock(x)

{
Lock(x, J)

}

Lock(x, J) ⇐⇒ Lock(x, J) ∗ Lock(x, J)

As expected, creating a lock requires the invariant J to hold
initially and returns a token confirming that the lock exists
and protects the invariant J . Acquiring the lock requires this
token and obtains ownership of the invariant. Conversely,
releasing the lock requires the invariant to hold and transfers
it away. Finally, the token saying that x is a lock protecting
resource J can be freely duplicated.

To derive this specification, we define the predicates:

QJ(v)
def
= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)

Lock(x, J)
def
= Rel(x,QJ) ∗ RMWAcq(x,QJ) ∗ Init(x)

The QJ(v) predicate describes the invariant associated with
the location x implementing the lock. It assigns empty own-
ership when the lock is held (v=0 ∧ emp), and ownership
of the invariant, J , when the lock is free (v=1 ∧ J). The
Lock(x, J) predicate contains permissions to access the lock
by performing release-writes and acquire-RMWs. It also
contains the knowledge that the lock is initialized.

In new_lock(), we use the A-M and W-REL rules to ini-
tialize the location and transfer away the ownership of J .
Similarly, in unlock(x), we use the W-REL to transfer away
the ownership of J and then the INIT-SPLIT rule to remove
the duplicate Init(x) fact. In lock(x), we use the R-RLX rule
for the relaxed optimistic read in the spin(x) loop, and then
the CAS* and the R-RLX* rules to deal with the CAS. Fi-
nally, the fact that the Lock(x, J) predicate can be freely du-
plicated follows immediately from REL-SPLIT, RMW-SPLIT,
and INIT-SPLIT.

Figure 8: Message Passing As our second example, we
consider the message passing idiom of Figure 5. Here, by
constructing a proof, we conclude that the program has no
data races and moreover, when both threads terminate, we
have [a] = 8. The proof illustrates the use of the Acq(−,−)
predicate, and the rules A-NA, A-R, W-RLX*, W-NA, W-REL,
R-ACQ, and R-NA.

Figure 9: Partial Ownership Transfer Our next exam-
ple is a variant of the message passing program we have
just seen, where after the synchronization between the two
threads, both threads read from a. This is valid because two
concurrent read accesses do not count as a data race.

In order to verify this program, we use fractional permis-
sions and transfer the partial ownership of the non-atomic lo-
cation a from the first to the second thread. The first thread
writes to a, and then performs a release write to x, giving

{
a

17→ _ ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3) ∗ Rel(lock, 1, emp) ∗ IRMWAcq(lock, 0, a
17→ 2 ∨ a 17→ 3)

}

{
a

17→ _ ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3)
}

[a]na := 2;{
a

17→ 2 ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3)
}

[lock]rel := 0;{
emp

}

{
Rel(lock, 1, emp) ∗
IRMWAcq(lock, 0, a

17→ 2 ∨ a 17→ 3)

}

if (CASacq,rlx(lock, 0, 1) = 0) then{
(a

17→ 2 ∨ a 17→ 3) ∗ IRMWAcq(...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}

[a]na := 3{
a

17→ 3 ∗ IRMWAcq(lock, 0, ...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}

[lock]rel := 0;{
IRMWAcq(lock, 0, ...)

}

endif

{
Rel(lock, 1, emp) ∗
IRMWAcq(lock, 0, a

17→ 2 ∨ a 17→ 3)

}

if (CASacq,rlx(lock, 0, 1) = 0) then{
(a

17→ 2 ∨ a 17→ 3) ∗ IRMWAcq(...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}

[a]na := 2{
a

17→ 2 ∗ IRMWAcq(lock, 0, ...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}

[lock]rel := 0;{
IRMWAcq(lock, 0, ...)

}

endif

Figure 10. Example illustrating the use of CAS to implement a lock.

{
a

17→ _ ∗ Rel(x, 1, a 0.67→ 2) ∗ IAcq(x, 1, a 0.67→ 2)
}

{
a

17→ _ ∗ Rel(x, 1, a 0.67→ 2)
}

[a]na := 2;{
a

17→ 2 ∗ Rel(x, 1, a 0.67→ 2)
}

[x]rel := 1;{
a

0.47→ 2
}

[a]na{
r. r = 2 ∧ a 0.47→ 2

}

{
IAcq(x, 1, a

0.67→ 2)
}

let y = [x]acq in{
(y=1) ? a

0.67→ 2 : emp
}

assume(y = 1);{
a

0.67→ 2
}

[a]na{
r. r = 2 ∧ a 0.67→ 2

}

Figure 9. Example illustrating fractional ownership and
transfer thereof.

away the partial permission a 0.67→ 2 (using the W-REL rule).
With its remaining a 0.47→ 2 permission, it then reads a us-
ing the R-NA rule. The second thread synchronizes with the
write to x and gets the a 0.67→ 2 permission (using the R-ACQ
rule), after which it reads a and also gets the value 2 (using
the R-NA rule).

Figure 10: Transfer of Permission in Both Directions
Our next example demonstrates the use of CAS directly
to implement a simple mutual exclusion lock. (We could of
course use the lock module verified previously, but we in-
clude this example in order to demonstrate the CAS* rule
again.) Here, for a change, we implement a non-blocking
“tryLock” command using a conditional, rather than a
blocking locking command using a loop.

The lock is implemented by a single location, lock, stor-
ing 0 if the lock is free and 1 if it is held. (This is oppo-
site to the covention of the earlier lock module.) The lock
protects a resource invariant describing the memory cell a.
Initially, the first thread starts with the lock acquired and
owning a: it establishes the resource invariant and releases
the lock. The other two threads start without knowing that
the lock was initially held; they both have the permission to
write the value 1 to the lock without releasing any owner-

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 0;(

if 1 = [a]rlx then
[b]rlx := 1

) (
if 1 = [b]rlx then
[a]rlx := 1

)

Figure 11. Program with a possible dependency cycle.

[Initialization actions not shown]

Rrlx(a, 1)

sb��

Rrlx(b, 1)

sb��
Wrlx(b, 1)

rf 44

Wrlx(a, 1)
rf

jj

Figure 12. Execution exhibiting the dependency cycle.

ship, Rel(lock, 1, emp). By itself, this permission is pretty
useless: the threads can do a blind relaxed-atomic write to
lock setting its value to 1 (acquired) but without gaining any
information. What makes this permission useful, is its com-
bination with the other permission they have, namely to read
the state of an unacquired lock with a CAS and get owner-
ship of the resource invariant. Successfully performing the
CAS enables them to later release the lock with the same
resource invariant.

6. Dealing with Relaxed Memory Accesses
A serious deficiency of the C11 memory model is that it
allows “out of thin air” reads, as illustrated by the program
in Figure 11, adapted from Batty et al. (2013).

In this program, two locations are initialized with the
value 0, and then two threads are forked, each writing 1 to
the one location provided the other already has the value 1.
Intuitively, one would expect that the writes would never be
executed, but actually the C11 concurrency model permits
this outcome. The questionable execution, depicted in Fig-
ure 12, is consistent as the two reads can get the value 1 by
reading from the corresponding conditional stores.

This counterintuitive behaviour is extremely problematic
for formal reasoning as it inhibits even the simplest form

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 1;(
[b]rlx := [a]rlx [a]rlx := [b]rlx

)
;

if [a]rlx < 20 then print [a]rlx

Figure 13. Program showing that range analysis is unsound
under C11.

of thread-local reasoning, that of non-relational conjunctive
invariants (i.e., invariants where each conjunct describes a
property of only one variable). Intuitively, in the previous
program, one would expect the invariant

[a]rlx = 0 ∧ [b]rlx = 0

to hold throughout the parallel composition since it holds ini-
tially and is preserved by every ‘reachable’ atomic statement
of the program, arguing that the conditional stores are not
reachable because the conditions are unsatisfiable accord-
ing to the invariant. This kind of reasoning is performed by
standard compiler optimizations such as “sparse conditional
constant propagation” (Wegman and Zadeck 1991).

Note that with the W-RLX* and R-RLX* rules, we can
easily prove that if we were to read [a] at the end of the
program, we would get 0. (To do so, pick Q := (λx. x = 0)
in the allocation rule for both locations.) This shows that
these two rules are unsound under C11.

Observe that the same problematic execution remains
consistent even if we strengthen either the relaxed reads
to acquire/SC reads or (exclusively) the relaxed writes to
release/SC writes. To make this execution inconsistent, we
have to strengthen both the reads and the writes except at
most one access. This means that even adding one of the W-
RLX* and R-RLX* rules is unsound.

Global Range Analysis A concrete optimization that is un-
sound under C11 is global range analysis. Consider the pro-
gram in Figure 13. An optimizing compiler may argue that
the test [a]rlx < 20 will always succeed because [a] and [b]
store either 0 or 1, and therefore replace the conditional ex-
pression by the then branch. Somewhat surprisingly, un-
der C11, this transformation introduces new behaviour and
is therefore unsound. Because of the causal dependency cy-
cle, the [a]rlx read can return any arbitrary value. Therefore,
the transformed program can print any arbitrary value, while
the original one could only print values less than 20.

A Crude Fix to the Model Since even this very basic
reasoning is unsound for relaxed accesses, we decided to
strengthen the C11 concurrency model with the following
axiom stating that hb ∪ rf must be acyclic (i.e., its transitive
closure must be irreflexive).

acyclic(hb ∪ {(rf(a), a) | a ∈ A}) (StrongAcyclicHB)

where acyclic(R)
def
= @x ∈ A. R+(x, x).

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 0;(

let x = [a]rlx in
[b]rlx := 1

) (
let y = [b]rlx in
[a]rlx := 1

)

Figure 14. Program without a dependency cycle.

With this additional axiom, we can also show the sound-
ness of the “starred” rules for relaxed memory accesses pre-
sented in the previous section. In contrast, the soundness of
the other rules does not depend on this axiom.

Notice that when adding this strong acyclicity condition,
we can drop the strictly weaker IrreflexiveHB axiom, as well
as the ¬hb(b, a) conjunct from the ConsistentRF axiom. We
can further drop the slightly awkward ConsistentRFna ax-
iom, and still have the soundness proof go through, because
all the proof really needs to know is that the write precedes
the read in some well-founded order. In the absence of causal
cycles, this order need not be hb: we can instead take it to be
hb ∪ rf.

Simple though our proposed fix might seem, it is not
perfect. Alas, the StrongAcyclicHB consistency axiom pre-
cludes the reordering of independent instructions, a trans-
formation that compilers and processors with out-of-order
execution units frequently perform. To illustrate the prob-
lem, consider the program in Figure 14, a slight variant of
the program in Figure 11, where the writes to [b] and [a]
are now independent of the earlier reads from [a] and [b] re-
spectively. The problem is that when operating at the level of
single executions, one cannot distinguish whether the hb∪ rf
cycle in the execution shown in Figure 12 constitutes a de-
pendency cycle or not. If the execution comes from the pro-
gram in Figure 11, the cycle should clearly be outlawed, but
if it comes from the program of Figure 14, the cycle is harm-
less and should be allowed. Distinguishing these two cases
is not easy and seems to require a radical change to the C11
model. Clearly, this lies beyond the scope of this paper.

7. Semantics and Soundness
In this section, we define the semantics of assertions and
Hoare triples, and prove that our logic is sound with respect
to the C11 memory model.

7.1 Semantics of Assertions
To define the meaning of separation logic assertions, we
need an underlying separation algebra, i.e. a commutative
partial monoid. To interpret the Acq and Rel assertions, our
model of heaps will have to store assertions, which in turn
represent sets of heaps. If we naively write down the domain
equation, we will get an equation of the form,

Heapspec

?∼= Loc⇀ (...+ (...× P(Heapspec))) ,

which does not have a solution in Set. Therefore, we either
have to move to a more advanced category such as bounded

Q1 ⊕b1,b2
acq Q2

def
=

Q1 if b1 ∧ b2 andQ1 = Q2

λv.Q1(v) ∗ Q2(v) if (¬b1 ∨ ¬b2) and adef(b1,Q1, b2,Q2)

undef if ¬adef(b1,Q1, b2,Q2)

∣∣∣∣∣∣∣∣∣

rval(b,Q) def
= if b thenQ else λv. emp

adef(b1,Q1, b2,Q2)
def
=

∀v. rval(b2,Q1)(v) = rval(b1,Q2)(v)
∨Q1(v) = Q2(v) = false

h1 ⊕′ h2
def
= λ`.

h1(`) if ` ∈ dom(h1) \ dom(h2)

h2(`) if ` ∈ dom(h2) \ dom(h1)

NA[v, k1 + k2] if hi(`) = NA[v, ki] for i = 1, 2 and k1 + k2 ≤ 1

Atom[λv.R1(v) ∨R2(v),Q1 ⊕b1,b2
acq Q2, b1 ∨ b2, b′1 ∨ b′2] if hi(`) = Atom[Ri,Qi, bi, b

′
i] for i = 1, 2

undef otherwise

h1 ⊕ h2
def
=

{
h1 ⊕′ h2 if dom(h1 ⊕′ h2) = dom(h1) ∪ dom(h2)

undef otherwise

Figure 15. Definition of heap composition, h1 ⊕ h2.

ultrametric spaces (Birkedal et al. 2010), or change the equa-
tion to avoid the problematic recursion.

Here, for simplicity, we do the latter and cut the cycle
by storing syntactic assertions, Assn, instead of semantic
assertions, P(Heapspec), within heaps. Simply storing syn-
tactic assertions is, however, insufficient because we want
the heap model to form a separation algebra and to support
the conversions rules REL-SPLIT and ACQ-SPLIT. To allow
these conversions, we therefore have to store syntactic as-
sertions up to associativity and commutativity of ∗ and ∨
and their units. Furthermore, to support RMW-ACQ-SPLIT,
we also need to equate false ∗ false and false. Formally, we
define ∼ to be the smallest equivalence relation on syntactic
assertions, equating the following assertions:

(S1) ∀P,Q ∈ Assn. P ∗Q ∼ Q ∗ P ,
(S2) ∀P,Q,R ∈ Assn. P ∗ (Q ∗R) ∼ (P ∗Q) ∗R,
(S3) ∀P ∈ Assn. P ∗ emp ∼ P ,
(S4) false ∗ false ∼ false,
(S5) ∀P,Q ∈ Assn. P ∨Q ∼ Q ∨ P ,
(S6) ∀P,Q,R ∈ Assn. P ∨ (Q ∨R) ∼ (P ∨Q) ∨R, and
(S7) ∀P ∈ Assn. (P ∨ false) ∼ (P ∨ P) ∼ P .

where, for convenience, we have also included idempotence
for disjunction. The model of heaps, Heapspec, therefore is:

Perm
def
= (0, 1] B def

= {true, false}
M def

= Val→ Assn/∼
Heapspec

def
= Loc⇀

(
NA[U+ (Val× Perm)]
+Atom[M×M× B× B]

)

Each allocated location is either non-atomic or atomic. Non-
atomic locations can either be uninitialized (represented by
special symbol U) or contain a value and a permission.
Atomic locations contain two maps from values to syntac-
tic assertions modulo ∼ and two Boolean flags. The two
maps represent the release and the acquire maps used to in-
terpret the three assertion forms pertinent to RSL: Rel(`,Q),
Acq(`,Q), and RMWAcq(`,Q), with the first Boolean flag
indicating whether the second map acts as a plain acquire

map or as an RMW-acquire map. The second Boolean flag
records whether the location has been initialized or not.

Figure 15 defines the composition of two logically dis-
joint heaps, h1 ⊕ h2. Note that two logically disjoint heaps
can share some locations, provided that they store com-
patible information about them. For non-atomic locations,
they should be initialized and have compatible permis-
sions (i.e., whose sum does not exceed the full permis-
sion, 1). For atomic locations, the two heaps must con-
tain compatible acquire maps, represented by the predicate
adef(b1,Q1, b2,Q2). This predicate is somewhat complex
because acquire maps represent plain acquire or RMW-
acquire permissions depending on the relevant Boolean flag.
The cases are:

(Case b1 ∧ b2) we must have Q1 = Q2;
(Case b1 ∧ ¬b2) we require that for all v, either Q2(v) =

emp or Q1(v) = Q2(v) = false;
(Case ¬b1 ∧ b2) symmetrically to the previous case; and
(Case ¬b1 ∧ ¬b2) no conditions.

Given these definitions, we can show that (Heapspec,⊕, ∅)
forms a separation algebra, which in turn means that it is a
good model for separation logic assertions.

Lemma 1. (Heapspec,⊕, ∅) forms a separation algebra.
That is, ⊕ is associative, commutative, and has ∅ as its
identity element.

In the proof of this lemma, property S4 is required to
show associativity; replacing S4 with the more general prop-
erty ∀P ∈ Assn. P ∗ false ∼ false breaks associativity.

We remark that in contrast to most models for separation
logic, our ⊕ is not cancellative. For example, consider the
heap hI = {` 7→ Atom[False,Emp, false, true]}. Clearly,
hI 6= ∅ and yet hI ⊕ hI = hI = hI ⊕ ∅. In practice,
the lack of cancellativity does not affect reasoning about
RSL assertions. It also does not mean that the heap model
contains ‘junk’ information. Indeed, the heap hI is used to
model the assertion Init(`), and we want hI ⊕ hI = hI to
validate INIT-SPLIT.

Definition 1 (Assertion Semantics).
Let J−K : Assn→ P(Heapspec) be:

JfalseK def
= ∅

JP ⇒ QK def
= {h | h ∈ JP K =⇒ h ∈ JQK}

J∀x. P K def
= {h | ∀v. h ∈ JP [v/x]K}

JempK def
= {∅}

JP ∗QK def
= {h1 ⊕ h2 | h1 ∈ JP K ∧ h2 ∈ JQK}

JUninit(`)K def
= {{` 7→ NA[U]}}

J` k7→ vK def
= {{` 7→ NA[v, k]}}

JInit(`)K def
= {{` 7→ Atom[False,Emp, false, true]}}

JRel(`,Q)K def
= {{` 7→ Atom[Q,Emp, false, false]}}

JAcq(`,Q)K def
= {{` 7→ Atom[False,Q, false, false]}}

JRMWAcq(`,Q)K def
= {{` 7→ Atom[False,Q, true, false]}}

where False
def
= λv. false and Emp

def
= λv. emp.

Figure 16. Definition of the semantics of assertions.

Equipped with specification heaps, Heapspec, we proceed
to the semantics of assertions. These are given as a function
J−K : Assn→ P(Heapspec) in Figure 16.

A basic property of the assertion semantics, that justifies
treating stored assertions up to∼, is that∼-related assertions
have the same semantics.

Lemma 2. If P ∼ Q, then JP K = JQK.
Moreover, we can easily show that our model validates

the logical entailments of Section 4.

Lemma 3. The properties REL-SPLIT, ACQ-SPLIT, RMW-
SPLIT, RMW-ACQ-SPLIT, and INIT-SPLIT hold universally.

Finally, we say that an assertion is precise if and only if it
uniquely determines a subheap where it holds. The definition
is standard (O’Hearn 2007), but due of the lack of cancella-
tivity of ⊕ we require both the heaps satisfying the assertion
to be equal (h1 = h′1) as well as their remainders (h2 = h′2).
If ⊕ were cancellative, then either of the equalities would
suffice as it would imply the other.

Definition 2 (Precision). An assertion is precise, denoted
precise(P), if and only if for all h1, h′1, h2, h′2, if h1 ∈ JP K
and h2 ∈ JP K and h1 ⊕ h′1 = h2 ⊕ h′2 6= undef , then
h1 = h′1 and h2 = h′2.

7.2 Semantics of Hoare triples
We move on to the meaning of RSL triples,

{
P
}
E
{
y. Q

}
.

To handle both models—the C11 standard one and the
strengthened one of Section 6—we parametrize the defini-
tions of the semantics of triples and all auxiliary definitions
with respect to the model. For notational simplicity, how-
ever, we will present the definitions only for the strength-
ened model and we will note in text any differences for the
standard C11 model.

Given an execution X = 〈A, lab, sb, rf,mo, sc〉, we de-
fine the helper functions: SBinX (a), SBoutX (a), SWinX (a),

and SWoutX (a), to get the set of sb/sw incoming/outgoing
edges of an action a ∈ A. Given also a set of actions,
V ⊆ A, we denote the set of its hb and rf predecessors
as PreX (V).

PreX (V)
def
= {a | ∃b ∈ V. hb(a, b) ∨ a = rf(b)}

This definition is very useful because we will generally be
considering sets of actions V that are prefix-closed, namely
PreX (V) ⊆ V , and we will be growing such sets by adding
one action at a time while maintaining prefix-closure. Doing
so is always possible for consistent executions because of
the StrongAcyclicHB axiom. In the standard C11 model,
we have to resort to a stronger definition of PreX (V) that
includes only the hb edges, not arbitrary rf edges as well.

Prestandard_C11
X (V)

def
= {a | ∃b ∈ V. hb(a, b)}

To define the meaning of RSL triples, we will generally
be annotating hb-edges with appropriate heaps. When do-
ing so, however, it will be important to distinguish between
happens-before edges that occur because of an sb-edge and
those that occur because of an sw-edge. We therefore intro-
duce the following definition that tags them accordingly.

Definition 3 (Tagged Happens Before). Given an execution
X , let thbX be a tagged union of sbX and swX , constructed
as follows

thbX
def
= {(“sb”, a, b) | (a, b) ∈ sbX }
∪ {(“sw”, a, b) | (a, b) ∈ swX }

For a program expression, E, we denote CJEK as the
set of its consistent contextual executions. These executions
are obtained by plugging in an execution of E in some
arbitrary execution context, such that the whole execution
is consistent, as follows.

CJEK def
= { 〈res,Actx,Aprg,X , fst , lst〉 | ∃labctx, labprg.
∃sb. ∃sbprg = sb∩ (Aprg×Aprg).
X = 〈Actx] Aprg, labctx ∪ labprg, sb, _, _, _〉
∧ 〈res,Aprg, labprg, sbprg, fst , lst〉 ∈ JEK
∧ (∃!a. sb(a, fst)) ∧ (∃!b. sb(lst , b))
∧ Consistent(X) }

In the definition of CJEK, we require that (1) the part of the
execution corresponding to the expression matches its se-
mantics, (2) fst has a unique sb-predecessor, (3) lst has a
unique sb-successor, and (4) the entire execution is consis-
tent. The requirements about the unique predecessor of fst
and the unique successor of lst will be used for selecting
unique edges responsible for carrying the expression’s pre-
condition and postcondition.

To define the meaning of RSL triples, we will annotate the
thb-edges of consistent contextual executions with heaps.
We will call such functions, hmap : thbX ⇀ Heapspec,

Definition 4 (Local annotation validity). Given an execution, X = 〈A, lab, sb, rf,mo, sc〉, a heap map, hmap : thbX ⇀
Heapspec, and a set of actions V ⊆ A, the predicate Valid(hmap, V) holds if and only if for all actions a ∈ V , there exist
`, v,Q,Q′,Q′′, Z, h1, h

′
1, h2, hF, hsink such that

(
lab(a) = skip
∧ hmap(SBinX (a)) = hmap(SBoutX (a))⊕ hsink

)

∨

lab(a) = WZ(`, v) ∧ Z ∈ {rlx, rel, sc}
∧ h1 = {` 7→ Atom[Q,Emp, false, _])}
∧ h′

1 = {` 7→ Atom[Q,Emp, false, true])}
∧ h2 = hmap(SWoutX (a))⊕ hsink ∧ h2 ∈ JQ(v)K
∧ hmap(SBinX (a)) = h1 ⊕ h2 ⊕ hF

∧ hmap(SBoutX (a)) = h′
1 ⊕ hF

∧ (Z = rlx =⇒ Q(v) = emp)

∨

lab(a) = RMWZ(`, v, v
′) ∧ Z 6= na

∧ hmap(SBinX (a))(`) = Atom[_,Q, true, true]
∧ hmap(SBinX (a))⊕ hmap(SWinX (a))

= {` 7→ Atom[Q′,Emp, false, false]} ⊕
hmap(SBoutX (a))⊕ hmap(SWoutX (a))⊕ hsink

∧ hmap(SWinX (a)) ∈ JQ(v)K
∧ (hmap(SWoutX (a))⊕ hsink) ∈ JQ′(v′)K
∧ (Z ∈ {rlx, rel} =⇒ Q(v) = emp)
∧ (Z ∈ {rlx, acq} =⇒ Q′(v′) = emp)

∨

lab(a) = A(`)
∧ hmap(SBoutX (a)) = hmap(SBinX (a)) ⊕

{` 7→ Atom[Q,Q, _, false]}

∨
(
lab(a) = A(`)
∧ hmap(SBoutX (a)) = hmap(SBinX (a))⊕ {` 7→ NA[U]}

)

∨

lab(a) = Wna(`, v)
∧ hmap(SBinX (a))(`) ∈ {NA[U],NA[_, 1]}
∧ hmap(SBoutX (a)) = hmap(SBinX (a))[7̀→NA[v, 1]]

∨

lab(a) = Rna(`, v)
∧ hmap(SBinX (a))(`) = NA[v, _]
∧ hmap(SBinX (a)) = hmap(SBoutX (a))

∨

lab(a) ∈ {Rrlx(`, v),Racq(`, v),Rsc(`, v)}
∧ hmap(SWinX (a)) ∈ JQ(v)K ∧ precise(Q(v))
∧ hmap(SBinX (a)) = {` 7→ Atom[False,Q, false, true]} ⊕ hF

∧ hmap(SBoutX (a)) = hmap(SWinX (a))⊕ hF ⊕
{` 7→ Atom[False,Q[v := emp], false, true]}

Definition 5 (Configuration safety). Given sets of actions, Actx and Aprg, an execution X = 〈Aprg] Actx, lab, sb, rf, sc〉,
a natural number, n ∈ N, a set of actions, V , a heap map, hmap : RespX (V) → Heapspec, a distinguished final action,
lst ∈ Aprg, and a set of heaps, Q, we define safenX (V, hmap,Actx,Aprg, lst , Q) by structural recursion on n as follows:
safe0

X (V, hmap,Actx,Aprg, lst , Q) holds always.
safen+1

X (V, hmap,Actx,Aprg, lst , Q) holds if and only if the following conditions all hold:

• If lst ∈ V , then hmap(SBoutX (lst)) ∈ Q; and
• For all a ∈ Aprg \ V such that PreX ({a}) ⊆ V , there exists hmap′ : RespX ({a})→ Heapspec such that
Valid(hmap ∪ hmap′, V ∪ {a}) and safenX (V ∪ {a}, hmap ∪ hmap′,Actx,Aprg, lst , Q); and
• For all a ∈ Actx \ V such that PreX ({a}) ⊆ V , and all hmap′ : RespX ({a})→ Heapspec,

if Valid(hmap ∪ hmap′, V ∪ {a}), then safenX (V ∪ {a}, hmap ∪ hmap′,Actx,Aprg, lst , Q).

