
EUROPEAN COMMISSION
SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2011-C
Grant agreement no.: 308830

Deliverable D5.1

Progress report for WP5: Architecture-driven verification of
complex software components

Project acronym ADVENT

Project title Architecture-driven verification of systems software

Funding scheme FP7 FET Young Explorers

Scientific coordinator Dr. Alexey Gotsman, IMDEA Software Institute,
Alexey.Gotsman@imdea.org, +34 911 01 22 02

1 Summary

Work Package 5 in the ADVENT project is concerned with reasoning about key concurrent
components, critical tightly-connected parts of software systems. We have made notable progress
in this area, as described below.

• We developed a novel proof technique for establishing the linearizability (functional cor-
rectness) of concurrent queue algorithms. Concurrent queues are key components in many
critical software systems, e.g., operating systems and web servers, and thus verifying their
correctness is paramount. Our approach is unique as it reduces the challenging verifica-
tion problem into proving certain spatio-temporal architectural aspects of concurrent queue
algorithms. We have shown that any queue algorithm which correctly implements these
aspects is indeed linearizable. This effort resulted in a paper in CONCUR’13 and in a
verification tool (see D6.1).

• We developed CaReSL, the first program logic that enables the use of granularity ab-
straction for modular verification of higher-order concurrent programs. CaReSL is
able to handle complicated fine-grained concurrent software artifacts which are param-
eterised using higher order functions enables to reuse the results of verifying, e.g., the
work stealing mechanism in Cilk [3] and the implementation of concurrent iterators in
java.util.concurrency. This allows reusing the results of verifying such complicated
concurrent components in any context in which they are instantiated. Furthermore, its
support for granularity abstraction allows hiding the intricacies of such complicated con-
current components and the spatio-temporal invariants which guarantee their correctness
when reasoning about their clients. This effort resulted in a paper in ICFP’13.

• We introduced Concurrency-Aware Linearizabilty (CAL), a novel correctness condition for
concurrent data structures. We observed that certain key software components, e.g., the
Exchangers in java.util.concurrent.Exchanger, cannot specified using the standard
notion of linearizability. CAL rectifies this unfortunate situation by allowing a new class
of specifications. This class paves the way for developing novel modular verification tech-
niques for truly concurrent components, which is a subject that we are currently working
on. In a way, CAL can be seen as a technology transfer from our work on inter-component
modular reasoning (see D2.1) into the realm of intra-component verification: It allows to
untie the tight connections between parts of components using a novel form of specification
and thus to greatly simplify their verification. This effort has already resulted in a brief
announcement in PODC’14.

• In addition to looking at concurrent systems, we have expended our efforts into verify-
ing key components in distributed systems using the techniques developed in WP2. More
specifically, we developed reasoning techniques for components implementing the conflict
resolution mechanisms in eventually consistent replicated stores. Verifying such compo-
nents is very challenging due to the highly concurrent nature of a replicated store, with
multiple replicas simultaneously updating their object copies and exchanging messages.
We addressed this challenge by proposing replication-aware simulations which allows re-
ducing the verification of a distributed system comprised of multiple replicas into local
reasoning about a single one by exploiting certain architectural properties of the agree-
ment protocols used for synchronizing local updates to the replica’s store with the ongoing
stream of received messages pertaining to remote updates. Apart from proving correct-
ness of replicated data type implementations, we have also devised techniques for proving
the optimality of their resource usage using a novel method for proving lower bounds
on the worst-case metadata overhead of replicated data types—the proportion of meta-
data relative to the client-observable content. Using our method, we proved that four of

2

the implementations we verified have an optimal worst-case metadata overhead among
all implementations satisfying the same specification. This effort resulted in a paper in
POPL’14.

2 Verifying Concurrent Queue Algorithms ([CONCUR13])

Concurrent queues are key data structures in concurrent systems. Implementing efficient and
correct queues (e.g., as found in java.util.concurrency and Intel’s Threading Building Blocks
library) is very challenging: programmers use intricate programming techniques to reduce syn-
chronization, and hence make the queue more efficient. This makes intuitive understanding and
formal reasoning very difficult.

In the context of concurrent data structures, linearizability [15] is the standard correctness
requirement for concurrent data structure implementations. Intuitively, It amounts to showing
that all methods are atomic and obey the high-level sequential specification of the data structure.

The standard way to prove linearizability is to use simulation: The verifier establishes an
invariant relating the state of the implementation to the state of the specification, and identifies
the linearization points, which when performed by the implementation change the state of the
specification. (See, e.g., [1, 2, 4, 5, 8, 21, 25, 30, 31]). While for a number of concurrent algo-
rithms, spotting the linearization points may be straightforward (and has even been automated
to some extent [31]), in general specifying the linearization points can be very difficult. For
instance, in implementations using a helping mechanism, they can lie in code not syntactically
belonging to the thread and operation in question, and can even depend on future behavior.
There are numerous examples in the literature, where this is the case; to mention only a few
concurrent queues: the Herlihy and Wing queue [15], the optimistic queue [19], the elimination
queue [22], the baskets queue [18], the flat-combining queue [13]. In our experience, using stan-
dard simulation-based techniques for verifying such complicated data structure as mentioned
above is very difficult and results in unintuitive proofs.

We developed an alternative simpler way of proving linearizability for concurrent queue
algorithms. We reduced the task of proving linearizability to establishing four relatively simple
properties. In (loose) analogy to aspect-oriented programming, we called our approach “aspect-
oriented” linearizability, because each of these four properties can be proved independently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:
(1) must not allow dequeuing an element that was never enqueued;
(2) it must not allow the same element to be dequeued twice;
(3) it must not allow elements to be dequeued out of order; and
(4) it must correctly report whether the queue is empty or not.

Although similar properties were already mentioned by Herlihy and Wing [15], we are the
first to prove that suitably formalized versions of these four properties are not only necessary,
but also sufficient, conditions for linearizability with respect to the queue specification, at least
for what we call purely-blocking implementations. This is a rather weak requirement satisfied by
all non-blocking methods, as well as by possibly blocking methods, such as Herlihy and Wing
deq() method, whose blocking executions do not modify the global state.

We implemented this new reduction-based approach as part of Cave [31], a verification tool
based on separation logic, and used it to verify a linked-list version of Herlihy and Wing’s queue.
(See WP6 regarding automation.)

3 Reasoning about Parametrised libraries ([ICFP’13])

Modular programming and modular verification go hand in hand: Programmers use modularity
in the design of their concurrent programs, to allow reusing individual program components
which, in turn, requires reasoning about these components in relative isolation. Unfortunately,

3

most existing advanced logics for concurrency, e.g., [6, 7, 9, 20, 24, 28, 29], are geared toward
building proofs that reflect the data abstraction inherent in well-designed programs, ignore two
crucial forms of modularity: higher-order functions, which are essential for building reusable
components, and granularity abstraction, a key technique for hiding the intricacies of fine-grained
concurrent data structures from the clients of those data structures. Reasoning about such
complicated components is particularly challenging the correctness of these data structure is
often based on certain spatio-temporal protocols which every thread must follow and hence
requires temporal reasoning about the parts of the states they manipulate. Modular reasoning
about these components is even more challenging as it requires hiding these spatio-temporal
invariants which guarantee the correctness of the data structures when reasoning about their
clients.

We introduced CaReSL, the first logic to support the use of granularity abstraction for
modular verification of higher-order concurrent programs. Our logic allows to reason about
complicated concurrent components and libraries which are parameterised using higher order
functions. The use of higher order functions is quite common in system software, for example
it is used by the work stealing mechanism in Cilk [3] and the implementation of concurrent
iterators in java.util.concurrency, just to name a few.

In contrast to existing logics, CaReSL takes full advantage of the architectural aspects over-
looked by existing works, namely, higher-order functions and granularity abstraction. To do so,
it builds on ideas from two distinct lines of research: Kripke logical relations and Concurrent
separation logics.

Kripke logical relation are a fundamental technique for proving refinement in languages with
higher-order functions, polymorphism, and recursive types. Logical relations explain observable
behaviour in terms of the logical interpretation of each type. For example, two functions of
type τ → τ ′ are logically related if giving them related inputs of type τ implies that they will
produce related results of type τ ′. Kripke logical relations are defined relative to a “possible
world” that describes the relationship between the internal, hidden state of a program and that
of its specification.

Concurrent separation logics. Separation logic is a Hoare logic in which assertions are un-
derstood relative to some portion of the heap, with the separating conjunction P ∗ Q dividing
up the heap between assertions P and Q. Most concurrent separation logics also add some form
of protocols (e.g., rely-guarantee), which facilitate compositional reasoning by constraining the
potential interference between threads operating concurrently on some shared portion of the
heap.

CaReSL attempts to unify these techniques. So, for example, the logic does not include
refinement as a primitive notion. Instead, refinement is derived from Hoare-style reasoning: to
prove that e refines e′, one merely proves a particular Hoare triple about e, allowing the tools
of concurrent separation logic to be exploited in the proof of logical relatedness. In the other
direction, CaReSL is a modal logic with the possible worlds of Kripke logical relations, which
can in turn be used to express the shared-state protocols of concurrent separation logics.

To demonstrate its effectiveness, we used CaReSL to construct the first formal proof of
correctness for Hendler et al.’s “flat combining” algorithm [13]. Flat combining provides a
generic way to turn a sequential ADT into a relatively efficient concurrent one, by having
certain threads perform the combined actions requested by a whole bunch of other threads. The
flat combining algorithm is interesting not only because it itself is a rather sophisticated higher-
order function, but also because it is modularly assembled from other higher-order components,
including a fine-grained stack with concurrent iterator. We therefore take the opportunity to
verify flat combining in a modular way that mirrors the modular structure of its implementation.

4

4 Verifying Concurrency-Aware Concurrent Data Structures
([PODC’14])

Linearizability [16] is the main correctness condition for concurrent data structures. It is a nat-
ural and important property as in many realistic programming models linearizability amounts
to observational refinement [10,11]. Intuitively, a concurrent object is linearizable if in every ex-
ecution each operation seems to take effect instantaneously between its invocation and response,
and the resulting sequence of (seemingly instantaneous) operations respects a given sequential
specification.

Unfortunately, for some concurrent objects it is impossible to provide a sequential specifi-
cation: their behaviour in the presence of concurrent operations is observably different from
their behaviour in the sequential setting. For example, Exchanger objects as found, e.g., in
java.util.concurrent.Exchanger, serve as a synchronization point at which threads can pair
up and atomically swap elements. (Note that elements can be swapped only when the Exchanger
is used concurrently by several threads.) Exchangers are useful in applications such as genetic
algorithms and pipeline designs, and are embedded in practice in thread-pool implementations
as well as other higher-level data structures [26,27].

We refer to objects whose behavior when used by multiple threads is observationally different
from their behavior in the sequential setting as Concurrency-Aware Concurrent Objects (CA-
objects). For such objects the traditional notion of linearizability is simply not expressive enough
to allow for describing all desired behaviours without introducing undesired ones. (E.g., allowing
threads to swap elements without a counterpart thread running concurrently.) As a result, CA-
objects are not given a formal specification. The lack of formal specifications is problematic as
it prevents modular proofs.

To rectify the aforementioned unfortunate situation, we propose concurrency-Aware Lin-
earizabilty (CAL) a new correctness condition which addresses the aforementioned problem.
CAL enables programmers to provide natural and intuitive specifications for (certain kinds of)
CA-objects. Technically, CAL is an extension of linearizabilty where Concurrency-Aware specifi-
cations, that describe concurrency-dependent behaviours, are allowed. Sequential specifications
are a special case of concurrency-aware ones which indicate that concurrency does not lead to
observably different behaviours.

CAL it is targeted to serve as the basis for modular verification of complicated CA-Objects:
Currently, correctness proofs of concurrent objects that utilize Exchanger-like objects are neither
modular nor reusable. For example, the correctness proof of the HSY-stack [14] mixes reasoning
about the implementation of an (Exchanger-like) elimination array with its particular usage
by the stack. Our goal in this work is to develop reasoning techniques that modularize proofs
of this kind of data structures by separating the reasoning about the concurrency-aware (often
generic) subcomponents from the reasoning about the higher level data structure.

The introduction of CAL can be seen as a technology transfer from our work on inter-
component modular reasoning (see D2.1) into the realm of intra-component verification. More
specifically, inspired by our previous work on the Hindsight lemma [23], we are currently devel-
oping a proof technique which partitions the verification of CA-objects into three stages: Firstly,
we show that every thread manipulates the state according to a simple spatio-temporal protocol.
Secondly, we show that following these protocols ensures the existence of a global state in which
all concurrent operations can be linearized simultaneously. Thirdly, we use a lightweight tem-
poral reasoning to show that all threads agree on that joined linearization point, thus obviating
the need to reason about linearization points in the body of other threads. (See discussion in
Section 3.). The unique aspect of our approach is that it uses CAL to decouple the reasoning
about multiple entangled parts of such complicated concurrent components in a way which was
not possible before as it enables hiding the intricacies used in the implementation of one part of
the data structure when reasoning about its other parts.

5

5 Reasoning about Replicated Data Types ([POPL’14])

We have proposed techniques for reasoning about implementations of replicated data types—
components used for conflict resolution in eventually consistent replicated stores that we specified
in WP2. This is described in Sections 5-6 of the attached [POPL’14] paper.

First, we have proposed a method for proving the correctness of replicated data type imple-
mentations with respect to the specifications in WP2 and applied it to seven existing implemen-
tations of the four data types, including those with nontrivial optimizations: last-writer-wins
register, counter, multi-value register and observed-remove set. Reasoning about the imple-
mentations is difficult due to the highly concurrent nature of a replicated store, with multiple
replicas simultaneously updating their object copies and exchanging messages. We addressed this
challenge by proposing replication-aware simulations. Like classical simulations from data refine-
ment [17], these associate a concrete state of an implementation with its abstract description—
structures on events, in our case. To combat the complexity of replication, they consider the
state of an object at a single replica or a message in transit separately and associate it with ab-
stract descriptions of only those events that led to it. Verifying an implementation then requires
only reasoning about an instance of its code running at a single replica.

Here, however, we have to deal with another challenge: code at a single replica can access
both the state of an object and a message at the same time, e.g., when updating the former
upon receiving the latter. To reason about such code, we often need to rely on certain agreement
properties correlating the abstract descriptions of the message and the object state. Establishing
these properties requires global reasoning. Fortunately, we have found that agreement proper-
ties needed to prove realistic implementations depend only on basic facts about their messaging
behavior and can thus be established once for broad classes of data types. Then a particular
implementation within such a class can be verified by reasoning purely locally. By carefully
structuring reasoning in this way, we achieved easy and intuitive proofs of data type implemen-
tations.

Apart from proving correctness of replicated data type implementations, we have also devised
techniques for proving the optimality of their resource usage. This is useful since replicated data
type designers strive to optimize their implementations; knowing that one is optimal can help
guide such efforts in the most promising direction. For most data types we studied, the primary
optimization target is the size of the metadata needed to resolve conflicts or handle network
failures.

To establish optimality of metadata size, we developed a novel method for proving lower
bounds on the worst-case metadata overhead of replicated data types—the proportion of meta-
data relative to the client-observable content. The main idea is to find a large family of executions
of an arbitrary correct implementation such that, given the results of data type operations from
a certain fixed point in any of the executions, we can recover the previous execution history.
This implies that, across executions, the states at this point are distinct and thus must have
some minimal size. Using our method, we proved that four of the implementations we verified
have an optimal worst-case metadata overhead among all implementations satisfying the same
specification.

References

[1] P. Abdulla, F. Haziza, L. Holk, B. Jonsson, and A. Rezine. An integrated specification and
verification technique for highly concurrent data structures. In TACAS, pages 324–338,
2013.

[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for
verifying linearizability. In 19th International Conference on Computer Aided Verification
(CAV), pages 477–490, 2007.

6

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system. J. Parallel Distrib. Comput., 37(1):55–69,
1996.

[4] R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data structures by simulation.
Electron. Notes Theor. Comput. Sci., 137(2):93–110, July 2005.

[5] J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisability with potential lin-
earisation points. In Proceedings of the 17th International Conference on Formal Methods,
FM, pages 323–337, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent
abstract predicates. In ECOOP 2010 Object-Oriented Programming, pages 504–528, 2010.

[7] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reasoning for deterministic
parallelism. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’11, pages 259–270, New York, NY, USA,
2011. ACM.

[8] S. Doherty and M. Moir. Nonblocking algorithms and backward simulation. In Proceedings
of the 23rd International Conference on Distributed Computing, DISC’09, pages 274–288,
Berlin, Heidelberg, 2009. Springer-Verlag.

[9] X. Feng. Local rely-guarantee reasoning. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09, pages
315–327, New York, NY, USA, 2009. ACM.

[10] I. Filipovic, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theoretical Computer Science, 411(51-52):4379 – 4398, 2010. European Symposium on
Programming 2009 - ESOP 2009.

[11] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP, pages
453–465, 2011.

[12] N. Hemed and N. Rinetzky. Brief announcement: Contention-aware linearizability. In ACM
Symposium on Principles of Distributed Computing (PODC), 2014.

[13] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In SPAA, 2010.

[14] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In In
SPAA04: Symposium on Parallelism in Algorithms and Architectures, pages 206–215. ACM,
2004.

[15] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst., 12(3), 1990.

[16] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–
492, 1990.

[17] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1972.

[18] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In Proceedings of the 11th
International Conference on Principles of Distributed Systems, OPODIS’07, pages 401–
414, Berlin, Heidelberg, 2007. Springer-Verlag.

7

[19] E. Ladan-Mozes and N. Shavit. An optimistic approach to lock-free fifo queues. In In
Proceedings of the 18th International Symposium on Distributed Computing, LNCS 3274,
pages 117–131. Springer, 2004.

[20] H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization
points. In PLDI, pages 459–470, 2013.

[21] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability via refinement. In
Proceedings of the 2Nd World Congress on Formal Methods, FM ’09, pages 321–337, Berlin,
Heidelberg, 2009. Springer-Verlag.

[22] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement scalable
and lock-free fifo queues. In Proceedings of the Seventeenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’05, pages 253–262, New York, NY,
USA, 2005. ACM.

[23] P. W. OHearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizability
with hindsight, 2010.

[24] F. Pottier. Hiding local state in direct style: A higher-order anti-frame rule. In LICS, pages
331–340, 2008.

[25] G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In
Proceedings of the 24th International Conference on Computer Aided Verification, CAV’12,
pages 243–259, Berlin, Heidelberg, 2012. Springer-Verlag.

[26] W. N. Scherer III, D. Lea, and M. L. Scott. A scalable elimination-based exchange channel.
SCOOL 05, page 83, 2005.

[27] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable synchronous queues. In Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 147–156. ACM, 2006.

[28] K. Svendsen, L. Birkedal, and M. Parkinson. Modular reasoning about separation of concur-
rent data structures. In Proceedings of the 22Nd European Conference on Programming Lan-
guages and Systems, ESOP’13, pages 169–188, Berlin, Heidelberg, 2013. Springer-Verlag.

[29] V. Vafeiadis. Modular fine-grained concurrency verification. Technical Report UCAM-CL-
TR-726, University of Cambridge, Computer Laboratory, July 2008.

[30] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In Proceedings of the
10th International Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI ’09, pages 335–348, Berlin, Heidelberg, 2009. Springer-Verlag.

[31] V. Vafeiadis. Automatically proving linearizability. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’10, pages 450–464, Berlin, Heidelberg,
2010. Springer-Verlag.

List of Attached Papers

[CONCUR’13] Thomas Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented lineariz-
ability proofs. In CONCUR’13: Concurrency Theory, pages 242–256, 2013.

[ICFP’13] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP’13: ACM International
Conference on Functional Programming, pages 377–390, 2013.

8

[PODC’14] Nir Hemed and Noam Rinetzky. Brief announcement: Concurrency-aware lineariz-
ability. In PODC’14: ACM Symposium on Principles of Distributed Computing, 2014.

[POPL’14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: specification, verification, optimality. In POPL’14: ACM Sym-
posium on Principles of Programming Languages, San Diego, CA, USA, pages 271-284.
ACM, 2014., 2014.

9

Aspect-Oriented Linearizability Proofs

Thomas A. Henzinger1, Ali Sezgin1, and Viktor Vafeiadis2

1 IST Austria {tah,asezgin}@ist.ac.at
2 MPI-SWS viktor@mpi-sws.org

Abstract. Linearizability of concurrent data structures is usually proved
by monolithic simulation arguments relying on identifying the so-called
linearization points. Regrettably, such proofs, whether manual or auto-
matic, are often complicated and scale poorly to advanced non-blocking
concurrency patterns, such as helping and optimistic updates.

In response, we propose a more modular way of checking linearizability of
concurrent queue algorithms that does not involve identifying lineariza-
tion points. We reduce the task of proving linearizability with respect
to the queue specification to establishing four basic properties, each of
which can be proved independently by much simpler arguments. As a
demonstration of our approach, we verify the Herlihy and Wing queue,
an algorithm that is challenging to verify by a simulation proof.

1 Introduction

Linearizability [8] is widely accepted as the standard correctness requirement
for concurrent data structure implementations. It amounts to showing that all
methods are atomic and obey the high-level sequential specification of the data
structure. For example, an unbounded queue must support the following two
methods: enqueue, which extends the queue by appending one element to its
end, and dequeue, which removes and returns the first element of the queue.

The standard way to prove that a concurrent queue implementation is lin-
earizable is to prove an invariant which relates the state of the implementation to
the state of the specification. A well-established approach (e.g. [1–5, 11, 13–15])
is to identify the linearization points, which when performed by the implemen-
tation change the state of the specification, and to then construct a forward or
backward simulation.

While for a number of concurrent algorithms, spotting the linearization points
may be straightforward (and has even been automated to some extent [15]), in
general specifying the linearization points can be very difficult. Due to helping,
they can lie in code not syntactically belonging to the thread and operation in
question, and can also depend on future behavior. There are numerous exam-
ples in the literature, where this is the case. To mention only a few concurrent
queues: the Herlihy and Wing queue [8], the optimistic queue [10], the elimina-
tion queue [12], the baskets queue [9], the flat-combining queue [6].

2 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

1: var q.back : int← 0
2: var q.items : array of val

← {NULL, NULL, . . .}

3: procedure enq(x : val)
4:

〈
i← INC(q.back)

〉
. E1

5:
〈
q.items[i]← x

〉
. E2

6: procedure deq() : val
7: while true do
8:

〈
range← q.back − 1

〉
. D1

9: for i = 0 to range do
10:

〈
x← SWAP(q.items[i], NULL)

〉
. D2

11: if x 6= NULL then return x

Fig. 1. Herlihy and Wing queue [8].

The HW Queue. In this paper, we focus on the Herlihy and Wing queue [8]
(henceforth, HW queue for short) that illustrates nicely the difficulties encoun-
tered when defining a simulation relation based on linearization points. The code
is given in Fig. 1. The queue is represented as a pre-allocated unbounded array,
q.items, initially filled with NULLs, and a marker, q.back, pointing to the end of
the used part of the array. Enqueuing an element is done in two steps: the marker
to the end of the array is incremented (E1), thereby reserving a slot for storing
the element, and then the element is stored at the reserved slot (E2). Dequeue is
more complex: it reads the marker (D1), and then searches from the beginning
of the array up to the marker to see if it contains a non-NULL element. It removes
and returns the first such element it finds (D2). If no element is found, dequeue
starts again afresh. Each of the four statements surrounded by 〈〉 brackets and
annotated by Ei or Di for i = 1, 2 is assumed to execute in isolation.

Consider the following execution fragment, where · denotes context switches
between concurrent threads,

(t : E1) · (u : E1) · (v : D1, D2) · (u : E2) · (t : E2) · (w : D1)

which have threads t and u executing enqueue instances, v and w executing de-
queue instances. At the end of this fragment, v is ready to dequeue the element
enqueued by u, and w is ready to dequeue the element enqueued by t. In order to
define a simulation relation from this interleaving sequence to a valid sequential
queue behavior, where operations happen in isolation, we have to pick the lin-
earization points for the two completed enqueue instances. The difficulty lies in
the fact that no matter which statements are chosen as the linearization points
for the two enqueue instances, there is always an extension to the fragment in-
consistent with the particular choice of linearization points. For instance, if we
pick (t : E1) as the linearization point for t, then the extension

(v : D2, return) · (z : D1, D2, return)

requiring u’s element be enqueued before that of t’s, will be inconsistent. If on the
other hand, any statement which makes u linearize before t, then the extension

(w : D2, return) · (z : D1, D2, D2, return)

requiring the reverse order of enqueueing will be inconsistent. This shows not
only that finding the correct linearization sequence can be challenging, but also

Aspect-Oriented Linearizability Proofs 3

that the simulation proofs will require to reason about the entire state of the
system, as the local state of one thread can affect the linearization of another.

Our Contribution. In our experience, this and similar tricks for reducing synchro-
nization among threads so as to achieve better performance, make concurrent
algorithms extremely difficult to reason about when one is constrained to estab-
lishing a simulation relation. However, if two methods overlap in time, then the
only thing enforced by linearizability is that their effects are observed in some
and same order by all threads. For instance, in the example given above, the
simple answer for the particular ordering between the linearization points of the
enqueue instances of t and u, is that it does not matter! As long as enqueue
instances overlap, their values can be dequeued in any order.

Building on this main observation, our contribution is to simplify linearizabil-
ity proofs by modularizing them. We reduce the task of proving linearizability
to establishing four relatively simple properties, each of which may be reasoned
about independently. In (loose) analogy to aspect-oriented programming, we are
proposing “aspect-oriented” linearizability proofs for concurrent queues, where
each of these four properties will be proved independently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:
(1) must not allow dequeuing an element that was never enqueued;
(2) it must not allow the same element to be dequeued twice;
(3) it must never reorder enqueued elements; and
(4) it must correctly report whether the queue is empty or not.

Although similar properties were already mentioned by Herlihy and Wing [8],
we for the first time prove that suitably formalized versions of these four prop-
erties are not only necessary, but also sufficient, conditions for linearizability
with respect to the queue specification, at least for what we call purely-blocking
implementations. This is a rather weak requirement satisfied by all non-blocking
methods, as well as by possibly blocking methods, such as HW deq() method,
whose blocking executions do not modify the global state.

The rest of the paper is structured as follows: §2 recalls the definition of
linearizability in terms of execution histories; §3 formalizes the aforementioned
four properties, and proves that they are necessary and sufficient conditions
for proving linearizability of queues; §4 returns to the HW queue example and
presents a detailed manual proof of its correctness; and §5 explains how the bulk
of this proof was also performed automatically by an adaptation of Cave [15].
Finally, in §6 we discuss related work, and in §7 we conclude.

2 Technical Background

In this section, we introduce common notations that will be used throughout
the paper and recall the definition of linearizability.

Histories, Linearizability. For any function f from A to B and A′ ⊆ A, let

f(A′)
def
= {f(a) | a ∈ A′}. Given two sequences x and y, let x · y denote their

concatenation, and let x ∼perm y hold if one is a permutation of the other.

4 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

A data structure D is a pair (D,ΣD), where D is the data domain and ΣD
is the method alphabet. An event of D is a triple (m, di, do), for some m ∈ ΣD,
d1, d2 ∈ D. Intuitively, (m, di, do) denotes the application of method m with
input argument di returning the output value do. A sequence over events of D is
called a behavior. The semantics of data structure D is a set of behaviors, called
legal behaviors.

Each event a = (m, di, do) generates two actions: the invocation of a, written
as inv(a), and the response of a, written as res(a). We will also use mi(di) and
mr(do) to denote the invocation and the response actions, respectively. When a
particular method m does not have an input (resp., output) parameter, we will
write (m,⊥, x) (resp., (m,x,⊥)), and mi() (resp., mr()) for the corresponding
invocation (resp., response) action.

In this paper, a history of D is a sequence of invocation and response actions
of D. We will assume the existence of an implicit identifier in each history c that
uniquely pairs each invocation with its corresponding response action, if the
latter also occurs in c. A history c is well-formed if every response action occurs
after its associated invocation action in c. We will consider only well-formed
histories. An event is completed in c, if both of its invocation and response
actions occur in c. An event is pending in c, if only its invocation occurs in c.
We define remPending(c) to be the sub-sequence of c where all pending events
have been removed. An event e precedes another event e′ in c, written e ≺c e

′, if
the response of e occurs before the invocation of e′ in c. For event e, Before(e, c)
denotes the set of all events that precede e in c. Similarly, After(e, c) denotes
the set of all events that are preceded by e in c. Formally,

Before(e, c)
def
= {e′ | e′ ≺c e} and After(e, c)

def
= {e′ | e ≺c e

′} .

History c is called complete if it does not have any pending events. For a possi-
bly incomplete history c, a completion of c, written ĉ, is a (well-formed) complete
history such that ĉ = remPending(c · c′) where c′ contains only response events.
Let Compl(c) denote the set of all completions of c.

A history is called sequential if all invocations in c are immediately followed
by their matching responses, with the possible exception of the very last action
which can only be the invocation of a pending event. We identify complete
sequential histories with behaviors of D by mapping each consecutive pair of
matching actions in the former to its event constructing the latter. A sequential
history s is a linearization of a history c, if there exists ĉ ∈ Compl(c) such that
ĉ ∼perm s and whenever e ≺ĉ e

′ we have e ≺s e
′.

Definition 1 (Linearizability [8]). A set of histories C is linearizable with
respect to a data structure D, if for any c ∈ C, there exists a linearization of c
which is a legal behavior of D.

Queues. The method alphabet ΣQ of a queue is the set {enq, deq}. We will take
the data domain to be the set of natural numbers, N, and a distinguished symbol
NULL not in N. Events are written as enq(x), short for (enq, x,⊥), and deq(x),

Aspect-Oriented Linearizability Proofs 5

short for (deq,⊥, x). Events with enq are called enqueue events, and those with
deq are called dequeue events.

Let c be a history. Enq(c) denotes the set of all enqueue events invoked (and
not necessarily completed) in c. Similarly, Deq(c) denotes the set of all dequeue
events invoked in c. A set A ⊆ Enq(c) ∪Deq(c) is closed under ≺c if a ∈ A and
b ≺c a, then b ∈ A.

For an enq event e in c, Valc(e) denotes the value to be inserted by e in c.
Formally, Valc(enq(x)) = x. Similarly, for a completed deq event d in c, Valc(d)
denotes the value removed by d in c. Formally, Valc(deq(x)) = x. For a pending
deq event, Valc(deq(x)) is undefined.

We will use a labelled transition system, LTSQ, to define the queue semantics.
The states of LTSQ are sequences over N, the initial state is the empty sequence ε.

There is a transition from q to q′ with action a, written q
a−→ q′, if (i) a = enq(x)

and q′ = q · x, or (ii) a = deq(x) and q = x′ · q′, or (iii) a = deq(NULL) and
q = q′ = ε. A queue is partial if the last transition (NULL returning dequeue
event) is not allowed.

A run of LTSQ is an alternating sequence q0l1q1 . . . lnqn of states and queue

events such that for all 1 ≤ i ≤ n, we have qi−1
li−→ qi. The trace of a run is the

sequence l1 . . . ln of the events occurring on the run. A queue behavior b is legal
iff there is a run of LTSQ with trace b.

We find it useful to express the queue semantics in an alternative formulation.

Definition 2. A queue behavior b has a sequential witness if there is a total
mapping µseq from Deq(b) to Enq(b) ∪ {⊥} such that

– µseq(d) = e implies Valb(d) = Valb(e),
– µseq(d) = ⊥ iff Valb(d) = NULL,
– µseq(d) = µseq(d′) 6= ⊥ implies d = d′,
– e ≺b e

′ and there exists d′ with µseq(d′) = e′ imply µ−1seq(e) ≺b d
′,

– µseq(d) = ⊥ implies that
|{e ∈ Enq(b) | e ≺b d}| = |{d′ ∈ Deq(b) | d′ ≺b d ∧ µseq(d′) 6= ⊥}|.

