
EUROPEAN COMMISSION
SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2011-C
Grant agreement no.: 308830

Deliverable D4.1

Progress report for WP4: Reasoning about heterogenous systems

Project acronym ADVENT

Project title Architecture-driven verification of systems software

Funding scheme FP7 FET Young Explorers

Scientific coordinator Dr. Alexey Gotsman, IMDEA Software Institute,
Alexey.Gotsman@imdea.org, +34 911 01 22 02



1 Summary

Work Package 4 in the ADVENT project is concerned with reasoning about hetereogenous
systems, with a focus on managed languages and how compilation affects formal reasoning
about such systems. Throughout the first year of the project, we have focused on developing
the underlying theory for proving compositionally the correctness of compositional compilers,
as well as for reasoning about the interfaces between compilers and runtime libraries.

Specifically, we have developed a theory for proving modular compilers correct, which we call
parametric bisimulations (PBs). Our early work [5, 6] (prior to the official commencement of
ADVENT) proposed the underlying theory (which we called relation transition systems at the
time) and proved that our PB model is transitive. In the course of ADVENT, have extended
this model to account for programming languages with more advanced control flow primitives,
such as exceptions and call/cc. In doing so, it was necessary to extend parametric bisimulations
to account for stuttering steps in the execution. We presented our findings in Technical Report
MPI-SWS-2014-003 [7]. We are currently working on applying PBs to verify a compositional
multi-phase compiler from a core ML language to an idealised assembly language.

In addition, we have looked at runtime systems that support managed programming lan-
guages. Because of the increasing importance of executing large parallel computations efficiently
and correctly, we have focused at what support the programming language and its runtime sys-
tem can provide for detecting and recovering from execution failures in the context of a parallel
computation. In a TASE 2013 publication [9] we specified the semantics of such a programming
language and a runtime, and proved correspondence properties between a higher-level and a
lowel-level design.

2 Parametric Bisimulations [5, 6, 7]

In the last several years, researchers have developed a number of effective methods, such as
bisimulations and Kripke logical relations (KLRs), for reasoning about program equivalence in
higher-order imperative languages like ML.

While these methods provide us with extremely powerful reasoning principles for proving
proram equivalence, they are not directly applicable to reason compositionally about equiv-
alences between programs written in different languages, such as the source and target of a
verified compiler.

Existing bisimulation methods for higher-order stateful languages rely crucially on “syntac-
tic” devices (e.g., context closure) in order to deal properly with unknown higher-order values
that may be passed in as function arguments. While these syntactic devices are appropriate for
proving “contextual” properties (such as contextual equivalence), they bake in the assumption
that the programs being related share a common syntactic notion of “context”, which is clearly
not a valid assumption in the inter-language setting. In contrast, KLRs have been successfully
generalized to the inter-language setting—specifically, to the goal of establishing “compositional
compiler correctness” [4]—but they suffer from an orthogonal limitation, namely that in general
they are not transitively composable.

Therefore, in a POPL’12 paper [5], we proposed a new technique, which we call parametric
bisimulations (PBs), that overcomes the aforementioned limitations. PBs fruitfully synthesize
the direct coinductive style of bisimulations with the flexible invariants on local state afforded
by KLRs, thereby enabling clean and elegant proofs about local state and recursive features
simultaneously. In addition, they support transitive composition of equivalence proofs.

However, the PB model of our previous work suffered from two limitations. First, it failed
to validate the eta law for function values, which is important for our intended application of
compiler certification. Second, it was not clear how to scale the method to reason about control
effects.
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In the technical report MPI-SWS-2014-003, we proposed stuttering parametric bisimulations
(SPBs), an extension of PBs that addresses their aforementioned limitations. Interestingly,
despite the fact that the η-law and control effects seem like unrelated issues, our solutions
to both problems hinge on the same technical device, namely the use of a “logical” reduction
semantics that permits finite but unbounded stuttering in between physical steps. This technique
is closely related to the key idea in well-founded and stuttering bisimulations, adapted here for
the first time to reasoning about open, higher-order programs. We present SPBs–along with
meta-theoretic results and example applications–for a language with recursive types and first-
class continuations. Following our previous account of PBs, we can easily extend SPBs to handle
abstract types and general mutable references as well. All our results have been fully mechanized
in the Coq proof assistant [2] and are available online.

We are currently working on extending the PBs to multi-language setting and on verifying
a compositional multi-phase compiler from a core ML-like language to an idealised assembly
language.

3 Fault-Tolerant Fork-Join Parallelism [9]

When running big parallel computations on thousands of processors, the probability that an
individual processor will fail during the execution is actually quite high, and cannot be ignored
by the language runtime. For example, if we assume that the mean time between failures (MTBF)
for a single machine is one year, and we use one thousand machines for a single computation,
then the MTBF for the whole computation becomes 1 year ÷ 1000 ≈ 9 hours.

As a result, language runtimes try to address this problem in one of two ways. A simple—
albeit expensive—solution is to use replication. In theory, we can straightforwardly deal with
a single fail-stop failure with 3-way replication [1], and with a single Byzantine failure with
4-way replication [8]. Replication, however, comes at a significant cost, not only in execution
time (since fewer execution units are available), but also in the amount of energy required to
compute the correct result.

The alternative approach to replication is to use checkpointing : that is, to run the computa-
tion optimistically with no replication, to detect any failures that occur, and to rerun the parts
of the computation affected by those failures [3]. The benefit of checkpointing over the replica-
tion approach is that the effective replication rate is determined by the number of actual failures
that occurred in an execution and how large a sub-computation was interrupted rather than the
maximum number of failures that the system can tolerate. To implement checkpointing, one
assumes that some part of the storage space is safe (non-failing) and uses that to store fields
needed to recover from failures. This safe storage subsystem may internally be implemented
using replication, but this kind of storage replication is much lighter-weight than replicating the
entire computation.

As for proving the correctness of these two approaches, that of replication is relatively
straightforward, because it uses correctly computed results from one of the replicas in the sys-
tem. In the checkpointing approach, however, correctness is not so straightforward, because
failed processors can be in inconsistent states and partially computed expressions are used in
reexecutions.

In this work, we formalized checkpointing from a programming language perspective and
proved its correctness. For simplicity, we performed this work in the context of a purely func-
tional language with fork-join parallelism. For this language, we developed a high-level formal
operational semantics capturing the essence of the checkpointing approach. In our semantics,
the execution of a parallel computation may fail at any point; failures can then be detected
and the appropriate parts of a failed computation can be restarted. This high-level semantics is
easy to understand, and may thus be used as a basis for reasoning about fault-tolerant parallel
programs.
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To justify the completeness of our semantics with respect to actual implementations, we also
developed a lower-level semantics, which models run-time failures and parallel task execution at
the processor level. The low-level semantics also models recovery from failed executions, as may
be performed by a runtime system, where a processor can observe that some other processor
has failed, and restart its execution. We then proved theorems relating the two semantics and
showing that our fault-aware semantics are sound: whenever a program evaluates to a value in
the fault-aware semantics (perhaps by failing a few times and recovering from the failures), then
it can also evaluate to the same value under the standard fault-free semantics. All lemmas and
theorems were proved using the Coq proof assistant [2] and are available online.
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Abstract

In the last several years, a number of effective methods have been developed for reasoning about program
equivalence in higher-order imperative languages like ML. Most recently, we proposed parametric bisimulations
(PBs), which fruitfully synthesize the direct coinductive style of bisimulations with the flexible invariants on local
state afforded by Kripke logical relations, and which furthermore support transitive composition of equivalence proofs.
However, the PB model of our previous work suffered from two limitations. First, it failed to validate the eta law for
function values, which is important for our intended application of compiler certification. Second, it was not clear
how to scale the method to reason about control effects.

In this paper, we propose stuttering parametric bisimulations (SPBs), a variant of PBs that addresses their
aforementioned limitations. Interestingly, despite the fact that the eta law and control effects seem like unrelated
issues, our solutions to both problems hinge on the same technical device, namely the use of a “logical” reduction
semantics that permits finite but unbounded stuttering in between physical steps. This technique is closely related to
the key idea in well-founded and stuttering bisimulations, adapted here for the first time to reasoning about open,
higher-order programs. We present SPBs—along with meta-theoretic results and example applications—for a language
with recursive types and first-class continuations. Following our previous account of PBs, we can easily extend SPBs
to handle abstract types and general mutable references as well (see the appendix for details). All our results have
been fully mechanized in Coq.
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1 – INTRODUCTION

A longstanding problem in semantics is to find effective
methods for reasoning about program equivalence in ML-like
languages supporting both functional and imperative features.
In the last several years, considerable progress has been made
on this problem, primarily by advancements to two different
classes of proof methods—bisimulations [20, 17, 18] and step-
indexed Kripke logical relations (SKLRs) [1, 6].

In recent work [8], we proposed a new method for proving
contextual equivalences in ML-like languages, which at the
time we called relation transition systems, but since then
have been referring to as parametric bisimulations (PBs). PBs
marry together some of the best features of state-of-the-art
bisimulations and SKLRs into a single method:
• Like bisimulations [17, 19, 18], PBs support reasoning

about “recursive” language features (e.g., recursive types,
higher-order state) in a direct, coinductive style.

• Like SKLRs [1, 6], PBs provide a very flexible treatment
of “local” state, in which one can define a per-module
state transition system to express and enforce invariants
on how the module’s local state may change over time.

Furthermore, PBs were designed to overcome some ap-
parent limitations of their ancestors with regards to their
potential to scale to inter-language reasoning—i.e., reasoning
compositionally about equivalences between programs written
in different languages, such as the source and target of a
certified compiler [2, 7]:
• Like SKLRs, PBs are truly semantic, in the sense that

they do not rely fundamentally on the assumption that
the programs they relate are written in the same language.
(In contrast, bisimulations for higher-order languages rely
crucially on this assumption.)

• Unlike SKLRs, the relation between programs induced
by PBs is transitive. We believe this property will prove
essential for our ultimate goal of using PBs for certifying
multi-phase compilers, as it will enable correctness proofs
for different phases to be linked transitively.

Unfortunately, the PB model we developed in our previous
work [8] suffered from two key limitations:

1) It failed to validate the eta law for function values,

f : σ → τ ` f ∼ (λx. f x) : σ → τ ,

as well as more complex equivalences (e.g., the syntactic
minimal invariance property [3]) which depend on it. This
law is potentially quite important for our ultimate goal of
compositional compiler certification, since eta-conversion
is commonly used in compile-time optimization.

2) The language it modeled did not provide any form of
control effects, such as first-class continuations, and it
was not clear how to scale it to account for a language
with such effects. In particular, the model baked in the
assumption that the language in question had a “uniform”
reduction semantics (i.e., that the reduction relation was
parametric in the evaluation context), an assumption that
is of course not valid in the presence of callcc.

In this paper, we propose stuttering parametric bisimu-
lations (SPBs), which build closely on PBs and enjoy all
their benefits, while also circumventing these two limitations.
Interestingly, although the limitations of PBs appear at first
glance to be completely unrelated, our solutions to both of
them hinge on the same exact technical device, namely the
use of a logical reduction semantics that permits finite but
unbounded stuttering steps in between actual “physical” steps.
Such stuttering steps effectively enable proofs of equivalence
of programs to engage in a game of “hot potato”, whereby
the burden of proof may be tossed back and forth between
different parts of the programs, until eventually some part
makes a physical step of computation. This technique is
inspired by the key idea in well-founded [15] and stuttering [4]
bisimulations, adapted here for the first time to reasoning about
open, higher-order programs.

There is a superficial sense in which SPB proofs may seem
similar to SKLR proofs, namely that they both involve a
certain element of “step-counting”. The key difference is which
steps they are counting: in SKLR proofs one counts physical
reduction steps (because the model is built by induction on
such steps), whereas in SPB proofs one only counts the
stuttering steps (to ensure the absence of infinite stuttering).
In essence, SPBs are “non-step”-indexed relations!

We present SPBs in the setting of λµcc, a CBV λ-calculus
with recursive types and first-class continuations. λµcc provides
a rich enough setting to explore the problems with PBs and
the solutions offered by SPBs, while avoiding other orthogonal
issues. Following our previous work on PBs, the SPB approach
can be scaled straightforwardly to account for abstract types
and general references, and the full SPB model supporting
those features is given in the appendix. Moreover, our meta-
theoretic results (soundness and transitivity—see Section 6)
for the full PB model have been mechanized in Coq. This
Coq development is available online at:

http://www.mpi-sws.org/~neis/spbs

We begin, in Section 2, by defining the language λµcc and
its pure fragment λµ (lacking first-class continuations). In
Section 3, we review our previous PB model for λµ, and
the essential ideas behind it. We then present our SPB model
in two stages. First, in Section 4, we explain the problem
with the eta law, and how the logical reduction semantics
fixes it, leading to the definition of a SPB model for λµ

that closely follows the structure of the PB model. Second, in
Section 5, we show how the same logical reduction semantics
also aids in modeling control effects, and we use this insight to
develop our generalized SPB model for λµcc. In Section 6, we
summarize the key meta-theoretic results of the paper. Finally,
in Section 7, we discuss related work and conclude.

2 – THE LANGUAGES λµ AND λµCc

Figure 1 gives the syntax of λµcc, along with excerpts of
its static and dynamic semantics. The language is equipped
with a standard type system, as well as a standard determin-
istic CBV dynamic semantics using evaluation contexts (aka
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Statics: Γ ` p : τ

Γ ::= · | Γ, x:τ where fv(τ) = ∅
τ, σ ::= α | int | σ1 × σ2 | σ1 + σ2 | σ1 → σ2 | µα. σ | contσ
p ::= x | n | p1 � p2 | ifz p then p1 else p2 | 〈p1, p2〉 | p.1 |

p.2 | inlσ p | inrσ p | (case p of inlx⇒ p1 | inr x⇒ p2) |
fix f(x:σ1):σ2. p | p1 p2 | rollσ p | unroll p |
callccσ (x. p) | throwσ p1 to p2 | isolate p

Γ, f :(τ1 → τ2), x:τ1 ` p : τ2

Γ ` fix f(x:τ1):τ2. p : τ1 → τ2

Γ ` p1 : τ1 → τ2 Γ ` p2 : τ1

Γ ` p1 p2 : τ2

Γ, x:cont τ ` p : τ

Γ ` callccτ (x. p) : τ

Γ ` p′ : τ ′ Γ ` p : cont τ ′

Γ ` throwτ p
′ to p : τ

Γ ` p : τ → int

Γ ` isolate p : cont τ

Dynamics: e ↪→ e

v ::= x | n | 〈v1, v2〉 | inl v | inr v | fix f(x). e | roll v | cont K
e ::= v | e1 � e2 | ifz e0 then e1 else e2 | 〈e1, e2〉 | e.1 | e.2 |

inl e | inr e | (case e of inlx⇒ e1 | inr x⇒ e2) | e1 e2 |
roll e | unroll e | callcc (x. e) | throw e1 to e2 | isolate e

K ::= • | K � e | v �K | ifz K then e1 else e2 | 〈K, e〉 |
〈v,K〉 | K.1 | K.2 | inlK | inr K |
(caseK of inlx⇒ e1 | inr x⇒ e2) | K e | v K | roll K |
unroll K | throw K to e | throw v to K | isolate K

K[(fix f(x). e) v] ↪→ K[e[(fix f(x). e)/f, v/x]]
K[callcc (x. e)] ↪→ K[e[cont K/x]]
K[throw v to cont K′] ↪→ K′[v]
K[isolate v] ↪→ K[cont (v •)]

Fig. 1. Statics and dynamics (excerpts) of λµ and λµcc.

continuations) K. While the static semantics talks about typed
(annotated) programs p, the dynamic semantics is defined for
erased programs e = |p|.

First-class continuations have type cont τ , and all associated
constructs and rules are highlighted in red. At runtime, a first-
class continuation is just another value form (cont K). There
are two ways a program can get hold of such a value: either
by capturing its current continuation via callcc, or by turning
a function into a continuation via isolate (thereby isolating it
from the current continuation). It can then yield control to a
value of type cont τ by throw-ing it a value of type τ .

The fragment λµ is obtained from λµcc by simply dropping
the highlighted constructs and rules.

Contextual equivalence for either language is defined in the
usual way with the help of contexts C (programs with a hole):

Definition 1 (Contextual Equivalence).
Γ ` p1 ∼ctx p2 : τ := Γ ` p1 : τ ∧ Γ ` p2 : τ ∧ ∀C.
` C : (Γ; τ) (·; int) =⇒

(
|C[p1]| ↪→ω ⇐⇒ |C[p2]| ↪→ω

)

Here ↪→ω stands for divergence (infinite reduction). The
definition of contexts and their typing judgment straightfor-
wardly follows that of programs p and is omitted for space
reasons. Suffice it to say that ` C : (Γ; τ) (Γ′; τ ′) implies
∀p. Γ ` p : τ =⇒ Γ′ ` C[p] : τ ′.

In the remainder, we often write λx. e as shorthand for the
non-recursive function fix f(x). e, where f 6∈ fv(e).

3 – PARAMETRIC BISIMULATIONS (PBS)
In this section, we briefly review the main ideas behind

our previous model of parametric bisimulations (PBs) [8]
(originally named relation transition systems) as well as the
formal definition of the PB model for λµ, which is given in
the left column of Figure 2.

The top-level judgment of our PB model has the form Γ `
e1 ∼ e2 : τ , stipulating that e1 and e2 are equivalent terms at
type τ . Typically, in coinductive proofs, to establish such an
equivalence, one exhibits a coinduction hypothesis L, which
relates e1 and e2 but also relates other auxiliary terms that one
needs to prove equivalent in the course of proving e1 and e2

equivalent. The soundness of this hypothesis w.r.t. contextual
equivalence is then established by proving it to be consistent
in a certain sense (a.k.a. a “bisimulation”).

PB proofs work in a similar way, but with an unusual twist
concerning the treatment of (higher-order) functions. If in the
coinduction hypothesis L we claim that two functions λx.e1

and λx.e2 are equivalent at type σ → τ , the aforementioned
consistency condition will require us to demonstrate that e1

and e2 do in fact behave equivalently (at type τ ) when
instantiated with “equivalent arguments” at type σ.1 A natural
question then arises: from what relation do we draw these
“equivalent arguments”? This is a tough question—if we knew
how to usefully characterize when values of arbitrary type σ
were equivalent, we would have solved our original problem!

The essential novelty of PBs is to answer this question
precisely by not answering it. To understand this cryptic
statement, let us make a distinction between global knowledge
and local knowledge. Local knowledge is another term for the
coinduction hypothesis L: it specifies which values we “know”
are equivalent in our proof, but it is local to our proof—it does
not pretend to be a global characterization of which values
are equivalent in general. In contrast, the global knowledge G
represents the sum total of knowledge concerning equivalence
of values in the “whole program” in which λx.ei appear, and
it is this G from which we draw “equivalent arguments”.
The key insight of PB proofs is that, in order to verify the
consistency of L, we do not need to know what G is. In fact,
we do not even need to know that G is sound w.r.t. contextual
equivalence. Rather, we simply take G as a parameter of our
equivalence proof.

This idea of parameterizing the proof over the global
knowledge G has important implications for how we define
consistency for function values. If L relates λx.e1 and λx.e2

at σ → τ , then we must show that for all (v1, v2) related by
G at σ, e1[v1/x] and e2[v2/x] “behave equivalently” at τ . The
trouble is that, in an absolute sense, they don’t. Knowing that
v1 and v2 are related by G tells us absolutely nothing, since
G is a parameter that can relate any two values (at least at
function type—see the discussion of “value closure” below).

1The functions related by L may of course be recursive (e.g., fix f(x). e).
We restrict attention to λ-terms here just to simplify the presentation.
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For example, suppose that σ = int→ int, τ = int, and e1 =
e2 = x(0). In this case, we should clearly be able to prove
λx.e1 and λx.e2 equivalent—they are syntactically equal!—
but it is possible that they are passed as arguments, say, v1 =
λx.x + 1 and v2 = 5, in which case e1[v1/x] ↪→∗ 1, while
e2[v2/x] ↪→∗ 5(0), a stuck term. Even if we were to restrict
G to, at function type, only relate λ-expressions (instead of
arbitrary junk like the integer 5), G might still relate v1 here
with, say, a divergent function, in which case e2[v2/x] ↪→ω .

While e1[v1/x] and e2[v2/x] in this example clearly do not
have the same observable behavior, they can be understood
to have the same local behavior. Intuitively, two terms are
locally equivalent w.r.t. G if they behave equivalently modulo
what happens during calls to functions related by G. In the
above example, e1[v1/x] and e2[v2/x] apply values related by
G (namely, v1 and v2) to the same integer argument (0). The
fact that they behave differently is thus not their own fault, but
G’s fault, so we can say that in fact they are locally equivalent.