Figure 17. Definitions of annotation validity and configuration safety.

heap annotations or heap maps. For each thb-edge, it is
important to decide who is responsible for choosing a heap
to annotate that edge with: is it the program itself or is it its
environment? Therefore, given a set of program actionsA ⊆
A, we define the set, RespX (A) of edges whose annotation
is the responsibility of the program.

RespX (A)
def
=
⋃

a∈A
(SBoutX (a) ∪ SWinX (a))

This definition deserves some explanation.
First, as expected, the program is responsible for cor-

rectly annotating its outgoing sequenced-before edges. Con-
versely, it can assume that incoming sb-edges are correctly
annotated. This part is consistent with the usual semantics
of Hoare triples: the program may assume the precondition
holds when starting its execution, and must establish the
postcondition when returning.

What is perhaps a bit unusual is that the program is also
responsible for the annotations on the incoming synchro-

nization edges, and not the outgoing ones. This is because
when an acquire read synchronizes with a release write, it is
the reader that ‘knows’ how much state ownership is to be
transferred along the sw-edge. The writer simply knows how
much total ownership is to be transferred away from itself,
but not how this is to be distributed to the various readers
that synchronize with the write.

In a slight abuse of notation, given a heap annotation,
hmap, and a set of context edges, S ⊆ thbX , we will let
hmap(S)

def
=
⊕

x∈S∩dom(hmap) hmap(x).

Annotation Validity and Configuration Safety Figure 17
contains two important auxiliary definitions. First, we have
annotation validity (Definition 4). A heap map, hmap is
valid up to a set of actions V , if and only if for every action
a ∈ V , the annotation is locally valid around that action:
basically the sum of the annotated heaps on the incoming
edges should equal the sum of the annotated heaps on the
outgoing edges, modulo the effect of action a.

Second, we have configuration safety (Definition 5), de-
fined in the style of Vafeiadis (2011). Here, a configuration is
a set of visited actions, V ⊆ (Actx∪Aprg), and heap annota-
tion, hmap, annotating precisely the thb-edges for which V
is responsible. safenX (V, hmap, . . .) asserts that such a con-
figuration is safe for at least n further actions. Unless n = 0,
a safe configuration must:

• Annotate the (unique) sb-outgoing edge from the com-
mand with a heap satisfying the postcondition in case the
last action of the command is in V ;
• For any “ready-to-execute” action a of the command, it

must be possible to extend the heap map so that it is safe
also up to a for n− 1 actions; and
• For any “ready-to-execute” action of the context, any

valid extension of the heap map should be safe for n− 1
actions.

The informal notion of action a being “ready-to-execute” is
captured by the constraint that a has not yet been visited
whereas all its predecessors have: a /∈ V ∧ Pre({a}) ⊆ V .

With these auxiliary definitions, we define the meaning
of RSL triples as follows:

Definition 6 (Meaning of RSL triples).
The Hoare triple,

{
P
}
E
{
y. Q

}
, holds if and only if

for all 〈res,Actx,Aprg,X , fst , lst〉 ∈ CJEK,
for all V ⊆ Actx such that PreX (V) ⊆ V ,
for all hmap ∈ RespX (V)→ Heapspec, for all R ∈ Assn,
if hmap(SBinX (fst)) ∈ JP ∗RK and Valid(hmap, V), then
for all n ∈ N, safenX (V, hmap,Actx,Aprg, lst ,Post),

where Post =

{
JQ[v/y] ∗RK if res = v

Heapspec if res = ⊥ .
The definition says that for any consistent contextual execu-
tion ofE, all valid configurations annotating only the context
edges and satisfying the precondition on the (unique) incom-
ing sb-edge to the program, are safe for any number of steps.
As is common in the definitions of the meaning of separation
logic triples, the definition bakes in the frame rule—that is,
it quantifies over all assertions R and star-conjoins R to the
precondition and the postcondition.

7.3 Memory Safety and Race Freedom
The soundness proof of RSL consists of two parts. First, we
have to show that every proof rule of §4 is a valid entailment
according to the semantics of Hoare triples in Definition 6.
Second, we have to show that RSL triples denote something
useful for program executions, for example that they do not
contain any data races nor any dangling reads.

We start with the second task as it is somewhat simpler.
More specifically, we shall show that any consistent execu-
tion of a verified program under the true precondition is (a)
memory safe, (b) has no uninitialized reads, (c) has no data
races, and (d) if the program terminates, its postcondition is
satisfiable. By memory safety, we mean that allocation of a

location must happen before any action reading or writing
that location.

Definition 7. An execution is memory safe if and only if
∀a ∈ A. isaccess`(a) =⇒ ∃b. hb(b, a) ∧ lab(b) = A(`).

Given a validly annotated execution by the heap map
hmap, observe the following: (1) any action, a, accessing
the location ` must have ` ∈ dom(hmap(SBin(a))); and
(2) whenever a location is in the domain of the annota-
tion of an edge leading to some action b, (i.e., when ` ∈
dom(hmap(_, _, b))), then there must be an hb-earlier allo-
cation action for that location. Putting these two together, we
get memory safety for validly annotated executions.

Absence of reads from uninitialized locations follows
by a similar argument. First, we say that a read action, a,
reads from an uninitialized location if rf(a) = ⊥, which
from (ConsistentRFdom) means that there must be no pre-
vious write to that location. We can, however, observe that
the annotation validity for read actions, a, requires that
hmap(SBin(a))(`) = Atom[_, _, _, true] (for atomic loca-
tions) or hmap(SBin(a))(`) = NA[v, _] (for non-atomic
locations). But, in order to get one of these heaps in a valid
annotation, it must be the case that there was an hb-earlier
write to the same location.

Proving race-freedom is slightly more involved. First, let
us formalize exactly what race-freedom is. We say that two
actions are conflicting if both access the same location, at
least one of them is a write, and at least one of the accesses
is non-atomic (i.e., atomic accesses do not conflict with one
another). An execution is race-free is all conflicting actions
are ordered by hb.

Definition 8. Two actions a6=b are conflicting if there exists
a location ` such that isaccess`(a) and isaccess`(b) and
iswrite(a) ∨ iswrite(b), and mode(a)=na ∨mode(b)=na.

Definition 9. An execution is race-free if and only if for all
conflicting actions a, b ∈ A, we have hb(a, b) ∨ hb(b, a).

To prove race-freedom, we need the notion of a set of
transitions, T , being pairwise independent. We say that T is
pairwise independent, if there exists no pair of transitions in
T such that one happens before the other.

Definition 10 (Independent Edges). In an execution, X ,
a set of transitions T ⊆ thbX is pairwise independent, de-
noted PairIndep(T), if and only if for all (_, a, a′), (_, b, b′) ∈
T , we have ¬hbX (a′, b).

The crux of the race freedom proof is the following in-
dependent heap compatibility lemma, which states that in
every validly annotated execution, the heaps annotated at in-
dependent edges are ⊕-compatible.

Lemma 4 (Independent Heap Compatibility). For every
consistent execution, X , heap map, hmap : RespX (AX) →
Heapspec, and pairwise independent set of transitions, T , if
Valid(hmap,AX) holds, then

⊕
x∈T hmap(x) is defined.

To prove this lemma, we need the notion of the depth of a
set of actions, which we take to be the number of its elements
and its predecessors.

Definition 11 (Action Depth). Given an execution, X , the
depth of a set of actions, A ⊆ AX , which we denote as
DX (A), is the number of actions in the set or that have
happened before it, |⋃n≥0 PreX (· · ·PreX (A) · · ·)︸ ︷︷ ︸

n

|.

The depth of actions satisfies this important property:

Lemma 5. If hbX (a, b), then DX ({a}) < DX ({b}).
Lemma 4 is then proved by induction using the metric

DX ({a | (_, a, _) ∈ T }), followed by case analysis on the
action in T with largest DX ({−}) value.

Putting everything together, our main soundness theorem
is stated in terms of complete consistent executions:

CCJEK def
= { 〈res,X〉 | ∃a, b.

a 6= b ∧ labX (a) = labX (b) = skip
∧ 〈res, {a, b}, _,X , _, _〉 ∈ CJEK }

where the program expression is put inside the trivial context
providing it with an incoming sb-edge from a skip action and
an outgoing sb-edge to a skip action. Here it is:

Theorem 1 (Adequacy). Let
{
true

}
E
{
y. Q

}
. For every

execution 〈res,X〉 ∈ CCJEK, X is memory safe, has no
reads from uninitialized locations and no races. Moreover,
if the execution is terminating, then Q holds of the result.

7.4 Soundness of the Proof Rules
We move on to the proofs of soundness of the individual
rules. For each rule, we have to prove that it is a valid
entailment given the meaning of RSL triples (Definition 6).
With the exception of R-ACQ and CAS*, these proofs are
relatively straightforward because the conditions imposed by
local validity are almost directly enforced by the proof rules.

The proofs of R-ACQ and CAS* are more complex be-
cause we also have to annotate the incoming sw-edges cor-
rectly and show that the annotation is valid not only for the
program action under consideration, but also for the context
actions at the other end—that is, for the write or RMW ac-
tion with which the read or CAS synchronizes.

We start with the R-ACQ rule. Consider a consistent con-
textual execution whereAprg = {a} and lab(a)=Racq(`, v).
We proceed with a case split. IfQ(v)= emp, we can simply
annotate any incoming sw-edges with the empty heap and
set hmap′(SBoutX (a))= hmap(SBinX (a)), which trivially
preserves validity. When, however, Q(v) 6= emp, the situ-
ation is much more difficult, because it is not immediately
obvious that there is an incoming sw-edge that can be anno-
tated in a way that satisfies the local validity conditions of
both the acquire-read and the release-write (or RMW) at the
other end. For this case, our proof works as follows.

First, as the precondition includes Init(`), we know that
there exists a write to ` that happens before the acquire read.

Lemma 6 (Init). If Valid(V, hmap) and PreX (V) ⊆ V
and hmap(_, _, a)(`) = Atom[_, _, _, true], then there exists
c ∈ V such that labX (c) = W_(`, _) and (c, a) ∈ hbX .

Therefore, from the consistency axiom ConsistentRF, we
get that ∃w. rf(a) = w. As PreX ({a}) ⊆ V , we also know
w ∈ V .

Next, we will show that w must be a plain atomic write
that synchronizes with a. To see why this holds, observe that
` ∈ dom(hmap(SBinX (w))) holds as hmap is locally valid
at w ∈ V . Now, informally, we can trace back through the
thbX edges to the point where for some node c ∈ V such
that hbX (c, w), we have ` /∈ dom(hmap(SBinX (c))) and
yet ` ∈ dom(hmap(SBoutX (c))). Since hmap is locally
valid, the only way for this to happen is if labX (c) = A(`).
Similarly, we can follow thbX edges backwards from a
and find a node d ∈ V such that hbX (d, a) and ` /∈
dom(hmap(SBinX (d))) and ` ∈ dom(hmap(SBoutX (d))).
Again, since hmap is locally valid, labX (d) = A(`), and
so from the consistency axiom ConsistentAlloc, we obtain
that c = d. When tracing back from a, at each step we can
show that there exist Q′ and b such that hmap(tn+1)(`) =
Atom[_,Q′, b, _] and either b = false ∧ Q′(v) 6= emp or
Q′(v) = false. So, in total, we get hmap(SBoutX (c))(`) =
Atom[Q′,Q′, b, _] and either b = false ∧ Q′(v) 6= emp
or Q′(v) = false. Similarly, when tracing back from b, at
each step we can show that whenever hmap(tn+1)(`) =
Atom[Q′, _, b, _], then there exist Q′′ and b′ such that
hmap(tn)(`) = Atom[Q′′, _, b′, _] and Q′′(v) ⇒ Q(v)
and b′ ⇒ b. So, in total we get that there exist Q′′ and b′

such that hmap(SBinX (w))(`) = Atom[Q′′, _, b′, _], and
Q′′(v) ⇒ Q′(v) and b′ ⇒ b. Since hmap is locally valid at
w, ∃h ∈ JQ′′(v)K; thus, b′ = b = false and Q′′(v) 6= emp,
which means that w is a write that synchronizes with a.

We have the following picture: w synchronizes with a,
but possibly also with some other reads r1, . . . , rn ∈ V and
perhaps even some reads not in V .

w : W(`, v)
sw //

**
((

��
����		

��

a : Racq(`, v)

r1 . . . rn . . .

V

From the local validity of hmap at w ∈ V , we know that
(h1⊕· · ·⊕hn⊕hsink) ∈ JQ′′(v)K, where each hi is the heap
annotated on the sw-edge from w to ri. What remains to be
shown is that we can split hsink further; that is, we can find
h′, h′sink such that hsink = h′⊕h′sink and h′ ∈ JQ(v)K. Then,
we annotate the (“sw”, w, a) edge with h′ and SBoutX (a)
with h′⊕SBinX (a), thereby ensuring local validity at both a
and w. To find such a split, we rely on the following lemma.

Lemma 7 (Well-formedness). Given a consistent execution
X , a prefix-closed set of actions, V ⊆ AX with PreX (V) ⊆
V , a heap map, hmap ∈ RespX (V) → Heapspec, that is
locally valid with respect to V , Valid(hmap, V), a pairwise

independent set of transitions T , such that {a | (_, a, _) ∈
T } ⊆ V and hmap(T)(`) = Atom[_,Q, _, _], an action,
w, such that lab(w) = W(`, v) and hmap(SBinX (w))(`) =
Atom[Q′′, _, _, _], and a partial map R : V ⇀ Assn, such
that for all a ∈ dom(R), a is a read action that synchro-
nizes with w and acquires ownership of R(a), if moreover,
{a | ∃(_, _, b) ∈ T ∧ (a = b ∨ hb(a, b))} ∩ dom(R) = ∅,
then, Q′′(v)⇒ Q(v) ∗�r∈dom(R)R(r) ∗ true.

The proof of this lemma is rather technical and can be
found in the Coq formalization. At a high level, however, it
is similar to the proofs already described, using the depth
metric to trace back the T ∪ {(“sw”, w, r) | r ∈ dom(R)}
edges until we reach c, the action that allocated `.

Applying this lemma, we get that (h1⊕· · ·⊕hn⊕hsink) ∈
JQ(v) ∗ R(r1) ∗ . . . ∗ R(rn) ∗ trueK, and since for all i, we
also know that precise(R(ri)) and hi ∈ JR(ri)K, we obtain
hsink ∈ JQ(v) ∗ trueK, as required.

The proof of CAS is actually much simpler because
there cannot be any resource-acquiring reads that synchro-
nize with the write/RMW whence the CAS reads from. De-
tails of this proof can be found in the Coq formalization.

7.5 The Coq Formalization
Our Coq development covers the entire soundness proof out-
lined in this section and follows the LATEX presentation very
closely. To avoid excessive proof duplication, the definitions
of configuration safety and triple validity are parametrized
with respect to the memory model; that is, either the stan-
dard model or the one with the StrongAcyclicHB condition.

One notable difference is that in Coq we represent finite
sets of actions,A, as lists, and domain-restricted functions as
functions over the full domain. For example, instead of lab ∈
A → Act, in Coq we have lab : AName → Act, and add a
consistency axiom stating that ∀x /∈ A. lab(x) = skip. Sim-
ilarly, we define hmap : thb(AName × AName,AName ×
AName)→ Heapspec, and in the definition of configuration
safety, instead of saying that there exists a hmap′ such that
the configuration with hmap] hmap′ is safe, we say that
there exists hmap′′ such that ∀e ∈ RespX (V). hmap′′(e) =
hmap(e) holds and the configuration with hmap′′ is safe.

Another difference is that in Coq the treatment of as-
sertions up to ∼ is achieved by defining a syntactic asser-
tion normalization function, norm , with the property that
P ∼ Q ⇐⇒ norm(P) = norm(Q). Then, we represent
Assn/∼ as {P ∈ Assn | norm(P) = P}.

Finally, following Nanevski et al. (2010), we represent
heaps as the option type Heapspec ∪ {⊥}, with ⊥ represent-
ing undefined heaps. This removes the ‘definedness’ side-
conditions from the statements of commutativity and asso-
ciativity of heap composition. In effect, we move the de-
finedness checks to the semantics of assertions, where we
ensure that ⊥ /∈ JP K for any assertion P .

The formal development excluding standard libraries
consists of about 3000 lines of definitions and statements

of lemmas and theorems, 5500 lines of proof, 500 lines of
comments, and took the first author about two months to
complete. It is worth pointing out that the formal proof re-
vealed that a bug that we had missed in our earlier paper
proofs: namely, the requirement that the ownership transfer
governed by the R-ACQ rule to be precise. While we do not
think that this side condition is strictly necessary for sound-
ness in the absence of the conjunction rule, the current proof
style fundamentally requires it.

8. Related Work and Conclusion
This paper introduced relaxed separation logic, a moder-
ate extension of concurrent separation logic (O’Hearn 2007)
with special primitives for handling C11’s acquire and re-
lease atomic accesses.

8.1 Related Work
About the C11 Model The C11 concurrency model is part
of the C and C++ 2011 standards (ISO/IEC 9899:2011;
ISO/IEC 14882:2011), and has been formalized by Batty
et al. (2011). In a subsequent paper, Batty et al. (2012)
simplified the C11 model in the absence of consume reads.
It is this simplified model that we used in this paper.

In a recent paper, Batty et al. (2013) considered the no-
tion of library atomicity in the context of the C11 memory
model. While this work is largely orthogonal to our defining
a program logic about C11, we expect that combining the
two approaches will be fruitful as program logics are often
the means for proving atomicity, at least in the SC setting.

Logics for Other Weak Memory Models We are aware of
only three lines of work that define program logics over
a relaxed memory model, none of which handles the C11
memory model.

• Ferreira et al. (2010) proved the soundness of concur-
rent separation logic (CSL) over a class of relaxed mem-
ory models, all satisfying the DRF-guarantee. In hind-
sight, their result is not surprising as the soundness of
CSL over SC (sequential consistency) ensures that CSL-
verified programs do not contain any data races, and
hence whether the soundness proof is done over SC or
over the relaxed memory model is irrelevant.
• Ridge (2010) developed a rely-guarantee proof system

over x86-TSO and used it to verify a x86-TSO version
of Simpson’s four slot algorithm, with all the results
mechanized in the HOL theorem prover.
• Wehrman and Berdine (2011) proposed a variant of sep-

aration logic for x86-TSO featuring primitive assertions
for modelling the state of the TSO buffers and both tem-
poral and spatial separating conjunctions.

Besides obviously handling different memory models and
being quite different program logics, there is a fundamen-
tal difference between the current work and these earlier pa-

pers on program logics for relaxed memory models. In this
work, we define the meaning of Hoare triples directly over an
axiomatic partial order semantics for concurrent programs,
whereas the earlier works used an operational or an opera-
tionally flavoured trace semantics, very much like the tradi-
tional soundness proofs over SC. As a result, our soundness
proof is completely different from the soundness proofs of
the aforementioned papers.

8.2 Possible Future Research Directions
Being the first program logic for C11 concurrency, there are
numerous opportunities for extending RSL, for example to
deal with more advanced features of the C11 memory model,
such as consume reads and memory fences. Similarly, one
can also try to adapt to C11 setting more advanced program
logics, such as RGSep (Vafeiadis and Parkinson 2007), con-
current abstract predicates (Dinsdale-Young et al. 2010), or
CaReSL (Turon et al. 2013).

Initialization of Atomics For simplicity, RSL tags loca-
tions as atomic or non-atomic and permits atomic accesses
only on atomic locations and non-atomic accesses only on
non-atomic locations. As a result of this choice, initializa-
tion writes to atomic accesses in our model also have to be
atomic, whereas the C11 standard also allows non-atomic
initialization writes to atomic location. To enable the ver-
ification of such programs, we should somehow allow the
following ‘conversion’ rule

Q(v) = emp{
` 7→ v

}
0
{
Rel(`,Q) ∗ Acq(`,Q) ∗ Init(`)

}

Automation Another important research direction would
be to develop techniques and tools for automating RSL
proofs by adapting some of the work that has been done in
automating standard separation logic (Distefano et al. 2006;
Calcagno et al. 2009; Dudka et al. 2011).

Acknowledgments
We would like to thank Lars Birkedal, Arthur Charguéraud,
Mike Dodds, Alexey Gotsman, Matthew Parkinson, Aaron
Turon, John Wickerson, and the anonymous OOPSLA 2013
reviewers for their very useful comments that improved the
content of this paper. The research was supported by the EC
FP7 FET Young Explorers scheme via the project ADVENT.

References
M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathe-

matizing C++ concurrency. In POPL 2011, pages 55–66. ACM,
2011.

M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: From C++11 to
POWER. In POPL 2012, pages 509–520. ACM, 2012.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL 2013, pages 235–248. ACM,
2013.

L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space equations. Theoretical Com-
puter Science, 411(47):4102–4122, 2010.

J. Boyland. Checking interference with fractional permissions. In
SAS 2003, volume 2694 of LNCS, pages 55–72. Springer, 2003.

C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive resource
invariant synthesis. In APLAS, volume 5904 of LNCS, pages
259–274. Springer, 2009.

T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP 2010,
volume 6183 of LNCS, pages 504–528. Springer, 2010.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, volume 3920 of LNCS,
pages 287–302. Springer, 2006.

K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool
for checking manipulation of dynamic data structures using sep-
aration logic. In CAV, volume 6806 of LNCS, pages 372–378.
Springer, 2011.

R. Ferreira, X. Feng, and Z. Shao. Parameterized memory models
and concurrent separation logic. In ESOP 2010, volume 6012 of
LNCS, pages 267–286. Springer, 2010.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In PLDI 1993, pages 237–247.
ACM, 1993.

ISO/IEC 14882:2011. Programming language C++, 2011.

ISO/IEC 9899:2011. Programming language C, 2011.

P. E. McKenney and B. Garst. N1525: Memory-order rationale,
2011. Available at http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1525.htm.

A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verifica-
tion of heap-manipulating programs. In POPL, pages 261–274.
ACM, 2010.

P. O’Hearn. Resources, concurrency, and local reasoning. Theoret-
ical Computer Science, 375(1):271–307, 2007.

T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE
2010, volume 6217 of LNCS, pages 55–70. Springer, 2010.

S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams. Synchronising C/C++
and POWER. In PLDI 2012, pages 311–322. ACM, 2012.

A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and
Hoare-style reasoning in a logic for higher-order concurrency.
In ICFP 2013. ACM, 2013.

V. Vafeiadis. Concurrent separation logic and operational seman-
tics. In MFPS 2011, volume 276 of ENTCS, pages 335–351.
Elsevier, 2011.

V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR 2007, volume 4703 of LNCS,
pages 256–271. Springer, 2007.

M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):
181–210, Apr. 1991.

I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA 2011, 2011.

Technical Report MPI-SWS-2014-004

February 2014

GPS: Navigating Weak Memory with
Ghosts, Protocols, and Separation

Aaron Turon Viktor Vafeiadis Derek Dreyer
Max Planck Institute for Software Systems (MPI-SWS)

{turon,viktor,dreyer}@mpi-sws.org

Abstract
Weak memory models formalize the unexpected behavior that one
can expect to observe in multi-threaded programs running on mod-
ern hardware. In so doing, however, they complicate the already-
difficult task of reasoning about correctness of concurrent code.
Worse, they render impotent the sophisticated formal methods that
have been developed to tame concurrency, which almost univer-
sally assume a strong (i.e., sequentially consistent) memory model.

This paper introduces GPS, the first program logic to provide
a full-fledged suite of modern verification techniques—including
ghost state, rely-guarantee “protocols”, and separation logic—for
high-level, structured reasoning about weak memory. We demon-
strate the effectiveness of GPS by applying it to challenging exam-
ples drawn from the Linux kernel as well as lock-free data struc-
tures. We also define the semantics of GPS and prove its soundness
directly in terms of the axiomatic C11 weak memory model.

Contents

1 Introduction 2

2 The C11 memory model 2

3 GPS: a logic for release-acquire consistency 4

4 Case studies 8

5 The semantics and soundness of GPS 9

6 Related work 10

A Language 13
A.1 Syntax . 13
A.2 Semantics . 13
A.3 Memory model 13

B Logic 16
B.1 Semantic structures 16
B.2 Local safety . 16
B.3 Global safety . 18
B.4 Syntax and semantics 19
B.5 Proof theory . 19

C Metatheory 21
C.1 Basic properties of semantics domains and ghost

moves . 21
C.2 Proof rules: local soundness 22
C.3 Global soundness 22

D Examples 29
D.1 One-shot message passing 29
D.2 Spinlocks . 31
D.3 Ernie Cohen’s lock example 33
D.4 Michael-Scott queue 34
D.5 Circular buffer 39
D.6 Bounded ticket locks 44

1

1. Introduction
There are many good reasons to run code out of order. CPUs maxi-
mize productivity by scheduling instructions according to the avail-
ability of data. Write buffers mask memory latency by updating
caches asynchronously. Even mundane compiler optimizations like
common subexpression elimination change the ordering of reads.

These and other critical optimizations are expected, of course,
to respect the semantics—of sequential code. For concurrent code,
reorderings have a visible effect: they destroy the illusion of a sin-
gle memory shared between all threads, allowing different threads
to observe writes in different orders. Since the optimizations are
considered too important to give up, architectures and languages in-
stead codify their effect abstractly, in terms of weak memory models
that specify which observations are possible and which aren’t [2].

Weak memory complicates the already-difficult task of reason-
ing about correctness of concurrent code. Worse, it renders impo-
tent our most effective weaponry: the sophisticated formal methods
that have been developed to help tame concurrency, which almost
universally assume a strong (i.e., sequentially consistent) memory
model. Even basic techniques like history invariants and auxiliary
state seem to rely on threads witnessing events in the same order.

So we are left with a pressing question: is there any way to
retain the advances in modern concurrency verification when our
fundamental assumptions about memory have to change?