Proposition 1. A queue behavior b is legal iff b has a sequential witness.

Proof (Sketch). If b is legal, then, by definition, it has a run r in LTSQ with trace

b. Let d be a dequeue event occurring in b. Then there is a transition q
d−→ q′ in r.

If d = deq(x) for some x ∈ N, then set µseq(d) = e where e is the enqueue event
enq(x) which has inserted x into the state sequence. If d = deq(NULL), then set
µseq(d) = ⊥. Then, it is easy to check that µseq satisfies all the conditions of
being a sequential witness for b.

For the other direction, let µseq be a sequential witness for b. We observe
that i) an element x is in state q iff an enqueue event enq(x) has happened on
the prefix of the run ending at q and the dequeue event with µseq(d) = e has not
happened on the same prefix, ii) for any two enqueue events e, e′ with e ≺b e

′,
Valb(e) occurs in a state before Valb(e

′), iii) the relative ordering of inserted
elements in a state does not change as long as both are in the state, iv) each

6 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

enqueue event inserts exactly one element to the state, v) each dequeue event
deq(x) with x 6= NULL removes exactly one element from the state, and vi) the
dequeue event deq(NULL) does not change the state. Then, by induction on the
length of b, we show that b has a run in LTSQ. ut

3 Conditions for Queue Linearizability

3.1 Generic Necessary and Sufficient Conditions

We start by reducing the problem of checking linearizability of a given history,
c, with respect to the queue specification to finding a mapping from its dequeue
events to its enqueue events satisfying certain conditions. Intuitively, we map
each dequeue event to the enqueue event whose value the dequeue removed, or
to nothing if the dequeue event returns NULL. We say that the mapping is safe
if it pairs each deq event with a proper enq event, implying that elements are
inserted exactly once and removed at most once. A safe mapping is ordered if
it additionally respects precedence induced by c. Finally, an ordered mapping
is a linearizability witness if all NULL returning deq events see at least one state
where the queue is logically empty. Below, we formalize these notions.

Definition 3 (Safe Mapping). A mapping Match from Deq(c) to Enq(c)∪{⊥}
is safe for c if
(1) for all d ∈ Deq(c), if Match(d) 6= ⊥, then Valc(d) = Valc(Match(d));
(2) for all d ∈ Deq(c), Match(d) = ⊥ iff Valc(d) = NULL; and
(3) for all d, d′ ∈ Deq(c), if Match(d) = Match(d′) 6= ⊥, then d = d′.

Definition 4 (Ordered Mapping). A safe mapping Match for c is ordered if
(1) for all d ∈ Deq(c), we have d 6≺c Match(d); and
(2) for all d, d′ ∈ Deq(c), if Match(d) ≺c Match(d′), then d′ 6≺c d.

Definition 5 (Linearization Witness). An ordered mapping Match for c is
a linearization witness if for any d ∈ Deq(c) with Valc(d) = NULL, there ex-
ists a subset D′ ⊆ Deq(c) such that Match(D′) is closed under ≺c and D′ ∩
After(d, c) = ∅ and Before(d, c) ∩ Enq(c) ⊆ Match(D′).

The main result of this section is stated below.

Theorem 1. A set of histories C is linearizable with respect to queue iff every
c ∈ C has a completion ĉ ∈ Compl(c) that has a linearization witness.

Proof. (⇒) If c ∈ C is linearizable with respect to queue, then there is a lin-
earization s of c which is a legal queue behavior. By Prop. 1, s has a sequential
witness µseq. The mapping µseq satisfies the conditions of a linearization witness
since all ≺c orderings are preserved in s.

(⇐) Pick a c ∈ C and let ĉ ∈ Compl(c) be its completion that has a lin-
earization witness Match. Let < be some arbitrary total order on the events of
ĉ. We construct the linearization of ĉ inductively as follows:

Aspect-Oriented Linearizability Proofs 7

Let c′ be the prefix of ĉ that has been processed, and let s′ be the resulting
sequential history. All events in s′ are placed. Events that are not placed but are
pending after c′ are called candidate. We extend c′ until the first response action
that happens after c′ in ĉ. Formally, let c′ · ce · ar be a prefix of ĉ such that ce
contains only invocation actions and ar is a response action. Let A denote the
set of all candidate events after c′ · ce · ar. The new s′ is obtained by appending
some a ∈ A as the next event if
(1) a is an enqueue event, and there does not exist another enqueue event e such
that Match−1(e) ≺ĉ Match−1(a) and e is not placed in s′; or
(2) a is a dequeue event with Val ĉ(a) 6= NULL, Match(a) is placed in s′, and there
does not exist another dequeue event d such that Match(d) ≺ĉ Match(a) and d
is not placed in s′; or
(3) a is a dequeue event with Val ĉ(a) = NULL and the number of enqueue events
in s′ is equal to the number of dequeue events d with Val ĉ(d) 6= NULL in s′.
In case, where both first and second conditions are satisfied, the candidate el-
ement minimal with respect to < is appended to s′. This iteration is repeated
until there are no candidate events that satisfy any of the conditions, at which
point the inductive step ends with setting c′ to c′ ·ce ·ar. The existence of Match
guarantees that such a sequence can be constructed. The constructed sequence
s has Match also as a sequential witness, completing the proof. ut

3.2 Necessary and Sufficient Conditions for Complete Histories

We now focus on complete histories, namely ones with no pending events. We
observe that their linearizability violations can always be manifested in terms of
the dequeued values. Intuitively, the possible violations are:

(VFresh) A dequeue event returning a value not inserted by any enqueue event.
(VRepet) Two dequeue events returning the value inserted by the same enqueue

event.
(VOrd) Two ordered dequeue events returning values inserted by enqueue events

in the inverse order.
(VWit) A dequeue event returning NULL even though the queue is never logically

empty during the execution of the dequeue event.

We have the following result which ties the above violation types to lineariz-
able queues.

Proposition 2. A complete history c has a linearization which is a legal queue
behavior iff it has none of the VFresh, VRepet, VOrd, VWit violations.

Proof (Sketch). First, note that as c has no pending events, Compl(c) = {c}.
If c has a linearization which is a legal queue behavior, then by Theorem 1, c
has a linearization witness Match, and so none of the violations can happen. As
Match is safe, (VFresh) and (VRepet) cannot happen; as it is ordered, (VOrd)
cannot occur; and as it is a linearization witness, likewise (VWit) cannot happen.
Similarly, in the other direction, the absence of all the violations ensures the
existence of a linearizability witness. ut

8 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

We remark that none of the violations mentions the possibility of an element
inserted by an enqueue being lost forever. This is intentional, as such histories
are ruled out by the following proposition.

Proposition 3. Given an infinite sequence of complete histories c1, c2, . . . not
containing any of the violations above, where for every i, ci is a prefix of ci+1,
and the number of dequeue events in ci is less than that of ci+1, if c1 contains
an enqueue event enq(x), then exists some cj containing deq(x).

Proof. We prove this by contradiction. If there is no deq(x) event, then enq(x)
is always in the queue, and so, from the absence of VWit violations, none of
the dequeue events following enq(x) can return NULL. Also, since dequeue events
cannot return values that were not previously enqueued (VFresh) and cannot
return the same value multiple times (VRepet), and since the number of dequeue
events is increasing, then there must also be new enqueue events. However, only
finitely many of those are not preceded by enq(x) which completes in c1. This
means that eventually one dequeue event has to return an element inserted by
enq(y) such that enq(x) ≺cj enq(y), which is VOrd. ut

For checking purposes, we find it useful to re-state the third violation as the
following equivalent proof obligation.

(POrd) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2),
a dequeue event cannot return Valc(e2) if Valc(e1) is never removed in c.

Thus, we need an invariant which specifies all those executions satisfying the
premise of POrd, and prove that such an execution cannot end with a dequeue
event (in the sense that no other method is preceded by that dequeue event)
returning the value of e2.

3.3 Necessary and Sufficient Conditions for Purely-Blocking Queues

There is a subtle complication in the statement of Theorem 1. The witness
mapping is chosen relative to some completion of the concurrent history un-
der consideration. However, because implementations may become blocked, such
completions may actually never be reached. This means that one cannot reason
about the correctness of a queue implementation by considering only reachable
states. What we would ideally like to do is to claim that if the implementation
violates linearizability, then there is a finite complete history of the implemen-
tation which has no witness. In other words, if the implementation contains
an incomplete history with no witness, then that execution is the prefix of a
complete history of the implementation.

Let C be the set of all possible execution histories of a library implementation.
We call a library implementation completable iff for every history c ∈ C, we have
Compl(c)∩C 6= ∅. For completable implementations, it suffices to consider only
complete executions.

Aspect-Oriented Linearizability Proofs 9

Theorem 2. A completable queue implementation is linearizable iff all its com-
plete histories have none of the VFresh, VRepet, VOrd and VWit violations.

Proof. (⇒) If some complete history has a violation, by Prop. 2, it has no lin-
earization, contradicting the assumption that the implementation is linearizable.

(⇐) Consider an arbitrary history c of the implementation. As the imple-
mentation is completable, there exists a completion ĉ ∈ Compl(c) that is a valid
history of the implementation. From our assumptions, ĉ cannot have a violation,
and so by Prop. 2, ĉ has a linearization, and therefore so does c. ut

Since it may not be obvious how to easily prove that an implementation is
completable, we introduce the stronger notion of purely-blocking implementa-
tions, that is straightforward to check. We say that an implementation is purely-
blocking when at any reachable state, any pending method, if run in isolation
will terminate or its entire execution does not modify the global state.

Proposition 4. Every purely-blocking implementation is completable.

Proof. Given a history c ∈ C, we will construct ĉ ∈ Compl(c) ∩ C. We fix a total
order of pending events, and consider them in that order. For a pending method
e, if running it in isolation terminates, then extend c with the corresponding
response for e. Otherwise, the execution of e does not modify any global state
and so can be removed from the history without affecting its realizability. ut

We remark that our new notion of purely-blocking is a strictly weaker re-
quirement than the standard non-blocking notions: obstruction-freedom, which
requires all pending methods to terminate when run in isolation, as well as the
stronger notions of lock-freedom and wait-freedom. (See [7] for an in depth ex-
position of these three notions.)

4 Manually Verifying the Herlihy-Wing Queue

Let us return to the HW queue presented in §1 and prove its correctness manually
following our aspect-oriented approach.

First, observe that HW queue is purely-blocking: enq() always terminates,
and deq() can update the global state only by reading x 6= NULL at E2, in which
case it immediately terminates. So from Prop. 4 and Theorem 2, it suffices to
show that it does not have any of the four violations. The last one, VWit, is
trivial as the HW deq() never returns NULL. So, we are left with three violations
whose absence we have to verify: VFresh, VRepet, and VOrd.

Intuitively, there are no VFresh violations because deq() can return only a
value that has been stored inside the q.items array. The only assignments to
q.items are E1 and D2: the former can only happen by an enq(x), which puts x
into the array; the latter assigns NULL.

Likewise, there are no VRepet violations because whenever in an arbitrary
history two calls to deq() return the same x, then at least twice there was an
element of the q.items array holding the value x and was updated to NULL

10 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

procedure deq(v : val)
while true do〈

range← q.back − 1
〉

for i = 0 to range do

〈x← q.items[i];
assume(x = v ∧ x 6= NULL);
q.items[i]← NULL

〉
;

return x

 t

〈x← q.items[i];
assume(x = NULL);
q.items[i]← NULL

〉

Fig. 2. The HW dequeue method instrumented with the prophecy variable v guessing
its return value, where t stands for non-deterministic choice.

by the SWAP instruction at D2. Therefore, at least two assignments of the form
q.items[]← x happened; i.e. there were at least two enq(x) events in the history.

We move on to the more challenging third condition, VOrd. We actually con-
sider its equivalent reformulation, POrd. Fix a value v2 and consider a history c
where every method call enqueuing v2 is preceded by some method call enqueu-
ing some different value v1 and there are no deq() calls returning v1 (there may
be arbitrarily many concurrent enq() and deq() calls enqueuing or dequeuing
other values). The goal is to show that in this history, no deq() return v2.

Let us suppose there is a dequeue d returning v2, and try to derive a contradic-
tion. For d to return v2, it must have read range ≥ i2 such that q.items[i2] = v2.
So, d must have read q.back at D1 after enq(v2) incremented it at E1.

Since, enq(v1) ≺c enq(v2), it follows that enq(v2) will have read a larger
value of q.back at E1 than enq(v1). So, in particular, once enq(v1) finishes, the
following assertion will hold:

∃i1 < q.back. q.items[i1] = v1 ∧ (∀j < i1. q.items[j] 6= v2) (∗)

Note that since, by assumption, v1 can never be dequeued, and any later enq(v2)
can only affect the q.items array at indexes larger than i1, (∗) is an invariant.

Given this invariant, however, it is impossible for d to return v2, as in its
loop it will necessarily first have encountered v1.

5 Automation

As can be seen from our previous informal argument, establishing absence of
VFresh and VRepet violations was relatively straightforward, whereas proving
POrd was somewhat more involved. Therefore, in this section, we will focus on
automating the proof of the third property, POrd. Towards the end of the section,
we will discuss the automatic verification of the absence of VWit violations for
queue implementations, where deq may return NULL.

Prophetic Instrumentation of Dequeues. Our proof technique relies heavily on
instrumenting the deq() function with a prophecy variable ‘guessing’ the value
that will be returned when calling it. Essentially, we construct a method, deq(v),

Aspect-Oriented Linearizability Proofs 11

such that the set of traces of
⊔

x∈N∪{NULL} deq(x) is equal to the set of traces of

deq(), where t stands for non-deterministic choice. Figure 2 shows the resulting
automatically-generated instrumented definition of deq(v) for the HW queue.

Our implementation of the instrumentation performs a sequence of simple
rewrites, each of which does not affect the set of traces produced:

return E assume(v = E); return E

if B then C else C ′ (assume(B);C) t (assume(¬B);C ′)

C; assume(B) assume(B);C provided fv(B) ⊆ Locals \ writes(C)

C; (C1 t C2)! (C;C1) t (C;C2)

(C1 t C2);C! (C1;C) t (C2;C)

In general, the goal of applying these rewrite rules is to bring the introduced
assume(v = E) statements as early as possible without unduly duplicating code.

Proving Absence of VOrd Violations. It turns out that our automated technique
for proving POrd also establishes absence of VFresh violations as a side-effect.
We reduce the problem of proving absence of VFresh and VOrd violations to
the problem of checking non-termination of non-deterministic programs with an
unbounded number of threads. The reduction exploits the instrumented deq(v)
definition: deq() cannot return a result x in an execution precisely if deq(x)
cannot terminate in that same execution.

Theorem 3. A completable queue implementation has no VFresh and VOrd vi-
olations iff for all n ∈ N and forall v1 and v2 such that v1 6= v2, the program3

Prg
def
= b← false; (deq(v2) ‖

n times︷ ︸︸ ︷
C‖ . . . ‖C)

does not terminate, where

C
def
= (enq(v1); b← true) t (assume(b); enq(v2)) t

⊔

x 6=v2

enq(x) t
⊔

x6=v1

deq(x) .

Proof. (⇒) We argue by contradiction. Consider a terminating history c of Prg .
If enq(v2) is not invoked in c, then as there are no VFresh violations, we know that
no deq() in c can return v2, contradicting our assumption that c is a terminating
history of Prg . Otherwise, if enq(v2) is invoked in c, then at some earlier point
assume(b) was executed, and since initially b was set to false, this means that
b ← true was executed and therefore enq(v1) ≺c enq(v2). Consequently, from

3 For simplicity, we assume that the methods cannot distinguish the thread in which
they are running (i.e., they do not use thread-local storage or thread identifiers).
Handling thread identifiers properly is not difficult: we have to record a set of thread
identifiers that are not currently in use. Before each method invocation, we have to
atomically pick and remove an identifier from that set, and on returning from the
method, we have to add the current identifier back the set of unused identifiers.

12 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

POrd, if there is deq() in c returns v2, there must be a deq() in c that can be
completed to return v1, contradicting our assumption that c is a terminating
history of Prg .

(⇐) We have two properties to prove. For VFresh, it suffices to consider
the restricted parallel context that never chooses to execute the first two of
the non-deterministic choices. In this restricted context, namely one that never
enqueues v2, deq(v2) does not terminate, and so deq() cannot return v2. For
VOrd, consider a history in which every enq(v2) happens after some enqueue of
a different value, say enq(v1), and in which there is no deq(v1). Such a history
can easily be produced by the unbounded parallel composition of C, and so
deq(v2) also does not terminate, as required. ut

To prove non-termination, we essentially prove the partial-correctness Hoare
triple, {true} Prg {false}. Given a sound program logic, the only way for such a
triple to hold is for the program to always diverge.

Implementation within Cave. To prove such triples, we have midly adapted
the implementation of Cave [15], a sound but incomplete thread-modular con-
current program verifier that can handle dynamically allocated linked list data
structures, fine-grained concurrency. The tool takes as its input a program con-
sisting of some initialization code and a number of concurrent methods, which
are all executed in parallel an unbounded number of times each. When successful,
it produces a proof in RGSep that the program has no memory errors and none
of its assertions are violated at runtime. Internally, it performs RGSep action
inference [16] with a rich shape-value abstract domain [14] that can remember
invariants of the form that value v1 is inside a linked list. Cave also has a way
of proving linearizability by a brute-force search for linearization points (see [15]
for details), but this is not applicable to the HW queue and therefore irrelevant
for our purposes.

The main modifications we had to perform to the tool were: (1) to add code
that instruments deq() methods with a prophecy argument guessing its return
value, thereby generating deq(v); (2) to improve the abstraction function so that
it can remember properties of the form v2 /∈ X, which are needed to express the
(∗) invariant of the proof in §4; and (3) to add some glue code that constructs
the Prg verification condition and runs the underlying prover to verify it.

As Cave does not support arrays (it only supports linked lists), we gave the
tool a linked-list version of the HW queue, for which it successfully verified that
there are no VFresh and VOrd violations.

Showing Absence of VWit Violations. Here, we have to show that any dequeue
event cannot return empty if it never goes through a state where the queue is
logically empty. This in turn means that we have to express non-emptiness using
only the actions of the history (and not referring to the linearization point or the
gluing invariant which relates the concrete states of the implementation to the
abstract states of the queue). For the following let us fix a (complete) concurrent
history c and a dequeue of interest d which returns NULL and does not precede
any other event in c.

Aspect-Oriented Linearizability Proofs 13

Let c′ be some prefix of c and let e ∈ Enq(c′) be a complete enqueue event in
c′. We will call e alive after c′ if there is no completion of c′ in which the dequeue
event deq(Valc′(e)) occurs. Let di denote the dequeue event which removes the
element inserted by the enqueue event ei; that is, di = deq(Valc(ei)). A sequence
e0e1 . . . en of enqueue events in Enq(c) is covering for d in c if the following holds:

– e0 is alive at c′ where c′ is the maximal prefix of c such that d /∈ Deq(c′).
– For all i ∈ [1, n], ei starts before d completes.
– For all i ∈ [1, n], we have ei ≺c di−1.
– en is alive at c.

Note that all di must exist by the third condition and that dn does not exist by
the last condition. Then, the sequence is covering for d if d0 does not start before
d starts, and every enqueue event ei completes before the dequeue event di−1
starts. Intuitively, this means that at every state visited during the execution of
d, the queue contains at least one element. The property corresponding to the
last violation (VWit) then becomes the following:

(PWit) A dequeue event d cannot return NULL if there is a covering for d.

We will actually re-state the same property in a simpler way by making the
following observation.

Proposition 5. There is a covering for d in c iff at every prefix c′ of c such
that d is running, there is at least one alive enqueue event.

Then, we can alternatively state PWit as follows:

(PWit′) A dequeue event d cannot return NULL if for every prefix c′ at which d
is pending there exists an alive enqueue event.

Note that, POrd can also be stated in terms of alive enqueue events.

(POrd′) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2),
a dequeue event cannot return Valc(e2) if e1 is alive at c.

6 Related Work

Linearizability was first introduced by Herlihy and Wing [8], who also presented
the HW queue as an example whose linearizability cannot be proved by a simple
forward simulation where each method performs its effects instantaneously at
some point during its execution. The problem is, as we have seen, that neither of
E1 or E2 can be given as the (unique) linearization point of enq events, because
the way in which two concurrent enqueues are ordered may depend on not-yet-
completed concurrent deq events. In other words, one cannot simply define a
mapping from the concrete HW queue states to the queue specification states.
Nevertheless, Herlihy and Wing do not dismiss the linearization point technique
completely, as we do, but instead construct a proof where they map concrete
states to non-empty sets of specification states.

14 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

This mapping of concrete states to non-empty sets of abstract states is closely
related to the method of backward simulations, employed by a number of manual
proof efforts [3, 5, 13], and which Schellhorn et al. [13] recently showed to be a
complete proof method for verifying linearizability. Similar to forward simulation
proofs, backward simulation proofs, are monolithic in the sense that they prove
linearizability directly by one big proof. Sadly, they are also not very intuitive and
as a result often difficult to come up with. For instance, although the definition of
their backward simulation relation for the HW queue is four lines long, Schellhorn
et al. [13] devote two full pages to explain it.

As a result, most work on automatically verifying linearizability (e.g. [2, 14,
15, 1]) has relied on the simpler technique of forward simulations, even though
it is known to be incomplete. The programmer is typically required to annotate
each method with its linearization points and then the verifier uses some kind
of shape analysis that automatically constructs the simulation relation. This
approach seems to work well for simple concurrent algorithms such as the Treiber
stack and the Michael and Scott queues, where finding the linearization points
may be automated by brute-force search [15], but cannot handle more challenging
examples such as the ones mentioned in the introduction.

Among this line of work, the most closely related one to this paper is the
recent work by Abdulla et al. [1], who verify linearizability of stack and queue
algorithms using observer automata that report specification violations such as
our VOrd. Their approach, however, still requires users to annotate methods
with linearization points, because checker automata are synchronized with the
linearization points of the implementation.

We would also like to point out that the use of forward simulations is not
limited to automated verifications of linearizability. Several manual verification
also used forward simulations (e.g. [4, 3]).

To the best of our knowledge, there exist only two earlier published proofs of
the HW queue: (1) the original pencil-and-paper proof by Herlihy and Wing [8],
and (2) a mechanized backward simulation proof by Schellhorn et al. [13].

Both proofs are manually constructed. In comparison, our new proof is sim-
pler, more modular, and largely automatically generated.4 This is largely due to
the fact that we have decomposed the goal of proving linearizability into proving
four simpler properties, which can be proved independently. This may allow one
to adapt the HW queue algorithm, e.g. by checking emptiness of the queue and
allowing deq to return NULL, and affecting only the proof of absence of VWit
violations without affecting the correctness arguments of the other properties.

Our violation conditions are arguably closer to what programmers have in
mind when discussing concurrent data structures. Informal specifications writ-
ten by programmers and bug reports do not mention that some method is not
linearizable, but rather things like that values were dequeued in the wrong order.

4 We say ‘largely’ because we have not yet automated the verification of the absence of
VRepet violations, which requires a simple counting argument, nor the (admittedly
trivial) proof that the HW queue is purely-blocking. We intend to implement these
in the near future.

Aspect-Oriented Linearizability Proofs 15

7 Conclusion

We have presented a new method for checking linearizability of concurrent
queues. Instead of searching for the linearization points and doing a monolithic
simulation proof, we verify four simple properties whose conjunction is equivalent
to linearizability with respect to the atomic queue specification. By decomposing
linearizability proofs in this way, we obtained a much simpler correctness proof of
the Herlihy and Wing queue [8], and one which can be produced automatically.

We conjecture that our new property-oriented approach to linearizability
proofs will be equally applicable to other kinds of concurrent shared data struc-
tures, such as stacks, sets, and maps. In the future, we would like to build tools
that will automate this kind of reasoning for such data structures.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated
specification and verification technique for highly concurrent data structures. In:
TACAS’13. pp. 324–338. Springer (2013)

2. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: CAV (2007)

3. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simu-
lation. ENTCS 137(2), 93–110 (2005)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: FM’11. pp. 323–337. Springer (2011)

5. Doherty, S., Moir, M.: Nonblocking algorithms and backward simulation. In: Kei-
dar, I. (ed.) DISC. LNCS, vol. 5805, pp. 274–288. Springer (2009)

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: SPAA ’10. pp. 355–364. ACM (2010)

7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc. (2008)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. pp. 463–492 (1990)

9. Hoffman, M., Shalev, O., Shavit, N.: The baskets queue. In: OPODIS’07. pp. 401–
414. Springer (2007)

10. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues. In:
DISC ’04. pp. 117–131. Springer-Berlin (2004)

11. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: FM ’09. pp. 321–337. Springer (2009)

12. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: SPAA ’05. pp. 253–262. ACM (2005)

13. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: CAV’12. pp. 243–259. Springer (2012)

14. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI. LNCS, vol. 5403, pp. 335–348. Springer (2009)

15. Vafeiadis, V.: Automatically proving linearizability. In: CAV’10. pp. 450–464.
Springer (2010)

16. Vafeiadis, V.: RGSep action inference. In: Barthe, G., Hermenegildo, M.V. (eds.)
VMCAI. LNCS, vol. 5944, pp. 345–361. Springer (2010)

Unifying Refinement and Hoare-Style Reasoning
in a Logic for Higher-Order Concurrency

Aaron Turon
MPI-SWS

turon@mpi-sws.org

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Abstract
Modular programming and modular verification go hand in hand,
but most existing logics for concurrency ignore two crucial forms
of modularity: higher-order functions, which are essential for
building reusable components, and granularity abstraction, a key
technique for hiding the intricacies of fine-grained concurrent data
structures from the clients of those data structures. In this paper,
we present CaReSL, the first logic to support the use of granularity
abstraction for modular verification of higher-order concurrent pro-
grams. After motivating the features of CaReSL through a variety
of illustrative examples, we demonstrate its effectiveness by using
it to tackle a significant case study: the first formal proof of (partial)
correctness for Hendler et al.’s “flat combining” algorithm.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Contextual refinement; higher-order functions; fine-
grained concurrency; separation logic; Kripke logical relations.

1. Introduction
Over the past decade, a number of Hoare logics have been devel-
oped to cope with the complexities of concurrent programming [20,
32, 7, 3, 18, 4, 27]. Unsurprisingly, the name of the game in these
logics is improving support for modular reasoning along a vari-
ety of dimensions. Concurrent Abstract Predicates (CAP) [3], for
example, utilizes a deft combination of separation logic [26] (for
spatially-modular reasoning about resources and ownership), rely-
guarantee [15] (for thread-modular reasoning in the presence of
interference), and abstract predicates [21] (for hiding invariants
about a module’s private data structures from its clients).

At the same time, of course, the importance of modularity is
not restricted to verification. Programmers use modularity in the
design of their concurrent programs, precisely to enable reasoning
about individual program components in relative isolation. And
indeed, certain aspects of advanced concurrency logics, such as
their aforementioned use of abstract predicates, are geared toward
building proofs that reflect the data abstraction inherent in well-
designed programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500600

We contend, however, that existing concurrency logics are not
exploiting the modular design of sophisticated concurrent programs
to full effect. In particular, we observe that there are two crucial di-
mensions of modular concurrent programming that existing logics
provide no way to leverage in the construction of proofs: namely,
higher-order functions and granularity abstraction.

Higher-order concurrency Higher-order functional abstraction
is of course one of the most basic hammers in the modern program-
mer’s toolkit for writing reusable and modular code. Moreover, a
number of concurrent programming patterns rely on it: work steal-
ing [2], Concurrent ML-style events [25], concurrent iterators [16],
parallel evaluation strategies [29], and monadic approaches to con-
current programming [10], just to name a few.

Yet, verification of higher-order concurrent programs remains
a largely unexplored topic. To our knowledge, only a few existing
logics can handle higher-order concurrent programs [27, 17, 14],
but these logics are limited in other ways—in particular, they do not
presently support verification of “fine-grained” concurrent ADTs.
This leads us directly to the second limitation we observe of the
state of the art, concerning granularity abstraction.

Granularity abstraction via contextual refinement An easy way
to adapt a sequential mutable data structure for concurrent access
is to employ coarse-grained synchronization: use a single global
lock, and instrument each of the operations on the data structure so
that they acquire the lock before they begin and release it after they
complete. On the other hand, more sophisticated implementations
of concurrent data structures employ fine-grained synchronization:
they protect different parts of a data structure with different locks,
or avoid locking altogether, so that threads can access disjoint
pieces of the data structure in parallel.

There may seem at first glance to be a fundamental trade-
off here. Fine-grained synchronization enables parallelism, but
makes the data structures that use it very tricky to reason about di-
rectly, due to their complex internal coordination between threads.
Coarse-grained synchronization sequentializes access to the data
structure, which is bad for parallelism but perfect for client-side
reasoning, since it enables clients to reason about concurrent ac-
cesses as if each operation takes effect atomically.

Fortunately, modular programming comes to the rescue. In par-
ticular, so long as tricky uses of fine-grained synchronization are
confined to the hidden state of a carefully crafted ADT, it is possible
to prove that the fine-grained implementation of the ADT is a con-
textual refinement of some coarse-grained implementation. Contex-
tual refinement means that, assuming clients only access the ADT
through its abstract interface (so that the state really is hidden), ev-
ery behavior that clients can observe of the fine-grained implemen-
tation is also observable of the coarse-grained one. Thus, clients can
pretend, for the purpose of simplifying their own verification, that
they are using the coarse-grained version, yet be sure that their code
will still be correct when linked with the more efficient fine-grained
version. This is what we call granularity abstraction. (Note: gran-

377

ularity abstraction is similar to atomicity abstraction [19], but is
more general in that, as we will see in the iterator example later in
this section, it applies even if the target of the abstraction is only
somewhat coarse-grained.)

To illustrate this point more concretely, let us consider a simple
motivating example of reasoning about Treiber’s stack [28]. (We
will in fact use this very example as part of a larger case study later
in the paper.) Treiber’s stack is a fine-grained implementation of a
concurrent stack ADT. Instead of requiring concurrently executing
push and pop operations to contend for a global lock on the whole
stack (as a coarse-grained implementation would), Treiber’s imple-
mentation allows them to race to access the head of the stack using
compare-and-set (CAS). (The implementation of Treiber’s stack is
shown in Figure 9, and discussed in detail in §3.3.)

Now, the reader may expect that stacks should admit a canoni-
cal, principal specification (spec, for short), perhaps something like
the following “precise” spec which tracks the exact contents s of
the stack using the abstract predicate Con(s):
{Con(s)} push(x) {Con(x :: s)}
{Con(s)} pop() {ret. (ret = none ∧ s = nil ∧ Con(s))

∨ (∃x, s′.ret = some(x) ∧ s = x :: s′ ∧ Con(s′))}
The trouble with using this spec in a concurrent setting is that
knowledge about the exact contents of the stack is not stable under
interference from other threads. As a result, some concurrency
logics prohibit this spec altogether. Others permit the spec, but
force the Con(s) predicate to be treated as a resource that only one
thread can own at a time, thus effectively preventing any concurrent
access to the stack and defeating the point of using Treiber’s stack
in the first place!