This notion is formalized by the local term equivalence
relation E(G). We say that two closed terms e1 and e2 are
locally equivalent at a given type τ w.r.t. a global knowledge
G—denoted (e1, e2) ∈ E(G)(τ)—if one of these cases holds:

(Case ⇑) they both diverge; or
(Case ⇓) they both reduce to related values; or
(Case  ) they both reduce to related “stuck” configura-

tions (S(G,G)), i.e., function calls where related function
values are applied to related argument values inside locally
equivalent continuations (K(G)). Locally equivalent continu-
ations, in turn, are those which, when filled with related values,
result (coinductively) in locally equivalent terms. In all cases,
“related” values are drawn from the global knowledge G (or
rather its value closure G, as we explain below).

The definition of E(G) is highly reminiscent of normal form
(or open) bisimulations [16, 12, 18], in which one establishes
the consistency of equivalence of λx.e1 and λx.e2 by showing
equivalence of e1 and e2 as open terms (assuming x is a
“fresh” variable). Correspondingly, normal form bisimulations
permit the proof to “get stuck” at a point where both terms
apply the same function variable x (e.g., in the example above,
x(0)). This is no accident: PBs were inspired heavily by
normal form bisimulations. The key difference is that PBs’
use of a global knowledge is more semantic: by drawing v1

and v2 from an unknown G instead of modeling them as the
same variable x, we have the potential to scale to reasoning
about equivalences between different languages (e.g., involv-
ing assembly, which has no notion of variable binding [7]).

To conclude this section, we mention three important tech-
nical points in the formalization of PBs.

First, we restrict the local and global knowledge to only re-
late (closed) values, not arbitrary terms, and only at “flexible”
types, CTyF, which for λµ means just function types. Value
equivalence at flexible types, R ∈ VRelF, is then extended to
all (closed) types by the inductively-constructed value closure,
R ∈ VRel. (We call the non-flexible types “rigid” since the
value closure defines equivalence at those types in a fixed,
canonical way.) Term equivalence is accounted for by E(R).

Second, when parameterizing over the global knowledge G,
we impose the condition that G should at least contain the
local knowledge L of our proof, since global subsumes local
knowledge. This requirement is critical in enabling coinductive
reasoning; for example, to show that two recursive functions
f1 and f2 related by L are equivalent, we may wish to show
that f1(v1) and f2(v2) evaluate to some expressions of the
form K1[f1(v′1)] and K2[f2(v′2)] (with (v′1, v

′
2) related by G

and (K1,K2) by K(G)). In this case, if we know that G
contains L, then we also know that (f1, f2) ∈ G, and we can
appeal to the “stuck” case ( ) of E(G) to complete the proof.

Formally, the requirement that G subsumes L is slightly
more complicated, because we allow L to be itself parameter-
ized over G (so long as it is monotone in its G parameter—
see the definition of LK). This additional parameterization
of L over G is essential: it enables L to assert equivalences
between open terms by quantifying over closing instantiations
drawn from G. (We will see an example of this in Section 4.)
As a result, the condition that “G subsumes L”, written
G ∈ GK(L), is defined to mean that G ⊇ L(G).

Finally, in order to keep the kind of coinductive reasoning
we just described sound, we must be quite careful in the
definition of “consistent(L)”. Specifically, for each pair of
functions (f1, f2) related by L(G), and arguments (v1, v2)
related by G, we cannot simply require (f1(v1), f2(v2)) to be
related by E(G) because, via the stuck case of E(G), this is a
tautology! Instead, we demand that fi(vi) ↪→ ei, and that e1

and e2 are related by E(G). Requiring the terms to take a step
of reduction at this point ensures that “progress” is made in
the coinductive argument, i.e., that the coinduction is guarded.
As we will see in the next section, however, the guardedness
here is more restrictive than it ought to be.

4 – STUTTERING PARAMETRIC BISIMULATIONS
(FIRST STEP: VALIDATING ETA)

4.1 The Problem with Eta

We begin by reviewing the inherent problem with eta in the
PB model. The eta law for an arbitrary function type τ ′ → τ
corresponds to the following equivalence:

f : τ ′ → τ ` f ∼ (λx. f x) : τ ′ → τ

This equivalence does not hold for the PB model presented
above. Here we prove as much for the case of τ ′ = τ = int.
Proof: By definition the equivalence holds iff there exists
a consistent local knowledge L such that for any global
knowledge G ∈ GK(L) and any related values (v1, v2) ∈
G(int → int) we have (v1, λx. v2 x) ∈ E(G)(int → int).
Being values, such v1 and λx. v2 x are related by E(G) iff
they are related by G. Thus, in order to disprove the eta law, it
suffices to construct a “bad” global knowledge G ∈ GK(L)
that relates v1 and v2 but does not relate v1 and λx. v2 x.

This is an easy task. Let G be the least global knowledge
that subsumes L and also relates λy. 0 and λy. 1 at int→ int:2

G = L(G ) ∪ {(int→ int, λy. 0, λx. 1)}
2This is a simple fixed point construction since L is a monotone function.
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CTy(F),CVal,CExp,CCont = the sets of closed (flexible) types, closed values, closed expressions, and closed continuations, respectively

VRelF := P(CTyF× CVal× CVal)
VRel := P(CTy × CVal× CVal)
KRel := P(CTy × CTy × CCont× CCont)
ERel := P(CTy × CExp× CExp)

R(τ → τ ′) := R(τ → τ ′)
R(int) := {(m,m)}
R(τ × τ ′) := {(〈v1, v′1〉, 〈v2, v′2〉) | (v1, v2) ∈ R(τ)}

∩ {(〈v1, v′1〉, 〈v2, v′2〉) | (v′1, v
′
2) ∈ R(τ ′)}

R(τ + τ ′) := {(inl v1, inl v2) | (v1, v2) ∈ R(τ)}
∪ {(inr v′1, inr v′2) | (v′1, v

′
2) ∈ R(τ ′)}

R(µα. σ) := {(roll v1, roll v2) | (v1, v2) ∈ R(σ[µα. σ/α])}

VRelF := P(CTyF× N× CVal× N× CVal)
VRel := P(CTy × N× CVal× N× CVal)
KRel := P(CTy × CTy × N× CCont× N× CCont)
ERel := P(CTy × N× CExp× N× CExp)

R(τ → τ ′) := R(τ → τ ′)
R(int) := {( ,m, ,m)}
R(τ × τ ′) := {( , 〈v1, v′1〉, , 〈v2, v′2〉) | ( , v1, , v2) ∈ R(τ)}

∩ {( , 〈v1, v′1〉, , 〈v2, v′2〉) | ( , v′1, , v
′
2) ∈ R(τ ′)}

R(τ + τ ′) := {( , inl v1, , inl v2) | ( , v1, , v2) ∈ R(τ)}
∪ {( , inr v′1, , inr v′2) | ( , v′1, , v

′
2) ∈ R(τ ′)}

R(µα. σ) := {( , roll v1, , roll v2) | ( , v1, , v2) ∈ R(σ[µα. σ/α])}

LK := {L ∈ VRelF→ VRelF | ∀R. ∀(τ, v1, v2) ∈ L(R).
(∀R′ ⊇ R. (τ, v1, v2) ∈ L(R′)) ∧
(∃fi, xi, ei. vi = fix fi(xi). ei)}

GK(L) := {G ∈ VRelF | G ⊇ L(G)}

S ∈ VRelF×VRelF→ ERel
S(Rc, R) := {(τ, v1 v′1, v2 v′2) | ∃τ ′.

(τ ′ → τ, v1, v2) ∈ Rc ∧ (τ ′, v1, v2) ∈ R}

K ∈ VRelF→ KRel
K(R) := {(τ ′, τ,K1,K2) | ∀(v1, v2) ∈ R(τ ′).

(τ,K1[v1],K2[v2]) ∈ E(R)}

E ∈ VRelF→ ERel
E(R) := {(τ, e1, e2) | (e1 ↪→ω ∧ e2 ↪→ω) ∨

(∃(v1, v2) ∈ R(τ).
e1 ↪→∗ v1 ∧ e2 ↪→∗ v2) ∨

(∃(τ ′, e′1, e′2) ∈ S(R,R).
∃(K1,K2) ∈ K(R)(τ ′, τ).

e1 ↪→∗ K1[e′1] ∧ e2 ↪→∗ K2[e′2])}

R$ := {(τ, e1, e2) | ∃(e′1, e′2) ∈ R(τ).
e1 ↪→ e′1 ∧ e2 ↪→ e′2}

consistent(L) := ∀G ∈ GK(L). S(L(G), G) ⊆ E(G)$

R(·) := {(∅, ∅)}
R(x:τ,Γ) := {(γ1[x 7→ v1], γ2[x 7→ v2]) |

(v1, v2) ∈ R(τ) ∧ (γ1, γ2) ∈ R(Γ)}

Γ ` e1 ∼L e2 : τ := ∀G ∈ GK(L). ∀(γ1, γ2) ∈ G(Γ).
(τ, γ1e1, γ2e2) ∈ E(G)}

Γ ` e1 ∼ e2 : τ := ∃L. consistent(L) ∧ Γ ` e1 ∼L e2 : τ

LK := {L ∈ VRelF→ VRelF | ∀R. ∀(τ, n1, v1, n2, v2) ∈ L(R).
∀R′ ⊇ R,n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, v1, n

′
2, v2) ∈ L(R′)}

GK(L) := {G ∈ VRelF | G ⊇ L(G) ∧ ∀(τ, n1, v1, n2, v2) ∈ G.
∀n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, v1, n

′
2, v2) ∈ G}

S ∈ VRelF×VRelF→ ERel
S(Rc, R) := {(τ, n1, v1 v

′
1, n2, v2 v

′
2) | ∃τ ′.

(τ ′ → τ, n1, v1, n2, v2) ∈ Rc ∧ (τ ′, , v′1, , v
′
2) ∈ R}

K ∈ VRelF→ KRel
K(R) := {(τ ′, τ, k1,K1, k2,K2) | ∀(n1, v1, n2, v2) ∈ R(τ ′).

(τ, k1 + n1,K1[v1], k2 + n2,K2[v2]) ∈ E(R)}

E ∈ VRelF→ ERel
E(R) := {(τ, n1, e1, n2, e2) | (n1, e1 ↪→ω ∧ n2, e2 ↪→ω) ∨

(∃(n′1, v1, n′2, v2) ∈ R(τ).
n1, e1 ↪→∗ n′1, v1 ∧ n2, e2 ↪→∗ n′2, v2) ∨

(∃(τ ′, n′1, e′1, n′2, e′2) ∈ S(R,R).
∃( ,K1, ,K2) ∈ K(R)(τ ′, τ).

n1, e1 ↪→∗ n′1,K1[e′1] ∧ n2, e2 ↪→∗ n′2,K2[e′2])}

R$ := {(τ, n1, e1, n2, e2) | ∃(n′1, e′1, n′2, e′2) ∈ R(τ).
n1, e1 ↪→ n′1, e

′
1 ∧ n2, e2 ↪→ n′2, e

′
2}

consistent(L) := ∀G ∈ GK(L). S(L(G), G) ⊆ E(G)$

R(·) := {(·, ∅, ·, ∅)}
R(x:τ,Γ) := {(n1 :: N1, γ1[x 7→ v1], n2 :: N2, γ2[x 7→ v2]) |

(n1, v1, n2, v2) ∈ R(τ) ∧ (N1, γ1, N2, γ2) ∈ R(Γ)}

Γ ` e1 ∼L,f1,f2 e2 : τ := ∀G ∈ GK(L). ∀(N1, γ1, N2, γ2) ∈ G(Γ).
(τ, f1(N1), γ1e1, f2(N2), γ2e2) ∈ E(G)}

Γ ` e1 ∼ e2 : τ := ∃L, f1, f2. consistent(L) ∧ Γ ` e1 ∼L,f1,f2 e2 : τ

Fig. 2. Models for λµ: Original PB model (left) and new SPB model with logical reduction (right).

It remains to prove that G does not relate λy. 0 and
λx. (λy. 1) x. Arguing by contradiction, assume it does.
Then from consistent(L) and, say, (int, 42, 42) ∈ G we
know (int, (λy. 0) 42, (λx. (λy. 1) x) 42) ∈ E(G )$, i.e.,
(int, 0, (λy. 1) 42) ∈ E(G ). Since 0 is a value, this can
only mean that (λy. 1) 42 reduces to a related value, i.e.,
(int, 0, 1) ∈ G , which by definition of G is false.

To understand better what is going on here, let us now try
to prove the eta law and see what goes wrong. As is evident
from the reasoning at the beginning of the above disproof, we
would have to construct a consistent local knowledge L such

that any G subsuming it relates v1 and λx. v2 x whenever
it relates v1 and v2. Since the only leverage we have over
G is what we put in L, the only way to force G to relate
certain things is to choose L so that it relates them. Luckily,
our definition of L may depend on G as a parameter, so in
order to obtain the aforementioned closure property, we can
attempt to define the local knowledge as follows:

Lη(R) := {(τ ′ → τ, v1, λx. v2 x) | (τ ′ → τ, v1, v2) ∈ R}
Intuitively, this local knowledge corresponds exactly to what
we want to claim: if our context provides us with values v1
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and v2 that are equivalent at τ ′ → τ , then we are prepared
to claim that v1 and λx. v2 x are equivalent at the very same
type. Unfortunately, this Lη may be inconsistent! Specifically,
suppose we are given G ∈ GK(Lη) and related arguments
(τ ′, v′1, v

′
2) ∈ G. For any (v1, v2) ∈ G(τ ′ → τ), we must show

(τ, v1 v′1, (λx. v2 x) v′2) ∈ E(G)$, i.e., (τ, e1, e2) ∈ E(G),
where v1 v

′
1 ↪→ e1 and (λx. v2 x) v′2 ↪→ e2. The trouble is

that, while we know that e2 = v2 v′2, we have no way of
knowing whether e1 even exists. It is entirely possible, for
instance, that v1 is the integer 5, in which case v1 v

′
1 6↪→.

The problem here essentially is that the global knowledge
G is under no obligation to be sound w.r.t. contextual equiva-
lence. As a result, if we define a local knowledge like Lη that
“re-exports” function values (like v1) that it obtains from G,
there is no way to know whether applications of such values
reduce to well-behaved terms, or even if they are able to take
a step of reduction at all.

4.2 Guardedness Revisited

As discussed at the end of Section 3, this requirement of
“taking a step” in the definition of consistency is crucial in
ensuring the soundness of PBs because it guarantees that the
coinduction is suitably guarded. As the failed proof attempt
shows, however, the guardedness condition appears to be a
little too strict. Note that if we were not forced to take that
step, then we could easily finish the proof of consistent(Lη)
by appealing to (τ, v1 v

′
1, v2 v

′
2) ∈ E(G), which follows from

(τ ′ → τ, v1, v2) ∈ G and (τ ′, v′1, v
′
2) ∈ G (both given), and

(τ, τ, •, •) ∈ K(G).
Of course, we cannot simply drop the stepping requirement,

since this would immediately result in unsoundness—we must
have some way of ensuring “productivity” of proofs. What we
want to do then, in order to obtain a model that validates the
eta law, is to find a slightly weaker guardedness condition
(leading to a weaker notion of consistency) that enables the
sketched proof of the eta law to go through but is nevertheless
strong enough to guarantee soundness of the model.

We achieve this by generalizing the physical notion of
“taking a step” to a logical one.

4.3 Logical Reduction and the Stutter Budget

The idea is very simple. We introduce into the model what
we call a stutter budget (or just budget, for short): two natural
numbers, one for each program, that specify how many times
one may “stutter”—i.e., avoid taking a reduction step (thus
seemingly making no progress)—before eventually taking a
step. More precisely, a local knowledge will contain items of
the form (τ, n1, v1, n2, v2) rather than just (τ, v1, v2). When
proving consistency for such an item, i.e., when showing that
the applications of (v1, v2) to related arguments (v′1, v

′
2) are

related, one then has to make a choice for each application
before continuing the reasoning: either one reduces it by
one physical step (as before), or one leaves it untouched
but decreases the corresponding budget instead (n1 for the
application of v1, and n2 for the application of v2). When
one chooses the latter option, one temporarily shirks one’s

responsibility to make physical progress, passing the proof
burden—or “hot potato” as we called it in the introduction—
to the subgoal of showing that the applications are in the
E relation. Using the “stuck” case, the E relation may then
do the same thing and pass the hot potato back to the local
knowledge. The important thing is that, each time around this
seemingly circular proof path, the respective stutter budgets
(n1 and/or n2) must be decreased, so we know the hot potato
game cannot go on forever.

The way we formulate this is that one is actually required
to perform a reduction step on both sides, as before, but only a
logical one. (The exact changes to the model will be explained
in a moment.) This logical reduction relation, operating on an
expression and its budget, is defined as follows.

Definition 2 (Logical Reduction).
e ↪→ e′

n, e ↪→ n′, e′
n′ < n

n, e ↪→ n′, e

That is, a logical step is either a physical step, in which case
one may pick an arbitrary budget n′ to continue with, or a
stutter step, in which case the budget must be decreased.

To get an intuition for why the proposed change to the
model is sound, first observe that, since the stutter budget is
finite, progress (in the form of a physical step) will eventually
be made. Second, note that logical (non-)termination coincides
with physical (non-)termination. Thus, logical reduction gives
us more flexibility in terms of local reasoning about v1 and
v2, and this added flexibility is perfectly sound in that it will
not enable us to equate terminating and divergent programs.

4.4 Stuttering Parametric Bisimulations (SPBs) for λµ

Our new stuttering parametric bisimulation (SPB) model for
λµ is given in the right column of Figure 2, adjacent to the
old PB model so that it is easy to see the (modest) changes:
ignoring the stutter budget, there is no difference.

First, wherever the old model related two expressions, the
new model additionally carries their budget. One may think of
an expression and its part of the budget as a logical expression,
in which case the change is that the new model relates logical
expressions. Next, the value closure R of a relation R does not
care about the budget, except for function types, where it is
passed on unmodified. For any other type, the closure relates
values at any budget. (For the sake of readability we use an
underscore, , to stand for a fresh existentially quantified meta
variable. When occurring in a binding position, such as the left
side of a set comprehension, an underscore acts as a wildcard
and matches anything.) The reason for this is that what really
matters is the budget of functions, because we have to show
consistency for them. If a pair or sum contains a function,
then in order to access that function one already has to take a
step (projection or case analysis, respectively), so progress is
ensured regardless of the budget.

The definitions of LK and GK(L) are slightly modified
from those in the PB model, in order to stipulate the condition
of budget monotonicity. This property says that two related
values must stay related when their budget is increased (of
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course, since it is always safe to give them more stuttering
steps than they actually need). Unlike before, however, LK
does not require the values to be proper syntactic function
values. This is important because we want to be able to define
local knowledges that, as in the proof sketch for the eta law,
re-export values from the current global knowledge, which of
course may be arbitrary junk. The reason for this restriction
in the PB model had to do with an issue in the proof of
transitivity, and we will see in Section 6.1 how we now instead
make use of the stutter budget to resolve that issue.

Turning to the definition of the S relation, note that the
only thing that counts is the budget of the functions being
applied, not that of their arguments or continuations. This
is important in the proof of transitivity. Intuitively, it is also
sufficient because, before they can access their arguments or
return to their continuations, the functions will have to take
a physical beta-reduction step anyways. In the definition of
the continuation relation, on the other hand, notice that the
continuations’ budgets are added to those of their input values.
This corresponds to the idea that the continuations may stutter
ki times before passing the “hot potato” to their input values,
which in turn demand stutter budgets of ni.

Otherwise, the definition of the expression relation and of
consistency are the same as before, just with physical reduction
replaced by logical reduction.

Finally, in the equivalence judgment, we say that, besides a
consistent local knowledge, there must exist a budget at which
the programs are related. This budget may depend on the
budgets of the values that are plugged in for free variables. It
is not sufficient to just add up those budgets, because variables
may occur multiple times and thus the dependency may not
be linear. We therefore ask for a pair of budget functions f1

and f2, which, given a list of the input budgets, calculate e1

and e2’s part of the final budget, respectively.

4.5 Eta Revisited

Using this model, we can now prove the eta law along the
lines of the earlier attempt.

Theorem 1. f : τ ′ → τ ` f ∼ (λx. f x) : τ ′ → τ

Proof: We define the local knowledge Lη as follows:
Lη(R) := {(τ ′ → τ, n′1, v1, , λx. v2 x) |

∃n1 < n′1. (τ ′ → τ, n1, v1, , v2) ∈ R}
We first show f : τ ′ → τ ` f ∼L,hd+1,0̃ (λx. f x) : τ ′ → τ ,
where hd returns the first (here: only) element of a list, hd+1
is short for the meta function λl. hd(l) + 1, and 0̃ is the
constant-0 function.

• Suppose G ∈ GK(Lη) and (n1, v1, n2, v2) ∈ G(τ ′ → τ).
• We must show (n1+1, v1, 0, λx. v2 x) ∈ E(G)(τ ′ → τ).
• This follows from Lη(G) ⊆ G by construction of Lη .

It remains to show consistent(Lη).

• Suppose G ∈ GK(Lη), (n1, v1, , v2) ∈ G(τ ′ → τ),
n′1 > n1, n′2 arbitrary, and ( , v′1, , v

′
2) ∈ G(τ ′).

• We must show (n′1, v1 v
′
1, n
′
2, (λx. v2x)v′2) ∈ E(G)$(τ).