Recovering strong memory One answer that has emerged in re-
cent years is to try somehow to “recover” the assumption of strong
memory. Most memory models satisfy the so-called fundamen-
tal property [27]: they guarantee sequential consistency for “suffi-
ciently synchronized” code. (Synchronization operations like mem-
ory fences effectively thwart compiler and CPU optimizations.)
Thus, if a concurrency logic enforces a strong synchronization dis-
cipline, it can support strong memory reasoning [7, 10, 14, 24]. The
downside is that the logic can only be used to verify programs that
follow the discipline, and, of course, can only verify program mod-
ules whose behavior is sequentially consistent. That rules out some
of the more subtle (and thus important to verify) algorithms used in
practice, including several of the case studies in §4.

Another way of recovering strong memory is to explicitly model
low-level hardware details (e.g., per-processor write buffers) within
one’s logic [26, 30], or to transform the program being verified so
that interactions with write buffers, for instance, are made manifest
in its code [4]. While this type of approach can accommodate ar-
bitrary programs and enable the reuse of existing SC techniques, it
provides little abstraction or modularity: users of such an approach
must reason directly with the low-level hardware details, with rela-
tively little help given in structuring this reasoning.

Navigating weak memory Here we take a different approach:
rather than trying to recover strong memory, we embrace weak
memory as it is.1 Our goal is to develop a program logic with high-
level, structured reasoning principles for weak memory.

An important first step toward this goal is the recent work of
Vafeiadis and Narayan on Relaxed Separation Logic (RSL) [29],
the first logic for the C11 memory model [18, 19]. RSL supports
simple, high-level reasoning about resource invariants and owner-
ship transfer à la concurrent separation logic (CSL) [23]. But it does
not support some other useful features of modern concurrency log-
ics, such as “ghost” (auxiliary) state and rely-guarantee reasoning.

In this paper, we present GPS, the first logic to support ghost
state, rely-guarantee, and separation in a weak memory setting.

1 A similar perspective has recently been advocated in the context of model
checking (“Weakness is a virtue” [3]), albeit with a rather different motiva-
tion; here, we investigate its consequences for program logics.

A major obstacle to developing such a logic is the global nature
of weak memory models. For example, most language-level models
are given in terms of event graphs whose nodes include every read
and write performed in a program execution. To determine the val-
ues that might be returned by a given read operation, one may have
to in principle consider every write event in the graph, using the
model’s axioms to deduce whether the write is visible to the read
or not. Global axioms are well-suited to giving a precise language
semantics, but they do not easily yield thread-local reasoning.

Our key technique for coping with global graphs is to force rea-
soning to be even more local than in logics for strong memory. Be-
cause compilers and CPUs must respect the semantics of sequen-
tial code, they generally do not reorder writes to the same location.
Weak memory models therefore guarantee coherence: writes to any
single location will appear in the same order to all threads (the so-
called modification order). Thus, we can recover the full toolkit of
concurrency reasoning if we restrict it to a single location at a time.

GPS encodes such location-local reasoning through per-location
protocols (PL-protocols), which govern the writes to a single loca-
tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `′ is
at least in some state s′ in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [28], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics because it induces additional synchronization to
the program, which at the extreme can be used to regain SC. Adapt-
ing ghost state to weak memory thus required us to isolate several
different usage patterns that do not induce additional synchroniza-
tion and do remain sound under weak memory assumptions.

GPS targets the recent C11 [18, 19] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model
Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.
• In weaker consistency models, the “last value written” to a lo-

cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

2

The C11 memory model [18, 19] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O ∈ {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [12]:

[x]at := 1
if [y]at == 0 then
/* crit. section */

[y]at := 1
if [x]at == 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]na := 37;
[y]at := 1;

repeat [y]at end;
[x]na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

2 We are using here the program logic notation for pointer dereferencing,
[−], which avoids ambiguity with the ∗ of separation logic.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 29]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

α ::= S | A(`..`′) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action mapA is then a
finite partial map from event IDs to actions, which defines the nodes
(and node labels) of a graph. An event graph G = (A, sb,mo, rf)
connects the nodes with three kinds of (directed) edges:

Sequenced-before (sb ⊆ dom(A) × dom(A)), which records
the order of events as they appear in the code (i.e., “program
order”). For convenience, sb is not transitive: it relates each node
only to its immediate successors in program order (see [29]).

Modification order (mo ⊆ dom(A) × dom(A)), which is a
strict, total order on all the writes to each location, but does not
relate writes to different locations. It determines which of any pair
of (possibly concurrent) writes to a location is considered to “take
effect” first—a determination that is agreed upon globally.

Reads-from (rf ∈ dom(A) ⇀ dom(A)), which maps each read
to the unique write, if any, that it is reading from. It is undefined for
reads from uninitialized locations.

The goal of the C11 axioms is to constrain the rf relation so that it
provides the guarantees mentioned informally above. The axioms
rely on a pair of derived relations:

Synchronized-with (sw ⊆ dom(A) × dom(A)) defines those
read-write pairs that induce “transitive visibility”, as in the message-
passing example above. In the release-acquire fragment of C11,
these include any read/write pair marked as atomic:

sw , {(a, b) | rf(b) = a, isAtomic(a), isAtomic(b)}

Happens-before (hb , (sb ∪ sw)+) is the heart of the model:
hb(a, b) means that if a thread has observed event b, then it has
observed event a as well; it is a bound on staleness.

Axioms Only the sb order is determined by the program as writ-
ten. The other orders are chosen arbitrarily—except that they must
satisfy C11’s axioms. These axioms include some sanity checks:

• hb is acyclic (an event cannot happen before itself),
• a location cannot be allocated more than once,
• rf maps reads to writes of the same location and value, and it is

not possible to read a value from a write that happens later:3

rf(b) = a =⇒ ∃`, V. writes(a, `, V), reads(b, `, V), ¬hb(b, a)

• atomic updates must, in fact, be atomic: the update must imme-
diately follow the event it reads from in mo:

isUpd(c), rf(c) = a =⇒ mo(a, c), @b. mo(a, b), mo(b, c)

3 The reads and writes functions extract the locations and values from
normal read/writes as well as atomic updates.

3

Syntax
v ::= x | V where closed values V ∈ N
e ::= v | v + v | v == v | v mod v
| let x = e in e | repeat e end
| if v then e else e | fork e
| alloc(n) | [v]O | [v]O := v
| CAS(v, v, v)

K ::= [] | let x = K in e

T ∈ N fin
⇀ (ActName× Exp)

Event steps e
α−→ e

K[e]
α−→ K[e′] if e

α−→ e′

alloc(n)
A(`..`+n−1)−−−−−−−−−→ `

[`]O
R(`,V,O)−−−−−−→ V

[`]O :=V
W(`,V,O)−−−−−−→ 0

CAS(`, Vo, Vn)
U(`,Vo,Vn)−−−−−−−→ 1

CAS(`, Vo, Vn)
R(`,V ′,at)−−−−−−−→ 0 if V ′ 6= Vo

Machine steps 〈T ;G〉 −→ 〈T ′;G′〉
e
α−→ e′ consistentC11(G′)
G′.A = G.A] [a′ 7→ α]

G′.sb = G.sb] (a, a′) G′.mo ⊇ G.mo
G′.rf ∈ {G.rf, G.rf] [a′ 7→ b]}

〈T] [i 7→ (a, e)];G〉 −→ 〈T] [i 7→ (a′, e′)];G′〉

〈T] [i 7→ (a,K[fork e])];G〉 −→
〈T] [i 7→ (a,K[0])]] [j 7→ (a, e)];G〉

Figure 1. Syntax and semantics of a language for C11 concurrency

But the heavy lifting of the C11 model is done by a final axiom,
called coherence, which connects mo, rf, and hb:

hb(a, b) =⇒ ¬mo(b, a), ¬mo(rf(b), a),
¬mo(rf(b), rf(a)), ¬mo(b, rf(a))

To see how coherence formally ensures the intuitive guarantees we
gave above, we apply it to the simple message-passing example,
this time in graph form:

a:W(x,0,na)

b:W(x,37,na)

d:R(y,1,at)

e:R(x,?,na)

c:W(y,1,at)

 sb

sb sb

rf

rf

rf

sb

(Initialization
of y elided.)

In the depicted execution, the event d in the second thread reads
from the event c in the first thread (which writes 1 to y).4 We want
to use coherence to deduce that the subsequent read of x in event e
must read from event b (which writes 37 to x):

• Since sb(a, b), and hence hb(a, b), we have ¬mo(b, a). But mo
is a total order on writes to each location, so mo(a, b).
• Because rf(d) = c, we have sw(c, d) and thus hb(c, d). By

transitivity of hb, we know that hb(b, d) and hence hb(b, e).
• Coherence then says that ¬mo(rf(e), b), i.e., that e cannot read

from any write earlier (in mo) than b; in particular, e cannot
read from a. It must read from b.

The key is the second step, where we deduce the existence of an sw
edge (and thus the transitive visibility, by hb, of previous writes). In
Dekker’s algorithm, by contrast, when one thread reads the other’s
flag, there are no hb edges that ensure it sees the “latest” write.

Altogether, we write consistentC11(G) to say that a graph G
satisfies the axioms above (plus one more for uninitialized reads).
The full set of axioms is in the technical appendix [1].

A language for C11 concurrency Figure 1 gives a simple lan-
guage of expressions e with allocation, pointer arithmetic, thread
forking and order-annotated memory operations. To keep the se-
mantics streamlined, we adopt A-normal form [15], which requires
intermediate computations to be named through let-binding,
which is the only evaluation context K. The if expression takes
the then branch when its guard is non-zero. Similarly, repeat ex-
ecutes the given subexpression until it produces a non-zero value,
which is then returned.

The semantics is given in two layers. First, expressions e freely
generate actions α through the relation e α−→ e′. Pure expressions
generate the S action (e.g., let x = V in e

S−→ e[V/x]), while ex-
pressions that interact with memory generate corresponding mem-

4 Formally, rf(d) = c; graphically, we draw an rf edge from c to d, so that
the arrow points in the direction of hb.

ory model actions. Note that reading generates an R action for an
arbitrary value. The actual value read is constrained by the second
layer, which governs machine configurations 〈T ;G〉.

Machine configurations track the current pool of threads, T ,
and the event graph built up so far, G. For each thread, the pool
maintains (1) the identity of the last event produced by the thread
and (2) an expression giving the thread’s continuation. To take a
(non-fork) step, a thread’s continuation must generate some action
α, which is then incorporated into an updated event graph G′,
where it is placed in sb order after the thread’s previous event. The
mo order for G′ can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G′ is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be free of data races on non-atomic locations and memory errors.

3. GPS: a logic for release-acquire consistency
The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through

• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic

4

operators of multi-sorted first-order logic:
P ::= t = t | P ∧ P | P ∨ P | P ⇒ P | ∀X.P | ∃X.P | · · ·
where θ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : θ if t has sort θ, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:

[x]at := 37;
[y]at := 1;

· · · [x]at := 37;
[y]at := 1;

repeat [y]at end;
[x]at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo
relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable τ). For
each protocol type τ , the user of the logic specifies:

• A transition relation vτ , which is a partial order on states.
• A state interpretation τ(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 vDat 0, 0 vDat 37, 37 vDat 37, and define

Dat(s, z) , (s = 0 ∧ z = 0) ∨ (s = 37 ∧ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s τ , which say that location ` is
governed by the protocol type τ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

{P} e {x. Q}
{P ∗R} e {x. Q ∗R}

{P} e {x. Q} ∀x. {Q} e′ {y. R}
{P} let x = e in e′ {y. R}

{Q} e {true}
{P ∗Q} fork e {P}

{P} e {x. (x = 0 ∧ P) ∨ (x 6= 0 ∧Q)}
{P} repeat e end {x. Q}

P ′ V P {P} e {x. Q} ∀x. QV Q′{
P ′
}
e
{
x. Q′

} P ⇒ Q

P V Q

P V Q

P ∗R V Q ∗R

Figure 2. A selection of basic logical rules for GPS

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 vFlg 0, 0 vFlg 1, 1 vFlg 1, and

Flg(`)(s, z) , (s = 0 ∧ z = 0)

∨ (s = 1 ∧ z = 1 ∧ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

∀s′ wτ s. ∀z. τ(s′, z)⇒ Q{
` : s τ

}
[`]at

{
z. ∃s′. ` : s′ τ ∧Q

}

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s′ in the protocol, and have written some value z such that τ(s′, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s′ and z can appear inQ, so it can tie together the
value read and the state observed.

Altogether, we have:

{
y : 0 Flg(x)

}
[y]at

{
z. y : 0 Flg(x) ∧ z = 0

∨ y : 1 Flg(x) ∧ z = 1 ∧ x : 37 Dat

}

So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s τ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s′ wτ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

5

or always used atomically (i.e., for synchronization).6 Atomic lo-
cations can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ↪→ v | P ∗ P
which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ↪→ v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ∗ · · · ∗ uninit(x+ n− 1)}
{uninit(`) ∨ ` ↪→ −} [`]na := v {` ↪→ v}

{` ↪→ v} [`]na {x. x = v ∗ ` ↪→ v}
The separating conjunction P ∗ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ∗ uninit(`′) ⇒ ` 6= `′ ` ↪→ v ∗ `′ : s τ ⇒ ` 6= `′

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (svτ s′ ∨ s′vτ s)
In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [13, 20, 21], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit εµ and composition ·µ.

The unit represents the empty permission, while t·µ t′ combines the
permissions t and t′. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and εµ ·µ t = t for any t).

Within the logic, we add ghost assertions, γ : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity γ. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost movesV, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V ∃γ. γ : t µ . Once a ghost is
created, it can be split apart using ∗, as follows:

γ : t ·µ t′ µ ⇔ γ : t µ ∗ γ : t′ µ

We take γ : t ·µ t′ µ to be false if t ·µ t′ is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model

6 This assumption is in line with the C and C++ standards, which require
variable declarations to specify whether the variables will be accessed
atomically or nonatomically.

this as a PCM, Tok, with two elements, ε and � (the token), with
ε · � = � = � · ε. We leave the composition � · � undefined, so that

γ : � Tok ∗ γ : � Tok ⇒ false

Hence, GPS ensures the token for ghost γ cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ∗ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ↪→ v)
and assertions only involving knowledge (like t = t′). GPS has
a modality� for knowledge, where�P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t′ ⇒ �(t = t′) ` : s τ ⇒ � ` : s τ

Knowledge does not include ownership: �(` ↪→ v) ⇒ false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

�P ⇒ P �P ⇔ �P ∗�P
where the second axiom can be used, together with the frame rule,
to show that knowledge is retained no matter what an expression
does. Finally, the � modality distributes over ∧, ∨, ∀, and ∃.

Ownership transfer through protocols To explain physically-
based ownership transfers, we consider a simple spinlock:

newLock() , let x = alloc(1) in [x]at := unlocked; x

lock(x) , repeat CAS(x, unlocked, locked) end

unlock(x) , [x]at := unlocked

where unlocked = 0 and locked = 1. We want to reason about this
lock in the style of concurrent separation logic [23], i.e., we want
to be able to prove the following triples:

{P} newLock {x. �isLock(x)}
{isLock(x)} lock(x) {P}

{isLock(x) ∗ P} unlock(x) {true}
Here, the assertion P is an arbitrary resource invariant (e.g.,
nonatomic locations) protected by the lock, while isLock repre-
sents the permission to use the lock. These triples reflect a transfer
of ownership of the resources satisfying P , first upon creation of
the lock, and then between each successive thread that acquires
the lock. But the whole point of the lock is to ensure that when
multiple threads race to acquire it, only one will win—and it is the
use of CAS that guarantees this, by physical atomicity. We want to
leverage the fact that CAS physically arbitrates races to logically
arbitrate ownership transfers.

To do so, we revise our understanding of protocol state interpre-
tations: rather than just a way to communicate knowledge between
threads, they are more generally a way to transfer resource own-
ership between threads. For the spinlock, we can get away with a
simple protocol type LP having a single state Inv, where

LP(Inv, z) , (z = unlocked ∗ P) ∨ z = locked

Intuitively, whenever a thread releases the lock, it must have
reestablished the resource invariant P , which it then relinquishes,

6

allowing P to be transferred to the next thread acquiring the lock.
We can then define isLock(x) , x : Inv LP .

To initialize an atomic location ` with state s and value v, a
thread must relinquish resources τ(s, v):

{uninit(`) ∗ τ(s, v)} [`]at := v
{
` : s τ

}

which is reflected in the triple for newLock above.
Subsequently, we can reason about CAS as follows:
∀s′ wτ s. τ(s′, Vo) ∗ P V ∃s′′ wτ s′. τ(s′′, Vn) ∗Q

∀s′′ wτ s. ∀y 6= Vo. τ(s′′, y) ∗ P ⇒ �R
{
` : s τ ∗ P

}
CAS(`, Vo, Vn)

{
z. ∃s′′. ` : s′′ τ ∗
((z = 1 ∗Q) ∨ (z = 0 ∗ P ∗ �R))

}

The two premises of the rule correspond to the CAS succeeding or
failing, respectively. In the successful case, we observe the proto-
col in some state s′, and choose a new state s′′ that is reachable
from it. To make the move from s′ to s′′, we (1) gain the resources
τ(s′, Vo), because we won the race to CAS, but (2) must relinquish
resources τ(s′′, Vn), which can be transferred to the next success-
ful CAS on `. We can use any resources P we owned beforehand,
and we get to keep any leftover resources Q.

The failure case works like an atomic read, except that we do not
learn the exact value observed; we know only that it differs from the
expected value Vo. Since multiple threads can read from the same
write, it should not be possible to gain resources by reading alone—
but it should still be possible to gain knowledge. Thus, in general,
reading works as follows:

∀s′ wτ s. ∀z. τ(s′, z) ∗ P ⇒ �Q{
` : s τ ∗ P

}
[`]at

{
z. ∃s′. ` : s′ τ ∗ P ∗ �Q

}

This rule differs from the version we gave earlier in two respects.
First, the assertion Q is placed under the � modality, ensuring that
readers only gain knowledge, not resources, through the protocol.
Second, the precondition includes an arbitrary assertion P , which
we combine via ∗with the interpretation of the state we are reading.

The inclusion of the assertion P enables rely-guarantee reason-
ing through protocols. For the protocol to be in state s′, some thread
must have written z to ` while also giving up resources τ(s′, z). If
we read from this write, we know that the resources involved must
be disjoint from any resources P we currently own. We can there-
fore rule out certain protocol states on this basis. The typical way
to do so is through ghosts: we can require that, to move to a certain
protocol state s′, a thread must give up a ghost t (e.g., a token).
Thus, if a thread owns some ghost t′ such that t · t′ is undefined,
then the thread knows that the protocol cannot be in state s′. We
illustrate this kind of reasoning in the next subsection.

Finally, we have a rule for atomic writes:
P V τ(s′′, V) ∗Q ∀s′ wτ s. τ(s′,−) ∗ P ⇒ s′′ wτ s′{

` : s τ ∗ P
}

[`]at :=V
{
` : s′′ τ ∗Q

}

Writes are surprisingly subtle. Prior to writing, our thread knows
some lower bound s on the protocol state. But because the write
may be racing with unknown other writes (or CASes), we do not
know (or learn!) the “current” state of the protocol. Instead, we
must move to a state s′′ that is reachable from any state s′ wτ s
that concurrent threads may be moving to. As with reads and
CASes, though, we know that any such state s′ must be satisfiable
with resources disjoint from our resources, P . In particular, if
τ(s′,−) ∗ P ⇒ false, then we do not have to show that s′′ wτ s′.

In summary:
• Reads relinquish nothing and gain knowledge.
• Writes relinquish ownership and gain nothing.
• CASes both relinquish and gain ownership when successful,

and behave like reads when unsuccessful.

Ownership transfer through escrows We have just seen how
GPS axiomatizes the intrinsic, physical synchronization offered by
CAS, but of course programs can and do build up their own means of
synchronization without using CAS (which is relatively expensive).
Take the following algorithm, related to us by Ernie Cohen:

[x]at := choose(1, 2);
repeat [y]at end;
if [x]at == [y]at then
/* crit. section */

[y]at := choose(1, 2);
repeat [x]at end;
if [x]at != [y]at then
/* crit. section */

If we extend the language with choose (for nondeterministic
choice), this algorithm guarantees mutual exclusion between crit-
ical sections under C11’s memory model, without using CAS. The
key is that the two threads have agreed on a logical condition for
synchronization: the first thread wins if the values pointed to by x
and y are equal, and the second wins if they are not.

In GPS terms, we again imagine some resource invariant P to
which the critical sections provide access—but we need some way
to reflect the logical synchronization condition of the algorithm.
More generally, we need a way for threads to gain ownership of
resources not because they won a physical, CAS-mediated race, but
because they have met some logical condition. But if we are to
avoid duplication of ownership, we must ensure that the logical
condition is “exclusive”, so that it can be met at most once.

Thus we are led to the final concept in GPS: escrows.7 The idea
is that resources are placed “under escrow” (i.e., temporarily given
up) until some exclusive, logical condition is met, at which point
the thread meeting the condition gains ownership of the resources.
GPS is parameterized over a set of escrow types (metavariable
σ) and definitions, written σ : P Q. Here Q represents the
resource to be placed under escrow, while P represents the transfer
condition, and must be exclusive: P ∗ P ⇒ false. Escrows are
created and used via ghost moves, where the assertion [σ] says that
an escrow of type σ is known to exist:

σ : P Q

QV [σ]

σ : P Q

P ∧ [σ]V Q
[σ]⇒ �[σ]

The first rule allowsQ to be put under escrow; ownership is lost, in
exchange for the knowledge [σ]—and because [σ] is knowledge, it
can be learned about through reading (as we will see in §4). When
later extracting the resourceQ from the escrow [σ], the condition P
is consumed; this fact, together with the exclusivity of P , ensures
that an escrow can only be used to transfer ownership once.

Returning to the above example, we can now apply the full
apparatus of GPS. First, we have a protocol Choice(γ) with states
0, 1 and 2 (here we pun abstract states and concrete numbers):

0

1

2

Choice(γ)(s, z) ,
s = z ∗ (s = 0 ∨ γ : � Tok)

This protocol captures not just the irreversible choices made for x
or y, but also control over who can make these choices; we do so
through a ghost token �, where the identity γ is taken as a parameter
to the protocol. Only the owner of γ : � will be able to transition
from the 0 state to the 1 or 2 states.

Second, we have an escrow type PE(γx, γy) for P :

PE(γx, γy) : ∃i, j > 0. x : i ∗ y : j ∗
(

γx : � ∗ i = j

∨ γy : � ∗ i 6= j

)
 P

Here we have elided the protocol and ghost types, which are
Choice and Tok respectively. The escrow condition says that a
thread must know that x and y are both in nonzero states, and that
either the states are equal and the γx token is owned, or they are

7 As we discuss in Section 6, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [9].

7

distinct and the γy token is owned. The fact that the escrow con-
dition is exclusive follows from the combined use of tokens and
protocol assertions; the latter dictate that the existentials can only
be instantiated in one way.

We assume at the outset that we are given ownership of P ,
which we then want to allow the two threads to race for. We can
create ghost tokens and put P under escrow using ghost moves (we
elide the ∃ quantifers):

P V γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗ [PE(γx1 , γ
y
1)]

where the 1 subscript is for escrow tokens, while the 2 subscript is
for protocol tokens. We then have

{uninit(x)} [x]at := 0
{
x : 0 Choice(γx2)

}

when initializing x, and likewise for y. Finally, we give the first
thread ownership of γx1 : � ∗ γx2 : � and give the other tokens
to the second thread. With this setup, the rest of the proof is
straightforward; it, along with the other examples in this section,
can be found in detail in the appendix [1].

4. Case studies
We have applied GPS to three challenging case studies for weak
memory reasoning: Michael and Scott’s lock-free queue [22], as
well as circular buffers [17] and bounded ticket locks [11] (both
drawn from the Linux kernel). Note that the first two of these
exhibit non-SC behavior (cf. §1). For space reasons, we focus here
on the proof for circular buffers, which we describe in some detail.
For full details of all three examples, see our appendix [1].

Circular buffers (Linux kernel) Figure 3 shows the code for a
simplified variant of the circular buffer data structure drawn from
the Linux kernel. It is a fixed-size queue, implemented using an
array that “wraps around”. Specifically, the queue pointed to by q
consists of an N -cell array (at q + buf), together with a reader
index (at q + ri) specifying the array offset of the next item to
be consumed, and a writer index (at q + wi) specifying the array
offset of the next item to be produced. The “active” part of the
queue consists of the array elements starting at the reader index and
ending at the one prior to the writer index, wrapping around modulo
N . Hence, if the two indices are equal, then the buffer is empty, and
if the writer index is one before the reader index (modulo N), then
the buffer is full (with N − 1 elements).

The tryProd and tryCons operations first check the two in-
dices to see whether the buffer is full or empty, respectively. If so,
they return 0. Otherwise, they proceed by writing/reading the el-
ement at the writer/reader index and then incrementing that index
(moduloN). Since accesses to the actual data in the buffer are com-
pletely synchronized, the cells comprising the array itself can be
read and written non-atomically. All synchronization is performed
through the reader/writer indices. Note, however, that (as in Co-
hen’s example from the previous section) this synchronization is
entirely logical: the algorithm uses plain writes, not CAS, to incre-
ment the indices. While this is an efficiency win (e.g., on x86, the
algorithm requires no fences), it means that only one producer and
one consumer can be operating simultaneously.

A spec for circular buffers We will prove the following spec:
{true} newBuffer() {q. Prod(q) ∗ Cons(q)}

{Prod(q) ∗ P (x)}tryProd(q, x){z. Prod(q) ∗ (z 6= 0 ∨ P (x))}
{Cons(q)} tryCons(q) {x. Cons(q) ∗ (x = 0 ∨ P (x))}

The spec is parameterized over a predicate P that should hold of
all the elements in the buffer; it guarantees that P (x) holds of all
elements x that the consumer consumes so long as it holds of all
elements x that the producer produces. This predicate can thus

be used in typical separation-logic style to transfer ownership of
data structures from producer to consumer.8 The spec also employs
two predicates Prod(q) and Cons(q), which describe the privilege
of acting as producer or consumer, respectively. These predicates
are exclusive resources, ensuring that there can only be one call
to tryProd and one call to tryCons running concurrently. Their
definitions (in Figure 3) are described below.