We want instead to capture the idea that the client threads of
a data structure interact with it according to some (application-
specific) protocol. Take, for example, the following “per-item”
spec, which abstracts away from the LIFO nature of the stack and
instead imposes an item-level protocol:

∀x. {p(x)} push(x) {true}
∧ {true} pop() {ret. ret = none ∨ (∃x. ret = some(x) ∧ p(x))}

Given an arbitrary predicate p of the client’s choice, this per-item
spec asserts that the stack contains only elements that satisfy the
predicate p. It is pleasantly simple, and sufficient for the purposes
of the case study we present later in the paper. It should be clear,
however, that this “per-item” spec is far from a canonical or prin-
cipal specification of stacks: the same spec would also be satisfied,
for instance, by queues.

This brings us to our key point: different clients have different
needs, and so we may want to verify the stack ADT against a range
of different Hoare-style specs, but we do not want to have to re-
verify Treiber’s implementation each time. Ideally, we would like
to modularly decompose the proof effort into two parts:

1. Prove that Treiber’s implementation is a contextual refinement
of a coarse-grained, lock-based implementation, which serves
as a simple reference implementation of the stack ADT.

2. Use Hoare-style reasoning to verify that this reference imple-
mentation satisfies the various specs of interest to clients.

This decomposition engenders a clean separation of concerns, con-
fining the difficulty of reasoning about Treiber’s particular imple-
mentation1 to the proof of refinement, and simplifying the verifica-
tion of the stack ADT against different client specs.

The story we have just told is, in principle, nothing new. The
ability to prove granularity abstraction via contextual refinement
has been accepted in the concurrency literature as a useful correct-

1 Treiber’s stack is actually one of the easiest fine-grained data structures to
reason about, but our general line of argument applies equally well to more
sophisticated implementations, such as the HSY elimination stack [12].

ness criterion for tricky concurrent data structures, precisely be-
cause of the modular decomposition of proof effort that it ought
to facilitate [13, 8, 9]. Unfortunately, despite the utility of such a
modular decomposition in theory, no existing concurrency logic ac-
tually supports it in practice. In particular, very few systems sup-
port proofs of contextual refinement at all, and those few that do
support refinement proofs—such as the recent work of Liang and
Feng [18]—do not provide a means of composing refinement with
client-side Hoare-style verification in a unified logic.

Granularity abstraction for higher-order functions Although
supporting granularity abstraction is already a challenge for first-
order concurrent programs, it becomes even more interesting for
higher-order concurrent programs.

Suppose, for instance, we wished to add a higher-order iterator,
iter, to the concurrent stack ADT. (Such concurrent iterators are
already commonplace [16].) Adding iter to Treiber’s implementa-
tion is trivial: iter(f) will (without acquiring any lock) just read
the current head pointer of the stack and apply f to each element
of the stack accessible from it. But how do we specify the behavior
of this iterator? What reference implementation should we use in
proving granularity abstraction? Unlike for push and pop, it does
not make sense for the reference implementation of iter(f) to be
“maximally” coarse-grained (i.e., to execute entirely within a crit-
ical section) because that will not correspond to the reality of the
implementation we just described. In particular, the Treiber imple-
mentation does not freeze modifications to the stack while f is be-
ing applied to each element, so it does not contextually refine the
maximally coarse-grained implementation of iteration.

Rather, what the Treiber iterator guarantees is that f will be
applied to all the elements that were accessible from some node
that was the head of the stack at some point in time. A clean way
to specify this behavior is via a reference implementation that (1)
acquires the lock, (2) takes a “snapshot” (i.e., makes a copy) of
the stack, (3) releases the lock, and (4) iterates f over the snapshot.
(For the code of this reference implementation, see Figure 9.) What
makes this reference implementation so intriguing is that it is only
somewhat coarse-grained, yet as we will show later in the paper, it
is nonetheless quite useful as a target for granularity abstraction.

This example demonstrates the flexibility of refinement, a flexi-
bility which has not heretofore been tested, since no one has previ-
ously applied granularity abstraction to higher-order ADTs.

CaReSL: A logic for higher-order concurrency
In this paper, we present CaReSL (pronounced “carousel”), the
first logic to support the use of granularity abstraction for modular
verification of higher-order concurrent programs.

In providing both refinement and Hoare-style reasoning, CaReSL
builds on ideas from two distinct lines of research:

• Kripke logical relations [22, 1, 5]. Logical relations are a funda-
mental technique for proving refinement in languages with e.g.,
higher-order functions, polymorphism, and recursive types.
Logical relations explain observable behavior in terms of the
logical interpretation of each type. For example, two functions
of type τ → τ ′ are logically related if giving them related in-
puts of type τ implies that they will produce related results of
type τ ′. Kripke logical relations are defined relative to a “possi-
ble world” that describes the relationship between the internal,
hidden state of a program and that of its spec.

• Concurrent separation logics [20, 32, 3]. Separation logic is a
reimagining of Hoare logic in which assertions are understood
relative to some portion of the heap, with the separating con-
junction P ∗Q dividing up the heap between assertions P and
Q. The motivation for separation is local reasoning: pre- and
post-conditions need only mention the relevant portion of the

378

Treiber refines
CG stack (§3.3)

foreach satisfies
Hoare spec (§3.1)

Spinlock satisfies
Hoare spec (§3.2)

︸ ︷︷ ︸
CG stack satisfies

Per-item Hoare spec (§3.3)
︸ ︷︷ ︸

Flat combiner refines
CG wrapper (§4)

Figure 1. The structure of the case study—and paper

heap, and the rest of the heap can be presumed invariant. Most
concurrent separation logics also add some form of protocols
(e.g., rely-guarantee), which facilitate compositional reasoning
by constraining the potential interference between threads op-
erating concurrently on some shared portion of the heap.

Rather than a combination of these approaches, CaReSL is an
attempt to unify them. So, for example, the logic does not include
refinement as a primitive notion. Instead, refinement is derived
from Hoare-style reasoning: to prove that e refines e′, one merely
proves a particular Hoare triple about e, allowing the tools of
concurrent separation logic to be exploited in the proof of logical
relatedness. In the other direction, CaReSL is a modal logic with
the possible worlds of Kripke logical relations, which can in turn be
used to express the shared-state protocols of concurrent separation
logics. The unification yields surprising new techniques, such as the
use of modal necessity (�) to hide resources that an ADT’s client
would otherwise have to thread through their reasoning (§3.2).2

The semantics of CaReSL is derived directly from the model
of Turon et al. [31], who presented the first formal proofs of re-
finement for fine-grained data structures in an ML-like setting (al-
though they did not use it to reason about higher-order examples).
Compared with Turon et al.’s work, which was purely semantic,
CaReSL provides a syntactic theory for carrying out refinement
proofs at a much higher level of abstraction. This proof theory, in
turn, is inspired by Dreyer et al.’s LADR [5], a modal logic for
reasoning about contextual equivalence of (sequential) stateful ML
programs. CaReSL exemplifies how the key ideas of LADR are just
as relevant to—and arguably even more compelling when adapted
to—the concurrent setting.

To demonstrate the effectiveness of CaReSL, we use it to tackle
a significant case study: namely, the first formal proof of (partial)
correctness for Hendler et al.’s “flat combining” algorithm [11].
Flat combining provides a generic way to turn a sequential ADT
into a relatively efficient concurrent one, by having certain threads
perform—in one fell swoop—the combined actions requested by
a whole bunch of other threads. The flat combining algorithm is
interesting not only because it itself is a rather sophisticated higher-
order function, but also because it is modularly assembled from
other higher-order components, including a fine-grained stack with
concurrent iterator. We therefore take the opportunity to verify flat
combining in a modular way that mirrors the modular structure of
its implementation.

Figure 1 illustrates the high-level structure of our proof, which
involves an intertwined application of refinement and Hoare-style
verification. For example, we prove that Treiber’s stack refines the
coarse-grained (CG) reference implementation of stacks; we then
use Hoare-style reasoning to prove that the reference implementa-
tion satisfies the per-item spec; and finally we rely on the per-item
spec in the proof that the flat combining algorithm refines an even

2 Previously, such hiding required the subtle anti-frame rule [24].

Syntax
Val v ::= () | true | false | (v, v) | inji v | rec f(x).e | Λ.e | `
Exp e ::= v | if e then e else e | e e | e | (e, e) | prji e | inji e

| case(e, inj1 x⇒ e, inj2 y ⇒ e) | new e | get e | e := e
| CAS(e, e, e) | newLcl | getLcl(e) | setLcl(e, e) | fork e

CType σ ::= B | ref τ | refLcl τ | µα.σ
Type τ ::= σ | 1 | α | τ × τ | τ + τ | µα.τ | ∀α.τ | τ → τ

ECtx K ::= [] | if K then e else e |K e | v K | · · ·
Typing contexts

∆ ::= · |∆, α Γ ::= · | Γ, x : τ Ω ::= ∆; Γ

Well-typed expressions ∆; Γ ` e : τ

Ω ` e : ref σ Ω ` eo : σ Ω ` en : σ

Ω ` CAS(e, eo, en) : B

Ω ` e : ∀α.τ
Ω ` e : τ [τ ′/α]

Machine configurations

TLV L ∈ N fin
⇀ Value

Heaps h ∈ N fin
⇀ (Val ∪ TLV)

TPool E ∈ N fin
⇀ Expression

Config ς ::= h; E

Thread-local lookup bLc(i) ,
{

none i /∈ dom(L)

some(L(i)) otherwise

Pure reduction e
pure→ e′

(rec f(x).e) v
pure→ e[rec f(x).e/f, v/x] (Λ.e)

pure→ e

Per-thread reduction h; e
i→ h′; e′

h; e
i→ h; e′ when e

pure→ e′

h; newLcl
i→ h] [` 7→ ∅]; `

h] [` 7→ L]; setLcl(`, v)
i→ h] [` 7→ L[i := v]]; ()

h; getLcl(`)
i→ h; v when h(`) = L, bLc(i) = v

h;CAS(`, vo, vn)
i→ h; false when h(`) 6= vo

h] [` 7→ vo];CAS(`, vo, vn)
i→ h] [` 7→ vn]; true

General reduction h; E → h′; E ′
h; e

i→ h′; e′

h; E] [i 7→ K[e]]→ h′; E] [i 7→ K[e′]]

h; E] [i 7→ K[fork e]]→ h; E] [i 7→ K[()]]] [j 7→ e]

Figure 2. The calculus: Fµ! with fork, CAS, and thread-local refs

higher-level abstraction. Every component of the case study in-
volves higher-order code and therefore higher-order specifications.

2. The programming model
The programming language for our program logic is sketched in
Figure 2; the full details are in the appendix [30]. It has a stan-
dard core: the polymorphic lambda calculus with sums, products,
references, and equi-recursive types. We elide all type annotations
in terms, but polymorphism is nevertheless introduced and elimi-
nated by explicit type abstraction (Λ.e) and application (e). To
this standard core, we add concurrency (through a fork construct),
atomic compare-and-set (CAS) and thread-local references (type
refLcl τ).

While normal references provide shared state through which
threads can communicate, thread-local references allow multiple
threads to access disjoint values in memory (a different one for
each thread) using a common location. Formally, each thread-local
reference has an associated thread ID-indexed table L, which is
initially empty. Thus for refLcl τ , the getLcl operation returns an

379

“option” of type 1+τ , reflecting whether the thread-local reference
has been initialized for the thread that invoked it.3 Thread-local ref-
erences are commonly used when a single data structure needs mu-
table, thread-local storage for an unbounded number of threads; the
flat combining algorithm presented in §4 embodies this technique.

We define a small-step, call-by-value operational semantics,
using evaluation contexts K to specify a left-to-right evaluation
order within each thread. The

pure→ relation gives the reductions that
do not interact with the heap, while i→ gives general, single-thread
reductions for the thread with ID i. These reductions are then lifted
to general reduction→ of machine configurations ς , which consist
of a heap h together with an ID-indexed pool E of threads.

The type system imposes two important restrictions. First, re-
cursive types µα.τ must be guarded, meaning that all free occur-
rences of α in τ must appear under a non-µ type constructor. Sec-
ond, because CAS exposes physical equality comparison of word-
sized values at the hardware level, it can only be applied to refer-
ences of comparable type σ, which we take to be base types and
locations.

If Ω ` eI : τ and Ω ` eS : τ , we say eI contextually refines eS,
written Ω |= eI � eS : τ , if, for every pair of thread IDs i and j,
∀C : (Ω, τ) (∅,B). ∀n.∀EI. ∅; [i 7→ C[eI]] →∗ hI; [i 7→ v]] EI

=⇒ ∃ES. ∅; [j 7→ C[eS]]→∗ hS; [j 7→ v]] ES

where C : (Ω, τ) (Ω′, τ ′) is the standard typing judgment for
contexts (guaranteeing that Ω ` e : τ implies Ω′ ` C[e] : τ ′). This
definition resembles the standard one for sequential languages, but
take note that only the termination behavior of the main thread is
observed; as with most languages in practice, we assume that once
the main thread has finished, any forked threads are aborted.

3. CaReSL
While CaReSL ultimately provides mixed refinement and Hoare-
style reasoning about higher-order concurrent programs, it is eas-
iest to understand by first considering less powerful “sublogics”,
and then gradually incorporating more powerful features:

• We begin with a core logic that provides separation-logic rea-
soning for sequential (but higher-order) programs (§3.1). In this
core logic, both Hoare triples and heap assertions live in a single
syntactic class: they are propositions. Thus propositions include
e.g., implications between Hoare triples, which are ubiquitous
when reasoning about higher-order code. Propositions also in-
clude first- and second-order quantification, guarded recursion,
separating conjunction, and modal necessitation—all standard
concepts whose interplay we explain in §3.1.

• We then add concurrency, leading to a concurrent separation
logic for higher-order programs (§3.2). The new concept needed
to deal with concurrency is that of a protocol governing some
shared region of the heap. We express protocols through tran-
sition systems whose states provide an abstraction of the heap
region’s actual state. Threads can gain or lose roles in the pro-
tocol, which determine the transitions those (and other) threads
are permitted to take. Traditional rely/guarantee reasoning can
be recovered as a particular, restricted way of using protocols.

• Finally, we show how to reason about refinement, yielding
a Concurrent and Refined Separation Logic (CaReSL) for
higher-order programs (§3.3). As explained in the introduction,
CaReSL does not simply add refinement as a primitive notion
on top of a concurrent separation logic. Instead, CaReSL treats
refinement as a derived notion, expressed as a particular Hoare-
style specification. In order to do so, however, CaReSL does
require one further extension: the notion of “spec resources”,

3 Throughout, we let none , inj1 () and some(e) , inj2 e.

first introduced by Turon et al. [31], which allow pieces of a
program configuration (heap and threads) to be manipulated as
logical resources within Hoare-style proofs.

While CaReSL is the main contribution of the paper, its sublogics
are of independent interest. We explain them by way of idiomatic
higher-order examples, each of which serves as a component of the
case study in §4.

3.1 Core logic: Sequential higher-order programs
To motivate the basic ingredients of core CaReSL, we begin with
the quintessential higher-order stateful combinator, foreach:

foreach : ∀α.(α→ 1)→ list(α)→ 1 list(α) , µβ.1 + (α× β)

foreach , Λ. λf. rec loop(l). case l of none ⇒ ()
| some(x, n)⇒ f(x); loop(n)

A specification of foreach should explain that foreach f l “lifts”
the imperative behavior of f (which works on elements) to l (a list
of elements). But to do so, it needs to quantify over the unknown
behavior of an unknown function in a way that can be lifted to lists.

One possibility is to characterize f by means of a Hoare triple,
while ultimately quantifying over the pre- and post-conditions of
that triple. Suppose that p(x) and q(x) are predicates on values x,
and that r is an arbitrary proposition, such that

∀x. {p(x) ∗ r} f(x) {q(x) ∗ r}
The idea is that when f is applied to an element x of the list,
it may assume both that p(x) holds and that an invariant r holds
of a disjoint portion of the heap. If f(x) transforms p(x) to q(x)
while maintaining the invariant, then foreach lifts that behavior to
an entire list—regardless of what the predicates actually are. To
capture the assumption that p(x) holds of each element of a list l,
we need something like the following recursive predicate:4

Mapp(l) , l = none ∨ (∃x, n. l = some(x, n) ∗ p(x) ∗Mapp(n))

Note that, thanks to the use of the separating conjunction ∗, for each
x in l there is a disjoint region of the heap satisfying p(x).

These ideas lead to the following spec for foreach:
∀p, q, r. ∀f. (∀x.{p(x) ∗ r} f(x) {q(x) ∗ r})

⇒ ∀l.
{

Mapp(l) ∗ r
}

foreach f l
{

Mapq(l) ∗ r
}

Formalizing this sketch will require a logic with a number of basic
features: we need to be able to mix Hoare triples with other kinds
of connectives (e.g., implication), to quantify over both values (e.g.,
f and x) and predicates (e.g., p and q), and to define recursive
predicates (e.g., Map). With these goals in mind, we now explore
CaReSL’s design more systematically.

Syntax Figure 3 presents core CaReSL—the fragment of the
logic appropriate for reasoning about sequential, higher-order code.
CaReSL is a multi-sorted second-order logic, meaning that its syn-
tax is stratified into the following three layers.

First, there are terms M,N , which come in a variety of sorts
Σ, including the values and expressions of the language, as well
as thread-local storage (with operations b−c,] and :=). The judg-
ment X ` M : Σ gives the sort of a term (where X is a variable
context giving the sorts of term and predicate variables).

Second, there are propositions P,Q,R, which include the con-
nectives of multi-sorted first-order logic (e.g., ∀X ∈ Σ.P) and
second-order logic (e.g., ∃p ∈ P(Σ).P) with their standard mean-
ings. The judgment X ` P : B asserts that the proposition P is
well-sorted.

Third, there are predicates ϕ,ψ, which are just propositions
parameterized by a term: a predicate of sort P(Σ) can be introduced
by (X ∈ Σ).P , which binds an unknown term X of sort Σ in P ,

4 Throughout, names of functions and types are written in lower case sans-
serif, while predicate names are Capitalized Serif.

380

Syntax
Terms M ::= X | (M,M) | n | e |M]M | bMc(M) |M [M := M]

Sorts Σ ::= 1 | Σ× Σ | Nat | Val | Exp | AtomicExp | LclStorage

Preds ϕ ::= p | (X ∈ Σ).P | µp ∈ P(Σ).ϕ

Propositions P ::=

True | P ⇒ P | P ∧ P | P ∨ P | ∃X ∈ Σ.P | ∀X ∈ Σ.P | .P |
ϕ(M) | ∃p ∈ P(Σ).P | ∀p ∈ P(Σ).P | P ∗ P |M ↪→I M | A

Necessary (“always”) propositions A ::=

�P |M pure→ M |M=M | LP M M Z⇒IS M LϕM | {P} M Z⇒ M {ϕ}
Contexts
X ::= · | X , X : Σ | X , p : P(Σ) P ::= · | P, P C ::= X ;P
Well-sorted terms X `M : Σ

X , X : Σ ` X : Σ

X `M : LclStorage X ` N : Nat
X ` bMc(N) : Val

· · ·

Well-sorted props. X ` P : B Well-sorted preds. X ` ϕ : P(Σ)

Figure 3. Core CaReSL: Syntax

and eliminated by ϕ(M) (also written M ∈ ϕ) which substitutes
M for the parameter of ϕ. Because sorts include unit and products,
predicates can express relations of arbitrary arity. The judgment
X ` ϕ : P(Σ) asserts that ϕ is a well-sorted predicate over terms
of sort Σ.

In general, term variables are written X . But to avoid cluttering
our rules and proofs with sort annotations, we use variables x, y, z
for sort Val and i, j, k, ` for sort Nat. We abuse notation, writing
e.g., v, e or L to stand for a term of sort Val, Exp or LclStorage,
respectively.

In addition to this standard logical setup, CaReSL adopts key
connectives from separation logic. In general, these connectives
will refer to a variety of “resources” that will be introduced as we go
along. In core CaReSL, however, the only resource is the heap. The
points-to assertion ` ↪→I v holds of any heap containing a location
` that points to the value v. (Ignore the I subscript for now; we will
return to it in §3.3). The separating conjunction P ∗Q holds if the
currently-owned resources (here, a portion of the heap) can be split
into two disjoint parts satisfying P and Q respectively.

While the truth of some propositions (e.g., ` ↪→I v) is contin-
gent on the presence of certain resources, others (e.g., M = N)
are necessary: if they hold, they do so regardless of the currently-
owned resources, and therefore will continue to hold in any future
state. (Such propositions are called “pure” in separation logic par-
lance.) The syntactic subcategory A of necessary propositions in-
cludes claims about term equality, about the operational semantics
(M

pure→ N), and Hoare triples. Arbitrary propositions can be made
necessary via the � (“always”) modality, where �P holds if P
holds for all possible resources. As we will see shortly, necessary
propositions play by special rules: they can move freely through
Hoare triples and separating conjunctions.

Ultimately, CaReSL distinguishes between triples about general
expressions e and those about atomic expressions a (which execute
in a single step). Since this distinction is motivated by concurrency,
we postpone its explanation to §3.2. We include the distinction
syntactically in core CaReSL, but it can be safely ignored for now.

Atomic expressions a have the following grammar:
new v | get v | v := v |CAS(v, v, v) | newLcl | getLcl(v) | setLcl(v, v)

The propositions for atomic triples5 LP M i Z⇒IS a LϕM and general
triples {P} i Z⇒ e {ϕ} are both parameterized by a thread ID i;
the expression may access thread-local storage, in which case its
behavior is ID-dependent. (When the thread ID doesn’t matter, we

5 Again, ignore the IS subscript until §3.3.

Logical axioms and rules
X ;A ` P
X ;P, A ` �P �I

C ` P
C ` .P MONO

C, .P ` P
C ` P LÖB

�(P ⇒ Q) ⇒ �P ⇒ �Q
A ⇒ �A
�P ⇒ P

A ∗ P ⇔ A ∧ P
True ∗ P ⇔ P
.(P ∗Q)⇔ .P ∗ .Q

C, p : P(Σ) ` P
C ` ∀p ∈ P(Σ). P

∀2I M ∈ (X ∈ Σ).P ⇔ P [M/X]
M ∈ (µp.ϕ)⇔M ∈ ϕ[µp.ϕ/p]

Figure 4. Core CaReSL: Selected logical axioms and rules

write {P} e {ϕ} as short for ∀i. {P} i Z⇒ e {ϕ}.) In addition,
since we are working with an expression language (as opposed to a
command language), postconditions are predicates over the return
value of the expression, rather than simply propositions about the
final state of the heap. But when an expression returns unit, we
often abuse notation and write a proposition instead.

In order to support recursive assertions, the logic includes
guarded recursion (µp ∈ P(Σ). P), which entails the following
tradeoff. On the one hand, guarded recursion allows occurrences
of the recursive predicate p to appear negatively, which is crucial
for modelling recursive types (§3.3) but is usually prohibited for
lack of monotonicity. On the other hand, the recursion is “guarded”
in that references to p in P must appear under the . modality.
A proposition .Q represents the present knowledge that Q holds
later, i.e., after at least one step of computation. Guarded recursion
supports a coinductive style of reasoning: to prove P one can as-
sume .P , but this assumption is only useful after at least one step
of computation. As we explain in §5, our use of guarded recursion
descends from a line of work on step-indexed logical relations, but
the interaction with Hoare triples is a novelty of CaReSL.

Proof rules The main judgment of CaReSL is written C ` P ,
where C = X ;P is a combined context of annotated term/predicate
variables X and propositional assumptions P . The meaning is the
usual one: for any way of instantiating the variables in X , if the
hypotheses P are true for a given resource (i.e., for the moment,
a given heap), then P is true of the same resource. We implicitly
assume X ` Q : B for every proposition Q in P and likewise that
X ` P : B holds.

A few basic logical axioms and proof rules for core CaReSL
are shown in Figure 4. Axioms hold in an arbitrary well-sorted
context. The axioms include all the standard ones for a multi-
sorted second-order logic (we show only ∀2I), as well as several
characterizing separating conjunction and the � and . modalities.
We’ll just mention the highlights:

• Because True is a unit for separating conjunction (and ev-
ery proposition implies True), propositions are affine: we can
“throw away” resources, because (P ∗Q)⇒ (True ∗Q)⇒ Q.

• The two conjunctions ∗ and∧ are identical if at least one of their
operands is a necessary proposition. Consequently, necessary
propositions can be “freely copied”: A⇒ A ∗A.

• The LÖB rule provides a coinductive reasoning principle: to
prove P , you may assume P—but only under the . modality,
which guards use of the assumption until at least one step of
computation has taken place. On the other hand, MONO says
that any proposition can be weakened to one that is guarded.
(Both MONO and LÖB are inherited from LADR [5].) We will
momentarily see how . is eliminated in Hoare-style reasoning.

• The . modality distributes over ∗, as it does with most other
connectives, except implication and recursion.

381

Atomic Hoare logic (where IS ::= I | S as explained in §3.3)

LTrueM i Z⇒IS new v Lret. ret ↪→IS vM
Lv ↪→IS v′M i Z⇒IS get v Lret. ret = v′ ∗ v ↪→IS v′M
Lv ↪→IS −M i Z⇒IS v := v′ Lret. ret = () ∗ v ↪→IS v′M

LTrueM i Z⇒IS newLcl Lret. ret ↪→IS ∅M
Lv ↪→IS LM i Z⇒IS getLcl(v) Lret. ret = bLc(i) ∗ v ↪→IS LM
Lv ↪→IS LM i Z⇒IS setLcl(v, v′) Lret. ret = () ∗ v ↪→IS L[i := v′]M
Lv ↪→IS v′M i Z⇒IS

CAS(v, vo, vn)

Lret. (v′ = vo ∗ ret = true ∗ v ↪→IS vn)

∨ (v′ 6= vo ∗ ret = false ∗ v ↪→IS v′)
M

X ;P ` P ′ X ;P ` LP ′M i Z⇒IS a Lx. Q′M X , x;Q′ ` Q
X ;P ` LP M i Z⇒IS a Lx. QM ACSQ

C ` LP M i Z⇒IS a Lx. QM
C ` LP ∗RM i Z⇒IS a Lx. Q ∗RM AFRAME

(ADISJ, AEX elided)

General Hoare logic

C ` LP M i Z⇒I a LQM
C ` {.P} i Z⇒ a {Q} PRIVATE

C ` e pure→ e′

C ` {P} i Z⇒ e′ {ϕ}
C ` {.P} i Z⇒ e {ϕ} PURE

C ` {P} i Z⇒ e {x. Q} C, x ` {Q} i Z⇒ K[x] {R}
C ` {P} i Z⇒ K[e] {R} BIND

C ` {True} i Z⇒ v {x. x = v} RET (CSQ, FRAME, DISJ, EX elided)

C ` A
C ` {P ∗A} i Z⇒ e {ϕ}
C ` {P} i Z⇒ e {ϕ} AIN

C, A ` {P} i Z⇒ e {ϕ}
C ` {P ∗A} i Z⇒ e {ϕ} AOUT

Derivable rules
C, f, ∀x. {.P} i Z⇒ f x {ϕ} ` ∀x. {P} i Z⇒ e {ϕ}

C ` ∀x. {.P} i Z⇒ (rec f(x).e) x {ϕ} REC

C ` {P} i Z⇒ e {x. ∃y. (x = inj1 y ∗ .Q1) ∨ (x = inj2 y ∗ .Q2)}
∀k ∈ {1, 2} : C, x, y ` {x = injk y ∗Qk} i Z⇒ ek {ϕ}
C ` {P} i Z⇒ case(e, inj1 y ⇒ e1, inj2 y ⇒ e2) {ϕ}

Figure 5. Core CaReSL: Hoare logic

The rules for atomic triples (Figure 5) are formulated in the
standard style of separation logic. They transcribe the operational
semantics of atomic expressions, mentioning only the part of the
heap relevant to the expression. Atomic Hoare logic supports the
usual rules—consequence, framing, disjunction, ∃-elimination—
with one important exception: it does not support a sequencing rule,
since a sequence of atomic expressions is not atomic.

All atomic expressions take exactly one step to execute, and
in so doing allow us to peel off a layer of the . modality. To cut
down on clutter, the precondition in an atomic triple is implicitly
understood as being under one . modality. The rule PRIVATE,
which lifts an atomic triple to a general one, makes this implicit
assumption explicit. (In core CaReSL, all resources are private;
§3.2 adds shared resources.) To handle pure reduction steps (like
β-reduction), the PURE rule appeals directly to the operational
semantics using the necessary proposition e

pure→ e′. The rest of the
rules for general Hoare triples are mostly standard; we show only
the nonstandard rules in Figure 5.

In an expression language, the monadic nature of Hoare logic
becomes visible: the BIND rule replaces the usual rule of sequenc-
ing, while RET is used to inject a value into a Hoare triple.

We also have a rule allowing necessary propositions to move
freely from the proof context into preconditions (AIN), and vice
versa (AOUT). In general, any contingent assumptions like x ↪→I 3
need to be given explicitly in the precondition of a Hoare triple,
because the truth of such statements can change over time; the triple

says that it is only usable at times when its precondition holds. But
in the specific case of necessary propositions, we can do better: we
know that if such a proposition happens to be true now, it will be
true forever, and so it does not need to be given explicitly in the
precondition. As we will see in §3.2, these rules will allow us to
completely hide pieces of state that are known to always obey a
certain protocol.

Finally, using LÖB and PURE, together with standard Hoare
rules, we can derive specialized rules for constructs like recursive
functions and pattern matching—the two derived rules in Figure 5.

Verifying foreach Having seen core CaReSL in detail, we can
now return to the foreach example. First, we need to rewrite our
sketch of the specification more formally. The Map predicate needs
to employ guarded recursion:

Mapϕ , µm ∈ P(Val). (l ∈ Val).
l = none ∨ (∃x, n. l = some(x, n) ∗ ϕ(x) ∗ .m(n))

while the foreach spec should be annotated with sorts:
∀p, q ∈ P(Val).∀r ∈ P(1). ∀f. (∀x.{p(x) ∗ r} f(x) {q(x) ∗ r})
⇒ ∀l.

{
Mapp(l) ∗ r

}
foreach f l

{
Mapq(l) ∗ r

}

To prove foreach correct, we use a kind of Hoare “proof outline”,
annotating each program point with a proposition:

foreach , Λ. λf. rec loop(l).

Prop context: Variables: f, i, p, q, r, l, loop
∀x. {p(x) ∗ r} i Z⇒ f(x) {q(x) ∗ r}
∀n.

{
.(Mapp(n) ∗ r)

}
i Z⇒ loop n

{
Mapq(n) ∗ r

}

{Mapp(l) ∗ r}
case l of none⇒ {l = none ∗Mapp(l) ∗ r} () {Mapq(l) ∗ r}

| some(x, n)⇒ {l = some(x, n) ∗Mapp(l) ∗ r}
{l = some(x, n) ∗ p(x) ∗ .Mapp(n) ∗ r}
f(x);

{l = some(x, n) ∗ q(x) ∗ .Mapp(n) ∗ r}
loop(n)

{l = some(x, n) ∗ q(x) ∗Mapq(n) ∗ r}
{Mapq(l) ∗ r}

Proof outlines implicitly apply the Hoare logic rule corresponding
to each language construct: for recursive functions and pattern
matching we use the derived rules shown earlier; for an atomic
expression we use the corresponding axiom; when going under a
Λ or λx we use the PURE rule and prove a triple about the function
as applied to or x respectively. The frame rule is applied implicitly
as needed, while uses of consequence are shown by writing a
sequence of assertions (each one implying the next). We do not
explicitly write the thread ID in a proof outline, but it is always
clear from context (and, for our examples, always the variable i).

We supplement traditional proof outlines with boxed context as-
sertions spelling out an extension to both the variable context X
and proposition context P . Extending the context with new vari-
ables introduces a universal quantification (using e.g., the rule ∀2I
in Figure 4), while adding propositions introduces an implication.
We use the AIN rule implicitly to bring necessary consequences of
the proof context into the Hoare-style outline.