DRel := P((CTyF× N× CVal× N× CVal)
] (CTy × N× CCont× N× CCont))

ERel := P(N× CExp× N× CExp)

R(cont τ) := {( , cont K1, , cont K2) | ( ,K1, ,K2) ∈ R(τ)}

LK := {L ∈ DRel→ DRel | ∀R. ∀(τ, n1, d1, n2, d2) ∈ L(R).
∀R′ ⊇ R,n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, d1, n

′
2, d2) ∈ L(R′)}

GK(L) := {G ∈ DRel | G ⊇ L(G) ∧ (0, •, 0, •) ∈ G(int) ∧
∀(n1, d1, n2, d2) ∈ G. ∀n′1 ≥ n1, n

′
2 ≥ n2.

(n′1, d1, n
′
2, d2) ∈ G}

S ∈ DRel×DRel→ ERel
S(Rc, R) := {(k1 + n1,K1[v1], k2 + n2,K2[v2]) | ∃τ.

(τ, k1,K1, k2,K2) ∈ Rc ∧ (τ, n1, v1, n2, v2) ∈ R} ∪
{(n1,K1[v1 v

′
1], n2,K2[v2 v

′
2]) | ∃τ, τ ′.

(τ ′ → τ, n1, v1, n2, v2) ∈ Rc ∧
(τ ′, , v′1, , v

′
2) ∈ R ∧ (τ, ,K1, ,K2) ∈ R}

E ∈ DRel→ ERel
E(R) := {(n1, e1, n2, e2) | (e1 ↪→ω ∧ e2 ↪→ω) ∨

(∃(n′1, e′1, n′2, e′2) ∈ S(R,R).
n1, e1 ↪→∗ n′1, e′1 ∧ n2, e2 ↪→∗ n′2, e′2)}

R$ := {(n1, e1, n2, e2) | ∃(n′1, e′1, n′2, e′2) ∈ R.
n1, e1 ↪→ n′1, e

′
1 ∧ n2, e2 ↪→ n′2, e

′
2}

consistent(L) := ∀G ∈ GK(L). S(L(G), G) ⊆ E(G)$

Γ ` e1 ∼L,f1,f2 e2 : τ := ∀G ∈ GK(L).
∀(N1, γ1, N2, γ2) ∈ G(Γ). ∀(k1,K1, k2,K2) ∈ G(τ).
(f1(N1) + k1,K1[γ1e1], f2(N2) + k2,K2[γ2e2]) ∈ E(G)

Γ ` e1 ∼ e2 : τ :=
∃L, f1, f2. consistent(L) ∧ Γ ` e1 ∼L,f1,f2 e2 : τ

Fig. 3. Stuttering parametric bisimulations with continuation knowledge.

• After taking a stutter step on the left side and a
physical step on the right, it thus suffices to show
(n1, v1 v

′
1, , v2 v

′
2) ∈ E(G)(τ).

• Since ( , •, , •) ∈ K(G)(τ, τ) (trivial to prove), we are
done if we can show (n1, v1 v

′
1, , v2 v

′
2) ∈ S(G,G)(τ).

• Indeed, this follows from (n1, v1, , v2) ∈ G(τ ′ → τ)
and ( , v′1, , v

′
2) ∈ G(τ ′).

5 – STUTTERING PARAMETRIC BISIMULATIONS
(SECOND STEP: SUPPORTING CONTINUATIONS)

In the previous section, we have seen how to enrich the PB
model such that it validates the eta law. In this section, we
will see how the added machinery, the stutter budget, enables
us to also add support for control effects, such as first-class
continuations.

The crucial characteristic of a language with control effects
is that its semantics is context-sensitive, by which we mean
that the following property does not hold universally:

e ↪→ e′ =⇒ K[e] ↪→ K[e′]

It is easy to check (see Figure 1) that λµ satisfies this property,
while, due to callcc, λµcc does not.

In the model from Section 4 (as well as in the PB model),
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proving two programs equivalent involves executing them
directly in the empty context (i.e., without a continuation).
However, without the above property, this is clearly unsound.
We therefore have to “contextualize” the model such that
programs are always executed in an (arbitrary) evaluation
context. We wish do this in a way that (1) is independent
of first-class continuations—in order to scale to other context-
sensitive features—and (2) requires only a modest change to
actually support first-class continuations, i.e., to obtain a sound
model for λµcc.

5.1 Contextualizing the Model

Since we already have a continuation relation (K), one may
be tempted to use that in order to contextualize the model.
However, this approach does not scale, as we will discuss in
Section 7. Instead, the key to achieving the above two goals
lies in allowing our knowledges to relate not only values but
also continuations (thus rendering the K relation obsolete).
The final model is presented in Figure 3. For now, ignore the
budget-related aspects and the parts highlighted in red.

As can be seen, we define local and global knowledges the
same as before except that now they can relate both values
and continuations (see DRel). In the program equivalence
judgment (at the bottom of the figure), we no longer consider
the programs in isolation but in the context of (essentially
arbitrary) continuations K1,K2 drawn from the global knowl-
edge. Of course, we need to adapt the expression relation to
account for this. In the new definition of E, the termination
case has disappeared. Instead, the S relation has been extended
with a “return” case allowing the two expressions to reduce to
related values vi inside related continuations Ki. Since these
Ki may be the initially given continuations, this subsumes the
old termination case. Due to this generalization, the E and S
relations need no longer be type-indexed.

Also observe that, in the “stuck function calls” case, the
condition that the continuations of the calls must be related
has shifted from E into S (explained below) and is now using
the continuation knowledge. The earlier continuation relation
K, derived from E, has thus disappeared. A remarkable
consequence is that the definition of the E relation is no longer
(co)recursive. Coinductive reasoning is now done entirely
through the local knowledge and consistency.

The latter is defined the same way as before in terms of
S and E. Of course, the new “return” case in S results in an
additional burden in proving consistency: whenever one relates
two continuations in one’s local knowledge, one will be forced
to prove that they behave equivalently when given related val-
ues. Furthermore, in proving consistency for function values,
we now apply the applications inside continuations, since the
condition about continuations has been shifted from E to S.
Why the Stutter Budget Matters. We now focus on the
budget-related aspects of this model. First of all, observe that
the treatment of the budget here very much follows that in the
previous model. The only difference is that, since programs
are now being run inside continuations, we add the budget of

these continuations to that of the programs (in the program
equivalence judgment, and, via S, in consistency).

More interesting is why, as we claimed earlier, the stutter
budget plays an essential role in facilitating the addition of
continuation knowledge. The answer is simple: without the
budget, the above contextualization would rule out many basic
equivalences, rendering the model all but useless. Assume for
a moment that we contextualized the PB model (Section 3)
rather than the SPB model (Section 4), i.e., imagine the model
in Figure 3 had no budget and was using physical rather than
logical reduction. Now consider the example equivalence

f : int→ int ` inl (f 0) ∼ inl (f 0) : int + τ ,

which certainly ought to hold (for any τ ), and let us attempt
to prove it. We define the following local knowledge, whose
value part is empty:

L(R) := {(int,K1[inl •],K2[inl •]) | (K1,K2) ∈ R(int + τ)}
Using the function call case in S, it is easy to show that
the two open programs are equivalent relative to L. It then
remains to establish L’s consistency. So suppose G ∈ GK(L),
(K1,K2) ∈ G(int + τ), and (v1, v2) ∈ G(int). We must show
that there is (e1, e2) ∈ E(G) with Ki[inl vi] ↪→ ei. Since inl vi
is a value and we know nothing about Ki, we are stuck. As
in the trouble with the eta law, the problem once again is that
the guardedness condition of requiring terms—in this case,
Ki[inl vi]—to take a physical step to ei is too strong.

Also as before, the solution is to use the stutter budget to
support a logical notion of progress, leading to a valid proof
of the equivalence via the SPB model from Figure 3.
Proof: Define L as follows.

L(R) := {(int, k′1,K1[inl •], k′2,K2[inl •]) |
∃k1 < k′1, k2 < k′2. (k1,K1, k2,K2) ∈ R(int + τ)}

We show f : int→ int ` inl(f 0) ∼L,hd,hd inl(f 0) : int+τ .

• Suppose G ∈ GK(L), (n1, v1, n2, v2) ∈ G(int → int)
and (k1,K1, k2,K2) ∈ G(int + τ). We must show:

(n1+k1,K1[inl(v1 0)], n2+k2,K2[inl(v2 0)]) ∈ E(G)

• Immediately using the “function call” case in S, it suffices
to show ( ,K1[inl •], ,K2[inl •]) ∈ G(int).

• This follows from G ⊇ L(G) by construction of L.

It remains to prove consistent(L).

• So suppose G ∈ GK(L), (k1,K1, k2,K2) ∈ G(int + τ),
k′1 > k1, k′2 > k2, and (n1, v1, n2, v2) ∈ G(int).

• To show: (k′1+n1,K1[inl v1], k′2+n2,K2[inl v2]) ∈ E(G)$

• Taking a stutter step on either side, it suffices to show
(k1,K1[inl v1], k2,K2[inl v2]) ∈ E(G), which is obvious
due to S(G,G) ⊆ E(G).

5.2 Supporting First-Class Continuations

As mentioned before, the contextualization is independent
of first-class continuations. Consequently, the model in Fig-
ure 3 excluding the two parts highlighted in red is still a
(sound) model for λµ. In order to obtain one for λµcc, all one
then needs to do is include those parts.
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The first one extends the definition of the value closure to
give meaning to continuation types: two continuation values
are related at type cont τ iff the underlying continuations are
related at τ by (the continuation part of) the global knowledge.
Similarly to other cases of the value closure, the budget is
ignored. The second part is an additional requirement that
any global knowledge must relate the empty continuations at
the system type int, for any budget. This is necessary in the
presence of the isolate construct, which allows a programmer
to make up continuations that escape the initial ones.

5.3 Example: callcc in a Loop

Of course, the eta law still holds in this generalized model.
We could show the proof here but it is almost the same as the
one in Section 4 (in fact, even the same local knowledge can be
used). Instead, we show the proof of an interesting equivalence
involving callcc. The example is adapted from Støvring and
Lassen [18]. Consider the following two programs:

τ := µα. cont int→ α
Fv := fix f(x:τ):int. f (unroll x v)
e1 := |λy:τ. callccint (k. Fk y)|
e2 := |fix f(x:τ):int. callccint (k. f (unroll x k))|

When called, both e1 and e2 loop. Both also capture the current
continuation. The difference is that e2 captures it once (namely
at the very beginning of its execution), while e1 does it in
every loop iteration. However, since the continuation does not
actually change, e1 is always capturing the same one (namely
K1), and so the two programs behave equivalently.

Formally, in order to prove ` e1 ∼ e2 : τ → int (for λµcc),
we define the following local knowledge:

L(R) := {(τ → int, , e1, , e2)}
∪ {(τ, ,K1[F(cont K1) •], ,K2[e2 •]) |

( ,K1, ,K2) ∈ G(int)}
(As obvious from this definition, the budget does not play an
interesting role here.) We first show ` e1 ∼L,0̃,0̃ e2 : τ → int.

• Suppose G ∈ GK(L) and (k1,K1, k2,K2) ∈ G(τ→ int).
• We must show (k1,K1[e1], k2,K2[e2]) ∈ E(G).
• It suffices to show (0, e1, 0, e2) ∈ G(τ → int), which

holds due to G ⊇ L(G).

It remains to show consistent(L), which has two parts.

1) • Suppose G ∈ GK(L), n1 and n2 arbitrary,
(*) ( , v1, , v2) ∈ G(τ), and ( ,K1, ,K2) ∈ G(int).

• To show: (n1,K1[e1 v1], n2,K2[e2 v2]) ∈ E(G)$

• From (*) we know that there is ( , v′1, , v
′
2) ∈

G(cont int→ τ) such that vi = roll v′i.
• Taking several physical steps, it thus suffices to show:

( ,K1[F(cont K1) (v′1 (cont K1))],
,K2[e2 (v′2 (cont K2))] ) ∈ S(G,G)

• Since ( , cont K1, , cont K2) ∈ G(cont int), this
follows with ( ,K1[F(cont K1) •], ,K2[e2 •]) ∈ G(τ),
which holds due to G ⊇ L(G).

2) • Suppose G ∈ GK(L), ( ,K1, ,K2) ∈ G(int), n1 and
n2 arbitrary, and (*) (m1, v1,m2, v2) ∈ G(τ).

• To show: (n1 +m1,K1[F(cont K1) v1],
n2 +m2,K2[e2 v2] ) ∈ E(G)$

• By (*) there is ( , v′1, , v
′
2) ∈ G(cont int → τ) such

that vi = roll v′i.
• Taking several physical steps, it thus suffices to show

( ,K1[F(cont K1) (v′1 (cont K1))],
,K2[e2 (v′2 (cont K2))] ) ∈ S(G,G),

which we do the same as in part (1).

5.4 Using Parameterized Coinduction

Writing down a suitable local knowledge at the beginning
of a proof can be quite tedious for complex equivalences,
even more so in the new model where one generally also
has to add continuations. While not really an issue in paper
proofs, this quickly becomes very tiresome in formal proofs
such as these in our Coq formalization. Fortunately, we can
employ parameterized coinduction [10, 14] to avoid this issue
completely and instead write proofs in an incremental style,
where we basically start with a knowledge containing just
the programs in question, and extend it as the proof evolves.
Indeed, this is how we prove a big part of soundness in Coq.

In order to get there, we need to express the property of
a local knowledge being consistent as that local knowledge
being a postfixed point of some monotone function. Then
the greatest fixed point of that function is automatically the
greatest consistent local knowledge, and so we can use the in-
cremental reasoning principle from parameterized coinduction
to do proofs about it.

Definition 3. We define the wanted function f ∈ LK
mon→ LK.

f(L)(R) := {(τ, n1, d1, n2, d2) | ∀G ∈ GK(L).
G ⊇ R =⇒ S({(τ, n1, d1, n2, d2)}, G) ⊆ E(G)$}

Lemma 2. L ⊆ f(L) ⇐⇒ consistent(L)

6 – METATHEORY

We briefly state the main meta-theoretical results for SPBs.
They apply to both models for λµ (the one without con-
tinuation knowledge, and the one with), and to the model
for λµcc. Their proofs pretty much follow those for PBs [8]
(but see below for details on transitivity). A number of
the compatibility lemmas needed in showing reflexivity and
congruence are proven in the appendix. For further proofs,
we refer the reader to our Coq formalization of SPBs (in the
setting of a richer language).

Theorem 3 (Reflexivity, Symmetry, Transitivity, Congruence).

Γ ` p : τ

Γ ` |p| ∼ |p| : τ
Γ ` e2 ∼ e1 : τ

Γ ` e1 ∼ e2 : τ

Γ ` e1 ∼ e2 : τ Γ ` e2 ∼ e3 : τ

Γ ` e1 ∼ e3 : τ

Γ′ ` e1 ∼ e2 : τ ′ ` C : (Γ′; τ ′) (Γ; τ)

Γ ` |C|[e1] ∼ |C|[e2] : τ
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Lemma 4 (Adequacy). If ` e1 ∼ e2 : int, then either both
e1 ↪→ω and e2 ↪→ω , or both e1 ↪→∗ n and e2 ↪→∗ n for some
integer value n.

Theorem 5 (Soundness).
Γ ` p1 : τ Γ ` |p1| ∼ |p2| : τ Γ ` p2 : τ

Γ ` p1 ∼ctx p2 : τ

6.1 Transitivity

As mentioned in the introduction, transitivity is of particular
interest to us. We describe the proof of transitivity for PBs in
detail in a technical report [9]. Developing this very complex
proof required a lot of effort. Fortunately, adapting it to SPBs
does not require many changes. We now briefly discuss the
more interesting ones.

The transitivity proof must establish that, given consistent
local knowledges L1, L2 with Γ ` e1 ∼L1

e2 : τ and Γ `
e2 ∼L2

e3 : τ , there exists a consistent local knowledge L with
Γ ` e1 ∼L e3 : τ . A key part of this proof is the “correct”
decomposition of a global knowledge G for L into G(1) for
L1 and G(2) for L2, using which L is defined. In the PB case,
we have (where ◦ is relational composition):

L(R) := L1(R(1)) ◦ L2(R(2))

The proof of L’s consistency is very tricky. Amongst other
things, it relies on the property that certain “bad” values can
be related by a global knowledge but not by a local one. This
is enforced in the PB model by a restriction on LK: values in
a local knowledge must be syntactic functions, in contrast to
a global knowledge. However, as explained in Section 4.4, we
had to drop this discrimination in SPBs. As a consequence,
we can no longer prove the consistency of such defined L.

Fortunately, the stutter budget enables a trick that lets us
overcome this problem. The idea is to define L in a slightly
different manner:

L(R) := (R(1) ◦R(2))
++

(Here (−)++ increments both parts of each tuple’s budget
by 1.) At a first glance, this seems very odd. Previously,
since L was defined as the composition of L1 and L2, we
could rely on L1 and L2’s consistency in proving L’s. Now,
however, L is defined in terms of global knowledges which
may contain junk. Fortunately, thanks to increasing the budget
in the definition of L, this is not an issue and we can pretty
easily prove L consistent. Of course, there is no free lunch, and
the price to pay for this parlor trick is that other parts of the
transitivity proof become even more subtle than they already
were (and the model had to be designed very carefully to
make them all go through). We intend to report on the details
of this new transitivity proof in a future, extended version of
this paper.

7 – DISCUSSION AND RELATED WORK

Modeling Higher-Order State and Abstract Types. Following
in the footsteps of PBs, it is fairly straightforward to scale
both the intermediate SPB model (Section 4) and the final

contextualized one (Section 5) to a language with polymor-
phism, abstract types, and general references. We have proven
all the meta-theoretic results of the previous section for this
full model, and mechanized the proofs in Coq. Our appendix
presents the definition of this full model, together with an
example application of it (namely, Dreyer et al.’s challenging
“well-bracketed state change” example [6]).

Concerning the extensions to abstract types and state, per-
haps the only significant difference between SPBs and PBs is
a (minor) generalization of local knowledges, necessitated by
SPBs’ relating of continuations in the local/global knowledge.
In the full PB model, both local and global knowledges were
indexed by states of a transition system used to describe
invariants on a term’s local mutable state. This holds true for
the full SPB model as well. The difference is that in PBs, a
local knowledge was only able to query the global knowledge
at the “current” state of the transition system, whereas in SPBs,
when defining a local knowledge, it is important to be able to
query whether some other continuations were related by the
global knowledge in previous states of the transition system.
Contextualization. In Section 5 we commented that using the
K relation in order to contextualize the model does not scale.
In particular, one might expect to see something like (ignoring
budget and types)

∀(K1,K2) ∈ K(G). (K1[γ1e1],K2[γ2e2]) ∈ E(G)

in the definition of program equivalence (and similarly for
consistency). That is, one would consider the behavior of
programs when run inside continuations related by K. To
understand why this approach does not scale, it is important to
understand that in the model for the full language with state,
equivalence is relative not only to a local knowledge, but to a
whole world [1, 6, 8] that, amongst other things, limits the part
of the heap that the programs may access. In particular, both
the local term equivalence relation, E, and the continuation
relation, K, require programs to conform to the world and are
therefore indexed by a world W .

One key property then is that programs stay equivalent when
the world is extended, i.e., when access to additional parts
of the heap is granted (intuitively, because the programs do
not care about these parts). This is where things go wrong
when using the contextualization sketched above. Assume two
programs are equivalent in a world W , meaning (according to
the definition sketched above) that they are related inside any
continuations from KW . We would now have to show that
the programs are also related when run inside continuations
from KW ′ , for any larger world W ′. However, since KW ′

generally contains more continuations than KW—after all,
those in KW ′ may access a larger part of the heap than those
in KW—this is clearly impossible to prove.
Well-Founded Bisimulations. Our technique of logical reduc-
tion is inspired by Namjoshi’s well-founded [15, 13] bisimu-
lations, which were developed as an alternative formulation
of stuttering bisimulations [4] that can be checked by only
reasoning about single transitions instead of infinite compu-
tations. In order to support finite but unbounded stuttering,
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well-founded bisimulations employ a “rank function” mapping
states to some well-founded ordering, and insist (roughly) that,
for states related in a bisimulation, either both make physical
transitions to related states or else one side makes a transition
while the rank of the pair of states decreases. In our model,
we use the stutter budget to effectively bake a particular rank
function into our bisimulations, which is sufficient for our
purposes and convenient to work with. As far as we aware,
this is the first time that the idea of well-founded bisimulations
has been adapted for use in reasoning about open programs in
a higher-order language setting.
Relational Reasoning About ML-Like Languages. As ex-
plained in the introduction, many methods have been devel-
oped for reasoning about equivalence in ML-like languages,
but the most powerful methods to date (at least practically
speaking, in terms of providing effective proof techniques)
are step-indexed Kripke logical relations methods [1, 6, 7]
and various bisimulation methods [11, 17, 19]. We proposed
PBs [8] as a way of synthesizing, as it were, the best of both
worlds, but our previous formulation of them was lacking in
(1) its invalidation of the eta law, and (2) its inability to model
control effects. Thus, for all their virtues, PBs could not be
claimed to subsume other methods, since indeed they could not
prove as many equivalences as, say, Dreyer et al.’s SKLRs [6],
which are compatible with both control effects and eta.