Note that this spec is rather weak because it does not enforce
that the buffer actually implements a queue. This is merely for
simplicity—it is easy to generalize our proof to handle a stronger
spec, e.g., in which P , Prod, and Cons are allowed to keep track of
the entire sequence of elements produced thus far.

High-level picture Our proof of the above spec (excerpted in
Figure 3) depends on all the features of GPS working in concert.

First, we use protocols PP and CP to govern the states of the
writer and reader indices, respectively. The state of each of these
protocols tracks the “absolute state” of the corresponding index,
meaning the total number of writes/reads that have ever occurred,
which can only increase over time (the state ordering is ≤). The
state interpretation of PP/CP then dictates that the “physical state”
of the writer/reader index equal the absolute state modulo N .

Second, since the buffer does not use CAS, it is not possible to
use the PP and CP protocols to directly transfer ownership of the
cells in the buffer between the producer and consumer. Fortunately,
we can indirectly exchange ownership of the buffer cells instead,
by (a) placing the cells under escrows, and (b) using PP and CP
as a conduit for the knowledge that these escrows, once created,
exist. Specifically, after filling a buffer cell with a new element, the
producer will pass control of the cell to the consumer via the CE
escrow (see Step 10 in the proof of tryProd); upon consumption,
the consumer will pass control of the cell back to the producer via
the PE escrow. The state interpretations of PP and CP provide a
way to communicate awareness of these escrows back and forth.

Third, we use ghost tokens in a manner similar to the proof
of Cohen’s example from the previous section. The protP(i) and
protC(i) tokens are needed in order to transition to (absolute) state
i of the PP and CP protocols, respectively, while the escP and
escC tokens are used as transfer conditions for the aforementioned
PE and CE escrows. In both cases, the producer and consumer each
start out with all the tokens they will ever need (i.e., restP(0) and
restC(0)) as part of their exclusive resource predicates Prod(q)
and Cons(q), and they proceed to “spend” one protocol token and
one escrow token upon each call to tryProd/tryCons. All these
tokens are defined in Figure 3 as elements of the ghost PCM ℘(N)4

(with composition defined as componentwise]).
Finally, tying everything together, Prod(q) and Cons(q) assert

bounded knowledge about the states of the PP and CP protocols,
thus enforcing the fundamental invariant of circular buffers:

The absolute state of the writer index is at least 0 and less than N
cells ahead of the absolute state of the reader index.

Now, the reader (of this paper, not the buffer) may rightly wonder:
how can this fundamental invariant possibly be enforced in the
weak memory setting, given that it concerns the states of two
separate cells being updated by different threads? The answer is
that, although neither the producer nor the consumer can fully
assume or maintain this invariant themselves, they are each able
to enforce a piece of it sufficient to verify their own correctness. In
particular, the consumer controls the progress of the reader index,
and can therefore assume and maintain the invariant that the reader
index never overtakes the writer index (the “at least 0” part), while
the producer controls the progress of the writer index, and can

8 In the case that the buffer is full, i.e., return value z = 0, the tryProd
operation simply returns ownership of P (x) to the caller.

8

therefore assume and maintain the invariant that the writer index
never leaves the reader index more than N − 1 cells behind (the
“less than N” part). Together, these piecemeal enforcements of the
fundamental invariant are enough to perform the full verification.

Proof outline for tryProd Figure 3 displays the proof outline
for tryProd(q, x). (The proof for tryCons is almost dual, and the
proof for newBuffer is comparatively simple; see the appendix.)
We explain here some of the most important steps in the proof.
Throughout, note that assertions under� are only written once and
then used freely in the rest of the proof since they hold true forever.

Step 1: By unfolding Prod(q), we gain access to our piece of
the fundamental invariant, namely that the absolute writer index i
is less than N past the absolute reader index, which is at least j0.

Step 2: The reason we know exactly what i is—but merely have
a lower bound on j0—is that we own the protocol tokens protP(k)
for all k > i, constraining the possible “rely” moves that other
threads can make in the PP protocol. In this step, we exploit that
knowledge to assert that the value w we read is exactly i mod N .

Step 3: Here we read the current reader index r, whose absolute
state j must be at least j0 (as mentioned already). From the read
of protocol CP at state j, we also gain knowledge of the escrows
PE(γ, q, k) for all k < j +N .

Step 4: Since i < j0 +N ≤ j+N , the escrows we just learned
about in the previous step include PE(γ, q, i), which we need later.

Step 5: If the buffer is full, i.e., r = (w + 1) mod N , then the
operation is a no-op and we simply return P (x) back to the caller.

Step 6: Otherwise, r 6= (w + 1) mod N . We know from Step 4
that i < j +N , and we want to show i+ 1 < j +N because this
is the piece of the fundamental invariant that we are responsible
for maintaining when we bump up the writer index at the end of the
operation (Step 12). To prove this, we must establish i+1 6= j+N .
So suppose the opposite is true: i + 1 = j + N . Then, since
w = i mod N , we obtain (w + 1) mod N = (i+ 1) mod N =
(j +N) mod N = j mod N = r. Contradiction.

Step 7: From our stash of tokens (restP(i)), we peel off a
protocol token (protP(i+ 1)) for advancing to the (i+ 1)-th state
of the PP protocol, and an escrow token (escP(i)) for accessing
the escrow PE(γ, q, i) that we learned about in Step 4.

Step 8: We access the escrow, thereby gaining ownership of the
buffer cell at index w.

Step 9: We non-atomically write x to the buffer cell.
Step 10: We pass control of the buffer cell back to the consumer

by placing it under the consumer escrow CE(γ, q, i).
Step 11: We advance the absolute writer index (i.e., the state of

the PP protocol) to i+ 1, which we can do because (a) we own the
token protP(i+ 1), and (b) we have knowledge of CE(γ, q, i).

Step 12: Thanks to Step 6, we have preserved the “less than N”
part of the fundamental invariant, as demanded by Prod(q).

5. The semantics and soundness of GPS
Axiomatic models like C11’s pose a challenge for the semantics
and soundness of program logics: they do not provide the global
notion of “current state” that such logics usually depend on, making
it difficult to even define the meaning of a Hoare triple.

Here we briefly summarize the semantics and soundness of
GPS. The supplementary material [1] includes a technical appendix
containing the complete semantics, a decomposition of our sound-
ness theorem into key lemmas, and further details about its proof. It
also includes a Coq development mechanizing the entire logic and
its soundness proof.

Overview Reasoning in GPS is compositional: we prove triples
about each expression, and link them together using the let and
fork rules. But the expression semantics is global: it assumes a
whole, closed program. The semantics of GPS must bridge this gap.

newBuffer()

let q = alloc(N+2)
[q + ri]at := 0;
[q + wi]at := 0;
q

where wi , 0,
ri , 1, buf , 2

tryProd(q, x)

let w = [q + wi]at
let r = [q + ri]at
let w′ = w + 1 mod N
if w′ == r then 0
else

[q + buf +w]na :=x;
[q + wi]at :=w′; 1

tryCons(q)

let w = [q + wi]at
let r = [q + ri]at
let r′ = r + 1 mod N
if w == r then 0
else
let x = [q + buf + r]na
[q + ri]at := r′; x

Prod(q) , ∃γ, i, j. i < j +N

∗ q + wi : i PP(γ, q)

∗ q + ri : j CP(γ, q)

∗ γ : restP(i)

Cons(q) , ∃γ, i, j. j ≤ i
∗ q + wi : i PP(γ, q)

∗ q + ri : j CP(γ, q)

∗ γ : restC(j)

PP(γ, q)(i, x)

, γ : protP(i)

∧ �x = i mod N
∧ �∀j < i. [CE(γ, q, j)]

CP(γ, q)(j, x)

, γ : protC(j)

∧ �x = j mod N
∧ �∀i < j +N. [PE(γ, q, i)]

PE(γ, q, i) : γ : escP(i) uninit(q + buf + (i mod N))

∨ (q + buf + (i mod N)) ↪→ −
CE(γ, q, j) : γ : escC(j) ∃x. P (x) ∗ (q + buf + (j mod N)) ↪→ x

all , (N,N,N,N)

restP(i) , ({j | j > i}, {j | j ≥ i}, ∅, ∅)
restC(i) , (∅, ∅, {j | j > i}, {j | j ≥ i})

protP(i) , ({i}, ∅, ∅, ∅)
escP(i) , (∅, {i}, ∅, ∅)
protC(i) , (∅, ∅, {i}, ∅)
escC(i) , (∅, ∅, ∅, {i})

Proof outline for tryProd(q, x):
{
Prod(q) ∗ P (x)

}

(1)

{
γ : restP(i) ∗ P (x) ∗ �

(
i < j0 +N ∧ q + wi : i PP(γ, q)

∧ q + ri : j0 CP(γ, q)

)}

let w = [q + wi]at

(2)
{
γ : restP(i) ∗ P (x) ∗ �(w = i mod N ∧ ∀k < i. [CE(γ, q, k)])

}

let r = [q + ri]at

(3)

{
γ : restP(i) ∗ P (x) ∗ �

(
r = j mod N ∧ q + ri : j CP(γ, q)

∧ j0 ≤ j ∧ ∀k < j +N. [PE(γ, q, k)]

)}

(4)
{
γ : restP(i) ∗ P (x) ∗ �(i < j +N ∧ [PE(γ, q, i)])

}

let w′ = w + 1 mod N{
γ : restP(i) ∗ P (x) ∗ �(w′ = w + 1 mod N)

}

if w′ == r then{
γ : restP(i) ∗ P (x)

}

0
(5)

{
z. Prod(q) ∗ z = 0 ∗ P (x)

}

else{
γ : restP(i) ∗ P (x) ∗ �(w′ 6= r)

}

(6)
{
γ : restP(i) ∗ P (x) ∗ �(i+ 1 < j +N)

}

(7)
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ γ : escP(i)

}

(8)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x)

∗ (uninit(q + buf + w) ∨ (q + buf + w) ↪→ −)

}

[q + buf +w]na :=x;

(9)
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (q + buf + w) ↪→ x

}

(10)
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ [CE(γ, q, i)]

}

[q + wi]at :=w′;

(11)
{
γ : restP(i+ 1) ∗ q + wi : i+ 1 PP(γ, q)

}

1
(12)

{
z. Prod(q) ∗ z = 1

}

Figure 3. Proof excerpt for the circular buffer case study

9

This kind of gap is always present in concurrent program logics,
but one normally bridges it by appeal to the heap (thereby assuming
SC semantics). In particular, threads view each other’s activities
through constraints on heap evolution—either simple invariants, or
rely/guarantee relations—and bounding the possible heaps is all
that is needed to determine e.g., what reads will return.

Fortunately, the rules of GPS point the way forward: rather than
mediate thread activity through a global heap, we can understand it
through the various kinds of ownership and knowledge introduced
in §3, which give us a purely logical way of predicting e.g., what
reads will return—a form of rely/guarantee reasoning that does not
depend on a global heap. We therefore formulate a notion of local
safety for a thread, which says that the actions it controls conform
to its guarantee, assuming that the actions its environment controls
(e.g., the contents of a read event) follow its rely. We can then easily
show that the proof rules of GPS preserve local safety.

We are then left with another gap: local safety makes no refer-
ence to the C11 axioms; it instead just assumes that the events it
observes obey the rely constraints. We therefore formulate a notion
of global safety for an event graph, which includes a labeling of the
edges of the event graph with resource/knowledge transfers from
the point of view of GPS. By imposing appropriate constraints on
the labeling, global safety connects the logical assumptions made
in local safety with the physical reality of the event graph.

The heart of the soundness argument is then to show that if
a whole program is locally safe, it is globally safe. We do this
by building up the C11 event graph step-by-step (much like the
expression semantics), showing for each new event that (1) the
existing labeling implies the rely for the event, and (2) the event’s
guarantee, which we know by local safety, implies that we can
extend the labeling to include it.

Resources In the semantics of GPS, a resource r is a tuple
(Π, g,Σ) of a physical location map Π, a ghost identity map g,
and known escrow set Σ. Resources form a PCM with composition
⊕, and assertions are interpreted as sets of resources, e.g.,

r ∈ JP1 ∗ P2K , ∃r1, r2. r = r1 ⊕ r2, r1 ∈ JP1K , r2 ∈ JP2K
The structure of resources and definition of ⊕ are designed to
support the axioms on assertions we gave in §3.

Local safety With resources in hand, we can define a semantic
version of ghost moves r V P , which says that from resource r
it is possible to take a ghost move to resources described by the
(semantic) assertion P . We can also define two functions

rely, guar : Resource× Action→ ℘(Resource)

that describe the rely and guarantee constraints on updating re-
sources, given that we are performing some action α. For example,
if α = R(`, V, na) and r claims that ` ↪→ V ′, then

rely(r, α) = if V = V ′ then {r} else ∅
and similarly for atomic locations, where the protocol state is al-
lowed to advance. We can then define local safety:

rpre ∈ LSafe0(e,Φ) , always
rpre ∈ LSafen+1(e,Φ) ≈ (simplified; see appendix)

If e ∈ Val then rpre V Φ(e)
If e = K[fork e′] then rpre ∈ LSafen(K[0],Φ) ∗ LSafen(e′, true)
If e α−→ e′ then ∀r ∈ rely(rpre, α). ∃P. r V P and
∀r′ ∈ P. ∃rpost ∈ guar(r′, α). rpost ∈ LSafen(e′,Φ)

which is indexed by the number of steps for which we demand
safety. (An expression is “locally safe” if LSafen holds for all n.)
Local safety can be understood as giving weakest preconditions:
LSafen(e,Φ) is the set of starting resources for which e can safely
execute for n steps with postcondition Φ (a semantic predicate). We
then define |= {P} e {x.Q} , ∀n, r ∈ JP K . r V LSafen(e, Jx. QK).

Theorem 1 (Local soundness). All of the proof rules given in §3
are sound for this semantics of Hoare triples.

Theorem 1 has been mechanized entirely in Coq; see GpsLogic.v.

Global safety We then define global safety GSafen(T , G,L)
over an instrumented thread pool T , an event graph G, and a la-
beling L. The instrumented thread pool maps each thread to a tuple
(a, e, r,Φ) giving the thread’s last event a in the graph, its con-
tinuation e, its current resources r, and its postcondition Φ. Global
safety at n assumes that each thread is locally safe for nmore steps,
given its resources and postcondition. The labeling L annotates hb
edges of the graph with resource transfers between the nodes, and
is constrained to ensure that each node obeys the corresponding
guar condition. Finally, the labeling must globally ensure:

• Compatibility: any set of concurrent resource transfers must be
composable, i.e., resources are never duplicated.
• Conformance: if mo(a, b) for two atomic writes/updates to `

with protocol τ , the labeled protocol states are related by vτ .

The key theorem is a kind of simulation between the expression
semantics and global safety:

Theorem 2 (Instrumented execution). If GSafen+1(T , G,L) and
〈erase(T);G〉 −→ 〈T ′;G′〉 then there is some T ′,L′ such that
erase(T ′) = T ′ and GSafen(T ′, G′,L′).

Theorem 2 has been mechanized in Coq; see GpsAdequate.v for
details.

Our main result, adequacy, is an easy corollary; it connects the
proof theory all the way to the C11 execution (for closed e):

{true} e {x. P} =⇒ JeK ⊆ {V | JP [V/x]K 6= ∅}

6. Related work
Direct influences
The closest related work to GPS is the recent Relaxed Separation
Logic (RSL) introduced by Vafeiadis and Narayan [29], which is
the only prior program logic for the C11 memory model. The goal
of RSL is to support simple CSL-style reasoning about release-
acquire accesses: it is possible for a release write to directly transfer
resource ownership to an acquire read. To manage such transfers,
RSL employs release/acquire permissions describing the resources
to be transferred upon a write to a given location. The choice of
resources depends solely on the value being written, and so a given
value can only be used to perform a transfer once per location.

While GPS draws inspiration from RSL, there are many sig-
nificant differences. Most importantly, GPS offers a much more
flexible way of coordinating ownership and knowledge transfers
between threads—including rely-guarantee reasoning—through its
protocols and ghosts. This fact, together with escrows, allows us
to lift several restrictions from RSL, including the one on repeated
writes of the same value—crucial for handling the indices in the
circular buffer, and the ticket numbers in the bounded ticket lock.
To our knowledge, none of our case studies can be verified in RSL.

The semantics of GPS is also structured differently from that of
RSL, which does not employ an intermediate step like local safety,
and must therefore deal with compositionality directly at the level
of event graphs using “contextual executions”. We expect the two-
step factoring of GPS to be easier to extend in the future.

As explained in the introduction, the various logical mecha-
nisms employed by GPS are not fundamentally new: they are all
either descendants or restrictions of mechanisms proposed in prior
logics for strong concurrency.

Per-location (PL) protocols are inspired by CaReSL [28], an-
other recent concurrency logic (for strong memory), which includes
abstract STSs for governing shared state. The primary difference

10

is that our PL-protocols govern a single location, while CaReSL’s
STSs govern arbitrary heap regions. CaReSL also couples a notion
of “tokens” directly with STSs, while GPS supports ghost state sep-
arately using ghost PCMs [13, 20, 21]. GPS’s separation of orthog-
onal mechanisms has the side benefit of lifting CaReSL’s “token
purity” restriction—e.g., in the circular buffer example from Sec-
tion 4, we did not require any side condition on the per-item pred-
icate P (x), whereas an analogous proof in CaReSL would have
required that P (x) be a “token-pure” (i.e., duplicable) assertion.

Escrows are very similar to “exponential serialization”, a mech-
anism recently proposed by Bugliesi et al. [9] as part of an affine
type system for verifying cryptographic protocols. Bugliesi et al.
employ this mechanism for much the same reasons we do—namely,
as a way of indirectly transferring control of a non-duplicable re-
source from one thread to another across a duplicable, “knowledge-
only” channel. However, in their case the channel takes the form of
a cryptographic signing key, whereas for us it is a shared memory
location. Logically, the main difference between escrows and expo-
nential serialization is that the precondition of escrow creation—
i.e., that the escrow transfer condition P is exclusive—is estab-
lished semantically (by proving P ∗P ⇒ false in the logic of GPS).
In contrast, since the primitive affine predicates of Bugliesi et al.’s
type system have no underlying semantic interpretation, exponen-
tial serialization requires a more complex and syntactic “guarded-
ness” check on contexts.

Our use of names for protocol and escrow types is inspired
by Gotsman et al. [16], who use named lock invariants. In both
cases, the motivation for names is to break what would otherwise
be a semantic circularity: statements about protocols (respectively,
lock invariants) can appear within assertions, but their definitions
involve arbitrary assertions. See [16] for more details.

Finally, while not directly related to our work on program logic,
recent work suggests that model checking can also benefit by em-
bracing weak memory as-is, rather than reducing it to SC [3, 5].

Alternative approaches
As we discussed in §1, most existing approaches to reasoning about
weak memory rely in some way on recovering strong memory
assumptions, either by imposing a synchronization discipline or by
reasoning directly about low-level hardware details.

Recovering SC by synchronization discipline
• Owens [24] proves that data-race free and “triangular-race” free

programs on x86-TSO have SC behavior.
• Batty et al. [7] prove that for C11 restricted to nonatomics and

SC-atomics, data-race freedom ensures SC behavior.
• Cohen and Schirmer [10] prove that programs following a cer-

tain ownership discipline and flushing write buffers at certain
times on TSO models have SC behavior.
• Ferreira et al. [14] prove that concurrent separation logic is

sound for a class of weak memory models satisfying a data-race
freedom guarantee.

All of these disciplines force programs to use enough synchroniza-
tion to keep weak memory behavior unobservable. We view them
as complementary to our work with GPS: they delimit an important
subset of programs for which SC reasoning is sound within a weak
memory model. Ultimately, our goal is to derive such disciplines
within a logic like GPS. Our treatment of locks in §3 already does
this for the simple case of recovering CSL-style reasoning within
weak memory: our lock spec provides the key concurrency rules
for CSL as a derived set of rules in GPS.

Recovering SC through low-level reasoning We are also aware
of two program logics for reasoning about weak memory by di-
rectly incorporating a hardware memory model into the logic.

Ridge [26] provides a program logic for x86-TSO that supports
rely-guarantee reasoning. The logic works directly with the oper-
ational x86-TSO model [25], and includes assertions about both
program counters and write buffers. Rely constraints must be sta-
ble under the (nondeterministic) flushing of write buffers.

Wehrman and Berdine [30] propose a separation logic for x86-
TSO which directly models store buffers and provides both tem-
poral and spatial separating conjunctions, as well as resource in-
variants in the style of CSL. Unfortunately, the logic as proposed
has some (known) soundness gaps, and to our knowledge a sound
version has not yet been developed.

Both of the above logics permit SC-like reasoning, but this
reasoning applies only indirectly, since writes are actually routed
through explicit write buffers. GPS, by contrast, provides proof
rules whose restrictions directly and abstractly encompass the ef-
fect of reordering on local reasoning.

Acknowledgments
We gratefully acknowledge support by the EC FP7 FET project
ADVENT.

References
[1] Supplemental material for this paper: http://plv.mpi-sws.org/

gps/.
[2] S. Adve and K. Gharachorloo. Shared memory consistency models: a

tutorial. Computer, 29(12):66–76, 1996.
[3] J. Alglave. Weakness is a virtue. In EC2, 2013.
[4] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verif-

ication for weak memory via program transformation. In ESOP, 2013.
[5] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient

bounded model checking of concurrent software. In CAV, 2013.
[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing

C++ concurrency. In POPL, 2011.
[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying

and compiling C/C++ concurrency: From C++11 to POWER. In
POPL, 2012.

[8] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[9] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei. Logical founda-
tions of secure resource management. In POST, 2013.

[10] E. Cohen and B. Schirmer. From total store order to sequential
consistency: A practical reduction theorem. In ITP, 2010.

[11] J. Corbet. Ticket spinlocks, 2008. http://lwn.net/Articles/
267968/.

[12] E. W. Dijkstra. EWD123: Cooperating Sequential Processes. Techni-
cal report, 1965.

[13] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: compositional reasoning for concurrent programs.
In POPL, 2013.

[14] R. Ferreira, X. Feng, and Z. Shao. Parameterized memory models and
concurrent separation logic. In ESOP, volume 6012 of LNCS, 2010.

[15] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI, 1993.

[16] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS, 2007.

[17] D. Howells and P. E. McKenney. Circular buffers. https://www.
kernel.org/doc/Documentation/circular-buffers.txt.

[18] ISO/IEC 14882:2011. Programming language C++, 2011.
[19] ISO/IEC 9899:2011. Programming language C, 2011.
[20] J. Jensen and L. Birkedal. Fictional separation logic. In ESOP, 2012.
[21] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-

grained concurrency. In POPL, 2013.

11

[22] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory mul-
tiprocessors. J. Parallel Distrib. Comput., 51(1):1–26, 1998.

[23] P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical
Computer Science, 375(1):271–307, 2007.

[24] S. Owens. Reasoning about the implementation of concurrency ab-
stractions on x86-TSO. In ECOOP, 2010.

[25] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In TPHOLs, 2009.

[26] T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE,
volume 6217 of LNCS, 2010.

[27] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A
theory of memory models. In PPoPP, 2007.

[28] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, 2013.

[29] V. Vafeiadis and C. Narayan. Relaxed separation logic: a program
logic for C11 concurrency. In OOPSLA, 2013.

[30] I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA, 2011.

12

A. Language
A.1 Syntax

Val V ::= n
OVal v ::= x | V
Exp e ::= v | v + v | v == v | v mod v | let x = e in e | repeat e end | fork e

| if v then e else e | alloc(n) | [v]O | [v]O := v | CAS(v, v, v) | FAI(v)
OrderAnn O ::= at | na
EvalCtx K ::= [] | let x = K in e
Action α ::= S | A(`..`′) | W(`, V,O) | R(`, V,O) | U(`, V, V)
ActName a (an infinite set)
ActMap A ∈ ActName fin

⇀ Action
Graph G ::= (A, sb,mo, rf) sb,mo ⊆ dom(A)× dom(A), rf ∈ dom(A) ⇀ dom(A)

ThreadMap T ∈ N fin
⇀ (ActName× Exp)

A.2 Semantics

Event steps e
α−→ e

n + m
S−→ k k = n+m

n mod m
S−→ k k = n mod m

n == m
S−→ 1 n = m

n == m
S−→ 0 n 6= m

let x = V in e
S−→ e[V/x]

repeat e end
S−→ let x = e in if x then x else repeat e end

if V then e1 else e2
S−→ e1 V 6= 0

if V then e1 else e2
S−→ e2 V = 0

alloc(n)
A(`..`+n−1)−−−−−−−−→ `

[`]O
R(`,V,O)−−−−−→ V

[`]O :=V
W(`,V,O)−−−−−−→ 0

CAS(`, Vo, Vn)
U(`,Vo,Vn)−−−−−−−→ 1

CAS(`, Vo, Vn)
R(`,V ′,at)−−−−−−→ 0 V ′ 6= Vo

FAI(`)
U(`,V,V ′)−−−−−−→ V V ′ = (V + 1) mod C

K[e]
α−→ K[e′] e

α−→ e′

Machine steps 〈T ;G〉 −→ 〈T ′;G′〉

e
α−→ e′ consistentC11(G′)

G′.A = G.A] [a′ 7→ α] G′.sb = G.sb] (a, a′) G′.mo ⊇ G.mo G′.rf ∈ {G.rf, G.rf] [a′ 7→ b]}
〈T] [i 7→ (a, e)];G〉 −→ 〈T] [i 7→ (a′, e′)];G′〉

〈T] [i 7→ (a,K[fork e])];G〉 −→ 〈T] [i 7→ (a,K[0])]] [j 7→ (a, e)];G〉
We discuss the validity of these operational rules in section A.3 below.

execs(e) ,
{

(e′, G)
∣∣ 〈[i 7→ (start, e)]; ([start 7→ S], ∅, ∅, ∅)〉 −→∗ 〈[i 7→ (, e′)]] T ;G〉

}

JeK ,
{
err ∃(, G) ∈ execs(e). dataRace(G) ∨memoryError(G)

{ V | (V,) ∈ execs(e) } otherwise

A.3 Memory model
A.3.1 The C11 atomic access modes
The C11 standard [18, 19] includes several kinds of atomic accesses: sequentially-consistent, release-acquire, release-consume, and fully
relaxed. We have focused on release-acquire, because:

• Sequentially-consistent accesses are already well-understood.
• Release-consume atomics are useful only for specific architectures (PowerPC and Arm), but substantially complicate the memory model.