The proof for foreach is quite straightforward: the initial case
analysis on the input list allows us to expand the definition of the
Map predicate, which for the nonempty case gives us the necessary
knowledge to execute f on an element of the list; note the heavy
use of the frame rule to add invariant propositions. The use of . in
Map is neatly dispatched by the use of the REC rule for foreach.

3.2 Adding concurrency: Protocols for shared state
To reason about concurrency, we need to reason about the protocols
governing shared (and often hidden) state. Take, for example, the
following higher-order spinlock:

382

tryAcq , λx. CAS(x, false, true)

acq , rec loop(x). if tryAcq(x) then () else loop(x)

rel , λx. x := false

mkSync : 1→ ∀α.∀β.(α→ β)→ (α→ β)

mkSync , λ(). let lock = new false in
Λ.Λ.λf.λx. acq(lock); let z = f(x) in rel(lock); z

Each invocation of mkSync creates a new wrapper that closes over
a fresh, hidden lock. The wrapper can then be used to add simple
synchronization to an arbitrary function. There are, of course, a
variety of ways to use synchronization, but a particularly common
one is to protect access to some shared resource characterized by
an invariant p—an idea that leads to the following specification:

∀p ∈ P(1). {p} mkSync ()
{
s. Syncerp(s)

}

where Syncerp , (s ∈ Val). �∀f, x, q, r. {p ∗ q} f x {z. p ∗ r(z)}
⇒ {q} s f x {z. r(z)}

The spec says that when mkSync() is executed, the client can
choose some invariant resource p, giving up control over the re-
source in exchange for a synchronization wrapper s. When s is
later applied to a function f , it provides f with exclusive access to
the resource p (seemingly out of thin air), which f can use however
it pleases, so long as the invariant is reestablished on completion.

Intuitively, the reason that mkSync satisfies its specification is
that the lock itself is hidden: all access to it is mediated through the
wrapper s, which the client can only apply to invariant-preserving
functions. Hiding enables mkSync to maintain an internal protocol
in which, whenever the lock is free, the invariant p holds. To
express this protocol, as well as the more sophisticated protocols
needed for fine-grained concurrency (§3.3, §4), CaReSL provides a
syntactic account of the semantic protocols of Turon et al. [31].

Protocols A protocol π governs a shared resource abstractly, by
means of a set of protocol states (S) equipped with a transition
relation (). Each state s ∈ S has an associated proposition ϕ(s)
giving its concrete interpretation in terms of e.g., heap resources.
The idea is then that any thread is allowed to update the shared
resource, so long as at each atomic step those concrete updates
correspond to a permitted abstract transition.

In general, although all threads must abide by a given protocol,
not all of them play the same role within it. For example, a protocol
governing a lock might have two states, Locked and Unlocked,
with transitions in both directions, but we usually want to allow
only the thread that acquired the lock to be allowed to release it
(as is the case in the mkSync example). To allow threads to take
on or relinquish roles dynamically, protocols employ tokens that
individual threads may own. By taking a transition, a thread may
“earn” a token from the protocol; conversely, certain transitions
require a thread to “pay” by giving up a previously-earned token.
For the locking protocol, we use a single token Lock:

Unlocked; Lock Locked

In the Unlocked state, the protocol itself owns the Lock, which
we show by annotating the state with the token. A thread that
transitions from Unlocked to Locked then earns (takes ownership
of) the Lock. Conversely, to transition back to the Unlocked state,
a thread must transfer the Lock back to the protocol—a move only
possible for the thread that owns the Lock.

Formally, a protocol π = (S, , T , ϕ) is given by a transition
system (S and), a function T giving the set of tokens owned
by the protocol at each state, and a predicate ϕ on states giving
their interpretations. To be able to talk about states and tokens in
the logic, we add sorts State and TokSet, for which we will use
the metavariables s and T respectively; see Figure 6. We leave the
grammar of terms for these sorts open-ended, implicitly extending

Protocols
Protocol π ::= (S, , T , ϕ) where S ⊆ State, ⊆ S × S,

T ∈ S → TokSet, ϕ token-pure

(s;T) π (s′;T ′) , s (π.) s′ ∧ π.T (s)] T = π.T (s′)] T ′
frameπ(s;T) , (s; AllTokens− (π.T (s)] T))

(s;T) vguar
π (s′;T ′) , (s;T) ∗π (s′;T ′)

(s;T) vrely
π (s′;T ′) , frameπ(s;T) ∗π frameπ(s′;T ′)

Syntax
Sort Σ ::= · · · | State | TokSet

Prop P ::= · · · | M M
π | Tid(M)

AbProp A ::= · · · |M vrely
π M |M vguar

π M | TokPure(P)

Hoare logic (where πJbK , ∃s.b = (s,−) ∧ π.ϕ(s))

C ` {P} i Z⇒ e {x. Q ∗ πJbK}
C ` {P} i Z⇒ e

{
x. Q ∗ ∃n. b nπ

} NEWISL

C ` ∀b
rely
wπ b0. LπJbK ∗ P M i Z⇒I a Lx. ∃b′

guar
wπ b. πJb′K ∗QM

C `
{
b0

n
π ∗ .P

}
i Z⇒ a

{
x. ∃b′. b′ nπ ∗Q

} UPDISL

C ` {P ∗ Tid(j)} j Z⇒ e {ret. ret = ()}
C ` {P} i Z⇒ fork e {ret. ret = ()} FORK

Logical axioms and rules

s1;T1 n
π ∗ s2;T2 n

π ⇔ SPLITISL

∃s. s;T1] T2 n
π ∧ (s;T1)

rely
wπ (s1;T1) ∧ (s;T2)

rely
wπ (s2;T2)

Figure 6. CaReSL: Incorporating concurrency and protocols

it as needed for particular transition systems.6 Thus, we can give an
interpretation LockInterpp for the lock protocol that is appropriate
for an instance of mkSync protecting an invariant p:

LockInterpp , (s ∈ State). s = Locked ∨ (s = Unlocked ∗ p)
The combination of transition systems and tokens gives rise to

token-sensitive transitions. A transition from state/tokens (s;T) to
state/tokens (s′;T ′) is permitted by π, written (s;T) π (s′;T ′),
so long as the law of token conservation holds: the disjoint union of
the thread’s tokens and the protocols tokens T]π.T (s) before the
transition must be the same as the disjoint union T ′] π.T (s′) af-
terwards.7 Token-sensitive transitions constrain both what a thread
can do (the guarantee moves vguar

π enabled by its tokens) and what
its environment can do (the rely moves vrely

π enabled by the tokens
owned by other threads). See Figure 6.

Island assertions In CaReSL, all resources are either privately
owned by a thread, or else governed by a shared protocol. When
a heap assertion like x ↪→I 3 appears in the pre- or postcondition
of a triple, it is understood as asserting private ownership over the
corresponding portion of the heap; no other thread is allowed to
access it. Thus the rules of core CaReSL are immediately sound in
a concurrent setting: there is no interference to account for.

To talk about shared resources, CaReSL includes island asser-
tions b nπ (similar to region assertions in RGSep/CAP). As the
name suggests, each island is an independent region of the heap
governed by its own laws (the protocol π). The number n is the
“name” of the island, which is used to distinguish between multiple
islands with the same protocol; we often leave off the name when

6 To be completely formal, we could allow each transition system to come
equipped with its own explicit grammar of states and tokens.
7 We use notation like π.T to extract named components from a tuple.

383

it is existentially quantified. The term b (of sort State×TokSet) as-
serts private ownership of a set of tokens,8 and acts as a “rely-lower
bound” on the state of the protocol: the current state of the protocol
is some b′ wrely

π b. Thus, in CaReSL every assertion about shared
resources is automatically stable under interference.

While a thread’s island assertions cannot be invalidated by a
change its environment makes, they can be invalidated by a change
the thread itself makes. For example, if a thread owns Lock in
Locked state of the mkSync protocol, the environment cannot
change the state at all—but the thread itself can move to the Un-
locked state. There is, however, a special class of island assertions
which are “completely” stable, i.e., that act as necessary proposi-
tions: island assertions that do not claim any tokens. To understand
why, consider that when no tokens are owned, the vrely

π relation
degenerates to the underlying transition system of the protocol,
which means it contains all possible moves that any thread can
make. Formally, we have (M ; ∅) n

π ⇒ � (M ; ∅) n
π .

When island assertions do claim ownership over tokens (a form
of resource), they can be meaningfully combined by separating
conjunction; see the SPLITISL rule in Figure 6, which takes into
account the fact that the assertions give only rely-lower bounds.9

There are two Hoare logic rules for working with islands (Fig-
ure 6). The rule NEWISL creates a new island starting with an initial
state and token set bound b; the resources necessary to satisfy the
protocol’s initial state must be present as private resources, and af-
terwards will be shared. (The shorthand πJbK just gives the interpre-
tation at the state in b.) Once an island is established, the only way
to access the shared resources it governs is through the UPDISL
rule, which can only be applied to an atomic expression. Starting
from an initial bound b0, the atomic expression a might be (instan-
taneously) executed in any rely-reachable b; for each such state,
the expression is granted exclusive access to the shared resource,
but in its single atomic step, it must make a guarantee move in the
protocol. This rule reveals the important semantic difference be-
tween atomic and general triples: through the UPDISL rule, atomic
triples gain access to the concrete resources owned by shared is-
lands, while general triples only have access to island assertions.

Thread creation In a protocol, threads gain and lose roles (to-
kens) by making deliberate moves within the protocol. But there
is also a role that every thread plays automatically: the role of be-
ing a thread with a certain ID. To support protocols that use thread
IDs (such as the one in §4), CaReSL builds in a proposition Tid(j)
that asserts the existence of a thread j, and acts as an uncopyable
resource: Tid(j) ∗ Tid(j) ⇔ False. The resource is introduced by
the FORK rule, which also allows the parent thread to transfer an
arbitrary P to the newly-forked thread. (The parent can keep re-
sources for itself via the FRAME rule.) The trivial postconditions in
FORK may seem alarming, but they reflect the fact that the language
has no join mechanism: the only form of communication between
threads is shared state, mediated by a shared protocol.

Verifying mkSync The interpretations π.ϕ(s) of protocol states
in CaReSL inherit a limitation from their semantic treatment by
Turon et al. [31]: they must be token-pure, i.e., they cannot assert
ownership of island tokens. The necessary proposition TokPure(P)
can be used to assert that, for example, an unknown proposition is
token-pure and thus safe to use in an interpretation, and we need
such a restriction on p in mkSync:

∀p ∈ P(1). TokPure(p)⇒ {p} i Z⇒ mkSync ()
{
s. Syncerp(s)

}

where Syncerp , (s ∈ Val). �∀f, x, q, r. {p ∗ q} f x {z. p ∗ r(z)}
⇒ {q} s f x {z. r(z)}

8 An island assertion is only satisfied if the asserted token set is disjoint
from the tokens owned by the protocol at the asserted state.
9 We assume that terms M include disjoint union on token sets.

The hidden protocol LockProtp for mkSync just puts together the
pieces we have already seen:

LockProtp , ({Locked,Unlocked}, , T ,LockInterpp)

where and T are given by the transition system for locking
shown above.

The high-level proof outline for mkSync is straightforward:

λ(). Prop context: TokPure(p) Variables: p

{p} let lock = new false {p ∗ lock ↪→I false}
{∃n. Unlocked; ∅ nLockProtp

}
Λ.Λ.λf.λx.

Prop context: Variables: f, x, q, r
� Unlocked; ∅ LockProtp

{p ∗ q} f x {z. p ∗ r(z)}

{q} { Unlocked; ∅ LockProtp
∗ q}

acq(lock); { Locked; Lock LockProtp
∗ p ∗ q}

let z = f(x) { Locked; Lock LockProtp
∗ p ∗ r(z)}

rel(lock); { Unlocked; ∅ LockProtp
∗ r(z)}

z {z. r(z)}
After allocating the hidden lock, we move it into a fresh island
using NEWISL, and then move that island assertion (wrapped with
�) into the proof context (using AOUT) before reasoning about the
returned wrapper function. In this way the protocol is completely
hidden from the client, yet available to the closure we return to the
client—mirroring the fact that lock is hidden from the client but
available in the closure. Since the spec Syncerp(s) is a necessary
proposition, the client may move the spec into its proof context, and
thus freely use the synchronization wrapper s without threading
any assertion about it through its proof. (Previous logics, like CAP,
require at least that the client thread through an abstract predicate
standing for the lock.)

When verifying the closure, we begin with a precondition q of
the client’s choice, but then apply AIN to load the hidden island as-
sertion into the precondition. The subsequent lines use the locking
protocol to acquire the resource p, execute the client’s function f ,
and then return p to the protocol. The tokens in the island asser-
tions, which say what the thread owns at each point, complement
those (in π.T) labelling the corresponding states in the protocol.

The triples for acq and rel must ultimately be proved by appeal
to the UPDISL rule. For acq, the bound on the protocol is just
(Unlocked; ∅), which means that the actual state might be either
Locked or Unlocked. The CAS within acq will return:

• true if successful; the state must have been Unlocked. We make
a guarantee move to (Locked; Lock), gaining the token.

• false if it fails; the state must have been Locked. We do not
change the state, and the acq function retries by calling loop.

On the other hand, for rel, the bound (Locked; Lock) means that
the protocol must be in state Locked: the environment cannot move
to Unlocked because it does not own Lock. But since rel does own
Lock, it can simply update the lock to false, corresponding to a
guarantee move to the Unlocked state in the protocol.

3.3 Adding refinement: Reasoning about specification code
At this point, we have seen the fragment of CaReSL providing
Hoare-style specs and proofs for higher-order concurrent programs,
as exemplified (in a simple way) by the mkSync example. This
section explains the other major component of the logic: higher-
order granularity abstraction, exemplified (in a simple way) by the
Treiber stack with iterator.

384

Syntax
Σ ::= · · · | EvalCtx
M ::= · · · |K |M [M]

P ::= · · · |M ↪→S M |M Z⇒S M

A ::= · · · | P →S P |M ./ M

Spec rewriting

C ` e pure→ e′

C ` (P ∗ j Z⇒S K[e])→S (P ∗ j Z⇒S K[e′])
SPURE

C ` LP M j Z⇒S a Lx. QM
C ` (P ∗ j Z⇒S K[a])→S (∃x. Q ∗ j Z⇒S K[x])

SPRIM

C ` (j Z⇒S K[fork e])→S (j Z⇒S K[()] ∗ k Z⇒S e) SFORK

Hoare logic (AEXECSPEC elided)

C ` {P} i Z⇒ e {x. Q} C ` Q→S R

C ` {P} i Z⇒ e {x. R} EXECSPEC

C, j ./ j′ `
{
P ∗ Tid(j) ∗ j′ Z⇒S eS

}
j Z⇒ eI {x. x = ()}

C `
{
P ∗ i′ Z⇒S K[fork eS]

}
i Z⇒ fork eI

{
i′ Z⇒S K[()]

} FORKS

Figure 7. CaReSL: Incorporating spec resources

Spec resources While it is possible to formulate a relational ver-
sion of Hoare logic (with Hoare quadruples [33]), or to develop
special-purpose logics for refinement [5], our goal with CaReSL
is to support both standard Hoare-style reasoning and refinement
reasoning in a single unified logic. In particular, we want a treat-
ment of refinement that re-uses as much Hoare-style reasoning as
possible. To this end, we adapt the idea of specification resources,
first proposed by Turon et al. [31] as a way of proving refinement
when threads engage in “cooperation” (a point we return to in §4).
We will show how spec resources make it possible to state and
prove refinements as an entirely derived concept on top of the Hoare
logic we have already built up, in particular allowing protocols and
triples to serve double-duty when reasoning about spec code.

To prove that eI refines eS, one must (intuitively) show that every
behavior observable of eI is observable of eS as well. Our strategy
is to encode these proof obligations into certain Hoare triples about
the execution of eI, but with pre- and postconditions instrumented
with pieces of the corresponding spec state—both heap and code—
which we treat as resources in CaReSL. These spec resources are
entirely a fiction of the logic: they do not reflect anything about the
physical state of eI, but they must be used through logical rules that
enforce the operational semantics for eS.

There are two basic spec resource assertions: the (spec) points-
to assertion ` ↪→S v, which claims ownership of a fragment of
the spec heap containing a location ` that points to the value v,
and the spec thread assertion i Z⇒S e, which claims ownership
of a spec thread with ID i executing expression e. The separating
conjunction P ∗ Q works in the usual way with these resources,
dividing up the spec heap and thread pool between the propositions
P and Q. We also add a final sort, EvalCtx, and terms K and
M [N] for expressing and combining them, which makes it possible
to abstract over the evaluation context for some spec thread. (By
convention, the variable κ is always of sort EvalCtx.)

In addition, CaReSL provides a necessary proposition P →S Q,
which says that the spec resources owned by P can, according to
the operational semantics, take a step to those owned by Q. All
other resources must be left invariant. The rule SPURE lifts the pure
stepping relation from the operational semantics directly. The rule
SPRIM, on the other hand, re-uses atomic triples to support reason-
ing about atomic spec expressions. (The subscript IS in the laws
of atomic triples allows them to be used in either implementation
mode I or spec mode S.) The EXECSPEC Hoare rule (and identical
AEXECSPEC rule for atomic triples) allows the specification to be

Relating expressions
(eI, eS) ↓ ϕ , ∀(i ./ j), κ.
{Tid(i) ∗ j Z⇒S κ[eS]} i Z⇒ eI {xI. ∃xS. ϕ(xI, xS) ∗ Tid(i) ∗ j Z⇒S κ[xS]}

Relating values
J1K , (xI, xS). xI = xS = ()

JBK , (xI, xS). (xI = xS = true) ∨ (xI = xS = false)

Jµα.τK , µα.JτK
JαK , α

Jτ1 × τ2K , (xI, xS). (prj1 xI, prj1 xS) ↓ Jτ1K ∧ (prj2 xI, prj2 xS) ↓ Jτ2K
Jτ1 + τ2K , (xI, xS). (.∃(yI, yS) ∈ Jτ1K. xI = inj1 yI ∧ xS = inj1 yS)

∨ (.∃(yI, yS) ∈ Jτ2K. xI = inj2 yI ∧ xS = inj2 yS)

Jτ → τ ′K , (xI, xS). �∀yI, yS.(.(yI, yS) ∈ JτK)⇒ (xI yI, xS yS) ↓ Jτ ′K
J∀α.τK , (xI, xS). �∀α.Type(α)⇒ (xI , xS) ↓ JτK
Jref τK , (xI, xS). Inv(∃(yI, yS) ∈ JτK. xI ↪→I yI ∗ xS ↪→S yS)

JrefLcl τK , (xI, xS). Inv

(
∃LI, LS. xI ↪→I LI ∗ xS ↪→S LS ∗
∀(i ./ j). (bLIc(i), bLSc(j)) ∈ J1 + τK

)

Invariant protocols Inv(P) , ∃n. 0; ∅ n
({0},∅,[07→∅],(s).P)

Type interpretations Type(ϕ) , �∀(xI, xS) ∈ ϕ. �(xI, xS) ∈ ϕ
Logical relatedness (i.e., refinement)

α;x : τ ` eI � eS : τ ,
α, xI, xS; Type(α), (xI, xS) ∈ JτK ` (eI[xI/x], eS[xS/x]) ↓ JτK

Figure 8. Encoding refinement in CaReSL

“executed” within any postcondition, i.e., at any point in a proof.
Since EXECSPEC can be applied repeatedly, a single step of some
implementation code—e.g., an atomic expression—can correspond
to an arbitrary number of spec steps.

Putting these pieces together, a triple like
{j Z⇒S eS} i Z⇒ eI {xI. ∃xS. j Z⇒S xS ∗ ϕ(xI, xS)}

says that if eI produces some value xI, then eS can be executed to
produce some value xS such that ϕ(xI, xS) holds—exactly the kind
of observational claim we set out to make.

Encoding refinement To give a full account of refinement, we
also need to ensure that updates to public reference cells by the
implementation are matched in lock-step by updates by the spec,
which we will do by imposing a protocol governing public refer-
ence cells. And to account for thread-local references, we must also
track a correspondence between implementation and specification
thread IDs, which allows us to state invariants connecting the stor-
age on either side. The (necessary) assertion i ./ j asserts that the
implementation thread i and spec thread j belong to the bijective
correspondence, i.e., (i ./ j) ∧ (i′ ./ j′) ⇒ (i = i′ ⇔ j = j′).
Correspondences are introduced using the rule FORKS, a variant of
FORK that jointly creates fresh implementation and spec threads.

And that’s all: using these ingredients, we can encode refine-
ment by simply writing down a particular predicate in CaReSL.

The encoded predicate expresses a logical relation—a variant
of the relation given semantically by Turon et al. [31]—following
the approach first laid out by Plotkin and Abadi [23]. We define the
relation in stages (see Figure 8).

First, we have the proposition (eI, eS) ↓ ϕ, which is a more
general version of the triple we suggested above: it includes as-
sumptions about thread IDs, and permits compositional reasoning
about specs by quantifying over an unknown evaluation context κ.
The expressions do not begin with private ownership of any heap
resources because, when proving refinement, we must assume that
any pre-existing state is shared with the context. As we will see in a
moment, this shared state is governed by an extremely liberal pro-
tocol; all we can assume about the context is that it is well-typed.

Second, we have the binary predicate JτK, which is satisfied
by (vI, vS) when the observations a context can make of vI can

385

stackS : ∀α. (α→ 1)× (1→ (1 + α))× ((α→ 1)→ 1)

stackS , Λ. let sync = mkSync(), hdS = new (none)
let push = λx. hdS := some(x, get hdS)
let pop = λ(). case get hdS of none ⇒ none

| some(x, n)⇒ hdS := n; some(x)
let snap = sync (λ().get hdS)
let iter = λf. foreach f (snap())
in (sync push, sync pop, iter)

stackI , Λ. let hdI = new nil where nil , new none,
let push = rec try(x). cons e , new some(e)
let c = get hdI , n = cons(x, c)
in if CAS(hdI, c, n) then () else try(x),

let pop = rec try().
let c = get hdI in case get c of

none⇒ none
| some(d, n)⇒ if CAS(hdI, c, n) then some(d) else try()

let iter = λf. let rec loop(c) = case get c of
none⇒ () | some(d, n)⇒ f(d); loop(n)

in loop(get hdI)
in (push, pop, iter)

Figure 9. Coarse- and fine-grained stacks, with iterators

also be made of vS—the heart of the logical relation. It is defined
by induction on the structure of τ , since the ways a value can be
observed depend on its type:

For ground types, the context can observe the exact value, so
only equal values are in the interpretation.

For product types, the context can project both sides of the
product, so two values are related iff each of their projections are
related; similarly for sums. The context can observe functions only
by applying them, so one function is related to another iff, when
applied to related values, they produce related results.

Recursive and polymorphic types are interpreted via guarded
recursion and second-order quantification, respectively; we pun
type variables α, β as predicate variables, which are implicitly
assumed to be of sort P(Val × Val), and for quantification ex-
plicitly required to satisfy Type(α). These two constraints guar-
antee that the relation JτK is a resource-insensitive, binary pred-
icate on values. The resource-insensitivity reflects the fact that
refinement between values must hold in an arbitrary context of
observation/usage—including contexts that freely copy the val-
ues in question—which means that we can assume nothing about
privately-owned resources.

The context can interact with values of reference type by either
reading from or writing to them at any time. Thus, references assert
the existence of a simple invariant protocol with a single state,
whose interpretation says that related locations must continuously
point to related values. For thread-local references, the statement
is qualified by indexing the storage table by related thread IDs.

The uses of . throughout are necessary to ensure that recursive
predicate variables α only occur in guarded positions. Note that
island assertions are implicitly guarded, as are uses of (eI, eS) ↓ ϕ
where eI is not a value, because any α mentioned therein will not
be interpreted until after a step of computation.

Finally, eI is logically related to eS at some context Ω and type
τ if Ω ` eI � eS : τ , which is shorthand for a use of the C ` P
judgment of CaReSL. The proof context closes all type variables
α with arbitrary type interpretations and all term variables x with
pairs of term variables related at the appropriate types. Thus, a
term with a free variable of type ref τ will gain access in its proof
context to a shared invariant protocol governing the corresponding
location. The protocol in turn forces updates to the reference in the
implementation to occur in lock-step with those in the spec. Private
references, i.e., those allocated within the implementation or spec,
face no such requirement—unless or until they are exposed.

Treiber’s stack, with an iterator We now sketch a simple refine-
ment proof. Figure 9 gives two stack implementations. The first,
stackS, is a coarse-grained reference implementation (which we
think of as a specification). Its representation includes a mutable
reference hdS to an immutable list, as well as a synchronization
wrapper sync provided by mkSync. The exported functions to push
and pop from the stack simply wrap the corresponding updates to
hdS with synchronization. But the iterator is not fully synchronized:
it takes an atomic snapshot of the stack, then calls its argument f
on each element of the snapshot without holding any locks. So by
the time f is called, the contents of the stack may have changed.

The second implementation, stackI, is Treiber’s stack supple-
mented with an iterator. Treiber’s stack [28] is one of the simplest
lock-free data structures—a kind of “Hello World” for concurrent
program logics. Like stackS, Treiber’s stack maintains a reference
hdI to a list that it uses to represent the stack. Instead of using a
lock, however, it updates hdI directly (and atomically) using CAS,
which requires the contents of hdI to have a comparable type, i.e.,
to be testable for pointer equality. Thus hdI is of type ref clist(α),
where clist(α) , µβ. ref (1 + (α× β)). The push and pop func-
tions employ optimistic concurrency: instead of acquiring a lock
to inform other threads that they are going to make a change, they
just take a snapshot of the current hdI, compute a new value, and
use CAS to install the new value if the identity of the hdI has not
changed. Intuitively, this strategy works because if the hdI’s iden-
tity has not changed, then nothing about the stack has changed:
all mutation is performed by identity-changing updates to hdI. The
iterator simply walks over the stack’s contents starting from a (pos-
sibly stale!) snapshot of hdI.

To prove that stackI refines stackS, we begin as follows:

stackI , Λ. Prop context: Type(α), i ./ j Variables: α, i, j, κ

{j Z⇒S κ[stackS]} let hdI = new nil

{j Z⇒S κ[stackS] ∗ ∃x. hdI ↪→I x ∗ x ↪→I none} (EXECSPEC){
∃ hdS, lock. hdS ↪→S none ∗ lock ↪→S false ∗ j Z⇒S κ[stack′S] ∗
∃x. hdI ↪→I x ∗ x ↪→I none

}

We have executed the “preambles” of both the implementation and
spec—the code that allocates their respective hidden state. (Let
stack′S denote the rest of the spec code after the let-binding of sync
and hdS.) At this point, we will use NEWISL to move all of this
state into a hidden island, with a protocol that we can use when
proving refinement for each exported function.

The states s of the protocol are maps Loc fin
⇀ Val which simply

record the identity and contents of every node added to stackI. The
transition relation s s′ , s ⊆ s′ captures the idea that, once
a node has appeared in the stack, its contents never change. There
are no tokens. We interpret a state s as follows:

ϕ , (s). lock ↪→S false ∗∗`∈dom(s)
` ↪→I s(`)

∗ ∃xI, xS. hdI ↪→I xI ∗ hdS ↪→S xS ∗ Link(s, xI, xS)

Because the lock is protected by the protocol, we can only execute
the exported spec functions with AEXECSPEC, as part of an appli-
cation of UPDISL; by stipulating lock ↪→S false, the interpretation
furthermore requires that we run the spec in “big steps”, starting
and ending in unlocked states. It also says that the implementation
and spec stack contents are linked, in the following sense:

Link , µp. (s, xI, xS). ∃x′I , s′. s = [xI 7→ x′I]] s′ ∗

(x′I = none ∗ xS = none) ∨

∃yI, zI. x′I = some(yI, zI) ∗
∃yS, zS. xS = some(yS, zS) ∗
(yI, yS) ∈ α ∗ .p(s′, zI, zS)

Linking requires that the stack state s contain an entire linked list
starting from hdI, and that each element of the list be related (at
type α) to the corresponding element of the list in hdS. But it does
so without mentioning the heap at all! This is the key: it means
that Link(s, xI, xS) ⇒ �Link(s, xI, xS), so the Link assertion can

386

be freely copied in the proof for iter when the traversal begins.
Since the abstract state s of the stack can only grow, all of the
nodes mentioned in this “snapshot” of Link are guaranteed to still
be available in the region of the heap governed by the protocol,
with their original values, as traversal proceeds—even if, in the
meantime, the nodes are no longer reachable from hdI.

The full proof outlines are available in the appendix [30].

Combining refinement and Hoare-style reasoning Suppose a
client of Treiber’s stack wishes to use it only in a weak way, via
a “per-item” spec similar to the one suggested in the introduction:

PerItem , (e ∈ Expr). ∀p, q ∈ P(Val).
(∀x. TokPure(p(x)) ∧ (p(x)⇒ �q(x)))⇒
{True} e {obj. obj = (add, rem, iter) ∧ �P}, where

P , ∀x. {p(x)} add(x) {ret. ret = ()}
∧ {True} rem() {ret. ret = none ∨ (∃x. ret = some(x) ∗ p(ret))}
∧ ∀f, r. (∀x. {q(x) ∗ r} f(x) {r})⇒ {r} iter(f) {r}

This “per-item” spec associates a resource p with each element
of the stack, which is transferred to and from the data structure
when adding or removing elements. If, in addition, each per-item
resource entails some permanent knowledge �q, then that knowl-
edge can be safely assumed by a function concurrently iterating
over the stack, even if the resources originally supporting it have
been consumed. As we will see in the case study (§4), this spec for
iteration is useful for associating permanent, token-free knowledge
about some other protocol with each item that appears in the stack.

While the per-item spec could in principle be applied directly
to Treiber’s stack (i.e., we could prove PerItem(stackI)), doing
so would repeat much of the verification we just performed. On
the other hand, proving PerItem(stackS) is nearly trivial: we just
instantiate the spinlock spec given in §3.2 with the representation
invariant Repp , ∃l. hdS ↪→I l ∗Mapp(l). To verify iter, we need
only observe that Mapp(l) ⇒ �Mapq(l), i.e., the snapshot of the
stack provides a list of necessarily true associated facts. (The details
are in the appendix [30].) By mixing refinement and Hoare logic,
we can thus significantly modularize our verification effort.

3.4 Soundness
The model theory of CaReSL is based directly on the semantic
model of Turon et al. [31], with minor adjustments to accommo-
date the assertions Tid(i) and i ./ j necessary for reasoning about
thread-local storage. (Since this paper is focused on the comple-
mentary aim of giving a syntactic proof theory, we do not delve
into the model here; it can be found in full in the appendix [30]).

Soundness for CaReSL encompasses two theorems. First, that
C ` P implies C |= P , where the latter is the semantic entail-
ment relation of the model. Proving this theorem requires validat-
ing, in particular, the key Hoare logic rules, which we do in the ap-
pendix; these proofs resemble the proofs of key lemmas supporting
Turon et al.’s model. Second, that · ` (Ω ` eI � eS : τ) implies
Ω |= eI � eS : τ , i.e., that the logical relation is sound for contex-
tual refinement. Again, this proof follows the soundness proof of
Turon et al., except that we can carry it out at a much higher level
of abstraction using CaReSL’s proof rules.

4. Case study: Flat combining
Using CaReSL’s combination of Hoare-style and refinement rea-
soning, we can verify higher-order concurrent algorithms in layers
of abstraction—and this section shows how to do it.