In this paper, we have shown how the idea of logical
reduction semantics employed by stuttering parametric bisim-
ulations (SPBs) rectifies the inadequacies of PBs, thus offering
a proof method on par with the state of the art. In addition,
like PBs, SPBs continue to offer distinct advantages over
SKLR and bisimulation methods, due to their transitivity
and semantic nature, respectively. We hope to exploit those
advantages in our future work on compositional compiler
certification.
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APPENDIX A
SPBS FOR λµ AND λµCc

A.1 Languages λµ and λµcc

The fragment λµ is obtained by removing first-class continuations (the parts highlighted in red).

A.1.1 Statics.

σ, τ ∈ Ty ::= α | int | σ1 × σ2 | σ1 + σ2 | σ1 → σ2 | µα. σ | contσ
p ∈ Prog ::= x | n | p1 � p2 | ifz p then p1 else p2 | 〈p1, p2〉 | p.1 | p.2 | inlσ p | inrσ p |

(case p of inlx⇒ p1 | inr x⇒ p2) | fix f(x:σ1):σ2. p | p1 p2 | rollσ p | unroll p |
callccσ (x. p) | throwσ p1 to p2 | isolate p

Term environments Γ ::= · | Γ, x:τ

Γ ` p : τ

` Γ x:τ ∈ Γ
Γ ` x : τ

` Γ
Γ ` n : int

Γ ` p1 : int Γ ` p2 : int

Γ ` p1 � p2 : int

Γ ` p0 : int Γ ` p1 : τ Γ ` p2 : τ

Γ ` ifz p0 then p1 else p2 : τ

Γ ` p1 : τ1 Γ ` p2 : τ2
Γ ` 〈p1, p2〉 : τ1 × τ2

Γ ` p : τ1 × τ2
Γ ` p.1 : τ1

Γ ` p : τ1 × τ2
Γ ` p.2 : τ2

Γ ` p : τ1
Γ ` inlτ2 p : τ1 + τ2

Γ ` p : τ2
Γ ` inrτ1 p : τ1 + τ2

Γ ` p : τ1 + τ2 Γ, x:τ1 ` p1 : τ Γ, x:τ2 ` p2 : τ

Γ ` case p of inlx⇒ p1 | inr x⇒ p2 : τ

Γ, f :(τ1 → τ2), x:τ1 ` p : τ2

Γ ` fix f(x:τ1):τ2. p : τ1 → τ2

Γ ` p1 : τ1 → τ2 Γ ` p2 : τ1
Γ ` p1 p2 : τ2

Γ ` p : σ[µα. σ/α]

Γ ` rollµα. σ p : µα. σ

Γ ` p : µα. σ

Γ ` unroll p : σ[µα. σ/α]

Γ, x:cont τ ` p : τ

Γ ` callccτ (x. p) : τ

Γ ` p′ : τ ′ Γ ` p : cont τ ′

Γ ` throwτ p
′ to p : τ

Γ ` p : τ → int

Γ ` isolate p : cont τ

13



A.1.2 Dynamics.

v ∈ Val ::= x | n | 〈v1, v2〉 | inl v | inr v | fix f(x). e | roll v | cont K
e ∈ Exp ::= v | e1 � e2 | ifz e0 then e1 else e2 | 〈e1, e2〉 | e.1 | e.2 | inl e | inr e |

(case e of inlx⇒ e1 | inr x⇒ e2) | e1 e2 | roll e | unroll e |
callcc (x. e) | throw e1 to e2 | isolate e

K ∈ Cont ::= • | K � e | v �K | ifz K then e1 else e2 | 〈K, e〉 | 〈v,K〉 | K.1 | K.2 |
inlK | inr K | (caseK of inlx⇒ e1 | inr x⇒ e2) | K e | v K | roll K |
unroll K | throw K to e | throw v to K | isolate K

e ↪→ e
K[n1 � n2] ↪→ K[n] (n = Jn1 � n2K)
K[ifz 0 then e1 else e2] ↪→ K[e1]
K[ifz n then e1 else e2] ↪→ K[e2] (n 6= 0)
K[〈v1, v2〉.1] ↪→ K[v1]
K[〈v1, v2〉.2] ↪→ K[v2]
K[case inl v of inlx⇒ e1 | inr x⇒ e2] ↪→ K[e1[v/x]]
K[case inr v of inlx⇒ e1 | inr x⇒ e2] ↪→ K[e2[v/x]]
K[(fix f(x). e) v] ↪→ K[e[(fix f(x). e)/f, v/x]]
K[unroll (roll v)] ↪→ K[v]
K[callcc (x. e)] ↪→ K[e[cont K/x]]
K[throw v to cont K ′] ↪→ K ′[v]
K[isolate v] ↪→ K[cont (v •)]

A.2 Simple SPB Model for λµ

A.2.1 Definition.
n, e ↪→ n′, e′

e ↪→ e′

n, e ↪→ n′, e′
n′ < n

n, e ↪→ n′, e

CVal := {v ∈ Val | fv(v) = ∅}
CExp := {e ∈ Exp | fv(e) = ∅}
CCont := {K ∈ Cont | fv(K[〈〉]) = ∅}
CTy := {τ ∈ Ty | fv(τ) = ∅}
CTyF := {τ1 → τ2 | τ1, τ2 ∈ CTy}

VRelF := P(CTyF× N× CVal× N× CVal)
KRel := P(CTy × CTy × N× CCont× N× CCont)
VRel := P(CTy × N× CVal× N× CVal)
ERel := P(CTy × N× CExp× N× CExp)

(−) ∈ VRelF→ VRel
R(int) := {(n1,m, n2,m)}
R(τ × τ ′) := {(n1, 〈v1, v

′
1〉, n2, 〈v2, v

′
2〉) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}

∩ {(n1, 〈v1, v
′
1〉, n2, 〈v2, v

′
2〉) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ + τ ′) := {(n1, inl v1, n2, inl v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}
∪ {(n1, inr v′1, n2, inr v′2) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ → τ ′) := {(n1, v1, n2, v2) ∈ R(τ → τ ′)}
R(µα. σ) := {(n1, roll v1, n2, roll v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(σ[µα. σ/α])}

LK := {L ∈ VRelF→ VRelF | ∀R. ∀(τ, n1, v1, n2, v2) ∈ L(R).
∀R′ ⊇ R,n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, v1, n

′
2, v2) ∈ L(R′)}

GK(L) := {G ∈ VRelF | L(G) ⊆ G ∧
∀(τ, n1, v1, n2, v2) ∈ G. ∀n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, v1, n

′
2, v2) ∈ G}
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S ∈ VRelF×VRelF→ ERel
S(R,G)(τ) := {(n1, v1 v

′
1, n2, v2 v

′
2) |

∃τ ′,m1,m2. (n1, v1, n2, v2) ∈ R(τ ′ → τ) ∧ (m1, v
′
1,m2, v

′
2) ∈ G(τ ′)}

E ∈ VRelF×VRelF→ ERel
E(R,G)(τ) := {(n1, e1, n2, e2) | (e1 ↪→ω ∧ e2 ↪→ω) ∨

(∃(n′1, v1, n
′
2, v2) ∈ G(τ). n1, e1 ↪→∗ n′1, v1 ∧ n2, e2 ↪→∗ n′2, v2) ∨

(∃(τ ′, n′1, e′1, n′2, e′2) ∈ S(R,G). ∃(k1,K1, k2,K2) ∈ K(R,G)(τ ′, τ).
n1, e1 ↪→∗ n′1,K1[e′1] ∧ n2, e2 ↪→∗ n′2,K2[e′2])}

K ∈ VRelF×VRelF→ KRel
K(R,G)(τ ′, τ) := {(k1,K1, k2,K2) | ∀(n1, v1, n2, v2) ∈ G(τ ′).

(k1 + n1,K1[v1], k2 + n2,K2[v2]) ∈ E(R,G)(τ)}

R$ := {(τ, n1, e1, n2, e2) | ∃(n′1, e′1, n′2, e′2) ∈ R(τ). n1, e1 ↪→ n′1, e
′
1 ∧ n2, e2 ↪→ n′2, e

′
2}

consistent(L) := ∀G ∈ GK(L). S(L(G), G) ⊆ E(G,G)$

Γ ` e1 ∼ e2 : τ := ∃L, f1, f2. consistent(L) ∧ Γ ` e1 ∼L,f1,f2 e2 : τ

Γ ` e1 ∼L,f1,f2 e2 : τ := ∀G ∈ GK(L). ∀(N1, γ1, N2, γ2) ∈ G(Γ).
(f1(N1), γ1e1, f2(N2), γ2e2) ∈ E(G,G)(τ)}

R(·) := {(·, id, ·, id)}
R(x:τ,Γ) := {(n1 :: N1, γ1[x 7→ v1], n2 :: N2, γ2[x 7→ v2]) |

(n1, v1, n2, v2) ∈ R(τ) ∧ (N1, γ1, N2, γ2) ∈ R(Γ)}

A.2.2 Properties.

Lemma 6. If

1) (τ, n′1, e
′
1, n
′
2, e
′
2) ∈ E(R,G)

2) n1, e1 ↪→∗ n′1, e′1
3) n2, e2 ↪→∗ n′2, e′2

then (τ, n1, e1, n2, e2) ∈ E(R,G).

Lemma 7.

• GK(L) ∩GK(L′) = GK(L ∪ L′)
• S(R,G) ∪ S(R′, G) = S(R ∪R′, G)

• consistent(L) ∧ consistent(L′) =⇒ consistent(L ∪ L′)
• Γ ` e1 ∼L,f1,f2 e2 : τ =⇒ Γ ` e1 ∼L∪L′,f1,f2 e2 : τ

Definition 4.

close(R) := {(τ, n1, e1, n2, e2) | ∃m1 ≤ n1,m2 ≤ n2. (τ,m1, e1,m2, e2) ∈ R}

Definition 5.

n(N) := n (f + f ′)(N) := f(N) + f ′(N)

Lemma 8.

∀τ, k1, k2, G. (τ, τ, k1, •, k2, •) ∈ K(G)
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A.2.3 Example: Eta Equivalence (lambda version).

e1 := |λf :τ → τ ′. λx:τ. f x|
e2 := |λf :τ → τ ′. f |

In order to prove ` e1 ∼ e2 : (τ → τ ′)→ τ → τ ′ for λµcc (and thus λµ), we define a suitable local knowledge L as follows:
L(G) := close{((τ → τ ′)→ τ → τ ′, 0, e1, 0, e2)}

∪ close{(τ → τ ′, 0, λx. v1 x, n2 + 1, v2) | ( , v1, n2, v2) ∈ G(τ → τ ′)}
We first show ` e1 ∼L,0,0 e2 : (τ → τ ′)→ τ → τ ′:
• Suppose G ∈ GK(L).
• We must show (0, e1, 0, e2) ∈ E(G,G)((τ → τ ′)→ τ → τ ′).
• It suffices to show (0, e1, 0, e2) ∈ G((τ → τ ′)→ τ → τ ′), which holds due to G ⊇ L(G).

It remains to show consistent(L):
1) • Suppose G ∈ GK(L), m1 ≥ 0, m2 ≥ 0, and ( , v1, , v2) ∈ G(τ → τ ′).
• We must show (m1, e1 v1,m2, e2 v2) ∈ E(G,G)$(τ → τ ′).
• It suffices to show ( , λx. v1 x, , v2) ∈ G(τ → τ ′), which holds due to G ⊇ L(G).

2) • Suppose G ∈ GK(L), ( , v1, n2, v2) ∈ G(τ → τ ′), m1 ≥ 0, m2 ≥ 0, and ( , v′1, , v
′
2) ∈ G(τ).

• We must show (m1, (λx. v1 x) v′1, n2 + 1 +m2, v2 v
′
2) ∈ E(G,G)$(τ ′).

• It suffices to show ( , v1 v
′
1, n2 +m2, v2 v

′
2) ∈ E(G,G)(τ ′).

• With Lemma 8, it suffices to show ( , v1 v
′
1, n2, v2 v

′
2) ∈ S(G,G)(τ ′), which follows with ( , v1, n2, v2) ∈ G(τ → τ ′).

A.3 SPB Models for λµ and λµcc

The model for λµ is obtained by excluding the parts highlighted in red.

A.3.1 Definition.
n, e ↪→ n′, e′

e ↪→ e′

n, e ↪→ n′, e′
n′ < n

n, e ↪→ n′, e

CVal := {v ∈ Val | fv(v) = ∅}
CExp := {e ∈ Exp | fv(e) = ∅}
CCont := {K ∈ Cont | fv(K[〈〉]) = ∅}
CTy := {τ ∈ Ty | fv(τ) = ∅}
CTyF := {τ1 → τ2 | τ1, τ2 ∈ CTy}

DRel := P((CTyF× N× CVal× N× CVal)
⊎

(CTy × N× CCont× N× CCont))
VRel := P(CTy × N× CVal× N× CVal)
ERel := P(N× CExp× N× CExp)

(−) ∈ DRel→ VRel
R(int) := {(n1,m, n2,m)}
R(τ × τ ′) := {(n1, 〈v1, v

′
1〉, n2, 〈v2, v

′
2〉) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}

∩ {(n1, 〈v1, v
′
1〉, n2, 〈v2, v

′
2〉) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ + τ ′) := {(n1, inl v1, n2, inl v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}
∪ {(n1, inr v′1, n2, inr v′2) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ → τ ′) := {(n1, v1, n2, v2) ∈ R(τ → τ ′)}
R(µα. σ) := {(n1, roll v1, n2, roll v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(σ[µα. σ/α])}
R(cont τ) := {(n1, cont K1, n2, cont K2) | ∃m1,m2. (m1,K1,m2,K2) ∈ R(τ)}

LK := {L ∈ DRel→ DRel | ∀R. ∀(τ, n1, d1, n2, d2) ∈ L(R).
∀R′ ⊇ R,n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, d1, n

′
2, d2) ∈ L(R′)}

GK(L) := {G ∈ DRel | L(G) ⊆ G ∧ (0, •, 0, •) ∈ G(int)∧
∀(τ, n1, d1, n2, d2) ∈ G. ∀n′1 ≥ n1, n

′
2 ≥ n2. (τ, n′1, d1, n

′
2, d2) ∈ G}
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S ∈ DRel×DRel→ ERel
S(R,G) := {(k1 + n1,K1[v1], k2 + n2,K2[v2]) |

∃τ. (k1,K1, k2,K2) ∈ R(τ) ∧ (n1, v1, n2, v2) ∈ G(τ)} ∪
{(n1,K1[v1 v

′
1], n2,K2[v2 v

′
2]) |

∃τ, τ ′,m1,m2, k1, k2. (n1, v1, n2, v2) ∈ R(τ ′ → τ) ∧
(m1, v

′
1,m2, v

′
2) ∈ G(τ ′) ∧ (k1,K1, k2,K2) ∈ G(τ)}

E ∈ DRel→ ERel
E(G) := {(n1, e1, n2, e2) | (e1 ↪→ω ∧ e2 ↪→ω) ∨

∃(n′1, e′1, n′2, e′2) ∈ S(G,G). n1, e1 ↪→∗ n′1, e′1 ∧ n2, e2 ↪→∗ n′2, e′2}
R$ := {(n1, e1, n2, e2) | n1, n2 > 0 ∧ (n1 − 1, e1, n2 − 1, e2) ∈ R}

consistent(L) := ∀G ∈ GK(L). S(L(G), G) ⊆ E(G)$

Γ ` e1 ∼ e2 : τ := ∃L, f1, f2. consistent(L) ∧ Γ ` e1 ∼L,f1,f2 e2 : τ

Γ ` e1 ∼L,f1,f2 e2 : τ := ∀G ∈ GK(L). ∀(N1, γ1, N2, γ2) ∈ G(Γ).
∀(k1,K1, k2,K2) ∈ G(τ). (f1(N1) + k1,K1[γ1e1], f2(N2) + k2,K2[γ2e2]) ∈ E(G)}

R(·) := {(·, id, ·, id)}
R(x:τ,Γ) := {(n1 :: N1, γ1[x 7→ v1], n2 :: N2, γ2[x 7→ v2]) |

(n1, v1, n2, v2) ∈ R(τ) ∧ (N1, γ1, N2, γ2) ∈ R(Γ)}

A.3.2 Properties.

Lemma 9. If
1) (n′1, e

′
1, n
′
2, e
′
2) ∈ E(G)

2) n1, e1 ↪→∗ n′1, e′1
3) n2, e2 ↪→∗ n′2, e′2

then (n1, e1, n2, e2) ∈ E(G).

Lemma 10.
• GK(L) ∩GK(L′) = GK(L ∪ L′)
• S(R,G) ∪ S(R′, G) = S(R ∪R′, G)
• consistent(L) ∧ consistent(L′) =⇒ consistent(L ∪ L′)
• Γ ` e1 ∼L,f1,f2 e2 : τ =⇒ Γ ` e1 ∼L∪L′,f1,f2 e2 : τ

Definition 6.
close(R) := {(τ, n1, e1, n2, e2) | ∃m1 ≤ n1,m2 ≤ n2. (τ,m1, e1,m2, e2) ∈ R}

Definition 7.
n(N) := n (f + f ′)(N) := f(N) + f ′(N)

Lemma 11. ` Γ x:τ ∈ Γ
Γ ` x ∼ x : τ

Proof:
• Let i be the index of x:τ in Γ.
• We show Γ ` x ∼∅,Πi,Πi

x : τ .
• So assume G ∈ GK(∅) and (N1, γ1, N2, γ2) ∈ G(Γ) and (k1,K1, k2,K2) ∈ G(τ).
• We must show (Πi(N1) + k1,K1[γ1x],Πi(N2) + k2,K2[γ2x]) ∈ E(G).
• It suffices to show (Πi(N1) + k1,K1[γ1x],Πi(N2) + k2,K2[γ2x]) ∈ S(G,G), which is obvious because

(Πi(N1), γ1x,Πi(N2), γ2x) ∈ G(τ).

Lemma 12.
Γ ` e1 ∼ e2 : τ Γ ` e′1 ∼ e′2 : τ ′

Γ ` 〈e1, e
′
1〉 ∼ 〈e2, e

′
2〉 : τ × τ ′
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Proof:
• We know (1) Γ ` e1 ∼L,f1,f2 e2 : τ and (2) Γ ` e′1 ∼L′,f ′

1,f
′
2
e′2 : τ ′ with consistent(L) and consistent(L′).

• We define L′′ as follows:

L′′(G):= L(G) ∪ L′(G)
∪ close{(τ, f ′1(N1) + 2 + k1,K1[〈•, γ1e

′
1〉], f ′2(N2) + 2 + k2,K2[〈•, γ2e

′
2〉]) |

(N1, γ1, N2, γ2) ∈ G(Γ) ∧ (k1,K1, k2,K2) ∈ G(τ × τ ′)}
∪ close{(τ ′, 1 + k1,K1[〈v1, •〉], 1 + k2,K2[〈v2, •〉]) |

( , v1, , v2) ∈ G(τ) ∧ (k1,K1, k2,K2) ∈ G(τ × τ ′)}
• We first show Γ ` 〈e1, e

′
1〉 ∼L′′,(f1+f ′

1+2),(f2+f ′
2+2) 〈e2, e

′
2〉 : τ × τ ′.

– Assume G ∈ GK(L′′), (N1, γ1, N2, γ2) ∈ G(Γ), and (k1,K1, k2,K2) ∈ G(τ × τ ′).
– Using (1) and Lemma 10, it suffices to show

(f ′1(N1) + 2 + k1,K1[〈•, γ1e
′
1〉], f ′2(N2) + 2 + k2,K2[〈•, γ2e

′
2〉]) ∈ G(τ),

which holds due to G ⊇ L′′(G).
• It remains to prove consistent(L′′). With Lemma 10, this reduces to the following:

1) – Suppose G ∈ GK(L′′), (N1, γ1, N2, γ2) ∈ G(Γ), (k1,K1, k2,K2) ∈ G(τ × τ ′), m1 ≥ 0, m2 ≥ 0, and
(n1, v1, n2, v2) ∈ G(τ).

– We must show (f ′1(N1) + 1 + k1 +m1 + n1,K1[〈v1, γ1e
′
1〉], f ′2(N2) + 1 + k2 +m2 + n2,K2[〈v2, γ2e

′
2〉]) ∈ E(G).

– Using (2) and Lemma 10, it suffices to show

(1 + k1 +m1 + n1,K1[〈v1, •〉], 1 + k2 +m2 + n2,K2[〈v2, •〉]) ∈ G(τ ′),

which holds due to G ⊇ L′′(G).
2) – Suppose G ∈ GK(L′′), ( , v1, , v2) ∈ G(τ), (k1,K1, k2,K2) ∈ G(τ×τ ′), m1 ≥ 0, m2 ≥ 0, and (n′1, v

′
1, n
′
2, v
′
2) ∈

G(τ ′).
– We must show (k1 +m1 + n′1,K1[〈v1, v

′
1〉], k2 +m2 + n′2,K2[〈v2, v

′
2〉]) ∈ E(G).