13

• Fully relaxed accesses, as formalized by Batty et al. [6], suffer from several known problems. First, they allow out-of-thin-air reads,
which the text of the standard explicitly forbids [18, 19]—but it is not known how to rule out these reads without also obstructing key
compiler optimizations. On the other hand, even as formalized, fully relaxed access do not permit certain basic optimizations [29]. They
also pose severe problems for compositional reasoning [8, 29].

As we explain in section A.3.4, however, GPS is sound for the full C11 model as formalized by Batty et al. [6].

A.3.2 The formal C11 model
The C11 memory model we use is based on the formalization of Batty et al. [6], as simplified by Batty et al. [7] in the absence of release-
consume atomics. We also incorporate the following simplifications introduced by Vafeiadis and Narayan [29]:

• The sb and sw orders are not transitive; e.g., sb relates each event only to its immediate successors in program order. This simplifies both
the operational semantics of the language and the semantics of GPS. Since hb is transitively closed, this has no effect on the memory
model axioms.
• The “additional synchronized with” edges are incorporated into sb rather than sw, which again makes no difference for the axioms but

simplifies the semantics.
• For uniformity, the sw edges include sb-related events, whereas in [7] these are ruled out. Since hb includes both sw and sb, this makes

no difference to the axioms.

In addition to these simplifications, our formalization of the memory model drops release sequences, instead requiring sw edges only between
immediate atomic read/write pairs. Consequently, our axioms are strictly weaker than those in e.g., Batty et al. [6], since we require strictly
fewer sw edges. GPS does not have proof rules that take advantage of release sequences, so it is sound with or without them. See section A.3.4.

A.3.3 Justifying the operational semantics
The C11 axioms are generally understood to apply to an entire program execution, but the operational semantics we have given assumes that
we can construct the event graph in a step-by-step fashion while guaranteeing consistency with C11 at every step. It also assumes that we
can introduce read events in such an order that they always read from write events already appearing in the event graph. It does not assume,
however, that new write events appear at the end of mo sequences.

These assumptions are justified by the fact that, in the absence of release-consume and relaxed operations, we know that for any complete
execution satisfying the C11 axioms:

• The hb order is acyclic, and
• If rf(b) = a then hb(a, b).

Since the sb order is dictated by the program text and is a sub-order of hb, there is some sequence of events in program order that is also
in hb order. Based on the second bullet above, we know we can generate the event graph of the complete execution step-by-step using an
operational semantics, while assuming that new nodes read only from previous nodes. Finally, because the event graphs generated in each
step are prefixes of the complete event graph that are closed under rf and hb-predecessors, we know that if the axioms hold of the complete
graph, they hold of the prefixes.

It is therefore also possible to instead work with the usual semantics, in which consistency is only assumed for the entire execution, which
is how soundness of RSL is proved [29]. We chose to check prefix consistency mainly to simplify the soundness proof for GPS, and in
particular the statement of the instrumented execution theorem (i.e., Theorem 5).

A.3.4 Soundness for the full C11 model
Despite all of the above-mentioned simplifications, GPS is trivially sound for the full C11 model: any program verified by GPS is guaranteed
to only use release-acquire atomics, which formally justifies most of the simplifications made above [see 7]. The additional simplification we
have made here of dropping release sequences is easy to justify: doing so strictly weakens the axioms, so any execution consistent under the
semantics of [7] is consistent under the axioms given below.

A.3.5 Axioms
consistentC11(A, sb,mo, rf) ,
∀a, b. mo(a, b) =⇒ ∃`. writes(a, `,−), writes(b, `,−) (ConsistentMO1)
∀`. strictTotalOrder({a | writes(a, `,−)},mo) (ConsistentMO2)
∀b. rf(b) 6= ⊥ ⇐⇒ ∃`, a. writes(a, `,−), reads(b, `,−), hb(a, b) (ConsistentRF1)
∀a, b. rf(b) = a =⇒ ∃`, V. writes(a, `, V), reads(b, `, V), ¬hb(b, a) (ConsistentRF2)
∀a, b. rf(b) = a, (isNonatomic(a) ∨ isNonatomic(b)) =⇒ hb(a, b) (ConsistentRFNA)
∀a, b. hb(a, b) =⇒

a 6= b, ¬mo(rf(b), rf(a)), ¬mo(rf(b), a), ¬mo(b, rf(a)), ¬mo(b, a) (Coherence)
∀a, c. isUpd(c), rf(c) = a =⇒ mo(a, c), @b. mo(a, b), mo(b, c) (AtomicCAS)
∀a 6= b, ~̀, ~̀′. A(a) = A(~̀), A(b) = A(~̀′) =⇒ ~̀ t ~̀′ (ConsistentAlloc)

where hb , (sb ∪ sw)+

sw , {(a, b) | rf(a) = b, isAtomic(a), isAtomic(b)}
reads(a, `, V) , A(a) ∈ {R(`, V,−),U(`, V,−)}
writes(a, `, V) , A(a) ∈ {W(`, V,−),U(`,−, V)}
strictTotalOrder(S,R) , (@a. R(a, a)),

(∀a, b, c. R(a, b), R(b, c) =⇒ R(a, c)),

14

(∀a, b ∈ S. a 6= b =⇒ R(a, b) ∨R(b, a))

dataRace(A, sb,mo, rf) , ∃`. ∃a 6= b ∈ dom(A).
accessesLoc(a, `), accessesLoc(b, `), writes(a,−,−) ∨ writes(b,−,−),
isNonatomic(a) ∨ isNonatomic(b), ¬hb(a, b), ¬hb(b, a)

where hb , (sb ∪ sw)+

memoryError(A, sb,mo, rf) , ∃`. ∃b ∈ dom(A).
accessesLoc(b, `),
@a ∈ dom(A). A(a) = A(~̀), ` ∈ ~̀, hb(a, b)

where hb , (sb ∪ sw)+

15

B. Logic
B.1 Semantic structures
B.1.1 Parameters
We assume:

• The following domains, with associated metavariables:

s ∈ State (a set)
σ ∈ EscrowTy (a set)

τ ∈ ProtTy (a set)
µ ∈ PCMTy (a set)

• For each µ, a partial commutative monoid JµK with unit εµ, multiplication ·µ, and a homomorphism | − | : JµK→ JµK such that
(1) m ·µ m′ = εµ =⇒ m = m′ = εµ, (positivity)
(2) m = m ·µ |m|, (duplicability)
(3) m ·µ m′ ≤µ m =⇒ |m′| = m′, and (maximality)
(4) m ·µ m1 = m ·µ m2 =⇒ |m1| = |m2| (partial cancellativity)
where m ≤µ m′ iff ∃m′′. m ·µ m′′ = m′.
• For each τ a partial order vτ ⊆ State× State.

B.1.2 Domains

π ∈ Prot ::= ⊥ | uninit | na(V) | at(τ, S) where S ∈ Trace(τ)
r ∈ Resource ,

{
(Π, g,Σ)

∣∣ Π ∈ N→ Prot, Σ ⊆ EscrowTy
}

Trace(τ) ,
{
S

fin
⊆ State | S totally ordered by vτ

}

Ghost ,
{
g ∈∏µ∈PCMTy N→ JµK

∣∣ ∀µ ∈ PCMTy. g(µ)(n) = εµ for infinitely many n
}

B.1.3 Resource composition
Protocol composition is given by the following partial commutative operator:

⊥⊕ π = π ⊕⊥ , π

na(V)⊕ na(V) , na(V)

at(τ, S1)⊕ at(τ, S2) , at(τ, S1 ∪ S2) when well-typed

and is lifted pointwise to protocol maps. Composition on ghosts is likewise defined pointwise.

(Π, g,Σ)⊕ (Π′, g′,Σ′) , (Π⊕Π′, g ⊕ g′,Σ ∪ Σ′)
r[`] , r.Π(`)

(Π, g,Σ)[` := π] , (Π[` := π], g,Σ)

emp , ((λn. ⊥), (λµ. λn. εµ), ∅)
r ≤ r′′ , ∃r′. r ⊕ r′ = r′′

r#r′ , r ⊕ r′ defined

B.1.4 Resource stripping

|(Π, g,Σ)| , (|Π|, |g|,Σ) |g| , λµ. λn. |g(µ)(n)| |Π| , λ`.

{
Π(`) Π(`) = at(−,−)

⊥ otherwise

B.1.5 Propositions

Prop ,
{
P ⊆ Resource

∣∣ ∀r ∈ P. ∀r′#r. r ⊕ r′ ∈ P
}

brc ,
{
r ⊕ r′

∣∣ r′ ∈ Resource
}

P1 ∗ P2 , { r1 ⊕ r2 | r1 ∈ P1, r2 ∈ P2 }

B.1.6 Escrow and protocol type interpretations
We assume we are given the following interpretation functions:

interp(τ) ∈ State× Val→ Prop interp(σ) ∈ Prop× Prop

where if interp(σ) = (P,P ′) then P ∗ P = ∅.

B.2 Local safety
B.2.1 Protocols

at(τ, S) vat at(τ, S′) , ∀s ∈ S. ∃s′ ∈ S′. s vτ s′

π ≡at π
′ , π vat π

′ ∧ π′ vat π

rrf ∈ envMove(r, `, V) , ∃τ, s. rrf ∈ interp(τ)(s, V), r[`] vat rrf[`] ≡at at(τ, {s}), rrf#r

(rsb, rrf) ∈ atGuar(r, `, V) , ∃τ, s, S. rrf ∈ interp(τ)(s, V), (rsb ⊕ rrf) = r[` := at(τ, S ∪ {s})], rsb[`] = rrf[`]

either r[`] = uninit, S = ∅ or r[`] = at(τ, S), ∀s0 ∈ S. s0 vτ s

16

B.2.2 Rely/guarantee

α r′ r′ ∈ rely(r, α) if
R(`, V, na) r r[`] = na(V ′) =⇒ V = V ′

R(`, V, at) r ⊕ |rrf| r[`] = at(−) =⇒ rrf ∈ envMove(r, `, V)
U(`, V, V ′) r ⊕ rrf r[`] = at(−) =⇒ rrf ∈ envMove(r, `, V)
W(`, V, at) r r[`] = at(−) =⇒ ∃V ′. envMove(r, `, V ′) 6= ∅
otherwise r always

α (rsb, rrf) ∈ guar(rpre, r, α) if
S rrf = emp, rsb = r
A(`..`′) rrf = emp, rsb = r[`..`′ := uninit]
R(`, V, na) rrf = emp, rsb = r, r[`] = na(−)
R(`, V, at) rrf = emp, rsb = r, r[`] = at(−)
W(`, V, na) rrf = emp, rsb = r[` := na(V)], r[`] ∈ {uninit, na(−)}
W(`, V, at) (rsb, rrf) ∈ atGuar(r, `, V ′), ∀rE ∈ envMove(rpre, `,−). rE [`] vat rrf[`]
U(`, V, V ′) (rsb, rrf) ∈ atGuar(r, `, V ′), r[`] = at(−)

B.2.3 Ghost moves

r ∈ P
r V P

r0 V P ∀r ∈ P. r V P ′

r0 V P ′
m ∈ JµK

r V brc ∗ {(⊥, [µ 7→ [i 7→ m]], ∅) | i ∈ N}
∀gF#g. gF#g′

(Π, g,Σ)V b(Π, g′,Σ)c

interp(σ) = (P,P ′) r′ ∈ P ′

(Π, g,Σ)⊕ r′ V b(Π, g,Σ ∪ {σ})c

interp(σ) = (P,P ′)
σ ∈ r.Σ r ∈ P
r0 ⊕ r V br0c ∗ P ′

B.2.4 Protocol equivalence for writes

α (rpre, r
′) ∈ wpe(α) if

A(`1..`n) ∀i.1 ≤ i ≤ n⇒ r′(`i) = ⊥
W(`,−, at) rpre[`] = at(−) ∧ r′[`] = at(−) =⇒ ∃rE ∈ envMove(rpre, `,−). rE [`] = r′[`]
U(`,−,−) rpre[`] = at(−) =⇒ r′[`] ≡ rpre[`]
otherwise always

B.2.5 Local safety

r ∈ LSafe0(e,Φ) , always
r ∈ LSafen+1(e,Φ) ,

If e ∈ Val then r V Φ(e)

If e = K[fork e′] then r ∈ LSafen(K[0],Φ) ∗ LSafen(e′, true)

If e α−→ e′ then ∀rF#r. ∀rpre ∈ rely(r ⊕ rF , α). ∃P. rpre V P and
∀r′ ∈ P. (rpre, r

′) ∈ wpe(α) =⇒ ∃rpost. (rpost ⊕ rF ,−) ∈ guar(rpre, r
′, α), rpost ∈ LSafen(e′,Φ)

17

B.3 Global safety
B.3.1 Domains

Tag(G) ::= {(sb, a, b) | (a, b) ∈ G.sb ∨ b = ⊥} ∪ {(esc, a, b) | (a, b) ∈ G.hb ∨ b = ⊥}
∪ {(rf, a, b) | G.rf(a) = b ∨ b = ⊥} ∪ {(cond, a,⊥)}

L ∈ Labeling(G) , Tag(G)→ Resource

I ∈ EscrowIntros , ℘fin(EscrowTy× Resource)

T ∈ IThreadMap , N fin
⇀ (ActName× Exp× Resource× (Val→ Prop))

B.3.2 Valid ghost moves
r VI r′ , ∃g. r′ = (r.Π, g, r.Σ ∪ {σ | (σ,−) ∈ I})

B.3.3 Valid edge labels for a node
b ∈ valid(G,L, N) , ∃r, I.
L ∈ Labeling(G)
in(sb)⊕ in(rf)⊕ in(esc)VI r ⊕ out(esc)⊕ out(cond)
(out(sb), out(rf)) ∈ guar(in(sb)⊕ in(rf), r, α)
(∀c ∈ N. isUpd(c) ∧ rf(c) = b =⇒ L(rf, b, c) = out(rf))
(@c ∈ N. isUpd(c) ∧ rf(c) = b) =⇒ L(rf, b,⊥) = out(rf)
|L(rf, b,⊥)| = |out(rf)|
∀(σ, rE) ∈ I. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, b,⊥) =
⊕{

rE

∣∣∣∣
(σ, rE) ∈ I, interp(σ) = (P,P ′),
rE ∈ P ′, (@c. hb=(b, c) ∧ L(cond, c,⊥) ∈ P)

}

where
G = (A, sb,mo, rf)
α , A(b)
in(x) ,

⊕ {L(x, a, b) | (x, a, b) ∈ dom(L)}
out(x) ,

⊕ {L(x, b, c) | (x, b, c) ∈ dom(L)}

B.3.4 Concurrent compatibility
compat(G,L) , ∀E ⊆ dom(L). tgt(E);G.hb∗ t src(E) =⇒ ⊕

η∈E L(η) defined

B.3.5 Protocol conformance
conform(G,L, N) , ∀`. ∀a, b ∈ N. G.mo`,at(a, b) =⇒ out(L, a, rf)[`] vat out(L, b, rf)[`]

B.3.6 Global safety
GSafen(T , G,L) ,

valid(G,L, N) = N
compat(G,L)
conform(G,L, N)
∀a ∈ N. L(sb, a,⊥) =

⊕{r | ∃i. T (i) = (a,−, r,−)}
∀i. T (i) = (a, e, r,Φ) =⇒ r ∈ LSafen(e,Φ)

where N , dom(G.A)

18

B.4 Syntax and semantics
B.4.1 Parameters
We assume:

• A syntax of states and PCM terms, with appropriate sorting rules, as part of the term syntax given below.
• A term interpretation function JtKρ for state and PCM terms.

B.4.2 Syntax

Sort θ ::= Val | State | PCMµ

Var X ::= ` | x | s
Term t ::= X | n | εµ | t ·µ t | · · ·
Proposition P ::= t = t | P ∧ P | P ∨ P | P ⇒ P | ∀X : θ. P | ∃X : θ. P

| �P | P ∗ P | uninit(t) | t ↪→ t | t : t τ | t vτ t | t : t µ | [σ]

B.4.3 Proposition semantics

R r ∈ JRKρ iff

t = t′ JtKρ = Jt′Kρ

t vτ t′ JtKρ vτ Jt′Kρ

P ∧Q r ∈ JP Kρ ∩ JQKρ

P ∨Q r ∈ JP Kρ ∪ JQKρ

P ⇒ Q brc ∩ JP Kρ ⊆ JQKρ

∀X. P r ∈ ⋂d∈sort(X) JP Kρ[X 7→d]

∃X. P r ∈ ⋃d∈sort(X) JP Kρ[X 7→d]

R r ∈ JRKρ iff

�P |r| ∈ JP Kρ

P1 ∗ P2 r ∈ JP1Kρ ∗ JP2Kρ

uninit(t) r.Π(JtKρ) = uninit

t ↪→ t′ r.Π(JtKρ) = na(Jt′Kρ)
t : t′ τ r.Π(JtKρ) ≥ at(τ, {Jt′Kρ})

t : t′ µ r.g(µ)(JtKρ) ≥ Jt′Kρ

[σ] σ ∈ r.Σ

B.4.4 Ghost move semantics

ρ |= P V Q , ∀r ∈ JP Kρ . r V JQKρ

B.4.5 Hoare triple semantics

LSafe(e,Φ) ,
⋂

n

LSafen(e, ϕ)

ρ |= {P} e {x. Q} , r ∈ JP Kρ . r V LSafe(e, λV. JQKρ [x 7→ v])

B.5 Proof theory
B.5.1 Necessitation

�P ⇒ P �P ⇒ ��P �P ∗Q⇔ �P ∧Q t = t′ ⇒ �t = t′ t : t′ τ ⇒ � t : t′ τ
t ·µ t = t

γ : t µ ⇒ � γ : t µ

[σ]⇒ �[σ]

B.5.2 Separation

γ : t µ ∗ γ : t′ µ ⇔ γ : t ·µ t′ µ ` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (s vτ s′ ∨ s′ vτ s)

B.5.3 Ghost moves

P ⇒ Q

P V Q

P V Q

P ∗RV Q ∗R
P V Q QV R

P V R

σ : P Q

QV [σ]

σ : P Q

P ∗ [σ]V Q

P1 V Q P2 V Q

P1 ∨ P2 V Q

P V Q

∃X.P V Q
trueV ∃γ. γ : t µ

∀tF : PCMµ. t1#µtF ⇒ t2#µtF

γ : t1 µ V γ : t2 µ

B.5.4 Hoare logic
Allocation

{true} alloc(n) {x. x 6= 0 ∗ uninit(x) ∗ · · · ∗ uninit(x+ n− 1)}

19

Acquire/release protocol rules

∀s′ wτ s. ∀z. τ(s′, z) ∗ P ⇒ �Q{
` : s τ ∗ P

}
[`]at

{
z. ∃s′. ` : s′ τ ∗ P ∗�Q

} {uninit(`) ∗ τ(s, v)} [`]at := v
{
` : s τ

}

P V τ(s′′, v) ∗Q ∀s′ wτ s. τ(s′,−) ∗ P ⇒ s′′ wτ s′{
` : s τ ∗ P

}
[`]at := v

{
` : s′′ τ ∗Q

}

∀s′ wτ s. τ(s′, vo) ∗ P V ∃s′′ wτ s′. τ(s′′, vn) ∗Q
∀s′′ wτ s. ∀y 6= vo. τ(s′′, y) ∗ P ⇒ �R{

` : s τ ∗ P
}
CAS(`, vo, vn)

{
z. ∃s′′. ` : s′′ τ ∗ ((z = 1 ∗Q) ∨ (z = 0 ∗ P ∗�R))

}

∀s′ wτ s. ∀z. τ(s′, z) ∗ P V ∃s′′ wτ s′. τ(s′′, (z + 1) mod C) ∗Q{
` : s τ ∗ P

}
FAI(`)

{
z. ∃s′′. ` : s′′ τ ∗Q

}

Nonatomics

{uninit(`) ∨ ` ↪→ −} [`]na := v {` ↪→ v} {` ↪→ v} [`]na {x. x = v ∗ ` ↪→ v}
Structural rules

P ′ V P {P} e {x. Q} ∀x. QV Q′{
P ′
}
e
{
x. Q′

} {P} e {x. Q}
{P ∗R} e {x. Q ∗R}

Axioms for pure reductions
{true} v {x. x = v}
{true} v + v′ {x. x = v + v′}
{true} v == v′ {x. x = 1⇔ v = v′}

{P ∗ v 6= 0} e1 {x. Q}
{P ∗ v = 0} e2 {x. Q}

{P} if v then e1 else e2 {x. Q}
{P} e {x. Q} ∀x. {Q} e′ {y. R}
{P} let x = e in e′ {y. R}

{P} e {true}
{P} fork e {true}

{P} e {x. (x = 0 ∗ P) ∨ (x 6= 0 ∗Q)}
{P} repeat e end {x. Q}

20

C. Metatheory
The metatheory of GPS has been formalized in Coq and mechanically checked. The README.txt file explains the contents of the various
Coq files. Below we report on the main conceptual effort of the soundness proof: finding a decomposition of global soundness into a sequence
of lemmas.

C.1 Basic properties of semantics domains and ghost moves
This subsection gives a few of the basic lemmas about our semantic domains and ghost moves. All of these claims, and many others besides,
have been formalized and mechanically checked in GpsModel.v, GpsModelLemmas.v, and GpsLogic.v.

C.1.1 Resources
Lemma 1. Protocols and resources form partial commutative monoids.

Corollary 1. If (r ⊕ r′)#r′′ then r#r′′.

Lemma 2. If r#r′ then |r ⊕ r′| = |r| ⊕ |r′|.
Lemma 3. ||r|| = |r|.
Lemma 4. r = r ⊕ |r|.
Lemma 5. |r| = |r| ⊕ |r|.

C.1.2 Propositions
Lemma 6. JP Kρ ∈ Prop.

Lemma 7. Prop forms a BI algebra.

Proof. Follows immediately from Lemma 1.

C.1.3 Protocols
Lemma 8. If π vat π

′ vat π
′′ then π vat π

′′.

Lemma 9. If π#πF then π vat (π ⊕ πF).

Lemma 10. If π ⊕ π′ = at(τ, S) then either π ≡at at(τ, S) or π′ ≡at at(τ, S).

C.1.4 Ghost moves
Lemma 11. r V brc.
Lemma 12. If r V P and rF#r then r ⊕ rF V P ∗ brF c.

21

C.2 Proof rules: local soundness
Theorem 3 (Local safety for ghost moves). If P V Q then for all closing ρ we have ρ |= P V Q.

Proof. Checked entirely in Coq; see GpsLogic.v.

Theorem 4 (Local safety for Hoare triples). If {P} e {x. Q} then for all closing ρ we have ρ |= {P} e {x. Q}

Proof. Checked entirely in Coq; see GpsLogic.v.

C.3 Global soundness
The proof of global soundness breaks into two pieces:

• First, we prove a sequence of easy “visibility” lemmas: given that we know global safety for a graph constructed so far, resource
knowledge at any point in the graph connects to some associated fact about happens-before visibility. For example, if a given node b
claims to know that an atomic location ` is in a particular state s, then there must be some node a such that hb(a, b) and a wrote to `
while moving to s. These lemmas are given in section C.3.1.
• Second, we prove a sequence of lemmas that lead to the main instrumented step theorem (Theorem 5). Each of these lemmas accounts

for a piece of the definition of local safety: rely (§C.3.2), ghost moves (§C.3.3), protocol equivalence for writes (§C.3.4) and guarantee
(§C.3.5). We set up (“prepare”) for taking a step with a final lemma in section C.3.6. Each of these lemmas takes an existing labeling of
the graph and transforms it by labelling the associated edges:

Step preparation: labels the incoming sb edge
Rely: labels any incoming rf edges
Ghost: labels hb edges for all escrow-related activity, including transferring the escrowed resource and consuming the escrow
condition
Guarantee: labels the outgoing sb and rf edges.

Outgoing resources from a new node initially go to a sink node ⊥. These resources are subsequently moved to label e.g., rf edges as
further nodes are added to the graph.

C.3.1 Visibility
Definition 1. We say that a set of nodes N ⊆ dom(G.A) is G-prefix closed (written N ∈ prefix(G)) if ∀b ∈ N. ∀a. G.hb(a, b) =⇒ a ∈
N .

Lemma 13 (Allocation visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
in(L, b, all)[`] 6= ⊥

then ∃a.
G.hb(a, b)

G.A(a) = A(~̀)

` ∈ ~̀

Proof. See visible allocation in GpsVisible.v.

22

Lemma 14 (Nonatomic protocol visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = na(V)

then ∃a.
G.hb(a, b)
G.A(a) = W(`, V, na)
∀a′ ∈ N. G.A(a′) = W(`,−,−) =⇒ (G.hb=(b, a′) ∨G.hb=(a′, a))

Proof. See visible na in GpsVisible.v.

Lemma 15 (Uninitialized visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = uninit
a ∈ N
G.A(a) = W(`,−,−)

then

G.hb=(b, a)

Proof. See visible uninit in GpsVisible.v.

Lemma 16 (Atomic protocol visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = at(−)

then ∃a, S′.
G.hb(a, b)
writes(G.A(a), `,−)
isAtomic(a)
out(L, a, sb)[`] ≡at in(L, b, all)[`]

Proof. See visible atomic in GpsVisible.v.

23

Lemma 17 (Escrow visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
σ ∈ in(L, b, all).Σ

then ∃a.
G.hb(a, b)
σ /∈ in(L, a, all).Σ
σ ∈ out(L, b, all).Σ

Proof. See visible escrow in GpsVisible.v.

24

C.3.2 Rely
Lemma 18 (Rely step). If

G.A(a) = α
dom(G.A) = N] {a}
N ∈ prefix(G)
N ⊆ valid(G,L, N)
in(L, a, all) = out(L, a, all) = emp
compat(G,L)
conform(G,L, N)
consistentC11(G)
in(L, a, rf) = emp
in(L, a, esc) = emp
out(L, a, all) = emp

then ∃L′.
N ⊆ valid(G,L′, dom(G.A))
compat(G,L′)
conform(G,L′, N)
in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
in(L′, a, esc) = out(L′, a, all) = emp
∀b, c. L′(sb, b, c) = L(sb, b, c)
∀b. L′(sb, b,⊥) = L(sb, b,⊥)

Proof. See rely step in GpsRelyGhost.v.