We study the recent flat combining construction of Hendler
et al. [11], which takes an arbitrary sequential data structure and
transforms it into a concurrent one in which all operations appear
to take effect atomically. One can do so by merely wrapping each
operation with synchronization on a global lock—indeed, this is

flatS , mkSync() : [∀α. ∀β. (α→ β)→ (α→ β)]

flatI , Λ[α]. Λ[β]. λf : [α→ β]. (Annotated with types for clarity)
let lock : [ref B] = new (false)

let lclOps : [refLcl op] = newLcl (where op , ref (α+ β))
let (add, , iter) = stackI [op]
let install : [α→ op] = λ req. case getLcl(lclOps)
of some(o)⇒ o := inj1 req; o
| none⇒ let o = new (inj1 req) in setLcl(lclOps, o); add(o); o

let doOp : [op→ 1] = λo. case get(o)
of inj1 req⇒ o := inj2 f(req)
| inj2 res⇒ ()

in λx : [α]. let o = install(x)
let rec loop() = case get(o)
of inj1 ⇒ if not(get lock) and tryAcq(lock) then

iter doOp; rel(lock); loop()
else loop()

| inj2 res⇒ res
in loop()

Figure 10. Flat combining: Spec and implementation

what our spec does—but flat combining takes a cache-friendly
approach intended for hard-to-parallelize data structures.

The basic idea is to allow concurrent threads to advertise,
through a lock-free side channel, their intent to perform an op-
eration on the data structure. One of the threads then becomes the
combiner: it locks the data structure and services the requests of all
the other threads, one at a time (though new requests may be pub-
lished concurrently with the combiner’s execution). The algorithm
exhibits relatively good cache behavior for two reasons: (1) most of
the time, operations do not need to execute any CASes to complete
and (2) the combining thread enjoys good cache locality when ex-
ecuting the operations of the sequential data structure. In practice,
flat combining yields remarkably strong performance, even when
compared against completely lock-free data structures.

The algorithm and its spec The flat combining algorithm was
originally given as informal prose, so our first task is to formalize
its implementation and find an appropriate spec, while making its
higher-order structure explicit. We do so in Figure 10.

We model an “arbitrary sequential data structure” as a closure f
of some type α → β, where α represents the input to an operation
to be performed, β represents the result, and calling the function
performs the operation by imperatively updating some state hidden
within the closure. In other words, α → β represents the type of
an object. The goal of flat combining, then, is to wrap this object
with (cache-efficient) synchronization. Its spec, flatS, simply uses
mkSync to provide generic synchronization via global locking.

Our flat combining implementation flatI uses three data struc-
tures to control synchronization.10 First, it uses a global lock to
ensure that only one thread at a time acts as the combiner. Sec-
ond, it uses a Treiber’s stack to enable threads to enroll in the data
structure. To enroll, a thread inserts an operation record of type
ref (α+ β), by which it can both advertise requests (of type α)
and then await the results (of type β). The combiner performs these
requests by iterating over the stack: for each record containing an
inj1 req, it applies f to req, obtaining result res and updating the
record to inj2 res. Finally, the thread-local reference lclOps allows
threads to re-use their operation record once they have enrolled.
Note that operation records can be added to the stack or reset from
β to α at any time—even when the combiner holds the lock.

10 This implementation simplifies Hendler et al.’s description in three re-
spects: it uses a stack rather than a queue, operation records are never de-
enrolled, and the combiner does not coalesce multiple operations into a sin-
gle step. The first simplification makes little difference, because ultimately
we give a modular proof using our per-item spec, which could be applied to
a queue as well. The other two need only minor changes to the protocol.

387

Init

⊥; •i, �i

Req(`, j,K, v); �i Exec(`); Lock

Resp(`, j,K, v′); �iAck(`); •i, �i

`, j,K, v

v′j,K, v

JInitKLi , Tid(i)

JReq(`, j, κ, xI)KLi , L(i) = ` ∗ ` ↪→I inj1 xI ∗ Tid(i) ∗ ∃xS. (xI, xS) ∈ α ∗ j Z⇒S κ[f ′S xS]

JExec(`)KLi , L(i) = ` ∗ ` ↪→I inj1 − ∗ Tid(i)

JResp(`, j, κ, yI)KLi , L(i) = ` ∗ ` ↪→I inj2 yI ∗ Tid(i) ∗ ∃yS. (yI, yS) ∈ β ∗ j Z⇒S κ[yS]

JAck(`)KLi , L(i) = ` ∗ ` ↪→I inj2 −

where f ′S , λx. acq(lockS); let r = fS(x) in rel(lockS); r

Figure 11. The protocol for the operation record of thread i

Unfortunately, if we set out to prove the refinement
· ` flatI � flatS : ∀α. ∀β. (α→ β)→ (α→ β)

we will run headlong into a problem: it does not hold! To wit: let

C , let r = newLcl, f = [] (λ(). getLcl(r))
in fork (setLcl(r, true); f()); setLcl(r, false); f()

When this context is applied to flatS, it always returns some(false),
because the final f() is always executed on the thread whose local
r is false. But when applied to flatI, it can also return some(true):
the forked thread might act as the combiner, performing both ap-
plications of f and thus using its own thread-local value for r.

The crux of the problem is that thread-local storage allows
functions to observe the identity of the thread executing them. We
need to rule out this kind of side effect. We do so by unrolling the
definition of refinement for functions, and simply removing access
to ID-related knowledge, leading to a qualified refinement:

∀α, β, fI, fS.
Type(α) ∧ Type(β) ∧ �(∀(xI, xS) ∈ α. (fI xI, fS xS) ↓pure β)
⇒ · ` flatI fI � flatS fS : α→ β

where (eI, eS) ↓pure ϕ , ∀i, j, κ.
{j Z⇒S κ[eS]} i Z⇒ eI {xI. ∃xS. ϕ(xI, xS) ∗ j Z⇒S κ[xS]}

This “pure” notion of related expressions embodies a semantic ver-
sion of purity in a type-and-effect system where the only effect is
“uses thread-local storage”. It coincides exactly with the expres-
sion relation in Turon et al. [31], where thread-local storage was
not present. It is easy to prove, using CaReSL, that for any well-
typed f : τ → τ ′ that does not use thread-local storage (i.e., an
“effect-free” f) we have�∀(xI, xS) ∈ JτK. (f xI, f xS) ↓pure Jτ ′K.

The protocol To prove the qualified refinement, we need to for-
mulate a protocol characterizing the algorithm. We do so by giving
a local protocol governing the operation record of each thread, and
then tying these local protocols together into a single global one.
Figure 11 gives the local protocol for a thread with ID i, where the
states have the following informal meanings:

⊥ thread i has not yet created its operation record
Init thread i is creating its operation record
Req thread i has requested an operation be performed
Exec the combiner is executing thread i’s operation
Resp thread i’s operation has been completed
Ack thread i has acknowledged the completion

The cycle in the protocol reflects that, once thread i has enrolled an
operation record, it can reuse that record indefinitely. The labels on
transitions signify branching on the values of the listed variables.
Note that, while ` (the location of the operation record) is chosen
arbitrarily during initialization, it must remain fixed thereafter.

Movement through the local protocol encompasses two roles:
that of thread i, and that of the combiner. The protocol guarantees:
(1) when thread i begins execution of the flat combining algorithm,
the current state is either ⊥ or Ack, meaning that either there is no
operation record associated with the thread, or that the associated
record is ready to be re-used; (2) only thread i can move to or from
Init and Ack; and (3) only the combiner can move to or from Exec.

To fully understand how these constraints are enforced, we must
take into account both the tokens and the state interpretations of
the protocol. The tokens include •i and �i (one for each thread i,
used only in i’s local protocol) and a single global token Lock
representing ownership of the combiner’s lock.

The interpretations J−KLi of the non-⊥ states are shown in the
figure; the parameter L represents the contents of lclOps. With the
exception of ⊥ and Ack, all states assert ownership of Tid(i). On
the other hand, when thread i begins executing the algorithm, it will
have ownership of Tid(i) (recall the definition of refinement, §3.3).
Thus, thread i can assume that the protocol is in state ⊥ or Ack—
and only thread i can take a step away from these states. For thread
i to take such a step, it must “prove” that it is thread i by giving
up Tid(i), but in return it gains the token •i as a “receipt” that can
later be traded back for Tid(i) by moving (back) to Ack. All told,
the ownership of Tid(i) and the corresponding token •i account for
the first two of the guarantees listed above.

The third guarantee is achieved using a similar strategy: to move
to the Exec state, the combiner must “prove” that it holds the lock
by temporarily giving up the (global) Lock token, but it receives the
(local) token �i as a receipt. Subsequently, only the combiner can
move to Resp, making the opposite trade.

After initialization, each state also asserts that the location `
of the operation record for thread i both corresponds to L(i) and
points to an appropriate sum injection (depending on the state).

A final aspect of the local protocol is capturing the cooperation
inherent in flat combining: the combiner executes code on behalf of
other threads. Cooperation is difficult for compositional refinement
techniques to handle, because such techniques usually require prov-
ing that for each piece of implementation code the corresponding
piece of spec code behaves the same way—and thus they typically
provide no way to account for the mismatch between implemen-
tation and spec that cooperation entails. While our definition of re-
finement (§3.3) likewise imposes a one-to-one relationship between
implementation and spec code in its pre- and post-conditions, our
treatment of spec code as a resource allows ownership to be trans-
ferred to other threads during the execution of the implementation.

Thus, the Req and Resp states of our protocol assert shared
ownership of i’s spec code (running in spec thread j). In moving
from Req to Exec the combiner thread must take ownership of
the spec code κ[f ′S xS]; and to subsequently move to Resp, the
combiner must actually evaluate this code on thread i’s behalf until
f ′S xS reaches a value yS. Subsequently, when moving to the Ack
state, thread i regains ownership of both Tid(i) and its spec code,
by giving up its “receipt” token, •i.

The global transition system is then a product construction:

State space

{
(S, s)

∣∣∣∣∣
S ∈ N fin

⇀ OpState, s ∈ LockState,
at most one S(i) or s owns Lock

}

Transitions (S, s) (S′, s′) , s ?
lock s

′ ∧ ∀i. S(i) ?
i S
′(i)

Owned tokens T (S, s) , Tlock(s) ∪ ⋃i Ti(S(i))

A global state includes a collection S of local states from the
operation record protocol (Figure 11), one for each thread ID. In
giving the state space, we pun the ⊥ state with an “undefined”

388

input to a partial function—and thus, we require that only a finite
number of threads i have a non-⊥ state in S. Global states also have
a single state s drawn from the standard locking protocol (§3.2),
reflecting the state of the global lock. The global Lock token is
shared amongst all of the combined protocols: in a valid global
state, at most one of the local states S(i) or s may claim the Lock
token. A transition in the global protocol allows each local protocol
to make at most one transition. Finally, the tokens owned in a global
state are just the union of all the tokens claimed by the local states.

Recall that in the refinement proof for Treiber’s stack (§3.3), the
spec lock is treated continuously as a protocol-owned resource with
value false, capturing the atomicity of the implementation code: if
an implementation step coincides with any spec steps, it must co-
incide with an entire critical section’s worth, going from unlocked
to unlocked spec states in big steps. The combiner implementation,
by contrast, is executing a function fI that is not necessarily atomic;
all we know is that fI refines fS. We must therefore allow the spec
lock to be held for multiple implementation steps, which we do by
interpreting lock states as follows:

JUnlockedK , lock ↪→I false ∗ lockS ↪→S false
JLockedK , lock ↪→I true

In short, the combiner gains private ownership of both the Lock to-
ken and the spec lock itself (i.e., the internal lock used by mkSync;
see f ′S in Figure 11) when it acquires the implementation lock.

Finally, we lift these local interpretations to interpret global
states via the following predicate:

(S, s). JsK ∗ ∃L. lclOps ↪→I L ∗∗i∈dom(S)
JS(i)KLi

The proof We close with a high-level view of the proof itself;
details, as usual, are in the appendix. Unrolling the statement of
qualified refinement, we need to prove
{Tid(i) ∗ j Z⇒S κ[flatS fS]} i Z⇒ flatI fI

{xI. ∃xS. (xI, xS) ∈ Jα→ βK ∗ Tid(i) ∗ j Z⇒S κ[xS]}
under the assumptions
i ./ j, Type(α), Type(β), �(∀(xI, xS) ∈ α.(fI xI, fS xS) ↓pure β)

The proof begins in much the same way as the refinement proof for
Treiber’s stack (§3.3): we execute the let-bound expressions that
allocate the hidden state in both the implementation and spec, i.e.,
lock ↪→I false ∗ lclOps ↪→I ∅ ∗ ∃ lockS. j Z⇒S κ[f ′S] ∗ lockS ↪→S false

where lockS is the lock allocated by mkSync and f ′S is as in
Figure 11. These resources are precisely what we need to apply
NEWISL for our global protocol, moving them from private to
shared ownership. Letting π be the global protocol defined above,
we can claim � (∅,Unlocked); ∅ nπ , i.e., permanent knowledge
that the global protocol exists. We must then, in the context of this
island and our previous assumptions, show that the closure returned
by flatI refines the one returned by flatS, i.e., f ′S , at type α→ β.

We first verify a version flat′I of the flat combining algorithm
that is identical to the one in Figure 10, except that it uses the
coarse-grained stack, allowing us to use the per-item spec of §3.3.
We instantiate the per-item spec using the same predicate Op for
per-item resources and iteration knowledge (p and q, respectively,
in the per-item spec): Op , (`). ∃k. [k 7→ Req(`,−,−,−)] nπ .11

This is a local assertion about the global protocol, in that the states
of threads other than k can be in any rely-future state of⊥, i.e., any
state whatsoever. The Op predicate just claims that location ` is an
initialized operation record for some thread. By the per-item spec,
all locations inserted into the stack must satisfy this property—and
since we have Op(`)⇒ �Op(`), the property can be assumed even
when iterating over stale elements of the stack. Operation records
are created via install, whose specification consumes Tid(i) and
associated spec resources in exchange for the “receipt” •i:
{

Tid(i) ∗ j Z⇒S κ[f ′S xS]
}
i Z⇒ install x

{
o. [i 7→ Req(o, j, κ, x)]; •i nπ

}

11 We leave off the locking state when it is Unlocked.

for any (x, xS) ∈ α (i.e., for any related arguments). The combiner
actually performs operations via doOp,
{Op(o) ∗ P} doOp o {P} where P , ∅; Lock n

π ∗ lockS ↪→S false

which assumes that the given location o is a valid operation record,
and that the invoking thread owns the Lock token as well as the spec
lock. The shape of the spec for doOp exactly matches that required
for iteration in the per-item spec (§3.3), with P serving as the loop
invariant, thus allowing us to deduce {P} iter doOp {P}. These
auxiliary specs make it straightforward to prove refinement for the
closures returned by flat′I (with coarse-grained stack) and flatS.

Finally, suppose we plug the combiner into a client context C
that provides a suitable argument f . The above proof (together with
soundness, §3.4) allows us to deduce |= C[flat′I] � C[flatS] : τ .
Likewise, refinement for Treiber’s stack allows us to deduce |=
C[flatI] � C[flat′I] : τ . Since refinement is transitive, we can
compose these together to conclude |= C[flatI] � C[flatS] : τ .12

5. Related work
In many respects, CaReSL builds directly on the semantic founda-
tion that we and colleagues laid in our prior work [31]. There, we
developed a relational Kripke model of a language very similar to
the one considered here, and showed how granularity abstraction
for several sophisticated (but structurally simple) fine-grained data
structures could be established by direct appeal to the model. The
present work is a natural continuation of that work. First, we pro-
vide a logic that greatly simplifies reasoning compared to working
with the model; such a proof theory is essential for scaling the ver-
ification method to large examples. Second, we use our logic not
just to prove granularity abstraction results in isolation (as we did
before), but also to facilitate the modular verification of a higher-
order, structurally complex program. Along the way, we also extend
our prior model to handle thread-local storage.

The logic itself draws inspiration from LADR [5], which in turn
provided a proof theory for reasoning about a sequential relational
Kripke model (ADR [1]). Aside from incorporating concurrency,
CaReSL offers a deeper unification of refinement and Hoare logic
by treating refinement as a mode of use of Hoare logic.

Higher-order functions and concurrency While there has been
stunning progress in logics for concurrency over the last decade,
very few of these logics meaningfully support higher-order pro-
gramming, and among those that do, none supports reasoning about
fine-grained synchronization or granularity abstraction.

The logic that comes closest is higher-order concurrent ab-
stract predicates (HOCAP), first proposed for reasoning about first-
order code [4] (the “higher-order” refers to the logic of predicates)
and very recently applied to higher-order code as well [27]. HO-
CAP, like its predecessor CAP [3], accounts for concurrency by
way of “shared region” assertions that constrain the possible up-
dates to a shared resource. Our island assertions resemble shared
region assertions—indeed, we have adopted notation suggesting
as much—but work at a higher level of abstraction (i.e., protocol
states), separating knowledge bounding the state of the protocol
(treated as a copyable assertion) from the rights to change the state
(treated as a linear resource: tokens); see [31] for a more detailed
comparison. Because CAP lacks granularity abstraction, it is diffi-
cult to give a single “principal” specification for a data structure. In-
stead, one gives specialized specs (like the per-item spec for stacks)
reflecting particular usages envisioned for a client—which means
new client scenarios necessitate new proofs. HOCAP attempts to

12 We are appealing to semantic refinement here to take advantage of transi-
tivity. This reasoning can be internalized in CaReSL by adding a proposition
for semantic refinement and axioms for refinement soundness and transitiv-
ity, but there is little to be gained from doing so.

389

address this shortcoming by explicitly quantifying over the way a
client uses a data structure, but (1) this introduces the potential for
a problematic circularity, which clients must explicitly prove does
not arise, and (2) it is not clear how to scale the approach to handle
cooperation between threads (as in the flat combiner).

Other concurrency logics that support higher-order functions—
such as Hobor et al.’s extension of concurrent separation logic [14],
or the very recent Subjective Concurrent Separation Logic [17]—
support only reasoning about simple lock-based synchronization,
and do not enable the kinds of refinement proofs we have presented.

Granularity abstraction Herlihy and Wing’s seminal notion of
linearizability [13] has long been held as the gold standard of cor-
rectness for concurrent data structures, but as Filipović et al. ar-
gue [8], what clients of these data structures really want is a contex-
tual refinement property. Filipović et al. go on to show that, under
certain (strong) assumptions about a programming language, lin-
earizability implies contextual refinement for that language. More
recently, Gotsman and Yang generalized both linearizability and
Filipović et al.’s result (the so-called abstraction theorem) to in-
clude potential ownership transfer of memory between concurrent
data structures and their clients in a first-order setting [9]. While
in principle proofs of linearizability can be composed with these
results to support granularity abstraction, no existing logic has pro-
vided support for doing so. We found it simpler to work with refine-
ment directly (in particular, to encode it directly into a Hoare logic),
rather than reasoning about linearizability. CaReSL enables clients
to layer ownership-transferring protocols on top of a coarse-grained
reference implementation, after applying granularity abstraction, as
we showed with the per-item spec (§3.3).

The only Hoare logic we are aware of that can (formally) prove
refinement results is Liang and Feng’s new logic [18] (extending
LRG [7]), which is inspired by the use of ghost state in Vafeiadis’s
thesis [32]. The logic is powerful enough to deal with a range of
sophisticated, fine-grained concurrent algorithms, but it is limited
to first-order code. In addition, the specifications used in refine-
ment are not reference implementations, but are instead essentially
atomic Hoare triples. While such specifications are appealingly ab-
stract, they present two limitations: (1) they do not model the more
general notion of granularity abstraction (supporting only atomic-
ity abstraction, as we explained in footnote 1) and (2) they do not
support the kind of transitive composition of proofs that we used
in our case study. As a result, it is unclear how to use the logic to
build modular proofs layering Hoare logic and refinement.

A radically different approach to atomicity abstraction is Lip-
ton’s method of reduction [19], which is based on showing that an
atomic step commutes with all concurrent activity, and can there-
fore be coalesced into a larger atomic block with e.g., code that
is sequenced after it. Elmas et al. developed a logic for proving
linearizability via a combination of reduction and abstraction [6],
which in some ways resembles our interleaved application of re-
finement and Hoare-style reasoning, but with a rather different way
of proving refinement. It is limited, however, to first-order code and
atomicity refinement, and like HOCAP it is not powerful enough to
handle fine-grained algorithms that employ cooperation. Moreover,
it does not allow linearizability proofs to be composed transitively.

Acknowledgments We would like to thank David Swasey for his
careful reading of both the paper and its appendix. This work was
partially funded by the EC FET project ADVENT.

References
[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In POPL, 2009.
[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. JPDC, 37(1):55–69, Aug. 1996.

[3] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis.
Concurrent abstract predicates. In ECOOP, 2010.

[4] M. Dodds, S. Jagannathan, and M. Parkinson. Modular reasoning for
deterministic parallelism. In POPL, 2011.

[5] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal
logic for higher-order stateful ADTs. In POPL, 2010.

[6] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS, 2010.

[7] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
[8] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for

concurrent objects. Theoretical Computer Science, 411, 2010.
[9] A. Gotsman and H. Yang. Linearizability with ownership transfer. In

CONCUR, 2012.
[10] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable

memory transactions. In PPOPP, 2005.
[11] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and

the synchronization-parallelism tradeoff. In SPAA, 2010.
[12] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack

algorithm. In SPAA, 2004.
[13] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition

for concurrent objects. TOPLAS, 12(3):463–492, 1990.
[14] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for

concurrent separation logic. In ESOP, 2008.
[15] C. B. Jones. Tentative steps toward a development method for inter-

fering programs. TOPLAS, 5(4):596–619, 1983.
[16] D. Lea. The java.util.concurrent ConcurrentHashMap.
[17] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-

grained concurrency. In POPL, 2013.
[18] H. Liang and X. Feng. Modular verification of linearizability with

non-fixed linearization points. In PLDI, 2013.
[19] R. J. Lipton. Reduction: a method of proving properties of parallel

programs. Commun. ACM, 18(12):717–721, 1975.
[20] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, 2007.
[21] M. Parkinson and G. Bierman. Separation logic and abstraction. In

POPL, 2005.
[22] A. M. Pitts and I. Stark. Operational reasoning for functions with local

state. In HOOTS, 1998.
[23] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In

TLCA, 1993.
[24] F. Pottier. Hiding local state in direct style: a higher-order anti-frame

rule. In LICS, 2008.
[25] J. H. Reppy. Higher-order concurrency. PhD thesis, Cornell Univer-

sity, 1992.
[26] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In LICS, 2002.
[27] K. Svendsen, L. Birkedal, and M. Parkinson. Modular reasoning about

separation of concurrent data structures. In ESOP, 2013.
[28] R. Treiber. Systems programming: coping with parallelism. Technical

report, Almaden Research Center, 1986.
[29] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.

Algorithm + strategy = parallelism. JFP, 8(1):23–60, Jan. 1998.
[30] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-

style reasoning in a logic for higher-order concurrency: Appendix.
http://www.mpi-sws.org/~turon/caresl/appendix.pdf.

[31] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, 2013.

[32] V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, 2008.

[33] H. Yang. Relational separation logic. TCS, 375(1-3):308–334, 2007.

390

Brief Announcement: Concurrency-Aware Linearizability

Nir Hemed
Tel Aviv University

nirh@mail.cs.tau.ac.il

Noam Rinetzky
Tel Aviv University

maon@cs.tau.ac.il

ABSTRACT
Linearizabilty allows to describe the behaviour of concurrent ob-
jects using sequential specifications. Unfortunately, as we show in
this paper, sequential specifications cannot be used for concurrent
objects whose observable behaviour in the presence of concurrent
operations should be different than their behaviour in the sequential
setting. As a result, such concurrency-aware objects do not have
formal specifications, which, in turn, precludes formal verification.

In this paper we present Concurrency Aware Linearizability (CAL),
a new correctness condition which allows to formally specify the
behaviour of a certain class of concurrency-aware objects. Tech-
nically, CAL is formalized as a strict extension of linearizabil-
ity, where concurrency-aware specifications are used instead of se-
quential ones. We believe that CAL can be used as a basis for mod-
ular formal verification techniques for concurrency-aware objects.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming; D.2.4
[Software Engineering]: Software/Program Verification

Keywords
Linearizability; sequential specification; concurrent specification

1. INTRODUCTION
Linearizability [4] is a property of the externally-observable be-

haviour of concurrent objects [4]. Intuitively, a concurrent object
is linearizable if in every execution each operation seems to take
effect instantaneously between its invocation and response, and
the resulting sequence of (seemingly instantaneous) operations re-
spects a given sequential specification. Unfortunately, as we show
below, for some concurrent objects it is impossible to provide a
sequential specification: their behaviour in the presence of concur-
rent (overlapping) operations is, and should be, observably differ-
ent from their behaviour in the sequential setting. For these ob-
jects, which we refer to as Concurrency-Aware Concurrent Objects
(CA-objects), the traditional notion of linearizability is simply not
expressive enough to allow for describing all desired behaviours

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PODC’14, July 15–18, 2014, Paris, France.
ACM 978-1-4503-2944-6/14/07.
http://dx.doi.org/10.1145/2611462.2611513.

without introducing undesired ones. As a result, CA-objects are
not given a formal specification. The lack of formal specifications
is problematic as it precludes formal proofs.

Concurrency-Aware Linearizabilty (CAL) is a correctness con-
dition which addresses the aforementioned problem. CAL enables
programmers to provide natural and intuitive specifications for an
important class of CA-objects. Technically, CAL is an extension
of linearizabilty where Concurrency-Aware specifications are used
to describe concurrency-dependent behaviours. Sequential speci-
fications are a special case of concurrency-aware specifications in
which concurrent behaviours can be explained by sequential ones.
Running Example. Exchanger objects (as found, e.g., in java.
util.concurrent.Exchanger) serve as a synchronization
point at which threads can pair up and atomically swap elements.
Exchangers are useful in applications such as genetic algorithms
and pipeline designs, and are embedded in practice in thread-pool
implementations as well as other higher-level data structures [5, 6].

Figure 1(E) shows a simplified version of the wait-free exchanger
of [5] in which retires are omitted. Intuitively, a client thread uses
the Exchanger by invoking the exchange() method with a
value that it offers to swap (in our case a positive int). exchange()
attempts to find a partner thread and, if successful, instantaneously
exchanges the offered value with the one offered by the partner. If
a partner thread is not found, exchange() returns -1, indicating
that the operation has failed. More technically, the exchange is per-
formed by using Offer objects, consisting of the data offered
for exchange and a hole pointer. A successful swap occurs when
the hole pointer in the Offer of one thread points to the Offer
of another thread. This can be achieved in two ways: A thread that
finds that the value of g is null can set it to its Offer (line 10) and
wait for a partner thread to match with (sleep in line 11). Upon
awakening, it checks whether it was paired with another thread by
executing a CAS on its own hole (line 12). If the CAS succeeds,
then a match did not occur, and setting the hole pointer to point to
the fail sentinel signals that the thread is no longer interested in
the exchange. If the CAS fails then some other thread has already
matched the Offer and the exchange can complete successfully.
If g is not null, then the thread attempts to update the hole field
of the Offer pointed to by g from its initial null value to its own
Offer (line 16). An additional CAS (line 17) sets g back to null.
By doing so, it helps to remove already-matched offers from the
global pointer; hence, the CAS in line 17 is unconditional.
Exchanger objects do not have a formal specification. This

is not surprising; describing the concurrent behaviour that requires
that exchange() succeeds only if two threads invoke the method
simultaneously is, as we show below, impossible using the form
of sequential specifications suggested in [4]. As a result, correct-
ness proofs of concurrent objects that utilize Exchanger-like ob-

(E)

1 class Offer {
2 int data;
3 Offer hole;
4 Offer(int d){data = d; hole = null;}
5 }

6 Offer g = null;
7 Offer fail = new Offer(-1);

8 int exchange(int d){ // we assume 0 ≤ d
9 Offer n = new Offer(d);

10 if (CAS(g, null, n)){
11 sleep(50);
12 CAS(n.hole, null, fail)
13 return n.hole.data;
14 }
15 Offer cur = g;
16 bool success = CAS(cur.hole, null, n);
17 CAS(g, cur, null);
18 if (success)
19 return cur.data;
20 else return -1;
21 }

(P)

(H1)

(H2)

(H3)

(SH) (CAH) (CH)

Figure 1: (E) a simplified Exchanger, (P) a client program, (H1) a concurrent history, (H2) an undesired sequential history, (H3)
a CA-history, a graphical depiction of a (SH) sequential history, a (CAH) CA-history, and a (CH) concurrent history.

jects are not modular. For example, the proof of the HSY-stack [3]
mixes reasoning about the implementation of an (Exchanger-
like) elimination array with its particular usage by the stack.

2. CONCURRENCY-AWARE LINEARIZABIL-
ITY (CAL)

Linearizability relates an implementation of a concurrent object
with a sequential specification. Both the implementation and the
specification are formalized as prefix-closed sets of histories. A
history H = ψ1ψ2 . . . is a sequence of methods invocations and
responses. Specifications are given using sequential histories in
which every response is immediately preceded by its matching in-
vocation. Implementations, on the other hand, allow for arbitrary
interleaving of actions by different threads, as long as the subse-
quence of actions of every thread is sequential. Informally, a con-
current object OSC is linearizable with respect to a specification
OSA if every history H in OSC can be explained by a history S
in OSA that “looks similar” to H . The similarity is formalized by
a real-time relation H vRT S, which requires S to be a permuta-
tion of H preserving the per-thread order of actions and the order
of non-overlapping operations.1

Why it is impossible to provide a sequential specification for
Exchangers? Consider the client program P shown in Fig-
ure 1(P) which uses an Exchanger object. Figures 1(H1-H3)
show three histories, where an exchange(n) operation returning
value n’ is depicted using an interval bounded by a “call(n)”
and a “ret(n’)” actions. Note that histories H1 and H3 might
occur when P executes, but H2 cannot.

History H1 corresponds to the case where threads t1 and t2 ex-
change items 3 and 10 respectively and t3 fails to pair-up. His-
tory H2 is one possible sequential explanation of H1. Using H2

1For brevity, formal details, e.g., the treatment of history com-
pletions, are deferred to the Appendix.

to explain H1 raises the following problem: if H2 is allowed by
the specification then every prefix of H2 must be allowed as-well.
In particular, history H ′

2 in which only t1 performs its operation
should be allowed. Note that in H ′

2 a thread exchanges an item
without finding a partner. Clearly, H ′

2 is an undesired behaviour.
In fact, any sequential history that attempts to explainH1 would al-
low for similar undesired behaviours. (In general, only executions
in which all exchange() operations fail can be explained by se-
quential histories.) We conclude that any sequential specification
of the Exchanger is either too restrictive or too loose.

We now turn to the definition of concurrency-aware lineariz-
ability. A key notion here is that of concurrency-aware histories.
A history H is concurrency-aware (CA-History) if for any his-
tory H1 such that H = H1ψ

′ψH2 if ψ′ is a response and ψ
is an invocation then the matching response of any invocation in
H1ψ

′ is also in H1ψ
′. Note that a CA-history may contain con-

current operations. However, it ensures that such operations over-
lap pairwise. This provides the illusion that all concurrent opera-
tions are performed instantaneously at the same point in time. Fig-
ure 1 illustrates a sequential history (SH), a CA-history (CAH),
and a concurrent history (CH). Note that every sequential history
is a CA-history and every CA-history is a concurrent history, but
not vice-versa. CAL extends linearizability by allowing specifica-
tions to be a (prefix-closed) set of CA-histories: A concurrent ob-
ject OSC is CA-linearizable with respect to a specification OSA,
if every history H in OSC has a “similar-looking” CA-history S
in OSA. The “similar-looking” relation used in CAL is the same
real-time order relation used to define linearizability [4]; the term
Concurrency-Aware Linearizability emphasizes that the specifica-
tion is comprised of concurrency-aware histories rather than a se-
quential ones.