– This follows from E(G) ⊇ S(G,G), (k1,K1, k2,K2) ∈ G(τ × τ ′), and (m1 + n′1, 〈v1, v
′
1〉,m2 + n′2, 〈v2, v

′
2〉) ∈

G(τ × τ ′).

Lemma 13.
Γ ` e1 ∼ e2 : τ × τ ′
Γ ` e1.1 ∼ e2.1 : τ

Proof:
• We know (*) Γ ` e1 ∼L,f1,f2 e2 : τ × τ ′ with consistent(L).
• We define L′ as follows:

L′(G):= L(G)
∪ close{(τ × τ ′, k1 + 1,K1[•.1], k2 + 1,K2[•.1]) |

(k1,K1, k2,K2) ∈ G(τ)}
• We first show Γ ` e1.1 ∼L′,f1+1,f2+1 e2.1 : τ .

– Assume G ∈ GK(L) and (N1, γ1, N2, γ2) ∈ G(Γ) and (k1,K1, k2,K2) ∈ G(τ).
– Using (1) and Lemma 10, it suffices to show

(k1 + 1,K1[•.1], k2 + 1,K2[•.1]) ∈ G(τ × τ ′),
which holds due to G ⊇ L′(G).

• It remains to show consistent(L′). With Lemma 10, this reduces to the following.
– Suppose G ∈ GK(L′), m1 ≥ 0, m2 ≥ 0, (k1,K1, k2,K2) ∈ G(τ), and (**) (n1, v1, n2, v2) ∈ G(τ × τ ′).
– We must show (k1 +m1 + n1,K1[v1.1], k2 +m2 + n2,K2[v2.1]) ∈ E(G).
– From (**) we know there are v′1, v

′′
1 , v
′
2, v
′′
2 such that vi = 〈v′i, v′′i 〉 and ( , v′1, , v

′
2) ∈ G(τ).

– It thus suffices to show ( ,K1[v′1], ,K2[v′2]) ∈ S(G,G), which is obvious.

Lemma 14.
Γ, f :(τ ′ → τ), x:τ ′ ` e1 ∼ e2 : τ

Γ ` fix f(x). e1 ∼ fix f(x). e2 : τ ′ → τ

Proof:
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• We know (*) Γ, f :(τ ′ → τ), x:τ ′ ` e1 ∼L,f1,f2 e2 : τ with consistent(L).
• We define L′ as follows:

L′(G):= L(G)
∪ close{(τ ′ → τ, 0, fix f(x). γ1e1, 0, fix f(x). γ2e2) |

( , γ1, , γ2) ∈ G(Γ)}
• We first show Γ ` fix f(x). e1 ∼L′,0,0 fix f(x). e2 : τ ′ → τ .

– Assume G ∈ GK(L′), (N1, γ1, N2, γ2) ∈ G(Γ), and (k1,K1, k2,K2) ∈ G(τ ′ → τ).
– It suffices to show (k1,K1[fix f(x). γ1e1], k2,K2[fix f(x). γ2e2]) ∈ S(G,G), which follows with G ⊇ L′(G).

• It remains to show consistent(L′). With Lemma 10, this reduces to the following.
– Suppose G ∈ GK(L′), ( , γ1, , γ2) ∈ G(Γ), m1 ≥ 0, m2 ≥ 0, ( ,K1, ,K2) ∈ G(τ), and ( , v1, , v2) ∈ G(τ ′).
– We must show (m1,K1[(fix f(x). γ1e1) v1],m2,K2[(fix f(x). γ2e2) v2]) ∈ E(G).
– By Lemma 9 it suffices to show ( ,K1[γ′1e1], ,K2[γ′2e2]) ∈ E(G), where γ′i := γi, f 7→(fix f(x). γiei), x7→vi.
– Using Lemma 10, this follows from (*) if we can show

( , fix f(x). γ1e1, , fix f(x). γ2e2) ∈ G(τ ′ → τ)

and
( , v1, , v2) ∈ G(τ ′).

– The former follows again from G ⊇ L′(G) and the latter is given.

Lemma 15.
Γ ` e1 ∼ e2 : τ ′ → τ Γ ` e′1 ∼ e′2 : τ ′

Γ ` e1 e
′
1 ∼ e2 e

′
2 : τ

Proof:
• We know (1) Γ ` e1 ∼L,f1,f2 e2 : τ ′ → τ and (2) Γ ` e′1 ∼L′,f ′

1,f
′
2
e′2 : τ ′ with consistent(L) and consistent(L′).

• We define L′′ as follows:

L′′(G):= L(G) ∪ L′(G)
∪ close{(τ ′ → τ, f ′1(N1) + 2,K1[• γ1e

′
1], f ′2(N2) + 2,K2[• γ2e

′
2]) |

(N1, γ1, N2, γ2) ∈ G(Γ) ∧ ( ,K1, ,K2) ∈ G(τ)}
∪ close{(τ ′, 1 + n1,K1[v1 •], 1 + n2,K2[v2 •]) |

( ,K1, ,K2) ∈ G(τ) ∧ (n1, v1, n2, v2) ∈ G(τ ′ → τ)}
• We first show Γ ` e1 e

′
1 ∼L′′,(f1+f ′

1+2),(f2+f ′
2+2) e2 e

′
2 : τ .

– Assume G ∈ GK(L′′), (N1, γ1, N2, γ2) ∈ G(Γ), and (k1,K1, k2,K2) ∈ G(τ).
– Using (1) and Lemma 10, it suffices to show (f ′1(N1)+2+k1,K1[• γ1e

′
1], f ′2(N2)+2+k2,K2[• γ2e

′
2]) ∈ G(τ ′ → τ),

which holds due to G ⊇ L′′(G).
• It remains to show consistent(L′′). With Lemma 10, this reduces to the following.

1) – Suppose G ∈ GK(L′′), (N1, γ1, N2, γ2) ∈ G(Γ), ( ,K1, ,K2) ∈ G(τ), m1 ≥ 0, m2 ≥ 0, and (n1, v1, n2, v2) ∈
G(τ ′ → τ).

– We must show (f ′1(N1) + 1 +m1 + n1,K1[v1 γ1e
′
1], f ′2(N2) + 1 +m2 + n2,K2[v2 γ2e

′
2]) ∈ E(G).

– Using (2) and Lemma 10, it then suffices to show

(1 +m1 + n1,K1[v1 •], 1 +m2 + n2,K2[v2 •]) ∈ G(τ ′),

which holds due to G ⊇ L′′(G).
2) – Suppose G ∈ GK(L′′), ( ,K1, ,K2) ∈ G(τ), (n1, v1, n2, v2) ∈ G(τ ′ → τ), m1 ≥ 0, m2 ≥ 0, and

(n′1, v
′
1, n
′
2, v
′
2) ∈ G(τ ′).

– We must show (n1 +m1 + n′1,K1[v1 v
′
1], n2 +m2 + n′2,K2[v2 v

′
2]) ∈ E(G).

– It suffices to show (n1,K1[v1 v
′
1], n2,K2[v2 v

′
2]) ∈ S(G,G), which is obvious.

Lemma 16.
Γ, x:cont τ ` e1 ∼ e2 : τ

Γ ` callcc (x. e1) ∼ callcc (x. e2) : τ

Proof:
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• We know (*) Γ, x:cont τ ` e1 ∼L,f1,f2 e2 : τ with consistent(L).
• We show Γ ` callcc (x. e1) ∼L,0,0 callcc (x. e2) : τ .
• So assume G ∈ GK(L) and (N1, γ1, N2, γ2) ∈ G(Γ) and (k1,K1, k2,K2) ∈ G(τ).
• We must show (k1,K1[callcc (x. γ1e1)], k2,K2[callcc (x. γ2e2)]) ∈ E(G).
• By Lemma 9 it suffices to show ( ,K1[γ′1e1], ,K2[γ′2e2]) ∈ E(G), where γ′i := γi, x7→(cont Ki).
• This follows from (*) if we can show ( , cont K1, , cont K2) ∈ G(cont τ) and ( ,K1, ,K2) ∈ G(τ).
• The former follows from the latter and the latter is given.

Lemma 17.
Γ ` e′1 ∼ e′2 : τ ′ Γ ` e1 ∼ e2 : cont τ ′

Γ ` throw e′1 to e1 ∼ throw e′2 to e2 : τ

Proof:
• We know (1) Γ ` e′1 ∼L′,f ′

1,f
′
2
e′2 : τ ′ and (2) Γ ` e1 ∼L,f1,f2 e2 : cont τ ′ with consistent(L) and consistent(L′).

• We define L′′ as follows:

L′′(G):= L(G) ∪ L′(G)
∪ close{(τ ′, f1(N1) + 1,K1[throw • to γ1e1], f2(N2) + 1,K2[throw • to γ2e2]) |

(N1, γ1, N2, γ2) ∈ G(Γ) ∧ ( ,K1, ,K2) ∈ G(τ)}
∪ close{(cont τ ′, 0,K1[throw v′1 to •], 0,K2[throw v′2 to •]) |

( ,K1, ,K2) ∈ G(τ) ∧ ( , v′1, , v
′
2) ∈ G(τ ′)}

• We first show Γ ` throw e′1 to e1 ∼L′′,(f ′
1+f1+1),(f ′

2+f2+1) throw e′2 to e2 : τ .
– Assume G ∈ GK(L′′) and (N1, γ1, N2, γ2) ∈ G(Γ) and (k1,K1, k2,K2) ∈ G(τ).
– Using (1) and Lemma 10, it suffices to show (f1(N1) + 1 + k1,K1[throw • to γ1e1], f2(N2) + 1 + k2,K2[throw •

to γ2e2]) ∈ G(τ ′), which holds due to G ⊇ L′′(G).
• It remains to show consistent(L′′). With Lemma 10, this reduces to the following:

1) – Suppose G ∈ GK(L′′), (N1, γ1, N2, γ2) ∈ G(Γ), ( ,K1, ,K2) ∈ G(τ), m1 ≥ 0, m2 ≥ 0, and (n′1, v
′
1, n
′
2, v
′
2) ∈

G(τ ′).
– We must show (f1(N1) +m1 + n′1,K1[throw v′1 to γ1e1], f2(N2) +m2 + n′2,K2[throw v′2 to γ2e2]) ∈ E(G).
– Using (2) and Lemma 10, it then suffices to show

(m1 + n′1,K1[throw v′1 to •],m2 + n′2,K2[throw v′2 to •]) ∈ G(cont τ ′),

which holds due to G ⊇ L′′(G).
2) – Suppose G ∈ GK(L′′), ( ,K1, ,K2) ∈ G(τ), ( , v′1, , v

′
2) ∈ G(τ ′), (n1, v1, n2, v2) ∈ G(cont τ ′), m1 + n1 > 0,

and m2 + n2 > 0.
– We must show (m1 + n1 − 1,K1[throw v′1 to v1],m2 + n2 − 1,K2[throw v′2 to v2]) ∈ E(G).
– We know v1 = cont K ′1 and v2 = cont K ′2 for some ( ,K ′1, ,K

′
2) ∈ G(τ ′).

– It thus suffices to show ( ,K ′1[v′1], ,K ′2[v′2]) ∈ S(G,G), which is obvious.

Lemma 18.
Γ ` e1 ∼ e2 : τ → int

Γ ` isolate e1 ∼ isolate e2 : cont τ

Proof:
• We know (*) Γ ` e1 ∼L,f1,f2 e2 : τ → int with consistent(L).
• We define L′ as follows:

L′(G):= L(G)
∪ close{(τ → int, 0,K1[isolate •], 0,K2[isolate •]) |

( ,K1, ,K2) ∈ G(cont τ)}
∪ close{(τ, n1 + 1, v1 •, n2 + 1, v2 •) |

(n1, v1, n2, v2) ∈ G(τ → int)}
• We first show Γ ` isolate e1 ∼L′,(f1+1),(f2+1) isolate e2 : cont τ .

– Assume G ∈ GK(L′) and (N1, γ1, N2, γ2) ∈ G(Γ) and (k1,K1, k2,K2) ∈ G(cont τ).
– We must show (f1(N1) + k1,K1[isolate γ1e1], f2(N2) + k2,K2[isolate γ2e2]) ∈ E(G).
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– Using (*) and Lemma 10, it suffices to show (k1,K1[isolate •], k2,K2[isolate •]) ∈ G(τ → int), which holds due to
G ⊇ L′(G).

• It remains to show consistent(L′). With Lemma 10, this reduces to the following:
1) – Suppose G ∈ GK(L′), ( ,K1, ,K2) ∈ G(cont τ), m1 ≥ 0, m2 ≥ 0, and (n1, v1, n2, v2) ∈ G(τ → int).

– We must show (m1 + n1,K1[isolate v1],m2 + n2,K2[isolate v2]) ∈ E(G).
– It suffices to show ( ,K1[cont (v1 •)], ,K2[cont (v2 •)]) ∈ S(G,G).
– This follows from ( , v1 •, , v2 •) ∈ G(τ), which holds due to G ⊇ L′(G).

2) – Suppose G ∈ GK(L′), (n1, v1, n2, v2) ∈ G(τ → int), m1 ≥ 0, m2 ≥ 0, and (n′1, v
′
1, n
′
2, v
′
2) ∈ G(τ).

– We must show (n1 +m1 + n′1, v1 v
′
1, n2 +m2 + n′2, v2 v

′
2) ∈ E(G).

– It suffices to show (n1, v1 v
′
1, n2, v2 v

′
2) ∈ S(G,G), which follows from ( , •, , •) ∈ G(int).

A.3.3 Example: Callcc in a Loop.

τ := µα. cont int→ α
e1 := |λy:τ. callccint (k. Fk y)| where Fv := fix f(x). f (unroll x v)
e2 := |fix f(x:τ):int. callccint (k. f (unroll x k))|

In order to prove ` e1 ∼ e2 : τ → int (in λµcc), we define a suitable local knowledge L as follows:
L(G) := close{(τ → int, 0, e1, 0, e2)}

∪ close{(τ, 0,K1[F(cont K1) •], 0,K2[e2 •]) | ( ,K1, ,K2) ∈ G(int)}
We first show ` e1 ∼L,0,0 e2 : τ → int:
• Suppose G ∈ GK(L) and (k1,K1, k2,K2) ∈ G(τ → int).
• We must show (k1,K1[e1], k2,K2[e2]) ∈ E(G).
• It suffices to show (0, e1, 0, e2) ∈ G(τ → int), which holds due to G ⊇ L(G).

It remains to show consistent(L):
1) • Suppose G ∈ GK(L), m1 ≥ 0, m2 ≥ 0, (*) ( , v1, , v2) ∈ G(τ), and ( ,K1, ,K2) ∈ G(int).
• We must show (m1,K1[e1 v1],m2,K2[e2 v2]) ∈ E(G)$.
• From (*) we know that there is ( , v′1, , v

′
2) ∈ G(cont int→ τ) such that vi = roll v′i.

• It thus suffices to show ( ,K1[F(cont K1) (v′1 (cont K1))], ,K2[e2 (v′2 (cont K2))]) ∈ S(G,G).
• Since ( , cont K1, , cont K2) ∈ G(cont int), this follows from ( ,K1[F(cont K1) •], ,K2[e2 •]) ∈ G(τ), which holds

due to G ⊇ L(G).
2) • Suppose G ∈ GK(L), ( ,K1, ,K2) ∈ G(int), m1 ≥ 0, m2 ≥ 0, and (*) (n1, v1, n2, v2) ∈ G(τ).
• We must show (m1 + n1,K1[F(cont K1) v1],m2 + n2,K2[e2 v2]) ∈ E(G)$.
• From (*) we know that there is ( , v′1, , v

′
2) ∈ G(cont int→ τ) such that vi = roll v′i.

• It thus suffices to show ( ,K1[F(cont K1) (v′1 (cont K1))], ,K2[e2 (v′2 (cont K2))]) ∈ S(G,G).
• Since ( , cont K1, , cont K2) ∈ G(cont int), this follows from ( ,K1[F(cont K1) •], ,K2[e2 •]) ∈ G(τ), which holds

due to G ⊇ L(G).

A.3.4 Example: Eta Equivalence (lambda version).

e1 := |λf :τ → τ ′. λx:τ. f x|
e2 := |λf :τ → τ ′. f |

In order to prove ` e1 ∼ e2 : (τ → τ ′)→ τ → τ ′ for λµcc (and thus λµ), we define a suitable local knowledge L as follows:
L(G) := close{((τ → τ ′)→ τ → τ ′, 0, e1, 0, e2)}

∪ close{(τ → τ ′, 0, λx. v1 x, n2 + 1, v2) | ( , v1, n2, v2) ∈ G(τ → τ ′)}
We first show ` e1 ∼L,0,0 e2 : (τ → τ ′)→ τ → τ ′:
• Suppose G ∈ GK(L) and (k1,K1, k2,K2) ∈ G((τ → τ ′)→ τ → τ ′).
• We must show (k1,K1[e1], k2,K2[e2]) ∈ E(G).
• It suffices to show (0, e1, 0, e2) ∈ G((τ → τ ′)→ τ → τ ′), which holds due to G ⊇ L(G).

It remains to show consistent(L):
1) • Suppose G ∈ GK(L), m1 ≥ 0, m2 ≥ 0, ( , v1, , v2) ∈ G(τ → τ ′), and ( ,K1, ,K2) ∈ G(τ → τ ′).
• We must show (m1,K1[e1 v1],m2,K2[e2 v2]) ∈ E(G)$.
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• It suffices to show ( ,K1[λx. v1 x], ,K2[v2]) ∈ S(G,G).
• This follows from ( , λx. v1 x, , v2) ∈ G(τ → τ ′), which holds due to G ⊇ L(G).

2) • Suppose G ∈ GK(L), ( , v1, n2, v2) ∈ G(τ → τ ′), m1 ≥ 0, m2 ≥ 0, ( , v′1, , v
′
2) ∈ G(τ) and ( ,K1, ,K2) ∈ G(τ ′).

• We must show (m1,K1[(λx. v1 x) v′1], n2 + 1 +m2,K2[v2 v
′
2]) ∈ E(G)$.

• It suffices to show ( ,K1[v1 v
′
1], n2,K2[v2 v

′
2]) ∈ S(G,G), which follows with ( , v1, n2, v2) ∈ G(τ → τ ′).

A.3.5 Example: Syntactic Minimal Invariance.

τ := µα. int + (α→ α)
e1 := |fix f(x:τ):τ. case unroll x of inl y ⇒ roll (inl y)

| inr g ⇒ roll (inr λy:τ. f (g (f y)))|
e2 := |λx:τ. x|

In order to prove ` e1 ∼ e2 : τ → τ for λµcc (and thus λµ), we define a suitable local knowledge L as follows:
L(G) := close{(τ → τ, 0, e1, 0, e2)}

∪ close{(τ → τ, 0, λy. e1 (v1 (e1 y)), n2 + 1, v2) | ( , v1, n2, v2) ∈ G(τ → τ)}
∪ close{(τ, 0,K1[e1 •], k2 + 1,K2) | ( ,K1, k2,K2) ∈ G(τ)}

We first show ` e1 ∼L,0,0 e2 : τ → τ :
• Suppose G ∈ GK(L) and (k1,K1, k2,K2) ∈ G(τ → τ).
• We must show (k1,K1[e1], k2,K2[e2]) ∈ E(G).
• It suffices to show (0, e1, 0, e2) ∈ G(τ → τ), which holds due to G ⊇ L(G).

To simplify the proof of consistency, we now show the following property (†):
∀G ∈ GK(L), ( , v1, n2, v2) ∈ G(τ). ∀K. ∃v′1. K[e1 v1] ↪→+ K[v′1] ∧ ( , v′1, n2, v2) ∈ G(τ)

• From ( , v1, n2, v2) ∈ G(τ) we know that there are v′1, v
′
2 such that vi = roll v′i and (*) ( , v′1, , v

′
2) ∈ G(int + (τ → τ)).

• From (*) we know that there are v′′1 , v
′′
2 such that either (a) v′i = inl v′′i and ( , v′′1 , , v

′′
2 ) ∈ G(int) or (b) v′i = inr v′′i and

( , v′′1 , , v
′′
2 ) ∈ G(τ → τ).

• In case (a) we know K[e1 v1] ↪→+ K[v1], and we are done.
• Now consider case (b).
• Here we know K[e1 v1] ↪→+ K[v̂1] for v̂1 := roll (inr λy. e1 (v′′1 (e1 y))), so it remains to show ( , v̂1, n2, roll (inr v′′2 )) ∈
G(τ).