25

C.3.3 Ghost moves
Lemma 19 (Ghost step). If

dom(G.A) = N] {a}
consistentC11(G)
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r])
conform(G,L, N)
rbefore , in(L, a, sb)⊕ in(L, a, rf)⊕ in(L, a, esc)
rafter , r ⊕ out(L, a, esc)⊕ out(L, a, cond)
rbefore VI rafter
|r0| ≤ r
∀c. L(esc, a, c) = emp
∀(σ, rE) ∈ I. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣
interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}

then ∃L′, I′, r′, r′before, r′after ∈ P.
N ⊆ valid(G,L′, dom(G.A))
compat(G,L′[(esc, a,⊥) := L′(esc, a,⊥)⊕ r′])
conform(G,L′, N)
r′before , in(L′, a, sb)⊕ in(L′, a, rf)⊕ in(L′, a, esc)
r′after , r′ ⊕ out(L′, a, esc)⊕ out(L′, a, cond)
r′before VI′ r′after
∀b. L′(sb, b,⊥) = L(sb, b,⊥)
∀b. L′(rf, b,⊥) = L(rf, b,⊥)
∀b, c. L′(sb, b, c) = L(sb, b, c)
∀b, c. L′(rf, b, c) = L(rf, b, c)
∀c. L(esc, a, c) = emp

∀(σ, rE) ∈ I′. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣
(σ, rE) ∈ I′, interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}

Proof. See ghost step in GpsRelyGhost.v.

26

C.3.4 Protocol equivalence for writes
Lemma 20 (Protocol equivalence for writes). If

dom(G.A) = N] {a}
consistentC11(G)
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r])
conform(G,L, N)
in(L, a, all)VI r ⊕ out(L, a, esc)⊕ out(L, a, cond)
|in(L, a, sb)⊕ in(L, a, rf)| ≤ r

then

(in(L, a, sb)⊕ in(L, a, rf), in(L, a, all)) ∈ wpe(G.A(a))

Proof. See pwpe in GpsGuarPrep.v and wpe in GpsGuarPrep.v.

C.3.5 Guarantee
Lemma 21 (Guar step). If

α = G.A(a)
dom(G.A) = N] {a}
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
consistentC11(G)
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r)
conform(G,L, N)
rpre = in(L, a, sb)⊕ in(L, a, rf)
rpre ∈ rely(−, α)
in(L, a, all)VI r ⊕ out(L, a, esc)⊕ out(L, a, cond)
∀(σ, rE) ∈ I′. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣
(σ, rE) ∈ I′, interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}

|in(L, a, all)| ≤ r
out(L, b, rf) = emp
out(L, b, sb) = emp
(rsb, rrf) ∈ guar(rpre, r, α)
wpe(α, rpre, in(L, a, all))

then ∃L′.
dom(G.A) = valid(G,L′, dom(G.A))
compat(G,L′)
conform(G,L′, dom(G.A))
∀b 6= a. L′(sb, b,⊥) = L(sb, b,⊥)
L′(sb, a,⊥) = rsb

Proof. See guar step in GpsGuarPrep.v.

27

C.3.6 Step preparation
Lemma 22 (Step preparation). If

consistentC11(G)
consistentC11(G′)
dom(G′.A) = dom(G.A)] {b}
L(sb, a,⊥) = r ⊕ rrem
dom(G) ⊆ valid(G′,L, dom(G.A))
compat(G,L)
conform(G,L, dom(G))
∀c ∈ dom(G.A). G.A(c) = G′.A(c)
G′.sb = G.sb] {[a, b)}
∀c ∈ dom(G.A). G.rf(c) = G′.rf(c)
G′.mo ⊇ G.mo

then ∃L′.
valid(G′,L′, dom(G.A)) = dom(G)
compat(G′,L′)
conform(G′,L′, dom(G′))
L′(sb, a,⊥) = rrem
in(L′, b, sb) = r
in(L′, b, rf) = emp
in(L′, b, esc) = emp
∀a′ 6= a. L′(sb, a′, b) = emp
out(L′, b, all) = emp
∀a′ 6= a. L′(sb, a′,⊥) = L(sb, a′,⊥)

Proof. See prepare step in GpsGuarPrep.v.

C.3.7 Instrumented execution and adequacy

We define functions erase : IThreadMap→ ThreadMap and post : IThreadMap→ N fin
⇀ Val→ Prop as follows:

erase(T) , λi. (a, e) if T (i) = (a, e,−,−)

post(T) , λi. P if T (i) = (−,−,−,P)

Theorem 5 (Instrumented execution). If GSafen+1(T , G,L, dom(G.A)) and 〈erase(T);G〉 −→ 〈T ′;G′〉 then there exist T ′,L′ such that
erase(T ′) = T ′ and GSafen(T ′, G′,L′, dom(G′.A)) and post(T) ⊆ post(T ′).

Proof. See gsafe pres in GpsAdequate.v.

Theorem 6 (Adequacy). If e is closed and {true} e {x. P} then JeK ⊆ {V | JP K[x 7→V] 6= ∅}.

Proof. See adequacy in GpsAdequate.v.

28

D. Examples
D.1 One-shot message passing
D.1.1 Code
let x = alloc(1) in
let y = alloc(1) in
[x]na := 0;
[y]at := 0;
fork [x]na := 1; [y]at := 1;
repeat [y]at end;
[x]na

D.1.2 Proof setup
A ghost PCM for tokens We set up a ghost PCM named Token with carrier ℘({1}) and] as composition. Let � denote {1}.
Escrows We define a single escrow, XE(γ, x), as follows:

XE(γ, x) : γ : � x ↪→ 1

Protocols We define a single protocol, YP(γ, x), with states 0 and 1 and transition relation ≤. State interpretations are as follows:

YP(γ, x)(0, z) , z = 0

YP(γ, x)(1, z) , z = 1 ∗ [XE(γ, x)]

29

D.1.3 Verification
{

true
}

{
∃γ. γ : �

}

let x = alloc(1) in{
γ : � ∗ uninit(x)

}

let y = alloc(1) in{
γ : � ∗ uninit(x) ∗ uninit(y)

}

[x]na := 0;{
γ : � ∗ x ↪→ 0 ∗ uninit(y)

}

[y]at := 0;{
γ : � ∗ x ↪→ 0 ∗ y : 0 YP(γ, x)

}

fork{
x ↪→ 0 ∗ y : 0 YP(γ, x)

}

[x]na := 1;
{
x ↪→ 1 ∗ y : 0 YP(γ, x)

}
{

[XE(γ, x)] ∗ y : 0 YP(γ, x)

}

[y]at := 1;{
y : 1 YP(γ, x)

}
{
γ : � ∗ y : 0 YP(γ, x)

}

repeat [y]at end;{
γ : � ∗ y : 1 YP(γ, x) ∗ [XE(γ, x)]

}
{
y : 1 YP(γ, x) ∗ x ↪→ 1

}

[x]na{
z. z = 1

}

30

D.2 Spinlocks
D.2.1 Parameters
Fix some assertion P for the resources protected by the lock.

D.2.2 Code
newLock ,
let x = alloc(1) in
[x]at := 1;
x

spin(x) ,
repeat [x]at end

lock(x) ,
repeat spin(x); CAS(x, 1, 0) end

unlock(x) ,
[x]at := 1

D.2.3 Proof setup
Top-level spec

{P} newLock {x. �isLock(x)}
{isLock(x)} lock(x) {P}

{isLock(x) ∗ P} unlock(x) {true}
Protocols We assume a protocol LP with a single state Inv, interpreted as follows:

LP(Inv, x) , (x = 1 ∗ P) ∨ x = 0

High-level predicates

isLock(x) , x : Inv LP

D.2.4 Verification of newLock
{
P
}

let x = alloc(1) in{
P ∗ uninit(x)

}

[x]at := 1;{
x : Inv LP

}

x{
�(isLock(x))

}

D.2.5 Verification of spin
{
x : Inv LP

}
repeat [x]at end

{
x : Inv LP

}

D.2.6 Verification of lock
{

isLock(x)
}

{
x : Inv LP

}

repeat
{
x : Inv LP

}

spin(x);{
x : Inv LP

}

CAS(x, 1, 0){
z. x : Inv LP ∗ (z = true⇒ P)

}

end{
P
}

D.2.7 Verification of unlock
{

isLock(x) ∗ P
}

31

{
x : Inv LP ∗ P

}

[x]at := 1{
true

}

32

D.3 Ernie Cohen’s lock example
D.3.1 Parameters
Fix some assertion P for the resources to be raced for.

D.3.2 Code
[x]at := choose(1, 2);
repeat [y]at end;
if [x]at == [y]at then
/* critical section */

[y]at := choose(1, 2);
repeat [x]at end;
if [x]at != [y]at then
/* critical section */

D.3.3 Proof setup
Protocols

0

1

2

Choice(γ)(s, z) ,
s = z ∗ (s = 0 ∨ γ : � Tok)

Escrows We have an escrow type PE(γ1, γ2) for the resource P :

PE(γx, γy) : ∃i, j > 0. x : i ∗ y : j ∗
(

γx : � ∗ i = j

∨ γy : � ∗ i 6= j

)
 P

D.3.4 Proof {
P
}

let x = alloc(1){
P ∗ uninit(x)

}

let y = alloc(1){
P ∗ uninit(x) ∗ uninit(y)

}
{
P ∗ uninit(x) ∗ uninit(y) ∗ ∃γx1 , γx2 , γy1 , γy2 . γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : �

}
{

uninit(x) ∗ uninit(y) ∗ γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�([PE(γx1 , γ
y
1)])

}

[x]at := 0{
uninit(y) ∗ γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�

(
x : 0 Choice(γx2)

)}

[y]at := 0{
γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�

(
y : 0 Choice(γy2)

)}
{
γx1 : � ∗ γx2 : �

}

[x]at := choose(1, 2);{
γx1 : � ∗ ∃i > 0. �

(
x : i Choice(γx2)

)}

repeat [y]at end;{
γx1 : � ∗ ∃j > 0. �

(
y : j Choice(γy2)

)}

if [x]at == [y]at then{
γx1 : � ∗ i = j

}
{
P
}

/* critical section */

{
γy1 : � ∗ γy2 : �

}

[y]at := choose(1, 2);{
γy1 : � ∗ ∃j > 0. �

(
y : j Choice(γy2)

)}

repeat [x]at end;{
γy1 : � ∗ ∃i > 0. �

(
x : i Choice(γx2)

)}

if [x]at != [y]at then{
γy1 : � ∗ i 6= j

}
{
P
}

/* critical section */

33

D.4 Michael-Scott queue
D.4.1 Parameters
Fix some per-element predicate P (x).

Let head = 0, tail = 1, data = 0, link = 1. We will use these values as field offsets.

D.4.2 Code
newBuffer ,
let s = alloc(2) /* initial sentinel node */
[s + link]at := 0;
let q = alloc(2); /* queue = head and tail pointers */
[q + head]at := s;
[q + tail]at := s;
q

findTail(q) ,
let n = [q + tail]at
let n′ = [n + link]at
if n′ == 0 then n
else [q + tail]at :=n

′; 0

tryEnq(q, x) ,
let n = alloc(2);
[n + data]na :=x;
[n + link]at := 0;
let t = repeat findTail(q) end
if CAS(t + link, 0, n)
then [q + tail]at :=n; 1

else 0

tryDeq(q) ,
let s = [q + head]at
let n = [s + link]at
if n == 0 then 0
else if CAS(q + head, s, n) then [n + data]na
else 0

Note that the use of release-acquire operations causes the Michael-Scott queue to exhibit behavior that is not sequentially consistent.
This places it out of reach for the type of verification methods (mentioned in the Introduction to the paper) that recover SC reasoning by
demanding the use of strong synchronization disciplines. In particular, suppose we have two queues, q and r, both initially empty, and then
we run the following:

repeat tryEnq(q, 1) end;
let x = tryDeq(r)

repeat tryEnq(r, 2) end;
let y = tryDeq(q)

Using our release-acquire implementation of the queue, there is an execution in which both threads return x = y = 0 (i.e., observing each
other’s queue to be empty). But that is not a possible SC execution. This is really just a simple encoding of the canonical example where
release-acquire differs from SC, but lifted to a higher-level data structure rather than just using primitive reads/writes.

34

D.4.3 Proof setup
Top-level spec

{true} newBuffer() {q. �Queue(q)}
{Queue(q) ∗ P (x)} tryEnq(q, x) {z. z 6= 0 ∨ P (x)}

{Queue(q)} tryDeq(q) {x. x = 0 ∨ P (x)}
A ghost PCM for tokens We set up a ghost PCM named Token with carrier ℘({1}) and] as composition. Let � denote {1}.
Escrows We define a single escrow, DEQ(`, γ, γ′), defined as follows:

DEQ(`, γ, γ′) : γ : � ∃x. ` ↪→ x ∗ P (x) ∗ γ′ : �

Protocols We have a protocol Link(γ) for link pointers with states Null, Linked(`) and transitions from Null to Linked(`) for any ` (plus
the usual reflexive, transitive closure), with state interpretations:

Link(γ)(Null, x) , x = 0

Link(γ)(Linked(`), x) , x = ` 6= 0 ∗ ∃γ′. [DEQ(`+ data, γ, γ′)] ∗ `+ link : Null Link(γ′)

We also have two protocols, Head and Tail, each with a single state called Inv, interpreted as:

Head(Inv, x) , ∃γ. x+ link : Null Link(γ) ∗ γ : �

Tail(Inv, x) , ∃γ. x+ link : Null Link(γ)

High-level predicates

Queue(q) , q + head : Inv Head ∗ q + tail : Inv Tail

35

D.4.4 Verification of newBuffer
{

true
}

{
∃γ. γ : �

}

let s = alloc(2){
γ : � ∗ uninit(s+ data) ∗ uninit(s+ link)

}
{
γ : � ∗ uninit(s+ link)

}
/* leak memory */

[s + link]at := 0;{
γ : � ∗ s+ link : Null Link(γ)

}

let q = alloc(2);{
γ : � ∗ s+ link : Null Link(γ) ∗ uninit(q + head) ∗ uninit(q + tail)

}

[q + head]at := s;{
q + head : Inv Head ∗ s+ link : Null Link(γ) ∗ uninit(q + tail)

}

[q + tail]at := s;{
q + head : Inv Head ∗ q + tail : Inv Tail

}

q{
q. �Queue(q)

}

D.4.5 Verification of findTail
{
�(Queue(q))

}
{
q + tail : Inv Tail

}

let n = [q + tail]at{
�
(
∃γ. n+ link : Null Link(γ)

)}

let n′ = [n + link]at{
n′ 6= 0⇒ ∃γ′. n′ + link : Null Link(γ′)

}

if n′ == 0 then{
true

}

n{
n. �Queue(q) ∗ ∃γ. n+ link : Null Link(γ)

}

else{
∃γ′. n′ + link : Null Link(γ′)

}

[q + tail]at :=n
′;{

true
}

0{
z. z = 0 ∗�Queue(q)

}

36

D.4.6 Verification of tryEnq
{
P (x) ∗�(Queue(q))

}

let n = alloc(2);{
P (x) ∗ uninit(n+ data) ∗ uninit(n+ link) ∗�(n 6= 0)

}

[n + data]na :=x;{
P (x) ∗ (n+ data) ↪→ x ∗ uninit(n+ link)

}
{
P (x) ∗ (n+ data) ↪→ x ∗ uninit(n+ link) ∗ ∃γ′. γ′ : �

}

[n + link]at := 0;{
P (x) ∗ (n+ data) ↪→ x ∗ n+ link : Null Link(γ′) ∗ γ′ : �

}

let t = repeat findTail(q) end{
P (x) ∗ (n+ data) ↪→ x ∗ n+ link : Null Link(γ′) ∗ γ′ : � ∗ ∃γ. t+ link : Null Link(γ)

}

if CAS(t + link, 0, n) then{
t+ link : Linked(n) Link(γ) ∗ n+ link : Null Link(γ′)

}
{
n+ link : Null Link(γ′) ∗ q + tail : Inv Tail

}

[q + tail]at :=n;{
true

}

1{
z. z = 1

}

else{
P (x) ∗ t+ link : Null Link(γ)

}

0{
z. z = 0 ∗ P (x)

}

37

D.4.7 Verification of tryDeq
{

Queue(q)
}

{
�
(
q + head : Inv Head

)}

let s = [q + head]at{
∃γ. s+ link : Null Link(γ)

}

let n = [s + link]at{
n 6= 0⇒ ∃γ′. [DEQ(n+ data, γ, γ′)] ∗ n+ link : Null Link(γ′)

}

if n == 0 then{
true

}

0{
x. x = 0

}

else{
q + head : Inv Head ∗ [DEQ(n+ data, γ, γ′)] ∗ n+ link : Null Link(γ′)

}

if CAS(q + head, s, n) then{
q + head : Inv Head ∗ ∃x. n+ data ↪→ x ∗ P (x)

}

[n + data]na{
x. P (x)

}

else{
q + head : Inv Head

}

0{
x. x = 0

}

38

D.5 Circular buffer
D.5.1 Parameters
• Fix some choice of buffer size N > 1; the actual capacity is N − 1.
• Fix some per-element predicate P (x).

Let wi = 0, ri = 1, buf = 2. We will use these values as field offsets.

D.5.2 Code
Based on circular buffers from the Linux kernel [17].

newBuffer() ,
let q = alloc(N + 2) /* queue = writer index, reader index, buffer */
[q + ri]at := 0;
[q + wi]at := 0;
q

tryProd(q, x) ,
let w = [q + wi]at
let r = [q + ri]at
let w′ = w + 1 mod N
if w′ == r then 0
else [q + buf +w]na :=x;

[q + wi]at :=w
′;

1

tryCons(q) ,
let w = [q + wi]at
let r = [q + ri]at
if w == r then 0
else let x = [q + buf + r]na

[q + ri]at := r + 1 mod N ;
x

In real implementations, this data structure provides an operation returning a bound on the size of the buffer, which can then be used to
efficiently batch a series of reads/writes without checking the indices each time. It would be straightforward to generalize our proof to handle
such an operation.

Note also that this data structure exhibits non-SC behavior for essentially the same reasons as the Michael-Scott queue does. (One can
construct a similar example to the one given in §D.4.2.)

39

D.5.3 Proof setup
Top-level spec

{true} newBuffer() {q. Prod(q) ∗ Cons(q)}
{Prod(q) ∗ P (x)} tryProd(q, x) {z. Prod(q) ∗ (z 6= 0 ∨ P (x))}

{Cons(q)} tryCons(q) {x. Cons(q) ∗ (x = 0 ∨ P (x))}
A ghost PCM for natural numbers We set up a ghost PCM with carrier ℘(N)4 with composition] component-wise. We define the
following terms over this PCM:

all , (N,N,N,N)

restP(i) , ({j | j > i}, {j | j ≥ i}, ∅, ∅)
restC(i) , (∅, ∅, {j | j > i}, {j | j ≥ i})
protP(i) , ({i}, ∅, ∅, ∅)
escP(i) , (∅, {i}, ∅, ∅)

protC(i) , (∅, ∅, {i}, ∅)
escC(i) , (∅, ∅, ∅, {i})

Escrows We define two escrows, PE(γ, q, i) and CE(γ, q, i), as follows:

PE(γ, q, i) : γ : escP(i) uninit(q + buf + (i mod N))

∨ (q + buf + (i mod N)) ↪→ −
CE(γ, q, j) : γ : escC(j) ∃x. P (x) ∗ (q + buf + (j mod N)) ↪→ x

Protocols We assume STS states for every natural number. We assume two protocols, PP(γ, q) and CP(γ, q) over natural number states,
with transition relations

vPP , vCP , ≤
and state interpretations

PP(γ, q)(i, x) , �(x = i mod N ∗ ∀j < i. [CE(γ, q, j)]) ∗ γ : protP(i)

CP(γ, q)(j, x) , �(x = j mod N ∗ ∀i < j +N. [PE(γ, q, i)]) ∗ γ : protC(j)

High-level predicates

Prod(q) , ∃γ, i, j. i < j +N ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restP(i)

Cons(q) , ∃γ, i, j. j ≤ i ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restC(j)

40

D.5.4 Verification of newBuffer
{

true
}

{
∃γ. γ : all

}

let q = alloc(N + 2){
γ : all ∗ uninit(q) ∗ · · · ∗ uninit(q +N + 1)

}
{
γ : all ∗ uninit(q) ∗ · · · ∗ uninit(q +N + 1)

}
{
γ : all ∗ uninit(q + wi) ∗ uninit(q + ri) ∗ [PE(γ, q, 0)] ∗ · · · ∗ [PE(γ, q,N − 1)]

}

[q + ri]at := 0;{
q + ri : 0 CP(γ, q) ∗ γ : restC(0) ∗ γ : protP(0) ∗ γ : restP(0) ∗ uninit(q + wi)

}

[q + wi]at := 0;{
q + ri : 0 CP(γ, q) ∗ q + wi : 0 PP(γ, q) ∗ γ : restC(0) ∗ γ : restP(0)

}

q{
Prod(q) ∗ Cons(q)

}

41

D.5.5 Verification of tryProd
{

Prod(q) ∗ P (x)
}

{
γ : restP(i) ∗ P (x) ∗�

(
i < j0 +N ∧ q + wi : i PP(γ, q) ∧ q + ri : j0 CP(γ, q)

)}

let w = [q + wi]at{
γ : restP(i) ∗ P (x) ∗�(w = i mod N ∧ ∀k < i. [CE(γ, q, k)])

}

let r = [q + ri]at{
γ : restP(i) ∗ P (x) ∗�

(
r = j mod N ∧ ∀k < j +N. [PE(γ, q, k)] ∧ j0 ≤ j ∧ q + ri : j CP(γ, q)

)}
{
γ : restP(i) ∗ P (x) ∗�(i < j +N ∧ [PE(γ, q, i)])

}

let w′ = w + 1 mod N{
γ : restP(i) ∗ P (x) ∗�(w′ = w + 1 mod N)

}

if w′ == r then{
γ : restP(i) ∗ P (x)

}

0{
z. Prod(q) ∗ z = 0 ∗ P (x)

}

else{
γ : restP(i) ∗ P (x) ∗�(w′ 6= r)

}
{
γ : restP(i) ∗ P (x) ∗�(i+ 1 < j +N)

}
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ γ : escP(i)

}
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (uninit(q + buf + w) ∨ (q + buf + w) ↪→ −)

}

[q + buf +w]na :=x;{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (q + buf + w) ↪→ x

}
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ [CE(γ, q, i)]

}

[q + wi]at :=w
′;{

γ : restP(i+ 1) ∗ q + wi : i+ 1 PP(γ, q)

}

1{
z. Prod(q) ∗ z = 1

}

42

D.5.6 Verification of tryCons
{

Cons(q)
}

{
γ : restC(j) ∗�

(
j ≤ i0 ∧ q + wi : i0 PP(γ, q) ∧ q + ri : j CP(γ, q)

)}

let w = [q + wi]at{
γ : restC(j) ∗�

(
w = i mod N ∧ ∀k < i. [CE(γ, q, k)] ∧ i0 ≤ i ∧ q + wi : i PP(γ, q)

)}
{
γ : restC(j) ∗�(j ≤ i)

}

let r = [q + ri]at{
γ : restC(j) ∗�(r = j mod N ∧ ∀k < j +N. [PE(γ, q, k)])

}

if w == r then{
γ : restC(j)

}
0{

x. Cons(q) ∗ x = 0
}

else{
γ : restC(j) ∗ w 6= r

}
{
γ : restC(j) ∗�(j < i)

}
{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ γ : escC(j)

}
{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ ∃x. P (x) ∗ (q + buf + r) ↪→ x

}

let x = [q + buf + r]na{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ P (x) ∗ (q + buf + r) ↪→ x

}
{
γ : restC(j + 1) ∗ P (x) ∗ γ : protC(j + 1) ∗ [PE(γ, q, j +N)]

}

[q + ri]at := r + 1 mod N ;{
γ : restC(j + 1) ∗ P (x) ∗ q + ri : j + 1 CP(γ, q)

}

x{
x. Cons(q) ∗ P (x)

}

43

D.6 Bounded ticket locks
D.6.1 Parameters
• Fix some resource invariant P to be protected by the lock.
• C is a constant representing the maximum unsigned integer value of the machine.
FAI increments modulo C (see the semantics of the language in Appendix §A.2).

Let ns = 0, tc = 1. We will use these values as field offsets.

D.6.2 Code
newLock() ,
let x = alloc(2)
[x + ns]at := 0;
[x + tc]at := 0;
x

lock(x) ,
let y = FAI(x + tc)
repeat
let z = [x + ns]at
y == z

end

unlock(x) ,
let z = [x + ns]at
[x + ns]at := (z + 1) mod C

Ticket locks [11] are a fair locking mechanism employed by the Linux kernel. The data structure involves two atomic locations, one
(x + tc) storing a “ticket” counter, and the other (x + ns) a “now-serving” counter. Both are initially 0. To acquire the lock, a thread first
atomically obtains the current value t of the ticket counter and increments it (using a fetch-and-add), and then spins until the now-serving
counter is equal to the “ticket” t that it received. To release the lock, the thread just increments the now-serving counter to t+ 1.

Ticket locks rely crucially on the invariant that no two threads trying to acquire the lock at the same time have the same ticket. If the
ticket counter is modeled as an unbounded natural number, this invariant is easy to ensure. But in reality, ticket counters are bounded by the
maximum unsigned integer value C of a machine word, and they wrap around to 0 once hitting C−1. Ticket locks thus only behave correctly
if the number of threads concurrently trying to acquire the lock is at most C.

We have proven correctness for an implementation of bounded ticket locks, where the updates to the ticket counter are performed using a
physically atomic fetch-and-increment operation FAI, but the reads and writes to the now-serving counter are release-acquire. By arranging
for the acquire operation to consume a MayAcquire permission, and by only giving the client a fixed budget of C such permissions, our
spec restricts the client from spawning more than C threads to acquire the lock at one time. While similar in certain ways to the proof of the
circular buffer, the proof of bounded ticket locks is surprisingly subtle and employs a somewhat more elaborate ghost PCM. It also relies on
the following “frame-preserving update” rule for ghost moves, which we have proven sound:

∀tF : PCMµ. t1#µtF ⇒ t2#µtF

γ : t1 µ V γ : t2 µ

This rule, familiar from recent work on separation logic [13, 20, 21], enables one to make an arbitrary update to one’s ghost resource, so
long as the update is guaranteed to preserve compatibility with arbitrary frame resources. It is used in the proof of the (UseUnPerm) and
(GetTicket) axioms below.