Note that history H3, depicted in Figure 1, is a concurrency-
aware history. It describes the observable behavior as in H1 while
maintaining the same real-time order of operations and requiring

that exchange(3) and exchange(10) execute concurrently
and, seemingly, at the same point in time. Also note that every
prefix of H3 describes a behavior which is allowed by the imple-
mentation. Indeed, the behaviour of Exchanger objects can be
specified precisely using CA-histories.

3. CONCLUSIONS AND FUTURE WORK
We present Concurrency-Aware Linearizabilty (CAL), a new cor-

rectness condition for an important class of CA-objects, concurrent
objects whose behaviour does not have a sequential explanation.
CA-objects exist in practice but currently do not have formal spec-
ifications. CAL allows providing accurate formal specifications for
CA-objects using CA-histories, a restricted generalization of se-
quential histories. We believe that CAL can form the semantical
basis for modular and reusable correctness proofs for CA-objects.
Acknowledgements. This research was supported by the EU project
ADVENT.

References
[1] Abstraction for concurrent objects. TCS, 411(51-52), 2010.
[2] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable ren-

dezvousing. In Distributed Computing. 2011.
[3] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free

stack algorithm. In SPAA, 2004.
[4] M. P. Herlihy and J. M. Wing. Linearizability: A correctness

condition for concurrent objects. TOPLAS, 1990.
[5] W. N. Scherer III, D. Lea, and M. L. Scott. A scalable

elimination-based exchange channel. SCOOL, 2005.
[6] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable syn-

chronous queues. In PPoPP, 2006.
[7] W. N. Scherer III and M. L. Scott. Nonblocking concurrent

data structures with condition synchronization. In Distributed
Computing. 2004.

APPENDIX
In this section we formalize the notion of contentaion-aware lin-
earizability (CAL). We assume infinite sets of object names o ∈
O, method names f ∈ F , and threads identifiers t ∈ T .

DEFINITION 1. An object action is either an inocation ψ =
(t, inv o.f(n)) or a response ψ′ = (t′, res(n′)o′.f ′).

Intuitively, an invocation ψ = (t, inv o.f(n)) means transfer of
control from the client to the library, and responseψ′ = (t′, res(n′)o′.f ′)
means the return of control to the invoking client. As in [4], the ob-
servable behaviour of a concurrent object is represented by a set
of histories, which are sequences of invocations and responses of
methods calls.

DEFINITION 2. A history H is a finite sequence of invocations
and responses. We use Hi to denote the ith action of H and H|t to
denote the projection ofH onto actions of thread t. We denote by _
an expression that is irrelevant and implicitly existentially quanti-
fied. A history is sequential if every response action is immediately
preceded by a matching invocation. A history H is well-formed if
invocations and responses are properly matched: for every thread
t, H|t is sequential. A history is complete if it is well-formed and
every invocation has a matching response (i.e, for every thread t, if
H|t = _ψ then ψ is a response). History Hc is a completion of a
well-formed historyH if it is complete and can be obtained fromH

by (possibly) extending H with some response actions and (possi-
bly) removing some invocation actions. We denote by complete(H)
the set of all completions of H .

Linearizability is a relation between object systems, prefix-closed
sets of well-formed histories. Following [4], we define it using the
notion of real-time order.

DEFINITION 3. The real-time order between actions of a well-
formed history H is an irreflexive partial order ≺H on (indices of)
object actions:

Hi ≺H Hj ⇐⇒
∃i ≤ i′ < j′ ≤ j. tid(Hi) = tid(Hi′) ∧ tid(Hj) = tid(Hj′) ∧

(tid(Hi) = tid(Hj) ∨Hi′ = (_, res _) ∧Hj′ = (_, inv _))

A history H agrees with the real-time order of a history S, denoted
by H vRT S, if (i) for every thread t, H|t = S|t and (ii) there is
a bijection π : {1, · · · , |H|} → {1, · · · , |S|} such that

∀i.(Hi = Sπ(i)) ∧ (∀i, j.Hi ≺H Hj =⇒ Sπ(i) ≺S Sπ(j)) .
Intuitively, history S “agrees” with H if in both histories every
thread performs the same sequence of actions and the real-time or-
der induced by H is a subset of that of S, i.e. ≺H⊆≺S .

DEFINITION 4 (LINEARIZABILITY [4]). LetOSC andOSA
be object systems. We say that OSC is linearizable with respect to
OSA if every history H ∈ OS is sequential and

∀H ∈ OSC . ∃Hc ∈ complete(H). ∃S ∈ OSA. Hc vRT S .
We now turn on to formally define CAL. The key aspect is the

notion of CA-History, which is the building block of new class of
specifications which strictly extend sequential specifications. We
use the notion of complete histories to provide an alternative defi-
nition for CA-histories.

DEFINITION 5 (CONCURRENCY-AWARE HISTORY). A history
H is concurrency-aware (CA-History) if for any history H1 such
thatH = H1ψ

′ψH2 if ψ′ is a response and ψ is an invocation then
H1ψ

′ is a complete history. An object system is OS concurrency-
aware if each H ∈ OS is a concurrency-aware history.

A concurrency-aware history allows for some operations to be
executed concurrently by multiple threads. Moreover, it ensures
that out of the set of threads that are operating concurrently, no
thread will return before all other threads have invoked the oper-
ation (i.e. all operations must overlap pairwise). Figure 1 illus-
trates sequential history (SH), concurrency-aware history (CAH)
and concurrent history (CH). Note that while every sequential his-
tory is CA, the opposite does not hold.

Extending Definition 4, Concurrency-aware linearizabilty of an
object system is described using thevRT relation to a concurrency-
aware object system:

DEFINITION 6 (CONCURRENCY AWARE LINEARIZABILITY).
LetOSC andOSA be object systems. We say thatOSC is concurrency-
aware linearizable (CAL) with respect to OSA if

∀H ∈ OSC . ∃Hc ∈ complete(H). ∃S ∈ OSA. Hc vRT S
and every history H ∈ OSA is concurrency-aware.

Thus, CA-linearizable object is such that every interaction with it
can be “explained” by a CA-history of some concurrency-aware
object system OSA.

Note that the same real-time order vRT and notion of comple-
tions are used in the definitions of linearizability and concurrency-
aware linearizability; the term concurrency-aware linearizability
emphasizes that the specification is comprised of concurrency-aware
histories, rather than a sequential ones.

Replicated Data Types: Specification, Verification, Optimality

Sebastian Burckhardt
Microsoft Research

Alexey Gotsman
IMDEA Software Institute

Hongseok Yang
University of Oxford

Marek Zawirski
INRIA & UPMC-LIP6

Abstract
Geographically distributed systems often rely on replicated eventu-
ally consistent data stores to achieve availability and performance.
To resolve conflicting updates at different replicas, researchers
and practitioners have proposed specialized consistency protocols,
called replicated data types, that implement objects such as reg-
isters, counters, sets or lists. Reasoning about replicated data types
has however not been on par with comparable work on abstract data
types and concurrent data types, lacking specifications, correctness
proofs, and optimality results.

To fill in this gap, we propose a framework for specifying repli-
cated data types using relations over events and verifying their im-
plementations using replication-aware simulations. We apply it to
7 existing implementations of 4 data types with nontrivial conflict-
resolution strategies and optimizations (last-writer-wins register,
counter, multi-value register and observed-remove set). We also
present a novel technique for obtaining lower bounds on the worst-
case space overhead of data type implementations and use it to
prove optimality of 4 implementations. Finally, we show how to
specify consistency of replicated stores with multiple objects ax-
iomatically, in analogy to prior work on weak memory models.
Overall, our work provides foundational reasoning tools to support
research on replicated eventually consistent stores.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; eventual consistency; weak memory

1. Introduction
To achieve availability and scalability, many networked computing
systems rely on replicated stores, allowing multiple clients to issue
operations on shared data on a number of replicas, which commu-
nicate changes to each other using message passing. For example,
large-scale Internet services rely on geo-replication, which places
data replicas in geographically distinct locations, and applications
for mobile devices store replicas locally to support offline use. One
benefit of such architectures is that the replicas remain locally avail-
able to clients even when network connections fail. Unfortunately,
the famous CAP theorem [19] shows that such high Availability
and tolerance to network Partitions are incompatible with strong
Consistency, i.e., the illusion of a single centralized replica han-
dling all operations. For this reason, modern replicated stores often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535848

provide weaker forms of consistency, commonly dubbed eventual
consistency [36]. ‘Eventual’ usually refers to the guarantee that

if clients stop issuing update requests, then the replicas
will eventually reach a consistent state. (1)

Eventual consistency is a hot research area, and new replicated
stores implementing it appear every year [1, 13, 16, 18, 23, 27,
33, 34, 37]. Unfortunately, their semantics is poorly understood:
the very term eventual consistency is a catch-all buzzword, and
different stores claiming to be eventually consistent actually pro-
vide subtly different guarantees. The property (1), which is a form
of quiescent consistency, is too weak to capture these. Although
it requires the replicas to converge to the same state eventually, it
doesn’t say which one it will be. Furthermore, (1) does not provide
any guarantees in realistic scenarios when updates never stop ar-
riving. The difficulty of reasoning about the behavior of eventually
consistent stores comes from a multitude of choices to be made in
their design, some of which we now explain.

Allowing the replicas to be temporarily inconsistent enables
eventually consistent stores to satisfy clients’ requests from the
local replica immediately, and broadcast the changes to the other
replicas only after the fact, when the network connection permits
this. However, this means that clients can concurrently issue con-
flicting operations on the same data item at different replicas; fur-
thermore, if the replicas are out-of-sync, these operations will be
applied to its copies in different states. For example, two users shar-
ing an online store account can write two different zip codes into
the delivery address; the same users connected to replicas with dif-
ferent views of the shopping cart can also add and concurrently
remove the same product. In such situations the store needs to en-
sure that, after the replicas exchange updates, the changes by dif-
ferent clients will be merged and all conflicts will be resolved in a
meaningful way. Furthermore, to ensure eventual consistency (1),
the conflict resolution has to be uniform across replicas, so that, in
the end, they converge to the same state.

The protocols achieving this are commonly encapsulated within
replicated data types [1, 10, 16, 18, 31, 33, 34] that implement ob-
jects, such as registers, counters, sets or lists, with various conflict-
resolution strategies. The strategies can be as simple as establishing
a total order on all operations using timestamps and letting the last
writer win, but can also be much more subtle. Thus, a data type
can detect the presence of a conflict and let the client deal with it:
e.g., the multi-value register used in Amazon’s Dynamo key-value
store [18] would return both conflicting zip codes in the above ex-
ample. A data type can also resolve the conflict in an application-
specific way. For example, the observed-remove set [7, 32] pro-
cesses concurrent operations trying to add and remove the same
element so that an add always wins, an outcome that may be appro-
priate for a shopping cart.

Replicated data type implementations are often nontrivial, since
they have to maintain not only client-observable object state, but
also metadata needed to detect and resolve conflicts and to han-
dle network failures. This makes reasoning about their behavior
challenging. The situation gets only worse if we consider multi-

ple replicated objects: in this case, asynchronous propagation of
updates between replicas may lead to counterintuitive behaviors—
anomalies, in database terminology. The following code illustrates
an anomaly happening in real replicated stores [1, 18]:
Replica r1→ x.wr(post) i= y.rd // comment← Replica r2

y.wr(comment) j=x.rd // empty
(2)

We have two clients reading from and writing to register objects x
and y at two different replicas; i and j are client-local variables.
The first client makes a post by writing to x at replica r1 and then
comments on the post by writing to y. After every write, replica r1

might send a message with the update to replica r2. If the messages
carrying the writes of post to x and comment to y arrive to replica r2

out of the order they were issued in, the second client can see the
comment, but not the post. Different replicated stores may allow
such an anomaly or not, and this has to be taken into account when
reasoning about them.

In this paper, we propose techniques for reasoning about even-
tually consistent replicated stores in the following three areas.

1. Specification. We propose a comprehensive framework for
specifying the semantics of replicated stores. Its key novel com-
ponent is replicated data type specifications (§3), which provide
the first way of specifying the semantics of replicated objects
with advanced conflict resolution declaratively, like abstract data
types [25]. We achieve this by defining the result of a data type
operation not by a function of states, but of operation contexts—
sets of events affecting the result of the operation, together with
some relationships between them. We show that our specifications
are sufficiently flexible to handle data types representing a variety
of conflict-resolution strategies: last-write-wins register, counter,
multi-value register and observed-remove set.

We then specify the semantics of a whole store with multiple
objects, possibly of different types, by consistency axioms (§7),
which constrain the way the store processes incoming requests in
the style of weak shared-memory models [2] and thus define the
anomalies allowed. As an illustration, we define consistency mod-
els used in existing replicated stores, including a weak form of
eventual consistency [1, 18] and different kinds of causal consis-
tency [23, 27, 33, 34]. We find that, when specialized to last-writer-
wins registers, these specifications are very close to fragments of
the C/C++ memory model [5]. Thus, our specification framework
generalizes axiomatic shared-memory models to replicated stores
with nontrivial conflict resolution.

2. Verification. We propose a method for proving the correctness
of replicated data type implementations with respect to our speci-
fications and apply it to seven existing implementations of the four
data types mentioned above, including those with nontrivial opti-
mizations. Reasoning about the implementations is difficult due to
the highly concurrent nature of a replicated store, with multiple
replicas simultaneously updating their object copies and exchang-
ing messages. We address this challenge by proposing replication-
aware simulations (§5). Like classical simulations from data refine-
ment [21], these associate a concrete state of an implementation
with its abstract description—structures on events, in our case. To
combat the complexity of replication, they consider the state of an
object at a single replica or a message in transit separately and as-
sociate it with abstract descriptions of only those events that led to
it. Verifying an implementation then requires only reasoning about
an instance of its code running at a single replica.

Here, however, we have to deal with another challenge: code at
a single replica can access both the state of an object and a message
at the same time, e.g., when updating the former upon receiving the
latter. To reason about such code, we often need to rely on cer-
tain agreement properties correlating the abstract descriptions of
the message and the object state. Establishing these properties re-

quires global reasoning. Fortunately, we find that agreement prop-
erties needed to prove realistic implementations depend only on ba-
sic facts about their messaging behavior and can thus be established
once for broad classes of data types. Then a particular implementa-
tion within such a class can be verified by reasoning purely locally.

By carefully structuring reasoning in this way, we achieve easy
and intuitive proofs of single data type implementations. We then
lift these results to stores with multiple objects of different types by
showing how consistency axioms can be proved given properties of
the transport layer and data type implementations (§7).

3. Optimality. Replicated data type designers strive to optimize
their implementations; knowing that one is optimal can help guide
such efforts in the most promising direction. However, proving
optimality is challengingly broad as it requires quantifying over all
possible implementations satisfying the same specification.

For most data types we studied, the primary optimization target
is the size of the metadata needed to resolve conflicts or handle net-
work failures. To establish optimality of metadata size, we present
a novel method for proving lower bounds on the worst-case meta-
data overhead of replicated data types—the proportion of metadata
relative to the client-observable content. The main idea is to find a
large family of executions of an arbitrary correct implementation
such that, given the results of data type operations from a certain
fixed point in any of the executions, we can recover the previous
execution history. This implies that, across executions, the states at
this point are distinct and thus must have some minimal size.

Using our method, we prove that four of the implementations
we verified have an optimal worst-case metadata overhead among
all implementations satisfying the same specification. Two of these
(counter, last-writer-wins register) are well-known; one (optimized
observed-remove set [6]) is a recently proposed nontrivial opti-
mization; and one (optimized multi-value register) is a small im-
provement of a known implementation [33] that we discovered dur-
ing a failed attempt to prove optimality of the latter. We summarize
all the bounds we proved in Fig. 10.

We hope that the theoretical foundations we develop will help
in exploring the design space of replicated data types and replicated
eventually consistent stores in a systematic way.

2. Replicated Data Types
We now describe our formal model for replicated stores and intro-
duce replicated data type implementations, which implement op-
erations on a single object at a replica and the protocol used by
replicas to exchange updates to this object. Our formalism follows
closely the models used by replicated data type designers [33].

A replicated store is organized as a collection of named ob-
jects Obj = {x, y, z, . . .}. Each object is hosted at all replicas
r, s ∈ ReplicaID. The sets of objects and replicas may be infinite,
to model their dynamic creation. Clients interact with the store by
performing operations on objects at a specified replica. Each ob-
ject x ∈ Obj has a type τ = type(x) ∈ Type, whose type signa-
ture (Opτ ,Valτ) determines the set of supported operations Opτ
(ranged over by o) and the set of their return values Valτ (ranged
over by a, b, c, d). We assume that a special value ⊥ ∈ Valτ be-
longs to all sets Valτ and is used for operations that return no
value. For example, we can define a counter data type ctr and
an integer register type intreg with operations for reading, incre-
menting or writing an integer a: Valctr = Valintreg = Z ∪ {⊥},
Opctr = {rd, inc} and Opintreg = {rd} ∪ {wr(a) | a ∈ Z}.

We also assume sets Message of messages (ranged over by m)
and timestamps Timestamp (ranged over by t). For simplicity, we
let timestamps be positive integers: Timestamp = N1.
DEFINITION 1. A replicated data type implementation for a data
type τ is a tuple Dτ = (Σ, ~σ0,M, do, send, receive), where ~σ0 :

Figure 1. Illustrations of a concrete (a) and two abstract executions (b, c)

1: x.inc
2: send

3: receive
4: x.inc
5: send

6: receive
7: x.rd8: receive

to r3

r1 r2 r3
(a) 1: x.inc

4: x.inc

7: x.rd: 1

vis

vis

(b)

1: x.inc

4: x.inc

7: x.rd: 2

vis

vis

(c)
vis

ReplicaID→ Σ, M ⊆ Message and

do : Opτ × Σ× Timestamp→ Σ× Valτ ;
send : Σ→ Σ×M ; receive : Σ×M → Σ.

We denote a component of Dτ , such as do, by Dτ .do. A tuple Dτ
defines the class of implementations of objects with type τ , meant
to be instantiated for every such object in the store. Σ is the set of
states (ranged over by σ) used to represent the current state of the
object, including metadata, at a single replica. The initial state at
every replica is given by ~σ0.
Dτ provides three methods that the rest of the store implemen-

tation can call at a given replica; we assume that these methods
execute atomically. We visualize store executions resulting from re-
peated calls to the methods as in Fig. 1(a), by arranging the calls on
several vertical timelines corresponding to replicas at which they
occur and denoting the delivery of messages by diagonal arrows. In
§4, we formalize them as sequences of transitions called concrete
executions and define the store semantics by their sets; the intuition
given by Fig. 1(a) should suffice for the following discussion.

A client request to perform an operation o ∈ Opτ triggers the
call do(o, σ, t) (e.g., event 1 in Fig. 1(a)). This takes the current
state σ ∈ Σ of the object at the replica where the request is
issued and a timestamp t ∈ Timestamp provided by the rest of
the store implementation and produces the updated object state and
the return value of the operation. The data type implementation can
use the timestamp provided, e.g., to implement the last-writer-wins
conflict-resolution strategy mentioned in §1, but is free to ignore it.

Nondeterministically, in moments when the network is able to
accept messages, a replica calls send. Given the current state of the
object at the replica, send produces a message inM to broadcast to
all other replicas (event 2 in Fig. 1(a)); sometimes send also alters
the state of the object. Using broadcast rather than point-to-point
communication does not limit generality, since we can always tag
messages with the intended receiver. Another replica that receives
the message generated by send calls receive to merge the enclosed
update into its copy of the object state (event 3 in Fig. 1(a)).

We now reproduce three replicated data type implementations
due to Shapiro et al. [33].They fall into two categories: in op-
based implementations, each message carries a description of the
latest operations that the sender has performed, and in state-based
implementations, a description of all operations it knows about.

Op-based counter (ctr). Fig. 2(a) shows an implementation of
the ctr data type. A replica stores a pair 〈a, d〉, where a is the
current value of the counter, and d is the number of increments
performed since the last broadcast (we use angle brackets for tuples
representing states and messages). The send method returns d and
resets it; the receive method adds the content of the message to
a. This implementation is correct, as long as each message is
delivered exactly once (we show how to prove this in §5). Since inc
operations commute, they never conflict: applying them in different
orders at different replicas yields the same final state.

State-based counter (ctr). The implementation in Fig. 2(b)
summarizes the currently known history by recording the contri-

Figure 2. Three replicated data type implementations

(a) Op-based counter (ctr)
Σ = N0 × N0

M = N0

~σ0 = λr. 〈0, 0〉

do(rd, 〈a, d〉, t) = (〈a, d〉, a)
do(inc, 〈a, d〉, t) = (〈a+ 1, d+ 1〉,⊥)

send(〈a, d〉) = (〈a, 0〉, d)
receive(〈a, d〉, d′) = 〈a+ d′, d〉

(b) State-based counter (ctr)
Σ = ReplicaID× (ReplicaID→ N0)

σ0 = λr. 〈r, λs. 0〉
M = ReplicaID→ N0

do(rd, 〈r, v〉, t) = (〈r, v〉,∑{v(s) | s ∈ ReplicaID})
do(inc, 〈r, v〉, t) = (〈r, v[r 7→ v(r) + 1]〉,⊥)

send(〈r, v〉) = (〈r, v〉, v)
receive(〈r, v〉, v′) = 〈r, (λs.max{v(s), v′(s)})〉
(c) State-based last-writer-wins register (intreg)
Σ = Z× (Timestamp] {0})
~σ0 = λr. 〈0, 0〉
M = Σ
do(rd, 〈a, t〉, t′) = (〈a, t〉, a)

do(wr(a′), 〈a, t〉, t′) = if t < t′ then (〈a′, t′〉,⊥) else (〈a, t〉,⊥)
send(〈a, t〉) = (〈a, t〉, 〈a, t〉)
receive(〈a, t〉, 〈a′, t′〉) = if t < t′ then 〈a′, t′〉 else 〈a, t〉

bution of every replica to the counter value separately (reminiscent
of vector clocks [29]). A replica stores its identifier r and a vector
v such that for each replica s the entry v(s) gives the number of
increments made by clients at s that have been received by r. A
rd operation returns the sum of all entries in the vector. An inc
operation increments the entry for the current replica. We denote
by v[i 7→ j] the function that has the same value as v everywhere,
except for i, where it has the value j. The send method returns the
vector, and the receive method takes the maximum of each entry in
the vectors v and v′ given to it. This is correct because an entry for s
in either vector reflects a prefix of the sequence of increments done
at replica s. Hence, we know that min{v(s), v′(s)} increments by
s are taken into account both in v(s) and in v′(s).

State-based last-writer-wins (LWW) register (intreg). Un-
like counters, registers have update operations that are not com-
mutative. To resolve conflicts, the implementation in Fig. 2 uses
the last-writer-wins strategy, creating a total order on writes by as-
sociating a unique timestamp with each of them. A state contains
the current value, returned by rd, and the timestamp at which it was
written (initially, we have 0 instead of a timestamp). A wr(a′) com-
pares its timestamp t′ with the timestamp t of the current value a
and sets the value to the one with the highest timestamp. Note that
here we have to allow for t′ < t, since we do not make any assump-
tions about timestamps apart from uniqueness: e.g., the rest of the
store implementation can compute them using physical or Lamport
clocks [22]. We show how to state assumptions about timestamps in
§4. The send method just returns the state, and the receive method
chooses the winning value by comparing the timestamps in the cur-
rent state and the message, like wr.

State-based vs. op-based. State-based implementations con-
verge to a consistent state faster than op-based implementations be-
cause they are transitively delivering, meaning that they can prop-
agate updates indirectly. For example, when using the counter in
Fig. 2(b), in the execution in Fig. 1(a) the read at r3 (event 7) re-
turns 2, even though the message from r1 has not arrived yet, be-
cause r3 learns about r1’s update via r2. State-based implementa-
tions are also resilient against transport failures like message loss,
reordering, or duplication. Op-based implementations require the
replicated store using them to mask such failures (e.g., using mes-
sage sequence numbers, retransmission buffers, or reorder buffers).

The potential weakness of state-based implementations is the
size of states and messages, which motivates our examination of
space optimality in §6. For example, we show that the counter
in Fig. 2(b) is optimal, meaning that no counter implementation
satisfying the same requirements (transitive delivery and resilience
against message loss, reordering, and duplication) can do better.

3. Specifying Replicated Data Types and Stores
Consider the concrete execution in Fig. 1(a). What are valid return
values for the read in event 7? Intuitively, 1 or 2 can be justifiable,
but not 100. We now present a framework for specifying the ex-
pected outcome declaratively, without referring to implementation
details. For example, we give a specification of a replicated counter
that is satisfied by both implementations in Fig. 2(a, b).

In presenting the framework, we rely on the intuitive under-
standing of the way a replicated store executes given in §2. Later we
define the store semantics formally (§4), which lets us state what it
means for a store to satisfy our specifications (§4 and §7).

3.1 Abstract Executions and Specification Structure
We define our specifications on abstract executions, which in-
clude only user-visible events (corresponding to do calls) and
describe the other information about the store processing in an
implementation-independent form. Informally, we consider a con-
crete execution correct if it can be justified by an abstract execution
satisfying the specifications that is “similar” to it and, in particular,
has the same operations and return values.

Abstract executions are inspired by axiomatic definitions of
weak shared-memory models [2]. In particular, we use their pre-
viously proposed reformulation with visibility and arbitration rela-
tions [13], which are similar to the reads-from and coherence rela-
tions from weak shared-memory models. We provide a comparison
with shared-memory models in §7 and with [13] in §8.
DEFINITION 2. An abstract execution is a tuple
A = (E, repl, obj, oper, rval, ro, vis, ar), where
• E ⊆ Event is a set of events from a countable universe Event;
• each event e ∈ E describes a replica repl(e) ∈ ReplicaID

performing an operation oper(e) ∈ Optype(obj(e)) on an object
obj(e) ∈ Obj, which returns the value rval(e) ∈ Valtype(obj(e));
• ro ⊆ E × E is a replica order, which is a union of transitive,

irreflexive and total orders on events at each replica;
• vis ⊆ E × E is an acyclic visibility relation such that
∀e, f ∈ E. e vis−→ f =⇒ obj(e) = obj(f);
• ar ⊆ E × E is an arbitration relation, which is a union of

transitive, irreflexive and total orders on events on each object.
We also require that ro, vis and ar be well-founded.
In the following, we denote components ofA and similar structures
as in A.repl. We also use (e, f) ∈ r and e r−→ f interchangeably.

Informally, e vis−→ f means that f is aware of e and thus e’s
effect can influence f ’s return value. In implementation terms, this
may be the case if the update performed by e has been delivered to
the replica performing f before f is issued. The exact meaning of
“delivered”, however, depends on how much information messages
carry in the implementation. For example, as we explain in §3.2,
the return value of a read from a counter is equal to the number
of inc operations visible to it. Then, as we formalize in §4, the
abstract execution illustrated in Fig. 1(b) justifies the op-based
implementation in Fig. 2(a) reading 1 in the concrete execution in
Fig. 1(a). The abstract execution in Fig. 1(c) justifies the state-based
implementation in Fig. 2(b) reading 2 due to transitive delivery
(§2). There is no abstract execution that would justify reading 100.

x.wr(empty)

x.wr(post)

y.wr(comment)

ro

ro

y.rd: comment

x.rd: empty

roar

vis

vis
The ar relation represents the

ordering information provided by
the store, e.g., via timestamps.
On the right we show an ab-
stract execution corresponding to
a variant of the anomaly (2). The
ar edge means that any replica
that sees both writes to x should assume that post overwrites empty.

We give a store specification by two components, constraining
abstract executions:
1. Replicated data type specifications determine return values of

operations in an abstract execution in terms of its vis and ar rela-
tions, and thus define conflict-resolution policies for individual
objects in the store. The specifications are the key novel compo-
nent of our framework, and we discuss them next.

2. Consistency axioms constrain vis and ar and thereby disallow
anomalies and extend the semantics of individual objects to that
of the entire store. We defer their discussion to §7. See Fig. 13 for
their flavor; in particular, COCV prohibits the anomaly above.

Each of these components can be varied separately, and our spec-
ifications will define the semantics of any possible combination.
Given a specification of a store, we can determine whether a set
of events can be observed by its users by checking if there is an
abstract execution with this set of events satisfying the data type
specifications and consistency axioms.

3.2 Replicated Data Type Specifications
In a sequential setting, the semantics of a data type τ can be
specified by a function Sτ : Op+

τ → Valτ , which, given a non-
empty sequence of operations performed on an object, specifies the
return value of the last operation. For a register, read operations
return the value of the last preceding write, or zero if there is no
prior write. For a counter, read operations return the number of
preceding increments. Thus, for any sequence of operations ξ:

Sintreg(ξ rd) = a, if wr(0) ξ = ξ1 wr(a) ξ2 and
ξ2 does not contain wr operations;

Sctr(ξ rd) = (the number of inc operations in ξ);
Sintreg(ξ inc) = Sctr(ξ wr(a)) = ⊥.
In a replicated store, the story is more interesting. We specify

a data type τ by a function Fτ , generalizing Sτ . Just like Sτ , this
determines the return value of an operation based on prior opera-
tions performed on the object. However, Fτ takes as a parameter
not a sequence, but an operation context, which includes all we
need to know about a store execution to determine the return value
of a given operation o—the set E of all events that are visible to o,
together with the operations performed by the events and visibility
and arbitration relations on them.
DEFINITION 3. An operation context for a data type τ is a tuple
L = (o,E, oper, vis, ar), where o ∈ Opτ , E is a finite subset of
Event, oper : E → Opτ , vis ⊆ E ×E is acyclic and ar ⊆ E ×E
is transitive, irreflexive and total.

We can extract the context of an event e ∈ A.E in an abstract
execution A by selecting all events visible to it according to A.vis:

ctxt(A, e) = (A.oper(e), G, (A.oper)|G, (A.vis)|G, (A.ar)|G),

where G = (A.vis)−1(e) and ·|G is the restriction to events in G.
Thus, in the abstract execution in Fig. 1(b), the operation context of
the read from x includes only one increment event; in the execution
in Fig. 1(c) it includes two.
DEFINITION 4. A replicated data type specification for a type τ is
a function Fτ that, given an operation context L for τ , specifies a
return value Fτ (L) ∈ Valτ .

Note that Fτ (o, ∅, . . .) returns the value resulting from performing
o on the initial state for the data type (e.g., 0 for the LWW-register).

We specify multiple data types used in a replicated store by a
partial function F mapping them to data type specifications.
DEFINITION 5. An abstract execution A satisfies F, written A |=
F, if the return value of every event in A is computed on its context
by the specification for the type of the object the event accesses:

∀e ∈ A.E. (A.rval(e) = F(type(A.obj(e)))(ctxt(A, e))).

We specify a whole store by F and a set of consistency axioms (§7).
This lets us determine if its users can observe a given set of events
by checking if there is an abstract execution with these events that
satisfies F according to the above definition, as well as the axioms.

Note that Fτ is deterministic. This does not mean that so is
an outcome of an operation on a store; rather, that all the non-
determinism arising due to its distributed nature is resolved by vis
and ar in the context passed to Fτ . These relations are chosen
arbitrarily subject to consistency axioms. Due to the determinacy
property, two events that perform the same operation and see the
same set of events produce the same return values. As we show
in §7, this property ensures that our specifications can formalize
eventual consistency in the sense of (1).

We now give four examples of data type specifications, corre-
sponding to the four conflict-resolution strategies mentioned in §1
and §2: (1) operations commute, so no conflicts arise; (2) last writer
wins; (3) all conflicting values are returned; and (4) conflicts are
resolved in an application-specific way. We start by specifying the
data types whose implementations we presented in §2.