• This follows from ( , λy. e1 (v′′1 (e1 y)), , v′′2 ) ∈ G(τ → τ), which holds due to G ⊇ L(G).
It remains to show consistent(L):

1) • Suppose G ∈ GK(L), m1 ≥ 0, m2 ≥ 0, ( , v1, , v2) ∈ G(τ), and ( ,K1, ,K2) ∈ G(τ).
• We must show (m1,K1[e1 v1],m2,K2[e2 v2]) ∈ E(G)$.
• With the help of (†), it suffices to show ( ,K1[v′1], ,K2[v2]) ∈ S(G,G) for any v′1 with ( , v′1, , v2) ∈ G(τ), which

is obvious.
2) • Suppose G ∈ GK(L), ( , v1, n2, v2) ∈ G(τ → τ), m1 ≥ 0, m2 ≥ 0, ( , v′1, , v

′
2) ∈ G(τ), and ( ,K1, ,K2) ∈ G(τ).

• We must show (m1,K1[(λy. e1 (v1 (e1 y))) v′1], n2 + 1 +m2,K2[v2 v
′
2]) ∈ E(G)$.

• With the help of (†), it suffices to show ( ,K1[e1 (v1 v
′′
1 )], n2,K2[v2 v

′
2]) ∈ S(G,G) for any v′′1 with ( , v′′1 , , v

′
2) ∈

G(τ).
• This follows from ( ,K1[e1 •], ,K2) ∈ G(τ), which holds due to G ⊇ L(G).

3) • Suppose G ∈ GK(L), ( ,K1, k2,K2) ∈ G(τ), m1 ≥ 0, m2 ≥ 0, and (n1, v1, n2, v2) ∈ G(τ).
• We must show (m1 + n1,K1[e1 v1], k2 + 1 +m2 + n2,K2[v2]) ∈ E(G)$.
• With the help of (†), it suffices to show ( ,K1[v′1], k2 + n2,K2[v2]) ∈ S(G,G) for any v′1 with ( , v′1, n2, v2) ∈ G(τ),

which is obvious.

A.3.6 Using Paco (parameterized coinduction).

Definition 8.
f ∈ LK

mon→ LK
f(L)(G)(τ) := {(n1, d1, n2, d2) |
∀G′ ∈ GK(L). G′ ⊇ G =⇒ S({(τ, n1, d1, n2, d2)}, G′) ⊆ E(G′)$}

Using Lemmas 9 and 10, it is easy to verify that f is well-defined, i.e., that it returns valid local knowledges and is itself
monotone.
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Lemma 19.
L ⊆ f(L) =⇒ consistent(L)

Proof:
• Assume L ⊆ f(L) and suppose G ∈ GK(L) and (n1, e1, n2, e2) ∈ S(L(G), G).
• We must show (n1, e1, n2, e2) ∈ E(G)$.
• From (n1, e1, n2, e2) ∈ S(L(G), G) we know that there is (τ,m1, d1,m2, d2) ∈ L(G) such that (n1, e1, n2, e2) ∈

S({(τ,m1, d1,m2, d2)}, G).
• Using the assumption, we have (τ,m1, d1,m2, d2) ∈ f(L)(G).
• Exploiting this, we are done because G ⊇ G.

Lemma 20.
consistent(L) =⇒ L ⊆ f(L)

Proof:
• Assume consistent(L) and suppose G ∈ DRel and (τ, n1, d1, n2, d2) ∈ L(G).
• We must show (τ, n1, d1, n2, d2) ∈ f(L)(G).
• So suppose G′ ∈ GK(L), G′ ⊇ G, and (m1, e1,m2, e2) ∈ S({(τ, n1, d1, n2, d2)}, G′).
• Using monotonicity of S(−,G′) and of L, this implies (m1, e1,m2, e2) ∈ S(L(G′), G′)
• From consistent(L) we then get (m1, e1,m2, e2) ∈ E(G′)$.

Definition 9.
L ∈ LK→ LK
L(L) := νX. f(X ∪ L)

Lemma 21 (L(∅) is the greatest consistent local knowledge).
• consistent(L(∅))
• consistent(L) =⇒ L ⊆ L(∅)

Proof: Since L(∅) is by definition the greatest postfixed point of f, this follows from Lemmas 19 and 20.

Lemma 22.
Γ ` e1 ∼ e2 : τ ⇐⇒ ∃f1, f2. Γ ` e1 ∼L(∅),f1,f2 e2 : τ

Proof: The ⇐=-direction is trivial with Lemma 21. Consider the =⇒ -direction:
• From Γ ` e1 ∼ e2 : τ we know Γ ` e1 ∼L,f1,f2 e2 : τ with consistent(L).
• The latter implies L ⊆ L(∅) by Lemma 21.
• We are done by Lemma 10.

Lemma 23 (ACCUMULATE).
L ⊆ L(L′) ⇐⇒ L ⊆ L(L ∪ L′)

Proof: See our Paco paper (The Power of Parameterization in Coinductive Proof).
All this can be done for the other models/languages too. See our Coq formalization.
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APPENDIX B
SPBS FOR Fµ! AND Fµ!

Cc

B.1 Languages Fµ! and Fµ!
cc

The fragment Fµ! is obtained by removing first-class continuations (the parts highlighted in red).

B.1.1 Statics.

σ, τ ∈ Ty ::= α | int | unit | σ1 × σ2 | σ1 + σ2 | σ1 → σ2 | µα. σ | contσ | ∀α. σ | ∃α. σ | ref σ
p ∈ Prog ::= x | n | 〈〉 | p1 � p2 | ifz p then p1 else p2 | 〈p1, p2〉 | p.1 | p.2 | inlσ p | inrσ p |

(case p of inlx⇒ p1 | inr x⇒ p2) | fix f(x:σ1):σ2. p | p1 p2 | rollσ p | unroll p |
callccσ (x. p) | throwσ p1 to p2 | isolate p | Λα. p | p[σ] | pack 〈σ1, p〉 as σ2 |
unpack p1 as 〈α, x〉 in p2 | ref p | p1 := p2 | p1 == p2 | !p

Type environments ∆ ::= · | ∆, α
Term environments Γ ::= · | Γ, x:σ

∆ ` σ
fv(σ) ⊆ ∆ names(σ) = ∅

∆ ` σ
∆ ` Γ

∀x:σ ∈ Γ. ∆ ` σ
∆ ` Γ

∆; Γ ` p : τ
` ∆; Γ x:τ ∈ ∆; Γ

∆; Γ ` x : τ

` ∆; Γ

∆; Γ ` n : int

∆; Γ ` p1 : int ∆; Γ ` p2 : int

∆; Γ ` p1 � p2 : int

∆; Γ ` p0 : int ∆; Γ ` p1 : τ ∆; Γ ` p2 : τ

∆; Γ ` ifz p0 then p1 else p2 : τ

∆; Γ ` p1 : τ1 ∆; Γ ` p2 : τ2
∆; Γ ` 〈p1, p2〉 : τ1 × τ2

∆; Γ ` p : τ1 × τ2
∆; Γ ` p.1 : τ1

∆; Γ ` p : τ1 × τ2
∆; Γ ` p.2 : τ2

∆; Γ ` p : τ1
∆; Γ ` inlτ2 p : τ1 + τ2

∆; Γ ` p : τ2
∆; Γ ` inrτ1 p : τ1 + τ2

∆; Γ ` p : τ1 + τ2 ∆; Γ, x:τ1 ` p1 : τ ∆; Γ, x:τ2 ` p2 : τ

∆; Γ ` case p of inlx⇒ p1 | inr x⇒ p2 : τ

∆; Γ, f :(τ1 → τ2), x:τ1 ` p : τ2

∆; Γ ` fix f(x:τ1):τ2. p : τ1 → τ2

∆; Γ ` p1 : τ1 → τ2 ∆; Γ ` p2 : τ1
∆; Γ ` p1 p2 : τ2

∆; Γ ` p : σ[µα. σ/α]

∆; Γ ` rollµα. σ p : µα. σ

∆; Γ ` p : µα. σ

∆; Γ ` unroll p : σ[µα. σ/α]

∆; Γ, x:cont τ ` p : τ

∆; Γ ` callccτ (x. p) : τ

∆; Γ ` p′ : τ ′ ∆; Γ ` p : cont τ ′

∆; Γ ` throwτ p
′ to p : τ

∆; Γ ` p : τ → int

∆; Γ ` isolate p : cont τ

∆, α; Γ ` p : σ

∆; Γ ` Λα. p : ∀α. σ
∆; Γ ` p : ∀α. σ ∆ ` σ′

∆; Γ ` p[σ′] : σ[σ′/α]
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∆ ` σ1 ∆; Γ ` p : σ2[σ1/α]

∆; Γ ` pack 〈σ1, p〉 as ∃α. σ2 : ∃α. σ2

∆; Γ ` p1 : ∃α. σ1 ∆, α; Γ, x:σ1 ` p2 : σ2 ∆ ` σ2

∆; Γ ` unpack p1 as 〈α, x〉 in p2 : σ2

∆; Γ ` p : σ

∆; Γ ` ref p : ref σ

∆; Γ ` p1 : ref σ ∆; Γ ` p2 : σ

∆; Γ ` p1 := p2 : unit

∆; Γ ` p : ref σ

∆; Γ ` !p : σ

∆; Γ ` p1 : ref σ ∆; Γ ` p2 : ref σ

∆; Γ ` p1 == p2 : int

B.1.2 Dynamics.

v ∈ Val ::= x | n | 〈〉 | l | 〈v1, v2〉 | inl v | inr v | fix f(x). e | roll v | cont K | Λ. e | pack e
e ∈ Exp ::= v | e1 � e2 | ifz e0 then e1 else e2 | 〈e1, e2〉 | e.1 | e.2 | inl e | inr e |

(case e of inlx⇒ e1 | inr x⇒ e2) | e1 e2 | roll e | unroll e |
callcc (x. e) | throw e1 to e2 | isolate e | e[] | unpack e1 as x in e2 |
ref e | e1 := e2 | e1 == e2 | !e

K ∈ Cont ::= • | K � e | v �K | ifz K then e1 else e2 | 〈K, e〉 | 〈v,K〉 | K.1 | K.2 |
inlK | inr K | (caseK of inlx⇒ e1 | inr x⇒ e2) | K e | v K | roll K |
unroll K | throw K to e | throw v to K | isolate K | K[] | pack K |
unpack K as x in e | ref K | K := e | v := K | K == e | v == K | !K

h, e ↪→ h′, e′

h,K[n1 � n2] ↪→ h,K[n] (n = Jn1 � n2K)
h,K[ifz 0 then e1 else e2] ↪→ h,K[e1]
h,K[ifz n then e1 else e2] ↪→ h,K[e2] (n 6= 0)
h,K[〈v1, v2〉.1] ↪→ h,K[v1]
h,K[〈v1, v2〉.2] ↪→ h,K[v2]
h,K[case inl v of inlx⇒ e1 | inr x⇒ e2] ↪→ h,K[e1[v/x]]
h,K[case inr v of inlx⇒ e1 | inr x⇒ e2] ↪→ h,K[e2[v/x]]
h,K[(fix f(x). e) v] ↪→ h,K[e[(fix f(x). e)/f, v/x]]
h,K[unroll (roll v)] ↪→ h,K[v]
h,K[callcc (x. e)] ↪→ h,K[e[cont K/x]]
h,K[throw v to cont K ′] ↪→ h,K ′[v]
h,K[isolate v] ↪→ h,K[cont (v •)]
h,K[(Λ. e)[]] ↪→ h,K[e]
h,K[unpack (pack v) as x in e] ↪→ h,K[e[v/x]]
h,K[ref v] ↪→ h ] [ 7̀→v],K[`]
h ] [ 7̀→v],K[!`] ↪→ h ] [ 7̀→v],K[v]
h ] [ 7̀→v],K[` := v′] ↪→ h ] [ 7̀→v′],K[〈〉]
h,K[` == `] ↪→ h,K[1]
h,K[` == `′] ↪→ h,K[0] (` 6= `′)
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B.2 SPB Models for Fµ! and Fµ!
cc

The model for Fµ! is obtained by excluding the parts highlighted in red and including the parts highlighted in blue. Conversely,
the model for Fµ!

cc is obtained by excluding the parts highlighted in blue and including the parts highlighted in red. Accordingly,
the model for Fµ!

cc allows only one transition relation (wpub) in a world. This is because, in the presence of callcc, every transition
is observable and thus public [5].

B.2.1 Definition.

h, n, e ↪→ h′, n′, e′

h, e ↪→ h′, e′

h, n, e ↪→ h′, n′, e′
n′ < n

h, n, e ↪→ h, n′, e

For the construction of the model, we extend the syntax of types with type names n. They are used in modelling existential
and universal types.

CVal := {v ∈ Val | fv(v) = ∅}
CExp := {e ∈ Exp | fv(e) = ∅}
CCont := {K ∈ Cont | fv(K[〈〉]) = ∅}
CTy := {τ ∈ Ty | fv(τ) = ∅}
CTyF := {τ1 → τ2 | τ1, τ2 ∈ CTy}

DRel := P((CTyF× N× CVal× N× CVal)
⊎

(CTy × N× CCont× N× CCont))
VRel := P(CTyF× N× CVal× N× CVal)
ERel := P(N× CExp× N× CExp)
HRel := P(Heap×Heap)

(−) ∈ DRel→ VRel
R(n) := {(n1, v1, n2, v2) ∈ R(n)}
R(int) := {(n1,m, n2,m)}
R(τ × τ ′) := {(n1, 〈v1, v

′
1〉, n2, 〈v2, v

′
2〉) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}

∩ {(n1, 〈v1, v
′
1〉, n2, 〈v2, v

′
2〉) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ + τ ′) := {(n1, inl v1, n2, inl v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(τ)}
∪ {(n1, inr v′1, n2, inr v′2) | ∃m′1,m′2. (m′1, v

′
1,m

′
2, v
′
2) ∈ R(τ ′)}

R(τ → τ ′) := {(n1, v1, n2, v2) ∈ R(τ → τ ′)}
R(∃α. σ) := {(n1, pack v1, n2, pack v2) | ∃m1,m2, τ. (m1, v1,m2, v2) ∈ R(σ[τ/α])}
R(∀α. σ) := {(n1, v1, n2, v2) ∈ R(∀α. σ)}
R(µα. σ) := {(n1, roll v1, n2, roll v2) | ∃m1,m2. (m1, v1,m2, v2) ∈ R(σ[µα. σ/α])}
R(ref τ) := {(n1, v1, n2, v2) ∈ R(ref τ)}
R(cont τ) := {(n1, cont K1, n2, cont K2) | ∃m1,m2. (m1,K1,m2,K2) ∈ R(τ)}
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DepWorld(P ) := {(S ∈ Set,
v ∈ P(S× S),
vpub ∈ P(S× S),
N ∈ P(TyNam),
L ∈ (SP → S→ DRel)→ SP → S→ DRel,
H ∈ (SP → S→ DRel)→ SP → S→ HRel) |

countable(S) ∧ preorder(S,v) ∧ preorder(S,vpub) ∧
(∀R, sP , s. ∀(τ, n1, d1, n2, d2) ∈ L(R)(sP )(s).

∀R′ ⊇ R, s′P wP sP , s′ wpub s, n
′
1 ≥ n1, n

′
2 ≥ n2.

(τ, n′1, d1, n
′
2, d2) ∈ L(R′)(s′P )(s′)) ∧

(∀R, sP , s. ∀R′ ⊇ R ∩ (SP → S→ VRel), s′ w s.
L(R′)(sP )(s′) ⊇ L(R)(sP )(s) ∩VRel) ∧

(∀R. ∀R′ ⊇ R ∩ (SP → S→ VRel).
H(R′) ⊇ H(R) ∩ (SP → S→ VRel)) ∧

(∀R, sP , s. ∀(n, n1, v1, n2, v2) ∈ L(R)(sP )(s). n ∈ N)}
where P = (SP ∈ Set,vP : P(SP × SP ))

World := {W ∈ DepWorld({∗}, {(∗, ∗)})}

Wref .S := {sref ∈ Pfin(CTy × Loc× Loc) |
∀(τ, l1, l2) ∈ sref . ∀(τ ′, l′1, l′2) ∈ sref .

(l1 = l′1 =⇒ τ = τ ′ ∧ l2 = l′2) ∧
(l2 = l′2 =⇒ τ = τ ′ ∧ l1 = l′1)}

Wref .v := ⊆
Wref .vpub := ⊆
Wref .N := ∅
Wref .L(R)(sref) := {(ref τ, l1, l2) | (τ, l1, l2) ∈ sref}
Wref .H(R)(sref) := {(h1, h2) |

dom(h1) = {l1 | ∃τ, l2. (τ, l1, l2) ∈ sref} ∧
dom(h2) = {l2 | ∃τ, l1. (τ, l1, l2) ∈ sref} ∧
∀(τ, l1, l2) ∈ sref . ∃n1, n2. (n1, h1(l1), n2, h2(l2)) ∈ R(sref)(τ)}

LWorld := {w ∈ DepWorld(Wref .S,Wref .vpub}) | ∀R, sref , s, τ. L(R)(sref)(s)(ref τ) = ∅}
Rs2[1](sref)(s1) := {(τ, n1, d1, n2, d2) | ∃s′1 vpub s1, n

′
1 ≤ n1, n

′
2 ≤ n2.

(τ, n′1, d1, n
′
2, d2) ∈ R(sref)(s

′
1, s2)}

∪ {(τ, n1, v1, n2, v2) | ∃s′1 v s1, n
′
1 ≤ n1, n

′
2 ≤ n2.

(τ, n′1, v1, n
′
2, v2) ∈ R(sref)(s

′
1, s2)}

Rs1[2](sref)(s2) := {(τ, n1, d1, n2, d2) | ∃s′2 vpub s2, n
′
1 ≤ n1, n

′
2 ≤ n2.

(τ, n′1, d1, n
′
2, d2) ∈ R(sref)(s1, s

′
2)}

∪ {(τ, n1, v1, n2, v2) | ∃s′2 v s2, n
′
1 ≤ n1, n

′
2 ≤ n2.

(τ, n′1, v1, n
′
2, v2) ∈ R(sref)(s1, s

′
2)}

(w1 ⊗ w2).S := w1.S× w2.S
(w1 ⊗ w2).v := {(p, p′) | p.1 v p′.1 ∧ p.2 v p′.2}
(w1 ⊗ w2).vpub := {(p, p′) | p.1 vpub p

′.1 ∧ p.2 vpub p
′.2}

(w1 ⊗ w2).N := w1.N ] w2.N
(w1 ⊗ w2).L(R)(sref)(s1, s2) := w1.L(Rs2[1])(sref)(s1) ∪ w2.L(Rs1[2])(sref)(s2)

(w1 ⊗ w2).H(R)(sref)(s1, s2) := w1.H(Rs2[1])(sref)(s1)⊗ w2.H(Rs1[2])(sref)(s2)

w↑.S := Wref .S× w.S
w↑.v := {(p, p′) | p.1 v p′.1 ∧ p.2 v p′.2}
w↑.vpub := {(p, p′) | p.1 vpub p

′.1 ∧ p.2 vpub p
′.2}

w↑.N := w.N
w↑.L(R)(sref , s) := Wref .L(∅)(sref) ∪ w.L(R(−,−))(sref)(s)
w↑.H(R)(sref , s) := Wref .H(R(−, s))(sref)⊗ w.H(R(−,−))(sref)(s)
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GK(W ) := {G ∈W.S→ DRel |
G ⊇W.L(G) ∧
(∀s, τ. G(s)(ref τ) ⊆W.L(G)(s)(ref τ)) ∧
(∀s. ∀n ∈W.N. G(s)(n) ⊆W.L(G)(s)(n)) ∧
(∀s. (0, •, 0, •) ∈ G(s)(int)) ∧
(∀s. ∀s′ w s. G(s′) ⊇ G(s) ∩VRel) ∧
(∀s. ∀(τ, n1, d1, n2, d2) ∈ G(s). ∀s′ wpub s, n

′
1 ≥ n1, n

′
2 ≥ n2.

(τ, n′1, d1, n
′
2, d2) ∈ G(s′))}

S ∈ DRel×DRel→ ERel
S(R,G) := {(k1 + n1,K1[v1], k2 + n2,K2[v2]) |

∃τ. (k1,K1, k2,K2) ∈ R(τ) ∧ (n1, v1, n2, v2) ∈ G(τ)} ∪
{(n1,K1[v1 v

′
1], n2,K2[v2 v

′
2]) |

∃τ, τ ′,m1,m2, k1, k2. (n1, v1, n2, v2) ∈ R(τ ′ → τ) ∧
(m1, v

′
1,m2, v

′
2) ∈ G(τ ′) ∧ (k1,K1, k2,K2) ∈ G(τ)} ∪

{(n1,K1[v1[]], n2,K2[v2[]]) |
∃σ, τ, k1, k2. (n1, v1, n2, v2) ∈ R(∀α. σ) ∧
(k1,K1, k2,K2) ∈ G(σ[τ/α])}

EW ∈ GK(W )→ DRel→W.S→ ERel
EW (G)(s) := {(n1, e1, n2, e2) | ∀(h1, h2) ∈W.H(G)(s). ∀hF

1 #h1, h
F
2 #h2.