To our knowledge, this is the first formal proof of correctness for bounded ticket locks in a weak memory setting.

D.6.3 Proof setup
Top-level spec

{P} newLock()
{
x.∗i<C

MayAcquire(x)
}

{MayAcquire(x)} lock(x) {P ∗MayRelease(x)}
{P ∗MayRelease(x)} unlock(x) {MayAcquire(x)}

Default sorts of variables

• t, n range over N.
• i, j range over Ids = {0, . . . ,C− 1}, where C is the word size (the modulus of FAI).
• T ranges over ℘(N).
• M ranges over N⇀ Ids such that ∃t. dom(M) = {t′ | t′ < t}.
• I ranges over Ids ⇀ N.

Abstract predicates For purposes of modularity, we give the following axioms about a set of abstract ghost predicates, which are all you
need in order to do the proof. Later on, we will show that these predicates are implementable (and axioms satisfiable) in terms of a suitable
ghost PCM.

44

Permsγ≥(t)⇒ LkPermγ(t) ∗ UnPermγ(t) ∗ Permsγ≥(t+ 1) (GetPerms)
LkPermγ(t) ∗ LkPermγ(t)⇒ ⊥ (LkPermExclusive)
UsedUPγ<(t) ∗ UnPermγ(t′)⇒ t ≤ t′ (UnusedUnPerms)
UsedUPγ<(t) ∗ UnPermγ(t)V UsedUPγ<(t+ 1) (UseUnPerm)
UsedUPγ<(t)⇒ �(UsedUPγ<(t)) (UsedPermsPure)
MyTktsγ(i, T) ∗ AllTktsγ(M)⇒ (∀t. M(t) = i⇔ t ∈ T) (MyAllCoherence)
MyTktsγ(i, T) ∗ AllTktsγ(M) ∗ t = |dom(M)|

V MyTktsγ(i, T] {t}) ∗ AllTktsγ(M] [t 7→ i]) (GetTicket)

trueV ∃γ. AllTktsγ(∅) ∗
(∗i<C

MyTktsγ(i, ∅)
)
∗ Permsγ≥(0) ∗ UsedUPγ<(0) (NewGhost)

Escrows We define one resource escrow Esc(γ, n), which is used to pass control over the lock-protected resource from the lock-releaser
to the next lock-acquirer (with ticket n).

Esc(γ, n) : LkPermγ(n) P

Protocols The protocol NSP(γ) describes a protocol on the now-serving counter x + ns, with states for every natural number n and the
usual ordering (≤) on states. Here, n represents the “absolute” value of the counter, as opposed to the actual value, which is n mod C.

NSP(γ)(n, z) , �(z = n mod C ∗ UsedUPγ<(n) ∗ [Esc(γ, n)])

The protocol TCP(γ, x) describes an invariant protocol on the ticket counter x+ tc, with single state Inv.

TCP(γ, x)(Inv, y) , ∃t, n,M. (t = |dom(M)|) ∗ (y = t mod C) ∗ (t ≤ n+ C)

∗ x+ ns : n NSP(γ) ∗ (∀t1 < t2 < t. M(t1) = M(t2)⇒ t1 < n)

∗ Permsγ≥(t) ∗ AllTktsγ(M)

Derived predicates Here are some useful predicates defined in terms of the above predicates.

UsedTktsγ(x, T) , x+ tc : Inv TCP(γ, x) ∗ ∀t ∈ T. x+ ns : t+ 1 NSP(γ)

HoldingTktγ(i, T, t) , LkPermγ(t) ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t})
MayAcquireγ(x, i, T) , �(UsedTktsγ(x, T)) ∗MyTktsγ(i, T)

MayReleaseγ(x, i, T, t) , �(UsedTktsγ(x, T)) ∗MyTktsγ(i, T] {t}) ∗ UnPermγ(t) ∗ x+ ns : t NSP(γ)

MayAcquire(x) , ∃γ, i, T. MayAcquireγ(x, i, T)

MayRelease(x) , ∃γ, i, T, t. MayReleaseγ(x, i, T, t)

D.6.4 Verification of newLock
{
P
}

{
P ∗ ∃γ. UsedUPγ<(0) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}

let x = alloc(2){
P ∗ uninit(x+ ns) ∗ uninit(x+ tc) ∗ UsedUPγ<(0) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}
{

[Esc(γ, 0)] ∗ UsedUPγ<(0) ∗ uninit(x+ ns) ∗ uninit(x+ tc) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗
(∗i<C

MyTktsγ(i, ∅)
)}

[x + ns]at := 0;{
x+ ns : 0 NSP(γ) ∗ uninit(x+ tc) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}

[x + tc]at := 0;{
x+ tc : Inv TCP(γ, x) ∗

(∗i<C
MyTktsγ(i, ∅)

)}
{
�(UsedTktsγ(x, ∅)) ∗

(∗i<C
MyTktsγ(i, ∅)

)}

x{∗i<C
MayAcquireγ(x, i, ∅)

}
{∗i<C

MayAcquire(x)
}

45

D.6.5 Verification of lock
{

MayAcquire(x)
}

{
∃γ, i, T. MayAcquireγ(x, i, T)

}
{

MyTktsγ(i, T) ∗�(UsedTktsγ(x, T))
}

{
MyTktsγ(i, T) ∗ x+ tc : Inv TCP(γ, x) ∗ ∀t ∈ T. x+ ns : t+ 1 NSP(γ)

}

let y = FAI(x + tc){
∃t, n0. �

(
x+ ns : n0 NSP(γ) ∗ (y = t mod C) ∗ (t < n0 + C)

)
∗ HoldingTktγ(i, T, t)

}

repeat

let z = [x + ns]at{
∃n. �

(
x+ ns : n NSP(γ) ∗ (z = n mod C) ∗ (n ≥ n0) ∗ UsedUPγ<(n) ∗ [Esc(γ, n)]

)
∗ HoldingTktγ(i, T, t)

}
{
�(n ≤ t < n0 + C ≤ n+ C) ∗ HoldingTktγ(i, T, t)

}

y == z{
b. (b = 0 ∗ HoldingTktγ(i, T, t)) ∨ (b = 1 ∗ HoldingTktγ(i, T, t) ∗ (t mod C = n mod C))

}

end{
HoldingTktγ(i, T, t) ∗ (t mod C = n mod C)

}
{

HoldingTktγ(i, T, t) ∗�(t = n)
}

{
MyTktsγ(i, T] {t}) ∗ UnPermγ(t) ∗ LkPermγ(t) ∗ [Esc(γ, t)]

}
{
P ∗MyTktsγ(i, T] {t}) ∗ UnPermγ(t)

}
{
P ∗MayReleaseγ(x, i, T, t)

}
{
P ∗MayRelease(x)

}

D.6.6 Verification of unlock
{
P ∗MayRelease(x)

}
{
P ∗ ∃γ, i, T, t. MayReleaseγ(x, i, T, t)

}
{
P ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t}) ∗�

(
UsedTktsγ(x, T) ∗ x+ ns : t NSP(γ)

)}

let z = [x + ns]at{
P ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t}) ∗�(z = t mod C ∗ UsedUPγ<(t))

}
{

[Esc(γ, t+ 1)] ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t})
}

[x + ns]at := (z + 1) mod C{
x+ ns : t+ 1 NSP(γ) ∗MyTktsγ(i, T] {t})

}
{
�(UsedTktsγ(x, T] {t})) ∗MyTktsγ(i, T] {t})

}
{

MayAcquireγ(x, i, T] {t})
}

{
MayAcquire(x)

}

46

D.6.7 Substantiating the axioms about the abstract predicates
Here we define the abstract predicates that we used in the above proof in terms of a suitable ghost PCM. It is easy to check that the axioms
about these predicates that we used are sound w.r.t. the PCM. In the case of the ghost “transition” axioms (UseUnPerm) and (GetTicket),
i.e., where there is a “state change” (using up an unlock permission, or assigning the next ticket to a particular index i), the soundness of
the axiom relies on the frame-preserving ghost update rule. For the ghost allocation axiom (NewGhost), soundness follows from the ghost
allocation rule.

The ghost PCM is a Cartesian product of three sub-PCMs:

Ticket Allocations T ::= My(I)
| All(I,M) ∀t. ∀i ∈ dom(I). t ∈ I(i)⇔ i = M(t)

Lock Permissions L ::= L L ⊆ N

Unlock Permissions U ::= (U, n) U ⊆ N ∧ ∀t ∈ U. t ≥ n
A ticket allocation is either My(I)—which asserts the right to lock for the indices in dom(I), as well as the knowledge of all tickets allocated
to those indices (I itself)—or else All(I,M), which asserts the right to lock for the indices in dom(I), as well as the knowledge of all tickets
allocated so far. There is a side condition on well-definedness of All(I,M) insisting that I and M are coherent.

The unit of the ticket allocation monoid is My(∅). Composition is defined as follows:

My(I1) ·My(I2) , My(I1] I2)
My(I1) · All(I2,M) , All(I1] I2,M) if that is well-defined
All(I1,M) ·My(I2) , All(I1] I2,M) if that is well-defined

Lock permissions are the usual powerset monoid with disjoint union as composition and ∅ as unit. The set L represents the set of lock
permissions one holds.

Unlock permissions (U, n) are similar, except that here we have the possibility of using a ticket up, after which point the “knowledge” that
it is used up becomes a boxable (permanently true) assertion. The U represents the set of unlock permissions one holds, while n represents
a lower bound on the unlock permissions that anyone can hold. (All unlock permissions less than n are to be viewed as “used up”.) The side
condition on well-definedness of monoid elements enforces that one cannot own an unlock permission that one knows has already been used
up.

The unit of the monoid is (∅, 0). Composition is defined as follows:

(U1, n1) · (U2, n2) , (U1] U2,max(n1, n2)) if that is well-defined

We are now ready to define the abstract predicates used in the proof:

Permsγ≥(i) , γ : (My(∅), {j | j ≥ i}, ({j | j ≥ i}, 0))

LkPermγ(i) , γ : (My(∅), {i}, (∅, 0))

UnPermγ(i) , γ : (My(∅), ∅, ({i}, 0))

UsedUPγ<(i) , γ : (My(∅), ∅, (∅, i))

MyTktsγ(i, T) , γ : (My([i 7→ T]), ∅, (∅, 0))

AllTktsγ(M) , γ : (All(∅,M), ∅, (∅, 0))

47

Verifying TSO programs

Bart Jacobs

Report CW660, May 2014

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Verifying TSO programs

Bart Jacobs

Report CW660, May 2014

Department of Computer Science, KU Leuven

Abstract

TSO (Total Store Order) is the memory consistency model imple-
mented by the x86 and x64 architectures. While for data-race-free
programs the stronger SC (Sequential Consistency) memory consis-
tency model can be assumed, some programs escape from the SC
constraints for performance reasons. In this document we propose
an approach for verifying programs under the TSO memory consis-
tency model.

Verifying TSO programs

Bart Jacobs
iMinds-DistriNet, Dept. Comp. Sci., KU Leuven, Belgium

bart.jacobs@cs.kuleuven.be

Abstract

TSO (Total Store Order) is the memory consistency model imple-
mented by the x86 and x64 architectures. While for data-race-free pro-
grams the stronger SC (Sequential Consistency) memory consistency model
can be assumed, some programs escape from the SC constraints for per-
formance reasons. In this document we propose an approach for verifying
programs under the TSO memory consistency model.

1 Introduction

Memory Consistency. In the past, most verification approaches for concur-
rent programs have assumed that memory behaves as if all threads’ memory ac-
cesses are executed in an interleaved fashion directly on a single global memory,
such that there is a total order on all memory accesses and each read operation
on a memory location yields the value of the most recent preceding write op-
eration to that memory location in that total order. This memory consistency
model is known as sequential consistency (SC).

However, real programming platforms (hardware architectures and compiled
or interpreted programming languages) do not offer simple sequential consis-
tency: these platforms’ memory access primitives have weaker memory consis-
tency semantics, in order to allow for important performance optimizations at
the level of the memory hierarchy, the processor, and any compilation steps,
such as caching, pipelining, and common subexpression elimination.

Still, most programming languages guarantee that programs for which all
sequentially consistent executions are data-race-free, in some sense, have only
sequentially consistent executions. Data-race-freedom usually means that all
conflicting memory accesses are ordered by a happens-before relation induced by
program order and by synchronization constructs such as mutual exclusion locks.
As a result, most programmers can indeed safely assume sequential consistency
and use the program verification techniques which assume sequential consistency
and which verify data-race-freedom.

Nonetheless, in some cases it is necessary to consider non-data-race-free code,
in order to avoid the performance overhead of synchronization. For such pro-
grams, reasoning must occur directly in terms of the weaker memory consistency
semantics offered by the platform.

One of the most important programming platforms today is the x86/x64
family of processor architectures. The memory consistency model offered by
these architectures is the x86-TSO (Total Store Order) memory model. In

1

the TSO memory model, each thread has a write buffer. Write operations by
a thread are enqueued at the end of its write buffer; the memory subsystem
decides arbitrarily when to dequeue a write operation from the front of a thread’s
write buffer and apply it to main memory. Main memory itself is sequentially
consistent. Read operations by a thread are satisfied from the thread’s write
buffer, if possible, or else from main memory.

The Approach. In this document, we propose a verification approach for
programs that use memory accesses with TSO semantics. To motivate and il-
lustrate the approach, we will use the running example of a Java virtual machine
implementation for a TSO platform. Such an implementation must implement
Java field accesses efficiently. Assume it implements them as plain TSO read
and write operations. A challenge is the issue of object initialization: threads
may allocate Java objects concurrently, and leak references to those objects into
shared fields without any synchronization. A thread that accesses an object ex-
pects the object to contain a valid pointer to a virtual method dispatch table
(vtable), even if the object was obtained through a race. On a TSO platform,
this is easy to achieve by making sure that an object’s vtable pointer is initial-
ized before references to the object are stored into fields of existing objects in
the heap. The FIFO nature of the write buffers then ensures that if a thread
sees an object reference, it also sees the properly initialized vtable pointer.

Notice that this program is not data-race-free, and therefore program ver-
ification approaches that verify data-race-freedom are not applicable. Instead,
we propose an extension of separation logic with TSO spaces. TSO spaces are
similar to the shared resources of Concurrent Separation Logic (CSL), except
that memory owned by a TSO space may be accessed through TSO operations
(memory accesses with TSO semantics) rather than classical critical sections.
Also, where CSL associates a resource invariant with each resource, we associate
an abstract state space with each TSO space, as well as an abstraction predi-
cate that associates each abstract state with a corresponding separation logic
assertion. The abstract state space is equipped with an abstract reachability
pre-order �.

Knowledge about the state of a TSO space in the proof of a thread is rep-
resented as an abstract state, representing the thread’s view of the state of the
TSO space. A thread’s view is a lower bound (under the abstract reachability
pre-order) on the actual state of the TSO space.

Each TSO write operation is associated with an abstract state transition
function, mapping an abstract pre-state to an abstract post-state. These ab-
stract state transition functions must respect the abstract reachability relation
and properly abstract the concrete behavior of the TSO operation. Also, cru-
cially, to account for TSO’s relaxed behavior, the abstract state transition func-
tions must be monotonic: they must respect reachability and be sound with
respect to concrete behavior not only in the current abstract state, but also
in all reachable future abstract states. In a thread’s proof, when the thread
performs a TSO write operation, its local view of the TSO space is updated per
the abstract state transition function.

Each TSO read operation is associated with a function f mapping result
values to new abstract states. This function must satisfy the property that for
any result value v, and for any future abstract state α′, if the target location

2

may have value v in this abstract state, then f(v) � α′. In a thread’s proof,
when the thread performs a TSO read operation, its local view of the TSO space
is replaced with the (hopefully more precise) lower bound given by function f .

Verifying the Example. For example, to verify the Java virtual machine
implementation using the proposed logic, we put the heap in a TSO space. As
the abstract state space, we adopt the powerset of addresses in this heap, each
abstract state representing the set of the addresses of the currently allocated
and initialized objects. The subset relation serves as the reachability order.
The abstraction predicate states 1) that allocated objects occupy disjoint heap
space, 2) that they properly point to an existing virtual method dispatch table,
and 3) that their fields point to allocated objects. Each thread is aware of the
addresses of objects it allocated itself, as well as addresses read from fields of
known objects. That is, reading a field updates the thread’s view by inserting
the newly discovered object address into the abstract state. After a thread
allocates an object and initializes its run-time type information, it performs a
no-op operation on the TSO space to update its local view of the set of allocated
objects, inserting the newly allocated object into the abstract state. Writing
the value of a local variable to a field corresponds to the identity function at
the abstract level, since all object references a thread holds in local variables
are already in the thread’s local view.

The remainder of this document is structured as follows. In Section 2, we
present the basic idea of the approach in the context of a simplified program-
ming language without pointers. In Sec 3, we extend the programming language
with locked instructions. In Sections 5 and 6 we integrate our approach into
separation logic. In Section 7 we report on a preliminary encoding of the ap-
proach into the logic of the VeriFast program verifier. We offer a conclusion in
Section 8.

2 The Basic Idea

2.1 Program Syntax

We consider a simple programming language with threads and shared global
variables g ∈ G. There are no local variables.

Heaps = G→ Z
δ ∈ ∆ = Heaps → Heaps

c ∈ Cmds ::= δ; c | c(g) | done | fail
prog ::= c || · · · || c

The heaps h ∈ Heaps are the maps from variable names to values. A com-
mand is either an update δ (a function from heaps to heaps) followed by another
command; or a read operation c(g) consisting of the variable g to be read, and
a function c(·) from values to commands; or the operation done indicating the
end of the thread; or the operation fail indicating a failure. A program is a
parallel composition of commands.

We consider generic updates instead of writes of individual variables, to allow
for the instrumentation of writes with ghost updates.

3

2.2 Small-Step Semantics

The semantics of the programming language is defined as a small-step relation
between machine configurations γ ∈ Configs. A machine configuration consists
of a heap and a multiset of thread configurations θ ∈ ThreadConfigs. (A multiset
over elements of a set X can be modeled as a function that maps each x ∈ X to
the number of times it occurs in the multiset.) A thread configuration consists
of a write buffer (a sequence of updates) and a command.

Buffers = ∆∗

θ ∈ ThreadConfigs = Buffers × Cmds
γ ∈ Configs = Heaps × (ThreadConfigs →fin N)

 ⊆ Configs × Configs

There are only three kinds of steps: an Enqueue step enqueues an update;
a Read step reduces a read operation; and a Dequeue step applies an update
to the heap.

Enqueue

(h, {[(δ, δ; c)]}]Θ) (h, {[(δ · δ, c)]}]Θ)

Read

(h, {[(δ, c(g))]}]Θ) (h, {[(δ, c(δ(h)(g)))]}]Θ)

Dequeue

(h, {[(δ · δ, c)]}]Θ) (δ(h), {[(δ, c)]}]Θ)

Definition 1 (Failing Configuration). We say a machine configuration γ is
failing, denoted γ ∈ Fail , if there exists h, δ,Θ such that γ = (h, {[(δ, fail)]}]Θ).

Definition 2 (Program Safety). A program c1 || · · · || cn is safe when started
from an initial heap h0 if ∀γ′. (h, {[(ε, c1)]}] · · ·] {[(ε, cn)]}) ∗ γ′ ⇒ γ′ /∈ Fail .

2.3 Proof System

We assume a set A ⊆ 2Heap of heap predicates, the abstract state space, to
be chosen by the proof developer. We use α to range over A. We assume an
abstract reachability pre-order � on A.

We assume a partitioning of the variables g ∈ G into the shared variables Gs

and the owned variables of thread i Gi, for each i. We assume that only thread
i updates the variables owned by thread i; however, reading is not restricted.
A heap predicate L ⊆ Heaps is local to thread i if it can be invalidated only by
updates to variables owned by thread i: Local i = {L | ∀h, h′. h ∈ L ∧ h|Gi

=
h′|Gi

⇒ h′ ∈ L}.
We define a validity condition on commands, validi(α,L, c), where α ∈ A is

thread i’s local view of the heap (including the shared variables), L ∈ Local i is
information about thread i’s owned variables, and c ∈ Cmds is the command
being executed by the thread.

4

validi(α,L, δ; c) =
∃f ∈ A→ A,L′ ∈ Local i.

(∀α′ � α. f(α′) � α′) ∧
(∀α′ � α, α′′ � α′. f(α′′) � f(α′)) ∧
(∀α′ � α, h ∈ α′ ∩ L. δ(h) ∈ f(α′) ∩ L′) ∧
validi(f(α), L′, c)

validi(α,L, c(g)) =
∀v. ∃α′.

(∀α′′ � α, h ∈ α′′ ∩ L. h(g) = v ⇒ α′′ � α′) ∧
validi(α

′, L, c(v))
validi(α,L,done) = True
validi(α,L, fail) = ∀α′ � α, h ∈ α′ ∩ L. False

An update is valid if there exists an abstract version f of the update and
a local postcondition L′ such that in all abstract states α′ reachable from the
thread’s view α, f respects abstract reachability (first conjunct), f is mono-
tonic (second conjunct), and f soundly abstracts the update (third conjunct)
given the local precondition L and the local postcondition L′. Furthermore,
the continuation must be valid under the post-abstract state f(α) and the local
postcondition L′.

As will become clear from the soundness proof, the monotonicity requirement
ensures that the current thread’s proof outline remains valid when updates of
other threads are dequeued while the current thread’s write buffer is nonempty.

A read operation is valid if for each possible result of the read operation, there
exists a new view α′ such that all abstract states α′′ reachable from the current
view where the result is possible (given local information L) are reachable from
α′, and furthermore the continuation is valid under this updated view α′.

A done operation is always valid. A fail operation is valid provided no
abstract state reachable from the current view is feasible.

Definition 3 (Program Validity). We say a program c1 || · · · || cn, started from
initial heap h0, is valid if there exists an initial abstract state α ∈ A and local
preconditions Li ∈ Local i such that h ∈ α ∩ L1 ∩ · · · ∩ Ln and validi(α,Li, ci),
for all i.

2.4 Soundness

The target soundness property is that valid programs are safe. In the remainder
of this subsection, we sketch a proof of this property.

We define validity of a thread configuration valid tcfgi(α,L, θ) as follows:

valid tcfgi(α,L, (δ1 · · · δn, c)) = validi(α,L, δ1; · · · ; δn; c)

We define validity of a machine configuration valid cfg(γ) as follows:

valid cfg((h, {[θ1, . . . , θn]})) =
∃α,L1, . . . , Ln. h ∈ α ∩ L1 ∩ · · · ∩ Ln ∧ ∀i. valid tcfgi(α,Li, θi)

where Li ∈ Local i.

Lemma 1. If validi(α,L, c) and α′ � α then validi(α
′, L, c).

5

Proof. By induction on c.

Lemma 2. If valid cfg(γ) and γ γ′, then valid cfg(γ′).

Proof. By case analysis on the step rule.

• Case Enqueue. Trivial.

• Case Read. Assume γ = (h, {[(δ1 · · · · · δm, c(g))]}]Θ) and h′(g) = v with
h′ = (δm ◦ · · · ◦ δ1)(h)(g) = v and γ′ = (h, {[(δ1 · · · · · δm, c(v))]}] Θ). By
the first premise, there exists an α and an L0

i such that h ∈ α ∩ L0
i and

validi(α,L
0
i , δ1; . . . ; δm; c(g)). By definition of validi, there exist fj and Lji ,

for j ∈ {1, . . . ,m}, such that validi(α
′′, Lji , c(g)) with α′′ = (fm ◦ · · · ◦

f1)(α). Note that α′′ � α (by the first conjunct of validity of updates)
and h′ ∈ α′′ (by the third conjunct of validity of updates) and h′′(g) =
v. Therefore, by validity of reads, there exists an α′ � α′′ such that
validi(α

′, Lmi , c(v)), and thus, by Lemma 1, validi(α
′′, Lmi , c(v)).

• Case Dequeue. We need to prove three things: that the new heap
satisfies the new abstract state and all local preconditions; that the new
configuration of the thread whose write was dequeued is valid; and that all
other threads’ configurations remain valid. First of all: we know h ∈ α∩Li
and therefore δ(h) ∈ f(α)∩L′i. It follows directly that the new configura-
tion of the active thread is valid. The other threads’ local preconditions
are preserved, by their locality. The other threads’ configurations remain
valid by Lemma 1.

Lemma 3. If valid cfg(γ) then γ /∈ Fail .

Proof. Assume h ∈ α ∩ L1 ∩ · · · ∩ Ln ∧ ∀i. valid tcfgi(α,Li, θi). Assume θi =
(δ, fail) for some i. Then by valid tcfgi(α,Li, θi) we have ∀α′ � α, h ∈ α′ ∩
Li. False. By taking α′ = α we obtain a contradiction.

2.5 Examples

Virtual Machine. We encode a simplified version of the virtual machine
example into our formal programming language.

Firstly, we encode addressable memory into the language by choosing an
indexed set of variables: let G = {m0, . . . ,m9999}.

We consider “objects” consisting just of a single field; we do not consider
vtable pointers in this example. Each field of each allocated object must point
to an allocated object. In the initial heap, there is a single object at address
0, and its field points to itself. All other memory locations hold the value -1,
which is not an address: h0 = {m0 7→ 0,m1...9999 7→ −1}.

The program consists of two threads. The first thread initializes an object at
location 1, by storing a reference to itself into its field, and then publishes this
object by storing a reference to the object into the field of the initially allocated
object at location 0. The second thread reads the field of the initial object and
asserts that the value is an address. It then reads the field of the object at this
address and asserts that the resulting value is again an address.

6

c1 = 〈m1 := 1〉; 〈m0 := 1〉; done
c2 = `← m0; assert(0 ≤ ` ≤ 9999); `′ ← m`; assert(0 ≤ `′ ≤ 9999); done

Notice that this program relies on the FIFO nature of the write buffers in
the TSO memory model.