1. Counter (ctr) is defined by

Fctr(inc, E, oper, vis, ar) = ⊥;

Fctr(rd, E, oper, vis, ar) =
∣∣{e ∈ E | oper(e) = inc}

∣∣. (3)

Thus, according to Def. 5 the executions in Fig. 1(b) and 1(c) satisfy
the counter specification: both 1 and 2 are valid return values for the
read from x when there are two concurrent increments.

2. LWW-register (intreg) is defined by

Fintreg(o,E, oper, vis, ar) = Sintreg(Earo), (4)

where Ear denotes the sequence obtained by ordering the opera-
tions performed by the events inE according to ar. Thus, the return
value is determined by establishing a total order of the visible oper-
ations and applying the regular sequential semantics. For example,
by Def. 5 in the example execution from §3.1 the read from x has
to return empty; if we had a vis edge from the write of post to the
read from x, then the read would have to return post. As we show in
§7, weak shared-memory models are obtained by specializing our
framework to stores with only LWW-registers.

We can obtain a concurrent semantics Fτ of any data type τ
based on its sequential semantics Sτ similarly to (4). For example,
Fctr defined above is equivalent to what we obtain using this
generic construction. The next two examples go beyond this.

3. Multi-value register (mvr). This register [1, 18] has the same
operations as the LWW-register, but its reads return a set of values:

Fmvr(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = wr(a)

∧ ¬∃f ∈ E. oper(f) = wr() ∧ e vis−→ f}.
wr(0)

wr(2)

vis

wr(3)

wr(1)
visvis

(We write for an expression whose value
is irrelevant.) A read returns the values writ-
ten by currently conflicting writes, defined as
those that are not superseded in vis by later
writes; ar is not used. For example, a rd would
return {2, 3} in the context on the right.

Figure 3. The set of configurations Config and the transition relation
−→D: Config × Event × Config for a data type library D. We use
e : {h1 = u1, h2 = u2} to abbreviate h1(e) = u1 and h2(e) = u2. We
uncurry R ∈ RState where convenient.

Objτ = {x ∈ Obj | type(x) = τ}
RState =

⋃
X⊆Obj

∏
x∈X(ReplicaID→ D(type(x)).Σ)

TState = MessageID ⇀
⋃
τ∈Type(ReplicaID× Objτ × D(τ).M)

Config = RState× TState

D(type(x)).do(o, σ, t) = (σ′, a)

e : {act = do, obj = x, repl = r, oper = o, time = t, rval = a}
(R[(x, r) 7→ σ], T)

e−→D (R[(x, r) 7→ σ′], T)

D(type(x)).send(σ) = (σ′,m) mid /∈ dom(T)

e : {act = send, obj = x, repl = r, msg = mid}
(R[(x, r) 7→ σ], T)

e−→D (R[(x, r) 7→ σ′], T [mid 7→ (r, x,m)])

D(type(x)).receive(σ,m) = σ′ r 6= r′

e : {act = receive, obj = x, repl = r, srepl = r′, msg = mid}
(R[(x, r) 7→ σ], T [mid 7→ (r′, x,m)])

e−→D
(R[(x, r) 7→ σ′], T [mid 7→ (r′, x,m)])

4. Observed-remove set (orset). How do we specify a repli-
cated set of integers? The operations of adding and removing differ-
ent elements commute and thus do not conflict. Conflicts arise from
concurrently adding and removing the same element. For example,
we need to decide what rd will return as the contents of the set in
the context (rd, {e, f}, oper, vis, ar), where oper(e) = add(42)
and oper(f) = remove(42). If we use the generic construction
from the LWW-register, the result will depend on the arbitration
relation: ∅ if e ar−→ f , and {42} otherwise. An application may re-
quire a more consistent behavior, e.g., that an add operation always
win against concurrent remove operations. Observed-remove (OR)
set [7, 32] achieves this by mandating that remove operations can-
cel only the add operations that are visible to them:

Forset(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = add(a)

∧ ¬∃f ∈ E. oper(f) = remove(a) ∧ e vis−→ f}, (5)

In the above operation context rd will return ∅ if e vis−→ f , and {42}
otherwise. The rationale is that, in the former case, add(42) and
remove(42) are not concurrent: the user who issued the remove
knew that 42 was in the set and thus meant to remove it. In the
latter case, the two operations are concurrent and thus add wins.

As the above examples illustrate, our specifications can describe
the semantics of data types and their conflict-resolution policies
declaratively, without referring to the internals of their implemen-
tations. In this sense the specifications generalize the concept of an
abstract data type [25] to the replicated setting.

4. Store Semantics and Data Type Correctness
A data type library D is a partial mapping from types τ to data type
implementations D(τ) from Def. 1. We now define the semantics of
a replicated store with a data type library D as a set of its concrete
executions, previously introduced informally by Fig. 1(a). We then
state what it means for data type implementations of §2 to satisfy
their specifications of §3.2 by requiring their concrete executions
to be justified by abstract ones. In §7 we generalize this to the
correctness of the whole store with multiple object with respect to
both data type specifications and consistency axioms.

Semantics. We define the semantics using the relation −→D:
Config × Event × Config in Fig. 3, which describes a single

step of the store execution. The relation transforms configurations
(R, T) ∈ Config describing the store state:R gives the object state
at each replica, and T the set of messages in transit between them,
each identified by a message identifier mid ∈ MessageID. A mes-
sage is annotated by the origin replica and the object to which it
pertains. We allow the store to contain only some objects from Obj
and thus allow R to be partial on them. We use a number of func-
tions on events, such as act, obj, etc., to record the information
about the corresponding transitions, so that −→D is implicitly pa-
rameterized by them; we give their full list in Def. 6 below.

The first rule in Fig. 3 describes a replica r performing an opera-
tion o on an object x using the do method of the corresponding data
type implementation. We record the return value using the function
rval. To communicate the change to other replicas, we can at any
time perform a transition defined by the second rule, which puts a
new message m created by a call to send into the set of messages
in transit. The third rule describes the delivery of such a message to
a replica r other than the origin replica r′, which triggers a call to
receive. Note that the relation−→D does not make any assumptions
about message delivery: messages can be delivered in any order,
multiple times, or not at all. These assumptions can be introduced
separately, as we show later in this section. A concrete execution
can be thought of as a finite or infinite sequence of transitions:

(R0, T0)
e1−→ (R1, T1)

e2−→ . . .
en−→ (Rn, Tn) . . . ,

where all events ei are distinct. To ease mapping between concrete
and abstract executions in the future, we formalize it as a structure
on events, similarly to Def. 2.
DEFINITION 6. A concrete execution of a store with a data type
library D is a tuple

C = (E, eo, pre, post, act, obj, repl, oper, time, rval,msg, srepl).

Here E ⊆ Event, the execution order eo is a well-founded,
transitive, irreflexive and total order on E, relating the events
according to the order of the transitions they describe, time is
injective and pre, post : E → Config form a valid sequence of
transitions:

(∀e ∈ E. pre(e)
e−→D post(e)) ∧

(∀e, f ∈E. e eo−→ f ∧ ¬∃g. e eo−→ g
eo−→ f =⇒ post(e) = pre(f)).

We have omitted the types of functions on events, which are
easily inferred from Fig. 3: e.g., act : E → {do, send, receive}
and time : E ⇀ Timestamp, defined only on e with act(e) = do.

We denote the initial configuration of C by init(C) =
C.pre(e0), where e0 is the minimal event in C.eo. If C.E is finite,
we denote the final configuration of C by final(C) = C.post(ef),
where ef is the maximal event in C.eo. The semantics JDK of D is
the set of all its concrete executions C that start in a configuration
with an empty set of messages and all objects in initial states, i.e.,

∃X ⊆ Obj. init(C) = ((λx ∈ X.D(type(x)).~σ0), []),

where [] is the everywhere-undefined function.

Transport layer specifications. Data type implementations such
as the op-based counter in Fig. 2(a) can rely on some guarantees
concerning the delivery of messages ensured by the rest of the store
implementation. They may similarly assume certain properties of
timestamps other than uniqueness (guaranteed by the injectivity of
time in Def. 6). We take such assumptions into account by admit-
ting only a subset of executions from JDK that satisfy a transport
layer specification T , which is a predicate on concrete executions.
Thus, we consider a replicated store to be defined by a pair (D, T)
and the set of its executions be JDK ∩ T .

Even though our definition of T lets it potentially restrict data
type implementation internals, the particular instantiations we use

only restrict message delivery and timestamps. For technical rea-
sons, we assume that T always satisfies certain closure properties:
for every C ∈ T , the projection of C onto events on a given object
or a subset of events forming a prefix in the eo order is also in T .

As an example, we define a transport layer specification ensur-
ing that a message is delivered to any single replica at most once,
as required by the implementation in Fig. 2(a). Let the delivery re-
lation del(C) ∈ C.E ×C.E pair events sending and receiving the
same message:

e
del(C)−−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.act(e) = send ∧
C.act(f) = receive ∧ C.msg(e) = C.msg(f).

Then the desired condition on concrete executions C is

∀e, f, g ∈ C.E. e del(C)−−−−→ f ∧ e del(C)−−−−→ g ∧
C.repl(f) = C.repl(g) =⇒ f = g. (T-Unique)

Data type implementation correctness. We now state what it
means for an implementation Dτ of type τ from Def. 1 to satisfy a
specification Fτ from Def. 4. To this end, we consider the behavior
ofDτ under the “most general” client and transport layer, perform-
ing all possible operations and message deliveries. Formally, let
JDτ K be the set of executions C ∈ J[τ 7→ Dτ]K of a store contain-
ing a single object x of a type τ with the implementation Dτ , i.e.,
init(C) = (R, []) for some R such that dom(R) = {x}.

Then Dτ should satisfy Fτ under a transport specification T if
for every concrete execution C ∈ JDτ K ∩ T we can find a “simi-
lar” abstract execution satisfying Fτ and, in particular, having the
same operations and return values. As it happens, all components
of the abstract execution except visibility are straightforwardly de-
termined by C; as explained in §3.1, we have some freedom in
choosing visibility. We define the choice using a visibility witness
V , which maps a concrete execution C ∈ JDτ K to an acyclic re-
lation on (C.E)|do defining visibility (here ·|do is the restriction to
events e with C.act(e) = do). Let

e
ro(C)−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.repl(e) = C.repl(f);

e
ar(C)−−−→ f ⇐⇒ e, f ∈ (C.E)|do ∧

C.obj(e) = C.obj(f) ∧ C.time(e) < C.time(f).

Then the abstract execution justifying C ∈ JDτ K is defined by

abs(C,V) = (C.E|do, E.repl|do, E.obj|do, E.oper|do, E.rval|do,

ro(C)|do,V(C), ar(C)).

DEFINITION 7. A data type implementation Dτ satisfies a speci-
fication Fτ with respect to V and T , written Dτ sat[V, T] Fτ , if
∀C ∈ JDτ K ∩ T . (abs(C,V) |= [τ 7→ Fτ]), where |= is defined
in Def. 5.

As we explained informally in §3.1, the visibility witness de-
pends on how much information the implementation puts into
messages. Since state-based implementations, such as the ones in
Fig. 2(b, c), are transitively delivering (§2), for them we use the
witness V state(C) = (ro(C) ∪ del(C))+|do. By the definition of
ro(C) and del(C), (ro(C) ∪ del(C)) is acyclic, so V state is well-
defined. State-based implementations do not make any assumptions
about the transport layer: in this case we write T = T-Any. In
contrast, op-based implementations, such as the one in Fig. 2(a),
require T = T-Unique. Since such implementations are not tran-
sitively delivering, the witness V state is not appropriate for them.
We could attempt to define a witness for them by straightforwardly
lifting the delivery relation:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do ∧

∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f}.

However, we need to be more careful, since for op-based imple-

mentations e
ro(C)−−−→ e′

del(C)−−−−→ f ′
ro(C)−−−→ f does not ensure that the

update of e is taken into account by f : if there is another send event
e′′ in between e and e′, then e′′ will capture the update of e and e′

will not. Hence, we define the witness as:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do

∧ ∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f

∧ ¬∃e′′. e ro(C)−−−→ e′′
ro(C)−−−→ e′ ∧ C.act(e′′) = send}.

We next present a method for proving data type implementation
correctness in the sense of Def. 7. In §7 we lift this to stores with
multiple objects and take into account consistency axioms.

5. Proving Data Type Implementations Correct
The straightforward approach to proving correctness in the sense
of Def. 7 would require us to consider global store configurations
in executions C, including object states at all replicas and all mes-
sages in transit, making the reasoning non-modular and unintuitive.
To deal with this challenge, we focus on a single component of
a store configuration using replication-aware simulation relations
Rr andM, analogous to simulation (aka coupling) relations used
in data refinement [21]. TheRr relation associates the object state
at a replica r with an abstract execution that describes only those
events that led to this state;M does the same for a message. For
example, when provingDctr in Fig. 2(b) with respect toFctr in (3),
M associates a message carrying a vector v with executions in
which each replica s makes v(s) increments. As part of a proof
of Dτ , we require checking that the effect of its methods, such as
Dτ .do, can be simulated by appropriately transforming related ab-
stract executions while preserving the relations. We define these
transformations using abstract methods do], send] and receive] as
illustrated in Fig. 4(a, b). For example, if a replica r executesDτ .do
from a state σ related byRr to an abstract execution I (we explain
the use of I instead of A later), we need to find an I ′ related by
Rr to the resulting state σ′. We also need to check that the value
returned by Dτ .do on σ is equal to that returned by Fτ on I .

These conditions consider the behavior of an implementation
method on a single state and/or message and its effect on only
the relevant part of the abstract execution. However, by localizing
the reasoning in this way, we lose some global information that is
actually required to verify realistic implementations. In particular,
this occurs when discharging the obligation for receive in Fig. 4(b).
Taking a global view, σ and m there are meant to come from the
same configuration in a concrete execution C; correspondingly, I
and J are meant to be fragments of the same abstract execution
abs(C,V). In this context we may know certain agreement prop-
erties correlating I and J , e.g., that the union of their visibility re-
lations is itself a well-formed visibility relation and is thus acyclic.
Establishing them requires global reasoning about whole execu-
tions C and abs(C,V). Fortunately, we find that this can be done
knowing only the abstract methods, not the implementation Dτ .
Furthermore, these methods state basic facts about the messaging
behavior of implementations and are thus common to broad classes
of them, such as state-based or op-based. This allows us to estab-
lish agreement properties using global reasoning once for a given
class of implementations; at this stage we can also benefit from the
transport layer specification T and check that the abstract methods
construct visibility according to the given witness V . Then a par-
ticular implementation within the class can be verified by discharg-
ing local obligations, such as those in Fig. 4(a, b), while assuming
agreement properties. This yields easy and intuitive proofs.

To summarize, we deal with the challenge posed by a distributed
data type implementation by decomposing reasoning about it into

Figure 4. Diagrams illustrating replication-aware simulations

(a) (b) (c)

I
do] // I′OO

Rr��
σ
Dτ .do

//��
Rr
OO

σ′

(I, J)
receive] // I′OO

Rr��
(σ,m)

Dτ .receive
//

��
Rr×M
OO

σ′

D
step(C′,e,D)// D′OO

G��
C

e
//

��
G
OO

C′

global reasoning done once for a broad class of implementations
and local implementation-specific reasoning. We start by present-
ing the general form of obligations to be discharged for a single
implementation within a certain class (§5.1) and the particular form
they take for the class of state-based implementations (§5.2), to-
gether with some examples (§5.3). We then formulate the obliga-
tions to be discharged for a class of implementations (§5.4), which
in particular, establish the agreement properties assumed in the per-
implementation obligations. In [12, §B], we give the obligations for
op-based implementations, together with a proof of the counter in
Fig. 2(a). An impatient reader can move on to §6 after finishing
§5.3, and come back to §5.4 later.

Since Def. 7 considers only single-object executions, we fix
an object x of type τ and consider only concrete and abstract
executions over x, whose sets we denote by CEx[x] and AEx[x].

5.1 Replication-Aware Simulations
As is typical for simulation-based proofs, we need to use auxiliary
state to record information about the computation history. For this
reason, actually our simulation relations associate a state or a mes-
sage with an instrumented execution—a pair (A, info) ∈ IEx of
an abstract execution A ∈ AEx[x] and a function info : A.E →
AInfo, tagging events with auxiliary information from a set AInfo.
As we show below, AInfo can be chosen once for a class of data
type implementations: e.g., AInfo = Timestamp for state-based
ones (§5.2). We use I and J to range over instrumented executions
and shorten, e.g., I.A.E to I.E. For a partial function h we write
h(x)↓ for x ∈ dom(h), and adopt the convention that h(x) = y
implies h(x)↓.
DEFINITION 8. A replication-aware simulation between Dτ and
Fτ with respect to info and abstract methods do], send] and
receive] is a collection of relations {Rr,M | r ∈ ReplicaID}
satisfying the conditions in Fig. 5.

Here info and abstract methods are meant to be fixed for a given
class of implementations, such as state or op-based. To prove a par-
ticular implementation within this class, one needs to find simula-
tion relations satisfying the conditions in Fig. 5. For example, as we
show in §5.3, the following relation lets us prove the correctness of
the counter in Fig. 2(b) with respect to info and abstract methods
appropriate for state-based implementations:

〈s, v〉 [Rr] I ⇐⇒ (r = s) ∧ (v [M] I);
v [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
∀s. v(s) =

∣∣{e ∈ E | oper(e) = inc ∧ repl(e) = s}
∣∣.

(6)

INIT in Fig. 5 associates the initial state at a replica r with the
execution having an empty set of events. DO, SEND and RECEIVE
formalize the obligations illustrated in Fig. 4(a, b). Note that do] is
parameterized by an event e (required to be fresh in instantiations)
and the information about the operation performed.

The abstract methods are partial and the obligations in Fig. 5
assume that their applications are defined. When instantiating
receive] for a given class of implementations, we let it be defined
only when its arguments satisfy the agreement property for this
class, which we establish separately (§5.4). While doing this, we
can also establish some execution invariants, holding of single ex-

Figure 5. Definition of a replication-aware simulation {Rr,M} between
Dτ and Fτ . All free variables in each condition are implicitly universally
quantified and have the following types: σ, σ′ ∈ Σ, m ∈ M , I, I′, J ∈
IEx, e ∈ Event, r ∈ ReplicaID, o ∈ Opτ , a ∈ Valτ , t ∈ Timestamp.

Rr ⊆ Σ× IEx, r ∈ ReplicaID; M⊆M × IEx

do] : IEx× Event× ReplicaID× Opτ × Valτ × Timestamp ⇀ IEx

send] : IEx ⇀ IEx× IEx; receive] : IEx× IEx ⇀ IEx

INIT: Dτ .~σ0(r) [Rr] I∅, where I∅.E = ∅
DO: (do](I, e, r, o, a, t) = I′ ∧ Dτ .do(o, σ, t) = (σ′, a) ∧ σ [Rr] I)

=⇒ (σ′ [Rr] I′ ∧ a = Fτ (ctxt(I′.A, e)))

SEND: (send](I) = (I′, J) ∧ Dτ .send(σ) = (σ′,m) ∧ σ [Rr] I)
=⇒ (σ′ [Rr] I′ ∧ m [M] J)

RECEIVE: (receive](I, J)↓ ∧ σ [Rr] I ∧ m [M] J)

=⇒ (Dτ .receive(σ,m) [Rr] receive](I, J))

ecutions supplied as parameters to do] and send]. We similarly as-
sume them in Fig. 5 via the definedness of these abstract methods.

5.2 Instantiation for State-Based Implementations
Fig. 6 defines the domain AInfo and abstract methods appropriate
for state-based implementations. In §5.4 we show that the existence
of a simulation of Def. 8 with respect to these parameters implies
Dτ sat[V state,T-Any] Fτ (Theorems 9 and 10). The do] method
adds a fresh event e with the given attributes to I; its timestamp
t is recorded in info. In the resulting execution I ′, the event e is
the last one by its replica, observes all events in I and occupies the
place in arbitration consistent with t. The send] method just returns
I , which formalizes the intuition that, in state-based implementa-
tions, send returns a message capturing all the information about
the object available at the replica. The receive] method takes the
component-wise union I t J of executions I related to the current
state and J related to the message, applied recursively to the com-
ponents of I.A and J.A. We also assume that I tJ recomputes the
arbitration relation in the resulting execution from the timestamps.
This is the reason for recording them in info: we would not be able
to construct receive](I, J).ar solely from I.ar and J.ar.

The agreement property agree(I, J) guarantees that I t J is
well-formed (e.g., its visibility relation is acyclic) and that, for each
replica, I describes a computation extending J or vice versa. The
latter follows from the observation we made when explaining the
state-based counter in §2: a message or a state in a state-based im-
plementation reflects a prefix of the sequence of events performed
at a given replica. The first conjunct of the execution invariant inv
requires arbitration to be consistent with event timestamps; the sec-
ond conjunct follows from the definition of V state (§4). When dis-
charging the obligations in Fig. 5 with respect to the parameters in
Fig. 6 for a particular implementation, we can rely on the agree-
ment property and the execution invariant.

5.3 Examples
We illustrate the use of the instantiation from §5.2 on the state-
based counter, LWW-register and OR-set. In [12, §A] we also give
proofs of two multi-value register implementations.

Counter: Dctr in Fig. 2(b) and Fctr in (3). Discharging the
obligations in Fig. 5 for the simulation (6) is easy. The key case
is RECEIVE, where the first conjunct of agree in Fig. 6 ensures that
min{v(s), v′(s)} increments by a replica s are taken into account
both in v(s) and in v′(s):

(〈r, v〉 [Rr] I) ∧ (v′ [M] J) =⇒ (∀s. min{v(s), v′(s)} =

|{e ∈ I.E ∩ J.E | I.oper(e) = inc ∧ I.repl(e) = s}|).

Figure 6. Instantiation for state-based data type implementations. In do]

we omit the straightforward definition of ar′ in terms of I.info and t.

AInfo = Timestamp

agree(I, J) ⇐⇒ ∀r. (({e ∈ I.E | I.repl(e) = r}, I.ro) is a prefix of
({e ∈ J.E | J.repl(e) = r}, J.ro) or vice versa) ∧ (I t J ∈ IEx)

inv(I) ⇐⇒ (∀e, f ∈ I.E. (e, f) ∈ I.ar ⇐⇒ I.info(e) < I.info(f))

∧ ((I.vis ∪ I.ro)+ ⊆ I.vis)

do](I, e, r, o, a, t) = I′, if inv(I) ∧ e 6∈ I.E ∧ I′ ∈ IEx

where I′ = ((I.E ∪ {e}, I.repl[e 7→ r], I.obj[e 7→ x], I.oper[e 7→ o],

I.rval[e 7→ a], I.ro ∪ {(f, e) | f ∈ I.E ∧ I.repl(f) = r},
I.vis ∪ {(f, e) | f ∈ I.E}, ar′), I.info[e 7→ t])

send](I) = (I, I), if inv(I)

receive](I, J) = I t J, if inv(I) ∧ inv(J) ∧ agree(I, J)

This allows establishing receive(〈r, v〉, v′) [Rr] (I t J), thus
formalizing the informal justification of correctness we gave in §2.

LWW-register: Dintreg in Fig. 2(c) and Fintreg in (4). We asso-
ciate a state or a message 〈a, t〉 with any execution that contains
a wr(a) event with the timestamp t maximal among all other wr
events (as per info). By inv in Fig. 6, this event is maximal in ar-
bitration, which implies that rd returns the correct value; the other
obligations are also discharged easily. Formally, ∀r.Rr =M and

〈a, t〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
(t = 0 ∧ a = 0 ∧ (¬∃e ∈ E. oper(e) = wr())) ∨
(t > 0 ∧ (∃e ∈ E. oper(e) = wr(a) ∧ info(e) = t)

∧ (∀f ∈ E. oper(f) = wr() =⇒ info(f) ≤ t)).
Optimized OR-set: Dorset in Fig. 7 andForset in (5). A problem
with implementing a replicated set is that we often cannot discard
the information about an element from a replica state after it has
been removed: if another replica unaware of the removal sends
us a snapshot of its state containing this element, the semantics
of the set may require our receive to keep the element out of the
set. As we prove in §6, for the OR-set keeping track of information
about removed elements cannot be fully avoided, which makes its
space-efficient implementation very challenging. Here we consider
a recently-proposed OR-set implementation [6] that, as we show in
§6, has an optimal space complexity. It improves on the original
implementation [32], whose complexity was suboptimal (we have
proved the correctness of the latter as well; see [12, §A]).

An additional challenge posed by the OR-set is that, according
to Forset, a remove operation may behave differently with respect
to different events adding the same element to the set, depending on
whether it sees them or not. This causes the implementation to treat
internally each add operation as generating a unique instance of
the element being added, further increasing the space required. To
combat this, the implementation concisely summarizes information
about instances. An instance is represented by a unique instance
identifier that is generated when a replica performs an add and
consists of the replica identifier and the number of adds (of any
elements) performed at the replica until then. In a state 〈r, V, w〉,
the vector w determines the identifiers of all instances that the
current replica r has ever observed: for any replica s, the replica
r has seen w(s) successive identifiers (s, 1), (s, 2), . . . , (s, w(s))
generated at s. To generate a new identifier in do(add(a′)), the
replica r increments w(r). The connection between the vector
w in a state or a message and add events es,k in corresponding
executions is formalized in lines 1-3 of the simulation relation, also
shown in Fig. 7. In receive we take the pointwise maximum of the
two vectors w and w′. Like for the counter, the first conjunct of
agree implies that this preserves the clauses in lines 1-3.

Figure 7. Optimized OR-set implementation [6] and its simulation

Σ = ReplicaID× ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

~σ0 = λr. 〈r, (λa, s. 0), (λs. 0)〉
M = ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

do(add(a′), 〈r, V, w〉, t) = (〈r, (λa, s. if a = a′ ∧ s = r

then w(r) + 1 else V (a, s)), w[r 7→ w(r) + 1]〉,⊥)

do(remove(a′), 〈r, V, w〉, t) =
(〈r, (λa, s. if a = a′ then 0 else V (a, s)), w〉,⊥)

do(rd, 〈r, V, w〉, t) = (〈r, V, w〉, {a | ∃s. V (a, s) > 0})
send(〈r, V, w〉) = (〈r, V, w〉, 〈V,w〉)
receive(〈r, V, w〉, 〈V ′, w′〉) =

〈r, (λa, s. if (V (a, s) = 0 ∧ w(s) ≥ V ′(a, s)) ∨
(V ′(a, s) = 0 ∧ w′(s) ≥ V (a, s))

then 0 else max{V (a, s), V ′(a, s)}),
(λs.max{w(s), w′(s)})〉

〈s, V, w〉 [Rr] I ⇐⇒ (r = s) ∧ (〈V,w〉 [M] I)

〈V,w〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
1: ∃ distinct es,k. ({es,k | s ∈ ReplicaID ∧ 1 ≤ k ≤ w(s)} =

2: {e ∈ E | oper(e) = add()}) ∧
3: (∀s, k, j. (repl(es,k) = s) ∧ (es,j

ro−→ es,k ⇐⇒ j < k)) ∧
4: (∀a, s. (V (a, s) ≤ w(s)) ∧ (V (a, s) 6= 0 =⇒
5: (oper(es,V (a,s)) = add(a)) ∧
6: (¬∃k. V (a, s) < k ≤ w(s) ∧ oper(es,k) = add(a)) ∧
7: (¬∃f ∈ E. oper(f) = remove(a) ∧ es,V (a,s)

vis−→ f))) ∧
8: (∀a, s, k. es,k ∈ E ∧ oper(es,k) = add(a) =⇒
9: (k ≤ V (a, s) ∨ ∃f ∈ E. oper(f) = remove(a) ∧ es,k vis−→ f))

The component w in 〈r, V, w〉 records identifiers of both of
those instances that have been removed and those that are still in
the set (are active). The component V serves to distinguish the
latter. As it happens, we do not need to store all active instances
of an element a: for every replica s, it is enough to keep the last
active instance identifier generated by an add(a) at this replica. If
V (a, s) 6= 0, this identifier is (s, V (a, s)); if V (a, s) = 0, all
instances of a generated at s that the current replica knows about
are inactive. The meaning of V is formalized in the simulation:
each instance identifier given by V is covered by w (line 4) and, if
V (a, s) 6= 0, then the event es,V (a,s) performs add(a) (line 5), is
the last add(a) by replica s (line 6) and has not been observed by
a remove(a) (line 7). Finally, the add(a) events that are not seen
by a remove(a) in the execution are either the events es,V (a,s) or
those superseded by them (lines 8-9). This ensures that returning
all elements with an active instance in rd matches Forset.

When a replica r performs do(add(a′)), we update V (a′, r)
to correspond to the new instance identifier. Conversely, in
do(remove(a′)), we clear all entries in V (a′), thereby deactivat-
ing all instances of a′. However, after this their identifiers are still
recorded in w, and so we know that they have been previously re-
moved. This allows us to address the problem with implementing
receive we mentioned above: if we receive a message with an active
instance (s, V ′(a, s)) of an element a that is not in the set at our
replica (V (a, s) = 0), but previously existed (w(s) ≥ V ′(a, s)),
this means that the instance has been removed and should not be
active in the resulting state (the entry for (a, s) should be 0). We
also do the same check with the state and the message swapped.

As the above explanation shows, our simulation relations are
useful not only for proving correctness of data type implementa-
tions, but also for explaining their designs. Discharging obligations
in Fig. 5 requires some work for the OR-set; due to space con-
straints, we defer this to [12, §A].

Figure 8. Function step that mirrors the effect of an event e ∈ C′.E from
C′ ∈ CEx[x] in D ∈ DEx, defined when so is the abstract method used

step(C′, e,D) =
D[r 7→ do](D(r), e, r, C′.oper(e), C′.rval(e), C′.time(e))],

if C′.act(e) = do ∧ C′.repl(e) = r

step(C′, e,D) = D[r 7→ I, C′.msg(e) 7→ J],
if C′.act(e) = send ∧ C′.repl(e) = r ∧ C′.msg(e) 6∈ dom(D) ∧

send](D(r)) = (I, J)

step(C′, e,D) = D[r 7→ receive](D(r), D(C′.msg(e)))],
if C′.act(e) = receive ∧ C′.repl(e) = r

5.4 Soundness and Establishing Agreement Properties
We present conditions on AInfo and abstract methods ensuring the
soundness of replication-aware simulations over them and, in par-
ticular, establishing the agreement property and execution invari-
ants assumed via the definedness of abstract operations in Fig. 5.
THEOREM 9 (Soundness). Assume AInfo, do], send], receive], V
and T that satisfy the conditions in Fig. 9 for some G. If there exists
a replication-aware simulation betweenDτ and Fτ with respect to
these parameters, then Dτ sat[V, T] Fτ .
Conditions in Fig. 9 require global reasoning, but can be discharged
once for a class of data types. For example, they hold of the
instantiation for state-based implementations from §5.2, as well as
one for op-based implementations presented in [12, §B].
THEOREM 10. There exists G such that, for allDτ , the parameters
in Fig. 6 satisfy the conditions in Fig. 9 with respect to this G,
V = V state, T = T-Any.