(h1 ] hF
1 , e1 ↪→ω ∧ h2 ] hF

2 , e2 ↪→ω) ∨
(∃s′. s′ wpub s ∧ s′ w s ∧
∃(n′1, e′1, n′2, e′2) ∈ S(G(s′), G(s′)). ∃(h′1, h′2) ∈W.H(G)(s′).
h1 ] hF

1 , n1, e1 ↪→∗ h′1 ] hF
1 , n

′
1, e
′
1 ∧ h2 ] hF

2 , n2, e2 ↪→∗ h′2 ] hF
2 , n

′
2, e
′
2)

R$ := {(n1, e1, n2, e2) | ∃(n′1, e′1, n′2, e′2) ∈ R.
(∀h. h, n1, e1 ↪→ h, n′1, e

′
1) ∧ (∀h. h, n2, e2 ↪→ h, n′2, e

′
2)}

consistent(W ) := ∀G ∈ GK(W ), s ∈W.S. S(W.L(G)(s), G(s)) ⊆ EW (G)(s)$

stable(w) := ∀G ∈ GK(w↑). ∀sref , s. ∀(h1, h2) ∈ w.H(G(−,−))(sref)(s).
∀s′ref wpub sref . ∀(h′1, h′2) ∈Wref .H(G(−, s))(s′ref).
h′1#h1 ∧ h′2#h2 =⇒ ∃s′ wpub s. (h1, h2) ∈ w.H(G(−,−))(s′ref)(s

′)

inhabited(W ) := ∃s. ∀G ∈ GK(W ). (∅, ∅) ∈W.H(G)(s)

R(·) := {(·, id, ·, id)}
R(x:τ,Γ) := {(n1 :: N1, γ1[x 7→ v1], n2 :: N2, γ2[x 7→ v2]) |

(n1, v1, n2, v2) ∈ R(τ) ∧ (N1, γ1, N2, γ2) ∈ R(Γ)}

∆; Γ ` e1 ∼ e2 : τ := ∀N ∈ P(TyNam). N countably infinite =⇒ ∃w, f1, f2.
w.N ⊆ N ∧ stable(w) ∧ consistent(w↑) ∧ inhabited(w↑) ∧∆; Γ ` e1 ∼w↑,f1,f2 e2 : τ

Γ ` e1 ∼W,f1,f2 e2 : τ := ∀G ∈ GK(W ). ∀s. ∀δ ∈ ∆→ CTy. ∀(N1, γ1, N2, γ2) ∈ G(s)(δΓ).
∀(k1,K1, k2,K2) ∈ G(s)(δτ). (f1(N1) + k1,K1[γ1e1], f2(N2) + k2,K2[γ2e2]) ∈ EW (G)(s)}

B.2.2 Example: Well-Bracketed State Change.
For Fµ!, we prove ` v1 ∼ e2 : τ , where:

τ := (unit→ unit)→ int
v1 := λf. (f 〈〉; f 〈〉; 1)
v2 := λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)
e2 := let x = ref 0 in v2
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Constructing a Suitable World. We construct a world w↑ that we will then show to be consistent and to relate v1 and e2.
Since the programs don’t involve abstract types, we can define w.N to be empty. A state s ∈ w.S is to be understood as

follows: for each running instance of e2, identified by the location l that that instance initially allocated, s(l) says whether the
instance is in the 0-state (l points to 0) or in the 1-state (l points to 1). Accordingly, the heap relation w.H at state s is just
{(∅, s)}. Finally, the local knowledge w.L at state s relates v1 with v2[l/x] for any location l belonging to an instance.

w.S := Loc
fin
⇀ {0, 1} ⊆ Heap

w.v := {(s, s′) | dom(s) ⊆ dom(s′)}
w.vpub := {(s, s′) ∈ w.v | ∀(l, 1) ∈ s. (l, 1) ∈ s′}
w.N := ∅
w.L(R)(sref)(s) := {(τ, , v1, , v2[l/x]) | l ∈ dom(s)}

∪ {(unit, ,K1[•; v′1 〈〉; 1], ,K2[•; l := 1; v′2 〈〉; !l]) | ∃s′.
s wpub (s′\l) ] [l 7→0] ∧ l ∈ dom(s′) ∧
( , v′1, , v

′
2) ∈ R(sref)(s)(unit→unit) ∧ ( ,K1, ,K2) ∈ R(sref)(s

′)(int)}
∪ {(unit, ,K1[•; 1], ,K2[•; !l]) | s(l) = 1 ∧ ( ,K1, ,K2) ∈ R(sref)(s)(int)}

w.H(R)(sref)(s) := {(∅, s)}
It is easy to see that w ∈ LWorld. In particular, w.L and w.H are monotone as required. Note that stable(w) (the dependency
is vacuous) and that inhabited(w↑) for s0 = ∅. To show ` v1 ∼ e2 : τ , two parts remain.

Consistency. Establishing consistent(w↑) is the real meat of the proof.

1) Let G ∈ GK(w↑) and consider two functions related by w↑.L(G) at a state (sref , s). Clearly, one is v1 and the other
is v2[l/x] for some l ∈ dom(s). So suppose we are given related continuations ( ,K1, ,K2) ∈ G(sref , s)(int) and
arguments (v′1, v

′
2) ∈ G(sref , s)(unit→ unit) and let n1, n2 be arbitrary. After performing a beta step on either side, we

need to show:

( ,K1[v′1 〈〉; v′1 〈〉; 1], ,K2[l := 0; v′2 〈〉; l := 1; v′2 〈〉; !l]) ∈ Ew↑(G)(sref , s)

Note that for (h1, h2) ∈ w.H(G(−,−))(sref)(s) we know by construction that h1 = ∅ and h2 = s. Consequently, for any
frame heaps hF

1 , h
F
2 , we have

h2 ] hF
2 ,K2[l := 0; v′2 〈〉; l := 1; v′2 〈〉; !l] ↪→∗

(s\l) ] [l 7→0] ] hF
2 ,K2[v′2 〈〉; l := 1; v′2 〈〉; !l]

where s\l denotes the restriction of s to domain dom(s) \ {l}. It thus suffices, by the “stuck function call” case, to find
s′ w s such that:

a) (∅, (s\l) ] [l 7→0]) ∈ w.H(G)(sref)(s
′)

b) ( ,K1[•; v′1 〈〉; 1], ,K2[•; l := 1; v′2 〈〉; !l]) ∈ G(sref , s
′)(unit)

Naturally, we pick s′ = (s\l) ] [l 7→0] w s. Then both (a) and (b) hold by construction of w.
2) Now suppose G ∈ GK(L), sref and s arbitrary, s′ wpub (s\l) ] [l 7→0], l ∈ dom(s),

( , v′1, , v
′
2) ∈ G(sref , s

′)(unit→unit) and ( ,K1, ,K2) ∈ G(sref , s)(int). We must show (after one step of reduction):

( ,K1[v′1 〈〉; 1], ,K2[l := 1; v′2 〈〉; !l]) ∈ E(G)(sref , s
′)

After repeating the previous procedure one more time, we arrive at the goal of finding s′′ w s′ such that:
a) (∅, (s′\l) ] [l 7→1]) ∈ w.H(G)(sref)(s

′′)
b) ( ,K1[•; 1], ,K2[•; !l]) ∈ G(sref , s

′′)(unit)

Naturally, we pick s′′ = (s′\l)] [l 7→1] w s′. Then both (a) and (b) hold by construction of w, where, for (b), we rely on
s′′ wpub s.

3) Finally, suppose G ∈ GK(L), sref and s arbitrary, s(l) = 1 and ( ,K1, ,K2) ∈ G(sref , s)(int). We must show (after
one step of reduction):

( ,K1[1], ,K2[!l]) ∈ E(G)(sref , s)

Since s(l) = 1, we know for any (h1, h2) ∈ w.H(sref)(s)(G)(sref , s) by construction that h2(l) = 1. Consequently, for
any frame heap hF

2 we have:

h2 ] hF
2 ,K2[!l] ↪→ h2 ] hF

2 ,K2[1]

Since of course (1, 1) ∈ G(sref , s)(int) by definition, we are done with ( ,K1, ,K2) ∈ G(sref , s)(int).
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Showing the Programs Related. Given how we constructed our world, this final goal is fairly easy to accomplish. Formally,
we prove ` v1 ∼w↑,0,0 e2 : τ , i.e., we must show

(k1,K1[v1], k2,K2[e2]) ∈ Ew↑(G)(sref , s)

for any G ∈ GK(w↑), (k1,K1, k2,K2) ∈ G(sref , s)(τ), sref , s. Note that if (h1, h2) ∈ w.H(G(−,−))(sref)(s), then for any
frame heap hF

2 and some fresh l we have h2 ] hF
2 ,K2[e2] ↪→ h2 ] [l 7→0]] hF

2 ,K2[v2[l/x]]. It therefore suffices to find s′ w s
such that the following hold:

4) (k1,K1, ,K2) ∈ G(sref , s
′)(τ)

5) (0, v1, , v2[l/x]) ∈ G(sref , s′)(τ)
6) (h1, h2 ] [l 7→0]) ∈ w↑.H(G)(sref , s

′)

We pick s′ = s ] [l 7→0]. Note that s′ is well-defined because l is fresh (so l /∈ dom(s)), and also that s′ wpub s. The
latter and monotonicity of the continuation knowledge imply (5). To show (6), it suffices by definition of GK to show
(0, v1, , v2[l/x]) ∈ w.L(G(−,−))(sref)(s

′)(τ). This holds by construction of w and s′, and so does (7).
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Abstract—When running big parallel computations on thou-
sands of processors, the probability that an individual processor
will fail during the execution cannot be ignored. Computations
should be replicated, or else failures should be detected at run-
time and failed subcomputations reexecuted. We follow the latter
approach and propose a high-level operational semantics that
detects computation failures, and allows failed computations to be
restarted from the point of failure. We implement this high-level
semantics with a lower-level operational semantics that provides
a more accurate account of processor failures, and prove in Coq
the correspondence between the high- and low-level semantics.

I. INTRODUCTION

As processors get smaller and more distributed, parallel
computations run on increasingly larger number of processors.
In the not-so-distant future, we may have large simulations
running on a million cores for a couple of days, perhaps in
the context of an advanced physics or biology experiment, or
perhaps used to certify the safety of an engineering design.

The likelihood of a single processing unit failing during
such long-running parallel computations is actually quite high,
and can no longer be ignored. For example, if we assume
that the mean time between failures (MTBF) for a single
machine is one year, and we use one thousand machines for a
single computation, then the MTBF for the whole computation
becomes

1 year÷ 1000 ≈ 9 hours.

A simple—albeit expensive—solution is to use replication.
In theory, we can straightforwardly deal with a single fail-stop
failure with 3-way replication [1], and with a single Byzantine
failure with 4-way replication [2]. Replication, however, comes
at a significant cost, not only in execution time (since fewer
execution units are available), but also in the amount of energy
required to compute the correct result.

The alternative approach to replication is to use check-
pointing: that is, to run the computation optimistically with
no replication, to detect any failures that occur, and to rerun
the parts of the computation affected by those failures [3]. The
benefit of checkpointing over the replication approach is that
the effective replication rate is determined by the number of
actual failures that occurred in an execution and how large
a sub-computation was interrupted rather than the maximum
number of failures that the system can tolerate. To implement
checkpointing, one assumes that some part of the storage
space is safe (non-failing) and uses that to store fields needed

to recover from failures. This safe storage subsystem may
internally be implemented using replication, but this kind of
storage replication is much lighter-weight than replicating the
entire computation.

As for proving the correctness of these two approaches,
that of replication is relatively straightforward, because it uses
correctly computed results from one of the replicas in the
system. In the checkpointing approach, however, correctness
is not so straightforward, because failed processors can be in
inconsistent states and partially computed expressions are used
in reexecutions.

In this paper, we formalize checkpointing from a pro-
gramming language perspective and prove its correctness. For
simplicity, we will work in the context of a purely functional
programming language with fork-join parallelism (see §II).
For this language, we develop a high-level formal operational
semantics capturing the essence of the checkpointing approach
(see §III). In our semantics, the execution of a parallel compu-
tation may fail at any point; failures can then be detected and
the appropriate parts of a failed computation can be restarted.
This high-level semantics is quite simple to understand, and
can thus be used as a basis for reasoning about fault-tolerant
parallel programs.

To justify the completeness of our semantics with respect
to actual implementations, we also develop a lower-level
semantics, which models run-time failures and parallel task
execution at the processor level (see §IV). We then prove
theorems relating the two semantics and showing that our fault-
aware semantics are sound: whenever a program evaluates
to a value in the fault-aware semantics (perhaps by failing
a few times and recovering from the failures), then it can
also evaluate to the same value under the standard fault-free
semantics (see §V). All lemmas and theorems in this paper are
proved using the Coq proof assistant [4] and are available at:

http://plv.mpi-sws.org/ftpar

II. PROGRAMMING LANGUAGE

For simplicity, we focus on a minimal purely functional
language with built-in parallel tuple evaluation, allowing us to
express directly interesting large-scale parallel computations
by following the fork-join and map-reduce patterns. As we
will discuss further in §VI, the lack of side-effects means that
parallel tasks are independent, and so failure detection and
recovery can be done locally, at the task level.



n1 ⊕ n2  n1 ⊕ n2

e1  e ′
1

let x = e1 in e2  let x = e ′
1 in e2

let x = v1 in e2  e2[v1/x ]

(fun f (x ). e) v  e[v/x ][fun f (x ). e/f ] fst (v1, v2) v1

snd (v1, v2) v2

n 6= 0

if n then e1 else e2  e1

if 0 then e1 else e2  e2

e1  e ′
1

(|e1, e2|) (|e ′
1, e2|)

e2  e ′
2

(|e1, e2|) (|e1, e ′
2|) (|v1, v2|) (v1, v2)

Fig. 1. Rules for small-step fault-free evaluation, e e′.

In the following, let x range over program variables, n
over natural numbers, and f over function names. Values, v,
and expressions, e, of our language are given by the following
grammar:

v ::= x | n | (v1, v2) | fun f(x). e
⊕ ::= + | − | × | ÷ | = | 6= | < | ≤ | . . .
e ::= v | v1 ⊕ v2 | v1 v2 | letx = e1 in e2 | (|e1, e2|) |

fst v | snd v | if v then e1 else e2

In our language, values can be variables, natural numbers,
value pairs or (recursive) function definitions. Expressions
are either values, arithmetic and logical expressions, func-
tion applications, let bindings, parallel tuples, first or second
projections of pairs, or conditionals. As in C, our if-then-
else construct treats 0 as false and non-zero numbers as true.
We present the grammar of expressions in A Normal Form
(ANF) [5] just to make evaluation order explicit. The only
place where we differ from standard ANF and have expressions
rather than values is in the parallel tuple construct, (|e1, e2|),
because we want to model fork-join parallelism by possibly
evaluating the two expressions simultaneously. The language
can easily be extended with more constructs, types, etc., but
such features are orthogonal to the problem at hand.

III. HIGH-LEVEL SEMANTICS

This section contains the standard fault-free semantics for
our language both in big-step and small-step style, as well as
high-level big-step fault-prone and recovery semantics. Fault
prone semantics allows arbitrarily nested fail-stop failures, and
recovery semantics re-executes parts of a failed computation.
At the end of the section, we shall show correspondences
among the high-level semantics.

A. Fault-Free Evaluation

We have two standard fault-free evaluation semantics: (i) a
big-step fault-free evaluation, e ⇓ v, which is totally standard
and omitted for conciseness, and (ii) a small-step reduction
relation, e e′, which is defined as the least fixed point of the
rules in Fig. 1. The rules are fairly standard. For example, the
first rule says that arithmetic operations of the programming
language simply perform the corresponding operation over

v ⇓fp v n1 ⊕ n2 ⇓fp n1 ⊕ n2

e1 ⇓fp v1
e2[v1/x ] ⇓fp v2

let x = e1 in e2 ⇓fp v2

e[v2/x ][fun f (x ). e/f ] ⇓fp r
(fun f (x ). e) v2 ⇓fp r fst (v1, v2) ⇓fp v1

snd (v1, v2) ⇓fp v2
n 6= 0 e1 ⇓fp r1

if n then e1 else e2 ⇓fp r1

e2 ⇓fp r2
if 0 then e1 else e2 ⇓fp r2

e1 ⇓fp r1
e2 ⇓fp r2

(|e1, e2|) ⇓fp r1#r2

e ⇓fp BOT (e)

e1 ⇓fp r1 not_value(r1)
let x = e1 in e2 ⇓fp LETL (r1, x , e2)

e1 ⇓fp v1
e2[v1/x ] ⇓fp r
not_value(r)

let x = e1 in e2 ⇓fp LETR (r)

Fig. 2. Rules for big-step fault-prone evaluation, e ⇓fp r.

natural numbers. Perhaps, the only interesting rules are the
last three concerning parallel tuples. The two expressions can
be evaluated independently; when both have become values,
we get the result as a value pair.

By standard proofs, we can show that big-step evaluation
is deterministic and that small-step evaluation is sound and
complete with respect to big-step evaluation.

Theorem 1. If e ⇓ v1 and e ⇓ v2, then v1 = v2.

Theorem 2. e ∗ v if and only if e ⇓ v.

B. Fault-Prone Evaluation

Fault-prone evaluation, e ⇓fp r (see Fig. 2), reduces an
expression, e, to a result r, which may be one of the following:

r ::= v | BOT(e) | LETL(r, x, e) | LETR(r) |
PTUPLE(r1, r2)

If we get a value, v, the evaluation is successful, thus not
requiring any reexecution (we can easily show that e ⇓fp
v ⇐⇒ e ⇓ v). If, however, e reduces to a non-value result r,
then we can inspect r to find where the failure occurred and
what parts of the computation had already been successfully
executed.

The primary cause of failure in the semantics is that any
expression can evaluate to bottom, represented as BOT(e).
The failed expression e is recorded so that it may used in the
recovery. Evaluation failures are propagated either by passing
the results directly (e.g., as in the case of function application),
when the premises of these rules are enough to recover the final
result of the expression, or by creating a special data structure,
such as PTUPLE(r1, r2), LETL(r1, x, e) and LETR(r).
We use these structures to store and avoid re-execution of the
successful sub-evaluations that are part of a failed computation.
For example, in the rule for parallel tuples, there are four
possible outcomes, namely, both branches are successful, both



1 + 1 ⇓fp 2 3 ⇓fp BOT(3)

(|1 + 1, 3|) ⇓fp PTUPLE(2,BOT(3))

Fig. 3. Fault-prone evaluation example

v ⇓recover v
e ⇓fp r

BOT (e) ⇓recover r

r ⇓recover v
e[v/x ] ⇓fp v2

LETL (r , x , e) ⇓recover v2

r ⇓recover r1 not_value(r1)
LETL (r , x , e) ⇓recover LETL (r1, x , e)

r ⇓recover v e[v/x ] ⇓fp r2
not_value(r2)

LETL (r , x , e) ⇓recover LETR (r2)

r ⇓recover v
LETR (r) ⇓recover v

r ⇓recover r1
not_value(r1)

LETR (r) ⇓recover LETR (r1)

r1 ⇓recover r ′1 r2 ⇓recover r ′2
PTUPLE (r1, r2) ⇓recover r ′1#r ′2

Fig. 4. Rules for big-step recovery evaluation, r ⇓recover r′.

fail, or one of the branches fails. The operator # combining
the results is defined as follows:

r1#r2 =

{
(v1, v2) if r1=v1 ∧ r2=v2
PTUPLE(r1, r2) otherwise

If both branches succeed, we get the value (v1, v2). Otherwise,
we get a PTUPLE(r1, r2) which records r1 and r2 to be used
in the recovery process. This will allow recovery, for example,
to re-evaluate only r1 if r2 were successful. This treatment
may be considered as a refinement over a naive semantics that
just propagates BOT to the top-level. However, we stress that
the whole point of our approach is to be able to reuse correctly
executed sub-computations during recovery. Re-executing the
entire computation from the beginning is not only wasteful,
but also has high probability for failure.

Figure 3 shows an example of a faulty evaluation of the
expression (|1 + 1, 3|), where the second branch of the parallel
pair fails. Note how the failure is recorded in the result.

C. Recovery Evaluation

If the program execution returns a non-value result, we run
the recovery process (see Fig. 4). This takes the recorded path
as input and attempts to re-evaluate the failed expression. To
reflect typical computer behavior, recovery of a failed compu-
tation can also fail, just as execution of original computations
can fail. Recovery operations are run on the same machines,
so we should assume the possibility of repeated failure. That is
why in the premise of the BOT(e) recovery rule, fault-prone
evaluation as opposed to fault-free evaluation is used. Fig. 5
illustrates a successful recovery of the failed result produced
by Fig. 3. The final result (2, 3) is the expected output from a
fault-free evaluation of (|1 + 1, 3|).

2 ⇓recover 2
3 ⇓fp 3

BOT(3) ⇓recover 3
PTUPLE(2,BOT(3)) ⇓recover (2, 3)

Fig. 5. Example recovery

D. Correctness and Progress of Recovery

First, we prove that fault-prone evaluation together with
recovery is sound and complete with respect to the fault-free
evaluation. Formally, we prove the following theorems, where
(⇓recover)∗ is the reflexive-transitive closure of ⇓recover.
Theorem 3 (Soundness of Recovery). If e ⇓fp r and
r(⇓recover)∗v then e ⇓ v.