We can verify this program in the approach of this section as follows. As
the abstract state space, we take the predicates αΛ where Λ is a set of integers,
and αΛ is satisfied by a heap h if each value in Λ is an address that is mapped
by h to a value in Λ:

A = {αΛ | αΛ = αΛ = {h | ∀` ∈ Λ. ` ∈ Addresses ∧ h(m`) ∈ Λ}}

where Addresses = {0, . . . , 9999}.
Abstract reachability corresponds to the subset relation on the indices: αΛ �

αΛ′ ⇔ Λ ⊆ Λ′.
In this proof, we do not use the local predicates. That is, we take L = Heaps

for all local preconditions and postconditions L.
Our initial abstract state is α{0}.
The proof outline for c1 is as follows:1

α{0}
〈m1 := 1〉; f(αΛ) = αΛ∪{1}
α{0,1}
〈m0 := 1〉; f(αΛ) = αΛ

α{0,1}
done

That is, the first update is associated with a function that adds the value 1 to
Λ. The second update is associated with the identity function. It’s easy to see
that this proof outline is valid.

The proof outline for c2 is as follows. (Notice that Λ * Addresses ⇒ αΛ = ∅;
i.e., if an abstract state’s index contains values that are not addresses, the
abstract state is infeasible.)

α{0}
`← m0; α′ = α{0,`}
α{0,`}
assert(0 ≤ ` ≤ 9999);
α{0,`}
`′ ← m`; α′ = α{0,`,`′}
α{0,`,`′}
assert(0 ≤ `′ ≤ 9999);
α{0,`,`′}
done

1In these proof outlines, we specify the abstract state before and after each program com-
mand; furthermore, we annotate each update with abstract version (the f function), and each
read operation with its new abstract state α′ (which may depend on the result of the read
operation).

7

Producer-Consumer. For this example, consider two threads that commu-
nicate via a single shared variable b. This variable (the buffer) is either empty,
if its value is 0, or full otherwise. The producer thread puts the integers from
k down to 1 into the buffer. Putting a value into the buffer means writing it
into the buffer and then waiting for the buffer to become empty. The consumer
thread repeatedly takes a value from the buffer and asserts that it is the next
lower integer. Taking a value from the buffer means reading the buffer until a
nonzero value is read, and then writing zero.

prod0 = done
prodk+1 = 〈b := k + 1〉; v ← b; if v = 0 then prodk else done
cons0 = done
consk+1 = v ← b; if v = 0 then done else (assert v = k + 1; 〈b := 0〉; consk)

Our verification goal is to prove that ∀k. prodk || consk is safe when started
in heap {b 7→ 0}.

We introduce two ghost variables: p and c, both initially equal to k + 1. p
is owned by the producer, and c is owned by the consumer.

We instrument the program with ghost updates:

prod′0 = done
prod′k+1 = 〈b := k + 1; p := k + 1〉; v ← b; if v = 0 then prod′k else done
cons′0 = done
cons′k+1 =
v ← b;
if v = 0 then done else (assert v = k + 1; 〈b := 0; c := k + 1〉; cons′k)

For the proof, we define the abstract state space as A = {αp,c | αp,c = {{p 7→
p, c 7→ c, b 7→ b | p = c ∧ b = 0 ∨ p = c − 1 ∧ b = p}}}. That is, each abstract
state αp,c is either a singleton (if p ≤ c ≤ p+ 1) or the empty set (otherwise).

We define the abstract reachability relation αp,c � αp′,c′ as p > p′ ∨ p =
p′ ∧ c ≥ c′.

The initial abstract state is αk+1,k+1.
We use the local predicates Pk = {h | h(p) = k} and Ck = {h | h(c) = h}.
We prove by induction on k that valid1(αk+1,k+1, Pk+1, prodk). Case k = 0

is trivial. Assume k > 0.

αk+1,k+1, Pk+1

〈b := k; p := k〉; f(αp,c) = αp−1,c

αk,k+1, Pk
v ← b; α′ = (v = 0 ? αk,k : αk,k+1)
v = 0 ? αk,k, Pk : αk,k+1, Pk
if v = 0 then prod′k−1 else done

We prove by induction on k that valid2(αk+1,k+1, Ck+1, consk). Case k = 0

8

is trivial. Assume k > 0.

αk+1,k+1, Ck+1

v ← b; α′ = (v = 0 ? αk+1,k+1 : αk,k+1)
v = 0 ? αk+1,k+1, Ck+1 : αv,v+1, Ck+1

if v = 0 then done else (
αv,v+1, Ck+1

assert v = k;
αk,k+1, Ck+1

〈b := 0; c := k〉; f(αp,c) = αp,c−1

αk,k, Ck
cons′k−1

)

3 Locked Instructions

The x86 architecture supports locked instructions, i.e. machine instructions
prefixed by the LOCK prefix. The semantics of the LOCK prefix is that during ex-
ecution of the prefixed instruction, main memory is locked, so no other threads’
write operations are dequeued from their write buffers; furthermore, after the
instruction is finished but before the lock is released, the current thread’s write
buffer is flushed.

We extend our programming language with locked operations:

c ::= · · · | locked δ; c(heap)

A locked operation consists of an update δ and a continuation c parameter-
ized by a heap (i.e. a function from heaps to commands).

We extend the program semantics with a single step rule:

Locked

(h, {[(ε, locked δ; c(heap))]}]Θ) (δ(h), {[(ε, c(h))]}]Θ)

We define validity of a locked operation:

validi(α,L, locked δ; c(heap)) =
∀α′ � α, h ∈ α′ ∩ L. ∃α′′ � α′, L′ ∈ Local i.
δ(h) ∈ α′′ ∩ L′ ∧ validi(α

′′, L′, c(h))

We extend the soundness proof.

Theorem 1. The extended system is sound.

Proof. Lemma 1 is preserved trivially. For Lemma 2, the proof is analogous to
case Dequeue.

Example: Mutex. Consider a program that protects a shared resource using
a mutual exclusion lock implemented using a Compare-And-Set (CAS) instruc-
tion. The mutex is implemented as a shared variable m whose value is zero when
the mutex is not held, and one when the mutex is held. The shared resource is
a shared variable r whose value should always be 0 except during an operation
on the resource.

9

Each thread attempts to acquire the resource by performing a CAS instruc-
tion on m, attempting to set it from 0 to 1. If successful, it asserts that r equals
0, then sets it to 1, then resets it to 0, and finally releases the mutex by setting
m to 0.

The command executed by each thread is as follows:

threadi =
h← locked 〈if m = 0 then m := 1〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1〉; 〈r := 0〉;
〈m := 0〉

The initial heap h0 is {m 7→ 0, r 7→ 0}.
We introduce one shared ghost variable u0, and one ghost variable ui for

each thread i, owned by thread i, with i > 0. Initially u0 has value 1 and all
other ui have value 0.

We instrument the program with ghost updates as follows:

thread′i =
h← locked 〈if m = 0 then (m := 1; ui, u0 := u0, 0)〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1; ui++〉; 〈r := 0; ui++〉;
〈m := 0; u0, ui := ui, 0〉

We take as the abstract state space the set A = {αu,r | αu,r = {h | h(r) =
r∧∃i. (i 6= 0∧h(m) = 1∨ i = 0∧ r = 0∧h(m) = 0)∧∀j. j = i∧h(uj) = u∨ j 6=
i ∧ h(uj) = 0}}. In each abstract state, the current update count u is stored
either in u0, indicating that the mutex is not held by any thread, or in ui with
i > 0, indicating that the mutex is held by thread i.

We define the abstract reachability relation αu,r � αu′,r′ as u < u′∨ (u, r) =
(u′, r′).

We define local predicates Li,u = {h | h(ui) = u} and L> = Heaps.
The initial abstract state is α1,0.
Proof outline:

α1,0, L>
h← locked 〈if m = 0 then (m := 1; ui, u0 := u0, 0)〉;
h(m) = 0 ? αh(u0),0, Li,h(u0) : α1,0

assume h(m) = 0;
αh(u0),0, Li,h(u0)

r ← r; α′ = (r = 0 ? αh(u0),0 : αh(u0)+1,r)
assert r = 0;
αh(u0),0, Li,h(u0)

〈r := 1; ui++〉; f(αu,r) = αu+1,1

αh(u0)+1,1, Li,h(u0)+1

〈r := 0; ui++〉; f(αu,r) = αu+1,0

αh(u0)+2,0, Li,h(u0)+2

〈m := 0; u0, ui := ui, 0〉 f(αu,r) = αu,r
αh(u0)+2,0, L>

10

4 Marriage of TSO and Separation Logic

In the next two sections, we will marry our approach with ownership and the
assertion logic of separation logic on the one hand, and with the Hoare logic-style
proofs approach on the other hand.

5 Marriage of TSO, Ownership, and Separation
Assertions

In the preceding sections, we assumed a static partitioning of the set of vari-
ables into shared variables and variables owned by particular threads. In this
section, we adopt a more dynamic approach by considering fractional heaps.
The fractional heaps H ∈ FracHeaps are defined as follows:

FracHeaps = G ⇀ Z× (0, 1]

For H,H1, H2 ∈ FracHeaps, we say H = H1 •H2 iff

∀g, v. H(g, v) = H1(g, v) +H2(g, v)

where

H(g, v) =

{
π if H(g) = (v, π)
0 if 6 ∃π. H(g) = (v, π)

We reinterpret updates of the programming language as follows:

δ(H) = H ′ ⇔ ∀H0, h. H •H0 = h⇒ δ(h) = H ′ •H0

We now pick both the abstract states and the local predicates from the
powerset of fractional heaps: A ⊆ 2FracHeaps , Li ⊆ FracHeaps.

Validity of commands is updated as follows:

valid(α,L, δ; c) =
∃f ∈ A→ A,L′ ⊆ FracHeaps.

(∀α′ � α. f(α′) � α′) ∧
(∀α′ � α, α′′ � α′. f(α′′) � f(α′)) ∧
(∀α′ � α,H ∈ α′ • L. δ(H) ∈ f(α′) • L′) ∧
valid(f(α), L′, c)

valid(α,L, c(g)) =
(∀v,H ∈ L. g ∈ dom(H) ∧ (H(g) = (v,)⇒ valid(α,L, c(v)))) ∨
∀v. ∃α′.
∀α′′ � α,H ∈ α′′ • L. g ∈ dom(H) ∧ (H(g) = (v,)⇒ α′′ � α′) ∧
valid(α′, L, c(v))

valid(α,L,done) = True
valid(α,L, fail) = ∀α′ � α, h ∈ α′ • L. False
valid(α,L, locked δ; c(heap)) =
∀α′ � α,H ∈ α′ • L. ∃α′′ � α′, L′.
δ(H) ∈ α′′ • L′ ∧ ∀H0, h. h = H •H0 ⇒ valid(α′′, L′, c(h))

Notice that mostly we simply replaced occurrences of α ∩ L by α • L to reflect
the fact that α and L are now predicates over fractional heaps. We also added

11

an alternative clause for validity of read operations, allowing for slightly simpler
proofs in the case where certain result values can be excluded based on local
knowledge and no refinement of the abstract state is required.

Validity of a configuration is now defined as:

valid cfg((h, {[θ1, . . . , θn]})) =
∃α,L1, . . . , Ln, h ∈ α • L1 • · · · • Ln. ∀i. valid(α,Li, θi)

where P •Q = {H | ∃H1 ∈ P,H2 ∈ Q. H = H1 •H2}.
Theorem 2. This approach is sound.

Proof. Monotonicity is preserved. Preservation of configuration validity under
the step relation is entirely analogous; the only difference now is that, when an
update of thread i is dequeued, preservation of Lj for j 6= i is argued based on
the fact that δ(H) is well-defined and therefore δ(H • HL) = δ(H) • HL. The
case where the step is a read operation and the new clause for validity of read
operations is used, is discharged easily.

Example. Exploiting separation logic, we can simplify the proof of the mutex
example of the preceding section.

We recall that the command executed by each thread is as follows:

threadi =
h← locked 〈if m = 0 then m := 1〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1〉; 〈r := 0〉;
〈m := 0〉

For this version of the proof, we do not need to introduce any ghost variables.
Indeed, in this version the permissions play the corresponding role.

The abstract state space is a singleton: A = {α}; α = {H | H � m 7→ 0∗ r 7→
0 ∨m 7→ 1}.

For the local predicates, we use separation logic assertions.
Proof outline:

α, emp
h← locked 〈if m = 0 then m := 1〉;
h(m) = 0 ? α, r 7→ 0 : α, emp
assume h(m) = 0;
α, r 7→ 0
r ← r;
α, r 7→ 0 ∧ r = 0
assert r = 0;
α, r 7→ 0
〈r := 1〉; f(α) = α
α, r 7→ 1
〈r := 0〉; f(α) = α
α, r 7→ 0
〈m := 0〉 f(α) = α
α, emp

12

6 A Hoare Logic for TSO

In this section we adopt a more realistic programming language, and we define
a Hoare logic for it, based on separation logic.

6.1 Syntax and Semantics of Programs

The syntax of the programming language is as follows:

e ::= x | z | e+ e | e− e
b ::= e = e | e < e | ¬b
u ::= x := [e] | [e] := e′ | if b then u else u | u;u
c ::= x := e | c; c | if b then c else c | while b do c

| x := [e] | 〈u〉 | locked u | fork c | fail

The semantics of updates u is as follows:

(h, s, x := [e]) ⇓ (h, s[x := h(s(e))]) (h, s, [e] := e′) ⇓ (h[s(e) := s(e′)], s)

s(b) (h, s, u) ⇓ (h′, s′)

(h, s, if b then u else u′) ⇓ (h′, s′)

¬s(b) (h, s, u′) ⇓ (h′, s′)

(h, s, if b then u else u′) ⇓ (h′, s′)

(h, s, u) ⇓ (h′, s′) (h′, s′, u′) ⇓ (h′′, s′′)

(h, s, u;u′) ⇓ (h′′, s′′)

We define JuK(s)(h) = h′ ⇔ ∃s′. (h, s, u) ⇓ (h′, s′).
The small-step relation on machine configurations is defined in Figure 1.

6.2 Proof System

In this logic, we support multiple TSO regions, and we allow abstract states to
talk about TSO regions. Let A be a set of abstract state space names. For each
A ∈ A, let St(A) be a set of abstract state names, with an abstract reachability
order �A defined on it.

Let R be a set of TSO region names. An abstract superstate α̃ ∈ Ã is a
finite partial function from R to

⋃
A∈A St(A). It specifies the set of allocated

TSO region names, and their current abstract state. We define α̃ � α̃′ as
∀(r, α) ∈ α̃. ∃α′ � α. (r, α′) ∈ α̃′. Let satA be a function from St(A) to semantic
assertions, i.e. sets of pairs of fractional heaps and abstract superstates. We
require that all semantic assertions X be upward-closed : (H, α̃) ∈ X ∧ α̃′ �
α̃⇒ (H, α̃′) ∈ X.

The syntax of assertions P is separation logic with fractional permissions,
plus the tsoAr (α) assertion which states that the TSO region r has been allocated
with abstract state space A and its abstract state is at least α. tso assertions
may appear only in positive positions. Assertion expressions E are like program
expressions e, except that they may mention logical variables X.

E ::= z | x | X | E + E | E − E
P ::= E = E | E < E | E π7→ E | ∃X. P | P ⇒ P | P ∗ P | emp | tsoAr (α)

13

Assign

(h, (δ, s, x := e;κ) ·Θ) (h, (δ, s[x := s(e)], κ) ·Θ)

Seq

(h, (δ, s, (c; c′);κ) ·Θ) (h, (δ, s, c; c′;κ) ·Θ)

IfTrue
s(b)

(h, (δ, s, if b then c else c′;κ) ·Θ) (h, (δ, s, c;κ) ·Θ)

IfFalse
¬s(b)

(h, (δ, s, if b then c else c′;κ) ·Θ) (h, (δ, s, c′;κ) ·Θ)

WhileTrue
s(b)

(h, (δ, s,while b do c;κ) ·Θ) (h, (δ, s, c; while b do c;κ) ·Θ)

WhileFalse
¬s(b)

(h, (δ, s,while b do c;κ) ·Θ) (h, (δ, s, κ) ·Θ)

Read

(h, (δ, s, x := [e];κ) ·Θ) (h, (δ, s[x := δ(h)(s(e))], κ) ·Θ)

Enqueue

(h, (δ, s, 〈u〉;κ) ·Θ) (h, (δ · JuK(s), s, κ) ·Θ)

Locked
(h, s, u) ⇓ (h′, s′)

(h, (ε, s, locked u;κ) ·Θ) (h′, (ε, s′, κ) ·Θ)

Fork

(h, (ε, s, fork c;κ) ·Θ) (h, (ε, s, κ) · (ε, s, c; done) ·Θ)

Dequeue

(h, (δ · δ, s, κ) ·Θ) (δ(h), (δ, s, κ) ·Θ)

Figure 1: Operational semantics of the realistic programming language

14

The proof rules are the standard rules of separation logic (where heap mu-
tation is encoded as a simple update 〈[e] := e′〉), except that we add some rules
and we remove some rules.

We add the following additional rules for updates and reads; these are useful
for the case where insufficient permission is available locally, so a TSO space
must be accessed.

Update
∀α′ � α. f(α) � α ∀α′ � α, α′′ � α′. f(α′′) � f(α′)

∀α′ � α,H, α̃, s. H, α̃ ∈ L(s) • satA(α′)⇒ u(H, s), α̃ ∈ L′(s) • satA(f(α′))

{L ∧ tsoAr (α)} 〈u〉 {L′ ∧ tsoAr (f(α))}

Read
∀α′′ � α, s,H, α̃. H, α̃ ∈ L(s) • satA(α′′)⇒ s(e) ∈ dom(H) ∧ ∀v. H(s(e)) = (v,)⇒ α′′ � α′(v)

{L ∧ x = v0 ∧ tsoAr (α)} x := [e] {L[v0/x] ∧ tsoAr (α′(x))}

We remove the disjunction rule and, correspondingly, the rule for existential
quantification. However, we include restricted versions of these rules that allow
case splitting on the value of a local variable.

6.3 Unsoundness of the disjunction rule

Including these rules would be unsound, since they would allow associating dif-
ferent abstract operations and different local postconditions with an update
and different lower bounds with a read operation depending on the value of
a ghost variable. That would allow one to prove that the program 〈[30] :=
2〉; fork (〈[10] := 1〉; r1 := [20]; 〈[30] := r1〉); 〈[20] := 1〉; r2 := [10]; r3 :=
[30]; assert ¬(r3 = 0 ∧ r2 = 0) (an encoding of the classic ((x := 1; r1 :=
y) || (y := 1; r2 := x)); assert ¬(r1 = 0 ∧ r2 = 0) program) is safe, which is
false. Indeed, introduce a ghost variable [40] owned by the forked thread that
records the value of [20] at the time of the update of [10], and a ghost variable
[50] owned by the main thread that records the value of [10] at the time of the
update of [20], both initially 2. We have two abstract states: a state α1 that
states the invariant ([40] 6= 2 ⇒ [10] = 1) ∧ ([50] 6= 2 ⇒ [20] = 1) ∧ ¬([40] =
0 ∧ [50] = 0) ∧ ([30] = 0 ⇒ [40] = 0), and a state α2 that is absurd, with
α1 � α2. For the read of [20], we pick the lower bound α2 if [40] = 1 and the
result of the read operation is 0, and α1 otherwise. Therefore, after the read
operation we have that r1 = 0 ⇒ [40] = 0, which allows us to prove that the
update of [30] preserves the invariant. Similarly, in the main thread, for the
read of [10], we pick the lower bound α2 if [50] = 1 and the result of the read
operation is 0, and α1 otherwise. Therefore, after the read operation we have
that r2 = 0 ⇒ [50] = 0. Finally, for the read of [30], we pick the lower bound
α2 if r2 = 0 and the result of the read operation is 0, and α1 otherwise.

This shows that it is unsound to allow the lower bound of a read operation
to depend on ghost variables. Similarly, it is unsound to allow the abstract
update or the local postcondition of an update to depend on ghost variables.
To show this, introduce the additional abstract states α3 = (α1 ∧ [40] = 0) and
α4 = (α1 ∧ [50] = 0), with α1 � α3 � α2 and α1 � α4 � α2. The abstract
update for the update of [10] and [20] remains the identity function. However,
after the update of [10], insert a no-op update that updates the abstract state
to α3 if [40] = 0 and α1 otherwise. For the read of [20], pick lower bound α3

15

for result 0, and α1 otherwise. Similarly, after the update of [20], insert a no-op
update that updates the abstract state to α4 if [50] = 0 and α1 otherwise. For
the read of [10], pick lower bound α4 if the result is zero, and α1 otherwise. For
the write of [30], the case of [40] = 1∧ r1 = 0 is contradictory and therefore can
be ignored. For the read of [30], pick lower bound α2 if r2 = 0∧ r3 = 0, and α1

otherwise.
The restricted rules that allow case splitting on a local variable do not suffer

from this issue since local variables do not depend on ghost variables. (To
understand this, note that the only way for information to flow from the heap
to the store is through read operations, and read operations read only real
variables.)

6.4 Soundness

First, an auxiliary definition: a fractional heap H and abstract superstate α̃′

satisfy an abstract superstate α̃ if they satisfy the separating conjunction of the
abstract states of the allocated regions.

H, α̃′ ∈ α̃⇔ H, α̃′ ∈ Πr∈dom(α̃). sat(α̃(r))

We prove soundness via the intermediary of a notion of validity of a machine
configuration, defined analogously to Sec 5 as follows:

valid cfg((h,Θ1..n))⇔ ∃α̃, L1..n. (h, α̃) ∈ α̃ •ΠiLi ∧ valid tcfg(α̃, Li,Θi)

valid tcfg(α̃, L, δ · δ, s, κ) =

∃f : Ã→ Ã, L′.
(∀α̃′ � α̃. f(α̃′) � α̃′) ∧
(∀α̃′ � α̃, α̃′′ � α̃′. f(α̃′′) � f(α̃′)) ∧
(∀α̃′ � α̃,H. (H, α̃′) ∈ α̃′ • L⇒ (δ(H), f(α̃′)) ∈ f(α̃′) • L′) ∧
valid updates(f(α̃), L′, δ, s, κ)

valid tcfg(α̃, L, ε, s, 〈u〉;κ) = valid tcfg(α̃, L, JuK(s), s, κ)
valid tcfg(α̃, L, ε, s, x := [e];κ) =
∀v.

(∀α̃′′ � α̃,H. (α̃′′, H) ∈ α̃′′ • L⇒
s(e) ∈ dom(H) ∧ (H(s(e)) = (v,)⇒ valid tcfg(α̃, L, ε, s[x := v], κ))) ∨
∃α̃′.

(∀α̃′′ � α̃,H. (H, α̃′′) ∈ α̃′′ • L⇒ s(e) ∈ dom(H) ∧ (H(s(e)) = (v,)⇒ α̃′′ � α̃′)) ∧
valid tcfg(α̃′, L, ε, s[x := v], κ)

This notion of validity is sound. The proofs are analogous to those of Sec-
tion 5.

Lemma 4. If γ γ′ and valid cfg(γ) then valid cfg(γ′).

Lemma 5. If valid cfg(γ) then γ 6 ∗ Fail .

We prove a correspondence between the Hoare rules and the notion of va-
lidity.

Lemma 6. If ` {P} c {Q} and ∀s′. ∃α̃′. (∀(H, α̃′′) ∈ JQKI,s′ . α̃′′ � α̃′) ∧
valid(α̃′, JQKI,s′ , s′, κ) and ∀(H, α̃′) ∈ L. α̃′ � α̃ ⇒ (H, α̃′) ∈ JP KI,s then
valid(α̃, L, s, c;κ).

16

Proof. By induction on the derivation of the Hoare triple.

• Case Assign. OK.

• Case Mutate. Take f = λα̃. α̃.

• Case Lookup. OK.

• Case Update. OK.

• Case Read. OK.

• Case Seq. OK.

• Case Conseq. OK.

We can now prove the soundness of our Hoare logic with respect to the
operational semantics of the programming language.

Theorem 3. If {emp} c {true} then (∅, {[(ε, ∅, c; done)]}) 6 ∗ Fail .

Proof. Apply Lemma 6 with α̃ = α̃′ = ∅ and L = {(∅,)} to obtain valid(∅, L, ∅, c; done)
and therefore valid cfg(∅, {[(ε, ∅, c; done)]}). We obtain the goal by Lemma 5.

7 Tool support

We developed a preliminary encoding of the proof rules for TSO memory ac-
cesses of the preceding section into our VeriFast sound modular static veri-
fication tool for C programs, and we checked versions of the examples (VM,
lock, producer-consumer) in the C programming language using this encoding.
These examples are included with the latest VeriFast distribution in the direc-
tory examples/tso.

In the development of our encoding, we needed to take special care to make
sure that the abstract updates associated with TSO updates and the abstract
lower bounds associated with TSO reads do not depend on ghost variables.
Indeed, the naive approach of specifying the abstract updates and abstract lower
bounds as ghost arguments of the TSO operations is unsound, since VeriFast
allows ghost arguments to depend on ghost variables.

In our current encoding, we work around this issue by requiring the list of
all abstract updates and abstract lower bounds to be used by operations on a
given TSO space to be specified when the TSO space is created. The specific
abstract update or lower bound for a particular operation is then selected by
passing an index into this list as a non-ghost argument to the TSO operation
(which appears in the program as a C function call). Furthermore, to allow the
abstract updates and lower bounds to depend on the (non-ghost) state of the
thread, we allow a variable number of additional non-ghost arguments to be
passed to the TSO operations. These are passed on as extra arguments to the
abstract updates and lower bounds.

This encoding is sound but it has the downside that it requires modifications
to the C program: extra arguments to the TSO operations, and extra variables
to track the thread state.

17

A better approach which we envision for future work is to extend VeriFast
with support for additional ghost-levels of code and variables, beyond the level
of reality (the lowest ghost-level) and the single existing ghost- level. Infor-
mation flow from higher to lower ghost-levels would be disallowed. For the
TSO encoding, we would use three ghost-levels: the real level, the semi-ghost
level, and the full ghost level. Full ghost variables can be modified as part of
TSO updates; abstract updates and lower bounds are specified as semi-ghost
arguments.

8 Conclusion

We presented an approach for the modular formal verification of programs that
use memory accesses with x86-TSO semantics.

A comparison with related work is future work.

Acknowledgments

The author thanks Ernie Cohen for very helpful comments and discussions.
This work was partially funded by EU FP7 FET-Open project ADVENT (grant
number 308830).

18