The proofs of Theorems 9 and 10 are given in [12, §B]. To
explain the conditions in Fig. 9, here we consider the proof strategy
for Theorem 9. To establish Dτ sat[V, T] Fτ , for any C ∈
JDτ K∩T we need to show abs(C,V) |= [τ 7→ Fτ]. We prove this
by induction on the length of C. To use the localized conditions in
Fig. 5, we require a relation G associating C with a decomposed
execution—a partial function D : (ReplicaID ∪ MessageID) ⇀
IEx that gives fragments of abs(C,V) corresponding to replica
states and messages in the final configuration of C. We write DEx
for the set of all decomposed executions, so that G ⊆ CEx[x] ×
DEx. The existence of a decomposed execution D such that C [G]
D forms the core of our induction hypothesis. G-CTXT in Fig. 9
checks that the abstract methods construct visibility according to V:
it requires the context of any event e by a replica r to be the same
in D(r) and abs(C,V). Together with DO in Fig. 5, this ensures
abs(C,V) |= [τ 7→ Fτ].

We write C′ ∼ (C
e−→ (R, T)) when C′ is an extension of

C in the following sense: C′.E = C.E] {e}, the other compo-
nents of C are those of C′ restricted to C.E, e is last in C′.eo and
C′.post(e) = (R, T). For the induction step, assume C [G] D and
C′ ∼ (C

e−→ (R, T)); see Fig. 4(c). Then the decomposed execu-
tion D′ corresponding to C′ is given by step(C′, e,D), where the
function step in Fig. 8 mirrors the effect of the event e from C′ in
D using the abstract methods. G-STEP ensures that it preserves the
relation G. Crucially, G-STEP also requires us to establish the de-
finedness of step and thus the corresponding abstract method. This
justifies the agreement property and execution invariants encoded
by the definedness and allows us to use the conditions in Fig. 5 to
complete the induction. We also require G-INIT, which establishes
the base case, and G-VIS, which formulates a technical restriction
on V . Finally, the conditions in Fig. 9 allow us to use the transport
specification T by considering only executions C satisfying it.

6. Space Bounds and Implementation Optimality
Object states in replicated data type implementations include
not only the current client-observable content, but also metadata

Figure 9. Proof obligations for abstract methods. Free variables are implic-
itly universally quantified and have the following types: C,C′ ∈ CEx[x]∩
T , D ∈ DEx, r ∈ ReplicaID, e ∈ Event, (R, T) ∈ Config.

G-CTXT: (C [G] D ∧ e ∈ abs(C,V).E ∧ abs(C,V).repl(e) = r)

=⇒ ctxt(D(r).A, e) = ctxt(abs(C,V), e)

G-STEP: (C′ ∼ (C
e−→ (R, T)) ∧ (C [G] D))

=⇒ (step(C′, e,D)↓ ∧ C′ [G] step(C′, e,D))

G-INIT: (C.E = {e} ∧ C.pre(e) = (, []))

=⇒ (step(C, e,D∅)↓ ∧ C [G] step(C, e,D∅)),
where D∅ is such that dom(D∅) = ReplicaID ∧

∀r ∈ ReplicaID. D∅(r).E = ∅
G-VIS: (e ∈ abs(C,V).E ∧ (C is a prefix of C′ under C′.eo))

=⇒ ctxt(abs(C,V), e) = ctxt(abs(C′,V), e)

needed for conflict resolution or masking network failures. Space
taken by this metadata is a major factor determining their efficiency
and feasibility. As illustrated by the OR-set in §5.3, this is espe-
cially so for state-based implementations, i.e., those that satisfy
their data type specifications with respect to the visibility witness
V state and the transport layer specification T-Any. We now present
a general technique for proving lower bounds on this space over-
head, which we use to prove optimality of four state-based imple-
mentations (we leave other implementation classes for future work;
see §9). As in §5, we only consider executions over a fixed object
x of type τ .

6.1 Metadata Overhead
To measure space, we need to consider how data are represented.
An encoding of a set S is an injective function enc : S → Λ+,
where Λ is some suitably chosen fixed finite set of characters (left
unspecified). Sometimes, we clarify the domain being encoded
using a subscript: e.g., encN0(1). For s ∈ S, we let lenS(s) be
the length of encS(s). The length can vary: e.g., for an integer k,
lenN0(k) ∈ Θ(lg k). We use standard encodings (listed in [12, §C])
for return values encValτ of the data types τ we consider and assume
an arbitrary but fixed encoding of object states encDτ .Σ.

To distinguish metadata from the client-observable content of
the object, we assume that each data type has a special rd operation
that returns the latter, as is the case in the examples considered so
far. For a concrete executionC ∈ JDτ K over the object x and a read
event e ∈ (C.E)|rd, we define state(e) to be the state of the object
accessed at e: state(e) = R(x,C.repl(e)) for (R,) = C.pre(e).

We now define the metadata overhead as a ratio, by dividing the
size of the object state by the size of the observable state. We then
quantify the worst-case overhead by taking the maximum of this
ratio over all read operations in all executions with given numbers
of replicas n and update operations m. To define the latter, we
assume that each data type τ specifies a set Updτ ⊂ Opτ of update
operations; for all examples in this paper Updτ = Opτ \ {rd}.
DEFINITION 11. The maximum metadata overhead of an execu-
tion C ∈ JDτ K of an implementation Dτ is

mmo(Dτ , C) = max

{
lenDτ .Σ(state(e))

lenValτ (C.rval(e))
| e ∈ (C.E)|rd

}
.

The worst-case metadata overhead of an implementation Dτ
over all executions with n replicas and m updates (2 ≤ n ≤ m) is

wcmo(Dτ , n,m) = max{mmo(Dτ , C) | C ∈ JDτ K ∧
n = |{C.repl(e) | e ∈ C.E}| ∧
m = |{e ∈ C.E | C.oper(e) ∈ Updτ}|}.

We consider only executions with m ≥ n, since we are inter-
ested in the asymptotic overhead of executions where all replicas
are mutated (i.e., perform at least one update operation).

Figure 10. Summary of bounds on metadata overhead for stated-based
implementations, as functions of the number of replicas n and updates m

Type
Existing implementation Any implementation

algorithm ref. overhead overhead

ctr Fig. 2(b) [32] Θ̂(n) Ω̂(n)

orset
Fig. 7 [6] Θ̂(n lgm)

Ω̂(n lgm)
Fig. 15, [12, §A] [32] Θ̂(m lgm)

intreg Fig. 2(c) [32] Θ̂(lgm)† Ω̂(lgm)

mvr
Fig. 17, [12, §A] new‡ Θ̂(n lgm)

Ω̂(n lgm)
Fig. 16, [12, §A] [32] Θ̂(n2 lgm)

† Assuming timestamp encoding is O(lgm), satisfied by Lamport clocks.
‡ An optimization of [32] discovered during the optimality proof.

DEFINITION 12. Assume Dτ and a positive function f(n,m).
• f is an asymptotic upper bound (Dτ ∈ Ô(f(n,m))) if

supn,m→∞(wcmo(Dτ , n,m)/f(n,m)) <∞, i.e.,

∃K > 0. ∀m ≥ n ≥ 2.wcmo(Dτ , n,m) < Kf(n,m);

• f is an asymptotic lower bound (Dτ ∈ Ω̂(f(n,m))) if
limn,m→∞(wcmo(Dτ , n,m)/f(n,m)) 6= 0, i.e.,

∃K > 0. ∀m0 ≥ n0 ≥ 2. ∃n ≥ n0,m ≥ n0.

wcmo(Dτ , n,m) > Kf(n,m);

• f is an asymptotically tight bound (Dτ ∈ Θ̂(f(n,m))) if it is
both an upper and a lower asymptotic bound.
Fig. 10 summarizes our results; as described in §5, we have

proved all the implementations correct. Matching lower and upper
bounds indicate worst-case optimality of an implementation (note
that this is different from optimality in all cases). The derivation of
upper bounds relies on standard techniques and is deferred to [12,
§C]. We now proceed to the main challenge: how to derive lower
bounds that apply to any implementation of τ . We present proofs
for ctr and orset; intreg and mvr are covered in [12, §C].

6.2 Experiment Families
The goal is to show that for any correct implementation Dτ (i.e.,
such that Dτ sat[V state,T-Any] Fτ), the object state must store
some minimum amount of information. We achieve this by con-
structing an experiment family, which is a collection of executions
Cα, where α ∈ Q for some index set Q. Each experiment contains
a distinguished read event eα. The experiments are designed in
such a way that the object states state(eα) must be distinct, which
then implies a lower bound lg|Λ| |Q| on the size of their encoding.
To prove that they are distinct, we construct black-box tests that
execute the methods of Dτ on the states and show that the tests
must produce different results for each state(eα) provided Dτ is
correct. Formally, the tests induce a read-back function rb that sat-
isfies rb(state(eα)) = α. We encapsulate the core argument in the
following lemma.
DEFINITION 13. An experiment family for an implementation Dτ
is a tuple (Q,n,m,C, e, rb) where Q is a finite set, 2 ≤ n ≤ m,
and for each α ∈ Q, Cα ∈ JDτ K is an execution with n replicas
andm updates, eα ∈ (Cα.E)|rd and rb : Dτ .Σ→ Q is a function
satisfying rb(state(eα)) = α.
LEMMA 14. If (Q,n,m,C, e, rb) is an experiment family, then

wcmo(Dτ , n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα))).

PROOF. Since rb(state(eα)) = α, the states state(eα) are pair-
wise distinct and so are their encodings enc(state(eα)). Since there
are fewer than |Q| strings of length strictly less than blg|Λ| |Q|c, for

some α ∈ Q we have len(enc(state(eα))) ≥ blg|Λ| |Q|c. Then

wcmo(Dτ , n,m) ≥ mmo(Dτ ,Cα) ≥
len(state(eα))

len(Cα.rval(eα))
≥

blg|Λ| |Q|c
maxα′∈Q len(Cα′ .rval(eα′))

. ut

To apply this lemma to the best effect, we need to find experi-
ment families with |Q| as large as possible and len(Cα′ .rval(eα′))
as small as possible. Finding such families is challenging, as there
is no systematic way to derive them. We relied on intuitions about
“which situations force replicas to store a lot of information” when
searching for experiment families.

Driver programs. We define experiment families using driver
programs (e.g., see Fig. 11). These are written in imperative pseu-
docode and use traditional constructs like loops and conditionals.
As they execute, they construct concrete executions of the data type
library [τ 7→ Dτ] by means of the following instructions, each of
which triggers a uniquely-determined transition from Fig. 3:
dor o

t do operation o on x at replica r with timestamp t
u← dor o

t same, but assign the return value to u
sendr(mid) send a message for x with identifier mid at r
receiver(mid) receive the message mid at replica r

Programs explicitly supply timestamps for do and message
identifiers for send and receive. We require that they do this cor-
rectly, e.g., respect uniqueness of timestamps. When a driver pro-
gram terminates, it may produce a return value. For a program
P , an implementation Dτ , and a configuration (R, T), we let
exec(Dτ , (R, T), P) be the concrete execution of the data type li-
brary [τ 7→ Dτ] starting in (R, T) that results from running P ; we
define result(Dτ , (R, T), P) as the return value of P in this run.

6.3 Lower Bound for State-Based Counter (ctr)

THEOREM 15. IfDctr sat[V state,T-Any] Fctr, thenDctr is Ω̂(n).
We start by formulating a suitable experiment family.

LEMMA 16. If Dctr sat[V state,T-Any] Fctr, n ≥ 2 and m ≥ n is
a multiple of (n − 1), then tuple (Q,n,m,C, e, rb) as defined in
the left column of Fig. 11 is an experiment family.

The idea of the experiments is to force replica 1 to remember
one number for each of the other replicas in the system, which then
introduces an overhead proportional to n; cf. the implementation
in Fig. 2(b). We show one experiment in Fig. 12. All experiments
start with a common initialization phase, defined by init , where
each of the replicas 2..n performsm/(n−1) increments and sends
a message after each increment. All messages remain undelivered
until the second phase, defined by exp(α). There replica 1 receives
exactly one message from each replica r = 2..n, selected using
α(r). An experiment concludes with the read eα on the first replica.

The read-back works by performing separate tests for each of
the replicas r = 2..n, defined by test(r). For example, to deter-
mine which message was sent by replica 2 during the experiment
in Fig. 12, the program test(2): reads the counter value at replica 1,
getting 12; delivers the final message by replica 2 to it; and reads
the counter value at replica 1 again, getting 14. By observing the
difference, the program can determine the message sent during the
experiment: α(2) = 5− (14− 12) = 3.

PROOF OF LEMMA 16. The only nontrivial obligation is to prove
rb(state(eα)) = α. Let (Rα, Tα) = final(Cα). Then

α(r)
(i)
= result(Dctr, (R0, T0), (init ; exp(α); test(r)))

= result(Dctr, (Rα, Tα), test(r))
(ii)
= result(Dctr, (Rinit [(x, 1) 7→ Rα(x, 1)], Tinit), test(r))

= rb(Rα(x, 1))(r) = rb(state(eα))(r),

Figure 11. Experiment families (Q,n,m,C, e, rb) used in the proofs of
Theorem 15 (ctr) and Theorem 17 (orset)

ctr orset

Conditions on n,m (number of replicas/updates)
m ≥ n ≥ 2 m ≥ n ≥ 2

m mod (n− 1) = 0 (m− 1) mod (n− 1) = 0

Index set Q
Q = ([2..n]→ [1.. m

n−1
]) Q = ([2..n]→ [1..m−1

n−1
])

Family size |Q|
|Q| = (m

n−1
)n−1 |Q| = (m−1

n−1
)n−1

Driver programs
procedure init

for all r ∈ [2..n]
for all i ∈ [1.. m

n−1
]

dor inc rm+i

sendr(midr,i)

procedure init
for all r ∈ [2..n]

for all i ∈ [1..m−1
n−1

]

dor add(0) rm+i

sendr(midr,i)
procedure exp(α)

for all r ∈ [2..n]
receive1(midr,α(r))

do1 rd (n+2)m // read eα

procedure exp(α)
for all r ∈ [2..n]

receive1(midr,α(r))

do1 remove(0) (n+2)m

do1 rd (n+3)m // read eα
procedure test(r)

u← do1 rd (n+3)m

receive1(midr, m
n−1

)

u′ ← do1 rd (n+4)m

return m
n−1

− (u′ − u)

procedure test(r)

for all i ∈ [1..(m−1
n−1

)]

receive1(midr,i)

u← do1 rd (n+4)m+i

if 0 ∈ u
return i− 1

return m−1
n−1

Definition of executions Cα
Cα = exec(Dτ , (R0, T0), init ; exp(α))

where (R0, T0) = ([x 7→ Dτ .~σ0], ∅)
Definition of read-back function rb : Dτ .Σ→ Q

rb(σ) = λr : [2..n].result(Dτ , (Rinit [(x, 1) 7→ σ], Tinit), test(r))

where (Rinit , Tinit) = post(exec(Dτ , (R0, T0), init))

Figure 12. Example experiment (n = 4 and m = 15) and test
for ctr. Gray dashed lines represent the configuration (Rinit [(x, 1) 7→
Rα(x, 1)], Tinit) where the test driver program is applied.

inc
mid2,3: send

e: 12 rd

receive

1 2 3 4

inc
mid2,4: sendinc
mid2,5: send

receive
receive

u 12 rd
receive

u’14 rd

inc
mid2,2: send

inc
mid2,1: send

inc
mid3,3: sendinc
mid3,4: sendinc

inc
mid3,2: send

inc
mid3,1: send

inc
mid4,3: sendinc
mid4,4: sendinc
mid4,5: send

inc
mid4,2: send

inc
mid4,1: send

mid3,5: send

in
it

ex
p

(
)

te
st

(2
)

(2

)=
3

(3

)=
4

(4

)=
5

where:
(i) This is due to Dctr sat[V state,T-Any] Fctr, as we explained

informally above. Let

C′α = exec(Dctr, (R0, T0), (init ; exp(α); test(r))).

Then the operation context in abs(C′α,V state) of the first read
in test(r) contains

∑n
r=2 α(r) increments, while that of the

second read contains (m/(n− 1))− α(r) more increments.
(ii) We have Tα = Tinit because exp(α) does not send any mes-

sages. Also, Rα and Rinit [(x, 1) 7→ Rα(x, 1)] can differ only

in the states of the replicas 2..n. These cannot influence the run
of test(r), since it performs events on replica 1 only. ut

PROOF OF THEOREM 15. Given n0,m0, we pick n = n0

and some m ≥ n0 such that m is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given by
Lemma 16. Then for any α, Cα.rval(eα) is at most the total num-
ber of increments m in Cα. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K3,K independent from n0,m0 we get:

wcmo(Dctr, n,m)≥blg|Λ| |Q|c/(maxα∈Q len(Cα.rval(eα)))≥

K1

lg|Λ|(
m
n−1

)n−1

lenN0(m)
≥ K2

n lg(m/n)

lgm
≥ K3

n lg
√
m

lgm
≥ Kn. ut

6.4 Lower Bound for State-Based OR-Set (orset)
THEOREM 17. If Dorset sat[V state,T-Any] Forset, then Dorset is
Ω̂(n lgm).
LEMMA 18. If Dorset sat[V state,T-Any] Forset, n ≥ 2 and m ≥
n is such that (m − 1) is a multiple of (n − 1), then the tuple
(Q,n,m,C, e, rb) on the right in Fig. 11 is an experiment family.
The proof is the same as that of Lemma 16, except for obligation
(i). We therefore give only informal explanations.

The main idea of the experiments defined in the lemma is to
force replica 1 to remember element instances even after they have
been removed at that replica; cf. our explanation of the challenges
of implementing the OR-set from §5.3. The experiments follow a
similar pattern to those for ctr, but use different operations. In the
common init phase, each replica 2..n performs m−1

n−1
operations

adding a designated element 0, which are interleaved with sending
messages. In the experiment phase exp(α), one message from each
replica r = 2..n, selected by α(r), is delivered to replica 1. At the
end of execution, replica 1 removes 0 from the set and performs the
read eα. The return value of this read is always the empty set.

To perform the read-back of α(r) for r = 2..n, test(r) delivers
all messages by replica r to replica 1 in the order they were sent
and, after each such delivery, checks if replica 1 now reports the
element 0 as part of the set. From Dorset sat[V state,T-Any] Forset

and the definition (5) of Forset, we get that exactly the first α(r)
such deliveries will have no effect on the contents of the set:
the respective add operations have already been observed by the
remove operation that replica 1 performed in the experiment phase.
Thus, if 0 appears in the set right after delivering the i-th message
of replica r, then α(r) = i−1, and if 0 does not appear by the time
the loop is finished, then α(r) = (m− 1)/(n− 1).

PROOF OF THEOREM 17. Given n0,m0, we pick n = n0 and
some m ≥ n0 such that (m − 1) is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given
by Lemma 18. For any α ∈ Q, Cα.rval(eα) = ∅, which can be
encoded with a constant length. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K we get:

wcmo(Dorset, n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))

≥ K1n lg(m/n) ≥ K2n lg
√
m ≥ Kn lgm. ut

7. Store Correctness and Consistency Axioms
Recall that we define a replicated store by a data type library
D and a transport layer specification T (§4), and we specify its
behavior by a function F from types τ ∈ dom(D) to data type
specifications and a set of consistency axioms (§3). The axioms
are just constraints over abstract executions, such as those shown
in Fig. 13; from now on we denote their sets by X. So far we
have concentrated on single data type specifications F(τ) and their
correspondence to implementations D(τ), as stated by Def. 7. In
this section we consider consistency axioms and formulate the

notion of correctness of the whole store (D, T) with respect to its
specification (F,X).

Our first goal is to lift the statement of correctness given by
Def. 7 to a store (D, T) with multiple objects of different data
types. To this end, we assume a function V mapping each type
τ ∈ dom(D) to its visibility witness V. This allows us to construct
the visibility relation for a concrete execution C ∈ JDK ∩ T by
applying V(τ) to its projection onto the events on every object of
type τ :

witness(V) = λC.
⋃{V(type(x))(C|x) | x ∈ Obj},

where ·|x projects to events over x. Then the correctness of every
separate data type τ in the store with respect to F(τ) according to
Def. 7 automatically ensures that the behavior of the whole store is
consistent with F in the sense of Def. 5.
PROPOSITION 19. (∀τ ∈ dom(D). D(τ) sat[V(τ), T] F(τ)) =⇒

(∀C ∈ JDK ∩ T . abs(C,witness(V)) |= F).
This motivates the following definition of store correctness. Let us
write A |= X when the abstract execution A satisfies the axioms X.
DEFINITION 20. A store (D, T) is correct with respect to a speci-
fication (F,X), if for some V:

(i) ∀τ ∈ dom(D). (D(τ) sat[V(τ), T] F(τ)); and
(ii) ∀C ∈ JDK ∩ T . (abs(C,witness(V)) |= X).
We showed how to discharge (i) in §5. The validity of axioms

X required by (ii) most often depends on the transport layer spec-
ification T : e.g., to disallow the anomaly (2) from §1, T needs to
provide guarantees on how messages pertaining to different objects
are delivered. However, data type implementations can also enforce
axioms by putting enough information into messages: e.g., imple-
mentations correct with respect to V state from §4 ensure that vis
is transitive regardless of the behavior of the transport layer. For-
tunately, to establish (ii) in practice, we do not need to consider
the internals of data type implementations in D—just knowing the
visibility witnesses used in the statements of their correctness is
enough, as formulated in the following definition.
DEFINITION 21. A set W of visibility witnesses and a transport
layer specification T validate axioms X, if

∀C,V. (C ∈ T) ∧ ({V(τ) | τ ∈ dom(V)} ⊆W) =⇒
(abs(C,witness(V)) |= X).

Since visibility witnesses are common to wide classes of data types
(e.g., state- or op-based), our proofs of the validity of axioms will
not have to be redone if we add new data type implementations to
the store from a class already considered.

We next present axioms formalizing several variants of eventual
consistency used in replicated stores (Fig. 13 and 14) and W and
T that validate them. We then use this as a basis for discussing
connections with weak shared-memory models. Due to space con-
straints, we defer technical details and proofs to [12, §D].

Basic eventual consistency. EVENTUAL and THINAIR define a
weak form of eventual consistency. EVENTUAL ensures that an
event cannot be invisible to infinitely many other events on the
same object and thus implies (1) from §1: informally, if updates
stop, then reads at all replicas will eventually see all updates and
will return the same values (§3.2). However, EVENTUAL is stronger
than quiescent consistency: the latter does not provide any guaran-
tees at all for executions with infinitely many updates to the store,
whereas our specification implies that the return values are com-
puted according to F(τ) using increasingly up-to-date view of the
store state. We formalize these relationships in [12, §D].

THINAIR prohibits values from appearing “out-of-thin-
air” [28], like 42 in Fig. 14(a) (recall that registers are initialized
to 0). Cycles in ro ∪ vis that lead to out-of-thin-airs usually arise

Figure 13. A selection of consistency axioms over an execution
(E, repl, obj, oper, rval, ro, vis, ar)

Auxiliary relations
sameobj(e, f) ⇐⇒ obj(e) = obj(f)
Per-object causality (aka happens-before) order:

hbo = ((ro ∩ sameobj) ∪ vis)+

Causality (aka happens-before) order: hb = (ro ∪ vis)+

Axioms
EVENTUAL:
∀e ∈ E.¬(∃ infinitely many f ∈ E. sameobj(e, f) ∧ ¬(e

vis−→ f))

THINAIR: ro ∪ vis is acyclic
POCV (Per-Object Causal Visibility): hbo ⊆ vis

POCA (Per-Object Causal Arbitration): hbo ⊆ ar

COCV (Cross-Object Causal Visibility): (hb ∩ sameobj) ⊆ vis

COCA (Cross-Object Causal Arbitration): hb ∪ ar is acyclic

Figure 14. Anomalies allowed or disallowed by different axioms

(a) Disallowed by THINAIR:
x, y : intreg

i = x.rd j = y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)

ro rovis vis

(b) Disallowed by POCV:
x : orset

x.add(1) i = x.rd j = x.rd
x.add(2) x.add(3)

x.add(1)

x.add(2)

ro

x.rd: {2}

x.add(3)

x.rd: {3}
vis

vis ro

(c) Allowed by COCV and COCA:

x, y : intreg

x.wr(1) y.wr(1)

i = y.rd j = x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0

ro ro

from effects of speculative computations, which are done by some
older replicated stores [36].

THINAIR is validated by {V state,Vop} and T-Any, and EVEN-
TUAL by {V state,Vop} and the following condition on C ensuring
that every message is eventually delivered to all other replicas and
every operation is followed by a message generation:

(∀e ∈ C.E. ∀r, r′. C.act(e) = send ∧ C.repl(e) = r ∧ r 6= r′

=⇒ ∃f. C.repl(f) = r′ ∧ e del(C)−−−−→ f) ∧
(∀e∈C.E.C.act(e) = do =⇒ ∃f. act(f) = send ∧ e roo(C)−−−−→ f),

where roo(C) is ro(C) projected to events on the same object.

Causality guarantees. Many replicated stores achieve availabil-
ity and partition tolerance while providing stronger guarantees,
which we formalize by the other axioms in Fig. 13. We call an ex-
ecution per-object, respectively, cross-object causally consistent,
if it is eventually consistent (as per above) and satisfies the ax-
ioms POCV and POCA, respectively, COCV and COCA. POCV
guarantees that an operation sees all operations connected to it by
a causal chain of events on the same object; COCV also consid-
ers causal chains via different objects. Thus, POCV disallows the
execution in Fig. 14(b), and COCV the one in §3.1, correspond-
ing to (2) from §1. POCA and COCA similarly require arbitration
to be consistent with causality. The axioms highlight the principle
of formalizing stronger consistency models: including more edges
into vis and ar, so that clients have more up-to-date information.

Cross-object causal consistency is implemented by, e.g.,
COPS [27] and Gemini [23]. It is weaker than strong consistency,
as it allows reading stale data. For example, it allows the execution
in Fig. 14(c), where both reads fetch the initial value of the register,
despite writes to it by the other replica. It is easy to check that this

outcome cannot be produced by any interleaving of the events at
the two replicas, and is thus not strongly consistent.

An interesting feature of per-object causal consistency is that
state-based data types ensure most of it just by the definition of
V state: POCV is validated by {V state} and T-Any. If the witness
set is {V state,Vop}, then we need T to guarantee the following: in-
formally, if a send event e and another event f are connected by
a causal chain of events on the same object, then the message cre-
ated by e is delivered to C.repl(f) by the time f is done. POCA
is validated by {V state,Vop} and the transport layer specification
(roo(C) ∪ del(C))+|do ⊆ ar(C). This states that timestamps of
events on every object behave like a Lamport clock [22]. Condi-
tions for COCV and COCA are similar.

There also exist consistency levels in between basic eventual
consistency and per-object causal consistency, defined using so-
called session guarantees [35]. We cover them in [12, §D].

Comparison with shared-memory consistency models. Inter-
estingly, the specializations of the consistency levels defined by the
axioms in Fig. 13 to the type intreg of LWW-registers are very
close to those adopted by the memory model in the 2011 C and
C++ standards [5]. Thus, POCA and POCV define the semantics
of the fragment of C/C++ restricted to so-called relaxed operations;
there this semantics is defined using coherence axioms, which are
analogous to session guarantees [35]. COCV and COCA are close
to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-

shot timestamp objects [20] and counting protocols [15, 30]. These
works have considered either programming models or metrics sig-
nificantly different from ours. An exception is the work of Charron-
Bost [14], who proved that the size of vector clocks [29] is optimal
to represent the happens-before relation of a computation (similar
to the visibility relation in our model). Specifications of mvr and
orset rely on visibility; however, Charron-Bost’s result does not
directly translate into a lower bound on their implementation com-
plexity, since a specification may not require complete knowledge
about the relation and an implementation may represent it in an
arbitrary manner, not necessarily using a vector.

9. Conclusion and Future Work
We have presented a comprehensive theoretical toolkit to advance
the study of replicated eventually consistent stores, by proposing
methods for (1) specifying the semantics of replicated data types
and stores abstractly, (2) verifying implementations of replicated
data types, and (3) proving that such implementations have optimal
metadata overhead. By proving both correctness and optimality of
four nontrivial data type implementations, we have demonstrated
that our methods can indeed be productively applied to the kinds of
patterns used by practitioners and researchers in this area.

Although our work marks a big step forward, it is only a be-
ginning, and creates plenty of opportunities for future research.
We have already made the first steps in extending our specification
framework with more features, such as mixtures of consistency lev-
els [23] and transactions [34, 37]; see [11]. In the future we would
also like to study more data types, such as lists used for collab-
orative editing [32], and to investigate metadata bounds for data
type implementations other than state-based ones, including more
detailed overhead metrics capturing optimizations invisible to the
worst-case overhead analysis. Even though our execution model
for replicated stores follows the one used by replicated data type
designers [33], there are opportunities for bringing it closer to ac-
tual implementations. Thus, we would like to verify the algorithms
used by store implementations [27, 34, 37] that our semantics ab-
stracts from. This includes fail-over and session migration proto-
cols, which permit clients to interact with multiple physical repli-
cas, while being provided the illusion of a single virtual replica.

Finally, by bringing together prior work on shared-memory
models and data replication, we wish to promote an exchange of
ideas and results between the research communities of program-
ming languages and verification on one side and distributed sys-
tems on the other.

Acknowledgements. We thank Hagit Attiya, Anindya Banerjee,
Carlos Baquero, Lindsey Kuper and Marc Shapiro for comments
that helped improve the paper. Gotsman was supported by the EU
FET project ADVENT, and Yang by EPSRC.

References
[1] Riak key-value store. http://basho.com/products/riak-overview/.
[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12), 1996.
[3] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software

verification for weak memory via program transformation. In ESOP,
2013.

[4] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[6] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. An optimized conflict-free replicated set.
Technical Report 8083, INRIA, 2012.

[7] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. Brief announcement: Semantics of eventu-
ally consistent replicated sets. In DISC, 2012.

[8] A.-M. Bosneag and M. Brockmeyer. A formal model for eventual
consistency semantics. In IASTED PDCS, 2002.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
PLDI, 2007.

[10] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types
for eventual consistency. In ECOOP, 2012.

[11] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual con-
sistency. Technical Report MSR-TR-2013-39, Microsoft Research,
2013.

[12] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: specification, verification, optimality (extended version),
2013. http://research.microsoft.com/apps/pubs/?id=201602.

[13] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[14] B. Charron-Bost. Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39(1), 1991.

[15] J.-Y. Chen and G. Pandurangan. Optimal gossip-based aggregate
computation. In SPAA, 2010.

[16] N. Conway, R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. In SOCC, 2012.

[17] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman.
Eventually-serializable data services. In PODC, 1996.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2), 2002.

[20] M. Helmi, L. Higham, E. Pacheco, and P. Woelfel. The space complex-
ity of long-lived and one-shot timestamp implementations. In PODC,
2011.

[21] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf.,
1, 1972.

[22] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

[23] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke.
Making geo-replicated systems fast if possible, consistent when nec-
essary. In OSDI, 2012.

[24] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL, 2012.

[25] B. Liskov and S. Zilles. Programming with abstract data types. In
ACM Symposium on Very High Level Languages, 1974.

[26] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav. Dy-
namic synthesis for relaxed memory models. In PLDI, 2012.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In SOSP, 2011.

[28] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, 2005.

[29] F. Mattern. Virtual time and global states of distributed systems.
Parallel and Distributed Algorithms, 1989.

[30] S. Moran, G. Taubenfeld, and I. Yadin. Concurrent counting. In
PODC, 1992.

[31] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract
data types: Building blocks for collaborative applications. J. Parallel
Distrib. Comput., 71(3), 2011.

[32] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506, INRIA, 2011.

[33] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In SSS, 2011.

[34] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, 2011.

[35] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session guarantees for weakly consistent replicated data.
In PDIS, 1994.

[36] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In SOSP, 1995.

[37] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça. SwiftCloud: Fault-tolerant geo-
replication integrated all the way to the client machine. Technical
Report 8347, INRIA, 2013.