Theorem 4 (Completeness of Recovery). If e ⇓ v then e ⇓fp v
and BOT(e) ⇓recover v.

Formal proofs of these theorems (as well as all other results
mentioned in this paper) can be found in our Coq formal-
ization. Completeness is quite easy as fault-prone evaluations
almost syntactically include fault-free evaluations. Soundness,
however, is somewhat trickier and relies on the insights that
(i) recovery evaluation is transitive, (ii) BOT(e) ⇓fp r ⇐⇒
e ⇓fp r, and (iii) e ⇓fp v ⇐⇒ e ⇓ v.

Besides soundness and completeness, we are interested in
proving some kind of progress for recovery evaluations. For
this purpose we define the preorder r′ � r stating that r′ is
“more advanced” than r.

Definition 1 (Result comparison). Let r′ � r be the least fixed
point of the following equations.

• r � BOT(e)
• v � r
• if r′1 � r1 and r′2 � r2, then

PTUPLE(r′1, r
′
2) � PTUPLE(r1, r2)

• if r′ � r, then LETL(r′, x, e) � LETL(r, x, e),
• LETR(r′) � LETL(r, x, e)
• if r′ � r, then LETR(r′) � LETR(r)

It is easy to show that � is a preorder (i.e., it is reflexive
and transitive). Sadly, however, it is not antisymmetric, the
reason being that BOT(e) � BOT(e′) for arbitrary e and e′.
The best we can show is the following pseudo-antisymmetry
property:

Lemma 5 (Pseudo-antisymmetry). If r � r′ and r′ � r, then
r ≈ r′, where ≈ is defined as the least fixed point of the
following equations.

• BOT(e) ≈ BOT(e′)
• v ≈ v
• if r′1 ≈ r1 and r′2 ≈ r2, then

PTUPLE(r′1, r
′
2) ≈ PTUPLE(r1, r2)

• if r′ ≈ r, then LETL(r′, x, e) ≈ LETL(r, x, e).
• if r′ ≈ r, then LETR(r′) ≈ LETR(r).

We can show that every recovery step makes ‘progress’ in
that it moves to more advanced states up to our preorder.

Theorem 6 (Progress). If r ⇓recover r′ then r′ � r.



e1  e2
RUN e1, s, e

′, s ′  1 RUN e2, s, e
′, s ′ START e, s  1 RUN e, s, e, s

exp_not_value(e)
RUN C [e], s, e ′, s ′  1 RUN e,ConsC s, e ′, s ′

RUN v,ConsC s, e ′, s ′  1 RUN C [v], s, e ′, s ′ RUN e, s, e ′, s ′  1 FAILED e ′, s ′

Fig. 6. Rules for single processor evaluation, state  1 state′.

pm[pid1] = (RUN (|e1, e2|), s, e ′, s ′, d) fresh id in rm

pm, rm  m pm[pid1 := (START e1,Left id , 〈id : e2〉 · d)], rm[id := Neither s]
FORK

pm[pid1] = (FAILED e, s, d) pm[pid2] = (IDLE, d ′)

pm, rm  m pm[pid1 := (RECOVERED, d)][pid2 := (START e, s, d ′)], rm
RECOVER

pm[pid1] = (pc1, d1) pm[pid2] = (pc2, d2 · t)
pid1 6= pid2

pm, rm  m pm[pid1 := (pc1, t · d1)][pid2 := (pc2, d2)], rm
STEAL

pc1  1 pc2
pm[pid1] = (pc1, d)

pm, rm  m pm[pid1 := (pc2, d)], rm
LOCAL

pm[pid1] = (IDLE, 〈id : e〉 · d)
pm, rm  m pm[pid1 := (START e,Right id , d)], rm

POP_TASK

pm[pid1] = (RUN v,Left id , e ′, s ′, d)
rm[id ] = (Neither s)

pm, rm  m pm[pid1 := (IDLE, d)], rm[id := Left v s]
LEFT_FIRST

pm[pid1] = (RUN v,Left id , e ′, s ′, d)
rm[id ] = (Right v2 s)

pm, rm  m pm[pid1 := (START (v, v2), s, d)], rm[id := Finished v3]
LEFT_LAST

pm[pid1] = (RUN v,Right id , e ′, s ′, d)
rm[id ] = (Neither s)

pm, rm  m pm[pid1 := (IDLE, d)], rm[id := Right v s]
RIGHT_FIRST

pm[pid1] = (RUN v,Right id , e ′, s ′, d) rm[id ] = (Left v1 s)

pm, rm  m pm[pid1 := (START (v1, v), s, d)], rm[id := Finished v3]
RIGHT_LAST

Fig. 7. Rules for multiprocessor evaluation, pm, rm m pm′, rm′.

IV. LOW-LEVEL SEMANTICS

In the low-level semantics, we model the processors ex-
ecuting our program explicitly, together with the usual data
structures for distributing parallel tasks to them. In essence,
each processor has a queue, where it adds any parallel tasks
it creates, and removes them one by one to execute them. At
any time (typically when it is idle), a processor can also try
to steal a task from the queue of a different processor. This
approach, known as work stealing [6], dynamically balances
the work among processors, leading to very efficient imple-
mentations [7], [8]. In addition to work stealing, our semantics
models failures by allowing individual processors to fail, and
correctly running ones to recover (rerun) the computation that
a failed processor was executing.

A. Configurations

System-wide configurations consist of a processor map,
pm, and a result map, rm. The processor map maps processor
identifiers to a processor state, state , and a deque, d, of tasks
to be executed. A processor can be in one of following five
different states:

state ::= IDLE | START e, s | RUN e1, s1, e2, s2 |
FAILED e, s | RECOVERED

The first state represents the case, when the processor has
finished executing any tasks it started and can start another
task either by removing one from its deque or by stealing one
from another processor’s deque. Next is the START state,
where a processor has selected a task to execute but has not
yet started executing it. Here, we store the expression, e, to be
evaluated and the corresponding stack, s. The stack is list of
contexts ended by a marker identifying the task being executed:

s ::= Left id | Right id | Cons C s

The RUN state represents the case when a task is being
executed. Here, the first expression-stack pair (e1, s1) is used
to perform normal computations, while the second expression-
stack pair (e2, s2) remains constant throughout execution. We
assume that the latter pair is stored in some safe storage that
is kept intact in cases of failures. We have separate START
and RUN states to make explicit the step that stores the
current expression and stack to a safe storage. Next, is the
failed state, which simply drops the first expression-stack
component of the running state, and records only the second
tuple which is supposed to survive failures. Finally, in order
to prevent multiple recoveries of the same failed state, we use
RECOVERED state to mark processors whose failures have
been recovered.



The deque, d, is a (usually optimized) doubly ended queue
of tasks, 〈id : e〉, created by the FORK rule when evaluating
a parallel tuple. More specifically, evaluation of a parallel
tuple creates a new task for the right branch, pushes it to the
deque, and then proceeds directly to execute the left branch.
Tasks pushed to the deque are later removed either by the
same processor (POP_TASK), when it becomes idle, or at any
point by other processors (STEAL). Tasks popped by the same
processor are removed from the same end of the deque as they
are added, whereas stolen tasks are removed from the other
end. Similar to the recorded expression-stack pairs, we assume
that deques are stored in a safe storage that is unaffected by
failures.

The result map is used to keep track of results of forked
parallel tuple computations. It maps fork identifiers to one
of the following four possibilities, depending on whether the
left and/or the right branches of the fork has finished their
computation:

res ::= Neither s | Left v s | Right v s | Finished v

If neither of the branches have finished, rm[id] = Neither s,
where s stores the continuation stack: the computation to be
executed once both branches of the parallel tuple finish. If
one of the branches has finished, we record its value and the
continuation stack. If, however, both branches have finished,
we no longer need to store the continuation stack, as a new
task performing that work will have been started.

B. The Operational Semantics in Detail

Our operational semantics consists of two relations,  1

and  m. The former (in Fig. 6) describes execution steps that
are local to single processor, whereas the latter (in Fig. 7)
defines executions of the whole system.

The single processor evaluation semantics (see Fig. 6)
is comprised of five rules. The first takes a small step in
the evaluation of current expression in the RUN state. The
second moves from the START state to the RUN state by
committing e and s to the safe storage. The next two rules
push and pop contexts to and from the local stack. The last
rule describes failures, taking the processor from RUN to
FAILED state, where it only keeps the fields in the safe
storage (i.e., e′, s′).

Multiprocessor execution (see Fig. 7) consists of nine
reduction rules. Whenever the current expression is a parallel
tuple, FORK rule applies. This rule assigns first element of
parallel tuple as current expression with a START label, and
pushes second element to deque for further to be executed.
It also reserves a key in the result map in order to refer that
for recording values coming out of the branches of execution
and also getting back to execution with a continuation stack.
RECOVER rule applies when there exists a failed processor and
an idle processor. Idle processor recovers both lastly executed
expression on the failed processor together with its deque. In
STEAL rule, topmost task in a deque of one processor is stolen
by another processor (i.e. pushed to the deque of latter from
bottom). LOCAL rule represents the independent executions of
different processors. In other words, if a processor takes a step
then it is applied globally with this rule. POP_TASK rule, as
the name suggests pops a task from deque and it applies only

when a processor is in IDLE state. Following four rules record
results from a successful partial evaluation of branches which
are created by a fork operation earlier. If left branch finishes
its execution first, LEFT_FIRST rule applies. As we can see
in its premise, we require that we do not have the result of
right branch (i.e. we have a record with "Neither" label in the
result map indicating that none of the branches has submitted
its result yet). After applying the rule, the result map stores the
value of left branch keeping the previous continuation stack.
In the LEFT_LAST case, the result map already has the value
of right branch. Therefore after applying the rule, it stores
the value pair consisting of the values coming out of both
branches. The continuation stack is also moved from the result
map in order for the context to be used afterwards. Finally,
RIGHT_FIRST and RIGHT_LAST are symmetric to the previous
two.

C. Example Evaluations

An example for fault-free multiprocessor execution in
shown in Fig. 8, where we evaluate the expression (|1 + 1, 3|)
returning (2, 3). In step 2 current expression for the first
processor goes from START to RUN state. Step 3 is a fork
where we assign id1 as fork identifier and record the current
stack Right id0 in the result map as continuation. Step 4 moves
to RUN state, but this time for the expression (1+ 1). In step
5 the expression (1+1) is evaluated to 2. In step 6, the second
processor steals right branch from the first processor and then
evaluates it. We submit the result of right branch first and
then the left branch. When both submitted their results, we
have (2, 3) as the result of the fork operation. Since left is
submitted later by the first processor, it gets the stack Right
id0 from the result map as its continuation. After going to RUN
state once more in step 11, we submit the result of the whole
computation in step 12. If we store anything in the result map
for the identifier of initial expression (id0) and if the branches
match (Right), then we get the result of overall computation.
Therefore after applying enough number of steps of  m, we
get (2, 3) as the result of evaluating (|1 + 1, 3|).

In our failure and recovery example (see Fig. 9), the first
seven steps are exactly the same as in the previous example.
We assume that the second processor fails at step 8. After
that, since execution of left branch is already completed by
the first processor, we record the value 2 as the result of left
branch. Then, the first processor becomes idle. Therefore, it
can recover the failure of the second processor. It gets the
current task on which the failed processor was previously
working, that is the right branch of the fork id id1. The rest
of the steps are evaluating the right branch and submitting
the result to the result map. At the very end of this failure
and recovery execution, we still get the same result. This
is an example of the correspondence between the fault free
evaluation and fault-prone evaluation with recovery actions in
our low-level multiprocessor computation.

V. PROOFS OF CORRESPONDENCE

In this section, we define well-formedness of a computation
and prove that it is preserved by every multiprocessor step. Our
definitions are purposely in an informal style for conciseness:
the formal definitions can be found in our Coq development.



# Processor 1 (pm[pid1]) Processor 2 (pm[pid2]) Result Map (rm) e s.t. 〈pm, rm〉 ∼id0 e
1 START (|1 + 1, 3|), Right id0, [] IDLE, [] id0:Neither s (|1 + 1, 3|)
2 RUN (|1 + 1, 3|), Right id0, [], (|1 + 1, 3|), Right id0 IDLE, [] id0:Neither s (|1 + 1, 3|)
3 START (1 + 1), Left id1, [Right id1 3] IDLE, [] id0:Neither s,

id1:Neither (Right id0) (|1 + 1, 3|)

4 RUN (1 + 1), Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|1 + 1, 3|)

5 RUN 2, Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

6 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [Right id1 3] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

7 RUN 2, Left id1, [], (1 + 1), Left id1 START 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

8 RUN 2, Left id1, [], (1 + 1), Left id1 RUN 3, Right id1, [], 3, Right id1
id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

9 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Right 3 (Right id0) (|2, 3|)

10 START (2, 3), Right id0, [] IDLE, [] id0:Neither s,
id1:Finished (2, 3) (|2, 3|)

11 RUN (2, 3), Right id0, [], (2, 3), (Right id0) IDLE, [] id0:Neither s,
id1:Finished (2, 3) (2,3)

12 IDLE, [] IDLE, [] id0:Right (2, 3) s,
id1:Finished (2, 3) (2,3)

Fig. 8. Example showing a fault-free execution of the low-level semantics with two processors.

# Processor 1 (pm[pid1]) Processor 2 (pm[pid2]) Result Map (rm) e s.t. 〈pm, rm〉 ∼id0 e
1 START (|1 + 1, 3|), Right id0, [] IDLE, [] id0:Neither s (|1 + 1, 3|)
2 RUN (|1 + 1, 3|), Right id0, [], (|1 + 1, 3|), Right id0 IDLE, [] id0:Neither s (|1 + 1, 3|)
3 START (1 + 1), Left id1, [Right id1 3] IDLE, [] id0:Neither s,

id1:Neither (Right id0) (|1 + 1, 3|)

4 RUN (1 + 1), Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|1 + 1, 3|)

5 RUN 2, Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

6 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [Right id1 3] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

7 RUN 2, Left id1, [], (1 + 1), Left id1 START 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

8 RUN 2, Left id1, [], (1 + 1), Left id1 RUN 3, Right id1, [], 3, Right id1
id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

9 RUN 2, Left id1, [], (1 + 1), Left id1 FAILED 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

10 IDLE, [] FAILED 3, Right id1, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

11 START 3, Right id1, [] RECOVERED, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

12 RUN 3, Right id1, 3, Right id1, [] RECOVERED, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

13 START (2, 3), Right id0, [] RECOVERED, [] id0:Neither s,
id1:Finished (2, 3) (|2, 3|)

14 RUN (2, 3), Right id0, (2, 3), Right id0, [] RECOVERED, [] id0:Neither s,
id1:Finished (2, 3) (2,3)

15 IDLE, [] RECOVERED, [] id0:Right (2, 3) s,
id1:Finished (2, 3) (2,3)

Fig. 9. Example showing a low-level execution where processor 1 fails and is recovered by processor 2.

In order to define our well-formedness condition, we need
two auxiliary definitions: apply(s, e), that applies the contexts
in the stack s to the expression e, and last(s), which bypasses
all the contexts and returns the top-most entry in the stack.
These two functions are recursively defined as follows:

apply(s, e)
def
=

{
apply(s′, C[e]) if s = Cons C s′

e otherwise

last(s)
def
=

{
last(s′) if s = Cons C s′

s otherwise

Definition 2 (Well-Formed Configurations). A system-wide
configuration (pm, rm) is well formed if all the following
conditions hold:

1) Tasks stored in all of the deques together with the
running tasks are pairwise unique;

2) Running tasks are not marked as finished in rm; and
3) Whenever pm[pid] = RUN e, s, e′, s′, d, we have

(i) apply(s′, e′)  ∗ apply(s, e) and (ii) last(s) =
last(s′). In other words, e and s should be a partially
evaluated version of the computation represented by
e′ and s′.

Lemma 7 (Well-Formedness Preservation). If (pm, rm) is
well formed and pm, rm  m* pm′, rm′ then (pm′, rm′) is
also well formed.

Our main soundness theorem states whenever a low-level
execution returns a value, then there is a high-level fault-free
execution returning the same value. Since fault-free high-level
big-step executions are deterministic, this means that the low-
level executions, if they terminate by returning a value, will
always return the ‘right’ value. The formal statement is as



follows:

Theorem 8 (Soundness).
If pm = empty[pid := (START e,Right d, [])] and rm =
empty[id := (Neither (Left id))] and pm, rm  m∗ pm′, rm′

and rm′[id] = Right v s, then e ⇓ v.

We prove Theorem 8 by constructing a forward simu-
lation [9]. We define the relation as 〈pm, rm〉 ∼id e that
relates a configuration (pm, rm) and a fork identifier id to the
expression e corresponding to the current partially evaluated
form of the parallel pair identified by id. For brevity, we omit
the formal definition, but show the relation for the example
executions in Fig. 8 and 9. A basic property of our simulation
relation is that it is deterministic.

Lemma 9. If 〈pm, rm〉 ∼id e1 and 〈pm, rm〉 ∼id e2 then
e1 = e2.

Further, we can show that it is indeed a simulation, namely
that it is preserved by reduction.

Lemma 10 (Simulation). If 〈pm, rm〉 ∼id e and pm, rm m

pm′, rm′ then there exists an e′ such that e  ∗ e′ and
〈pm, rm〉 ∼id e′.

Having proved these lemmas, we can now prove Theorem 8
by an induction on the length of  m∗ and appealing to
Lemmas 7, 9 and 10.

We also prove a completeness theorem stating that when-
ever a high-level computation returns a value, it is possible for
the low-level computation to return the same value. Given the
soundness theorem above (Theorem 8) and the determinism of
the high-level fault-free big-step semantics (Theorem 1), this
theorem essentially means that low-level computations never
get stuck unless the corresponding high-level computations do.

Theorem 11 (Completeness).
If e ⇓ v and pm = empty[pid := (START e,Right d, [])]
and rm = empty[id := (Neither (Left id))] then there exists
pm′ and rm′ such that pm, rm m∗ pm′, rm′ and rm′[id] =
Right v s.

To prove Theorem 11, we only need to consider a non-
failing execution with a single processor. By applying The-
orem 2, which relates fault-free small-step and big-step ex-
ecutions, and our assumption, we know that e  ∗ v. By
induction on the length of the ∗ execution, we can construct
a corresponding low-level execution.

VI. RELATED WORK

This paper brings together the checkpointing approach for
tolerating failures of distributed computations, and the work
stealing approach for scheduling fork-join parallel computa-
tions. Both of these topics have been well studied in isolation,
but to the best of our knowledge they have not been considered
together before.

There are many works on the practice of the checkpointing
approach to deal with failures in distributed systems, some
of which come with informal proofs of correctness for the
proposed implementations (e.g., [10], [11]). A survey can be
found in Elnozahy et al. [3]. In general, these works deal

with the more complex case where we want to protect an
arbitrary computation running on a distributed system against
node failures. In such computations, the various nodes of the
distributed system typically communicate by exchanging mes-
sages, making the node computations highly interdependent.
While doing a rollback from a failure these dependencies
create the so-called ‘domino effect’ [12]. Cao et al. [13] uses
the notion of dependency graph for checkpointing in order
to resolve this problem in propagating the rollback actions.
Koo et al. [10] also proposed an algorithm dealing with
the dependency issues among processors. In our model of
computation, however, the computation is purely functional
and divided into independent tasks that can be executed on any
processor. One important property of our task representation
is that there is no dependency between any two tasks in terms
of recovery. Therefore it is sufficient to keep local checkpoints
for each task and there is no need to propagate the recovery
actions. Recovering a failed computation of a task is enough
to get back to consistent state of the system.

When we consider scheduling parallel computations and
load balancing, work stealing algorithms schedule fork-join
style parallel computations within a near-optimal theoretical
bound [6], [14] and have been shown to be very efficient in
practice [7], [8]. Because of this, we decided to take work-
stealing algorithm as the base for our fault free evaluation, we
also modified the steal operation to recover failed processors.

VII. CONCLUSION

In recent years, parallel computations are run on thousands
of processors, all of which are vulnerable to faults. Designing
good fault detection and recovery mechanisms is therefore of
great importance to people relying on such massively parallel
computations. In this paper, we made the first small step in that
direction, by approaching the problem from a programming
language perspective.

We used a purely functional language that includes parallel
pairs in its syntax for representing fork-join style parallel
computations. As evaluation schemes of this language, we
designed both high- and low-level semantics, which we il-
lustrated using examples. Finally, we proved correspondence
properties relating the high- and low-level semantics. The
lemmas and theorems we state in this paper were proved using
the Coq interactive theorem prover [4], thereby giving us full
confidence for their correctness. We also used Ott [15] in order
to more conveniently write and typeset the semantics and then
generate the corresponding Coq definitions.

The goal of this work is not efficiency but correctness.
Therefore, for simplicity, we save every parallel task generated
by evaluation in safe storage in order to be able to recover from
a possible failure. The granularity at which tasks should be
checkpointed can, however, in principle be adjusted allowing
us to trade off the cost of frequently saving information against
the larger recovery costs. Figuring out a good such trade-off
is left for future work.
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