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1 Summary

In Work Package 6 we work towards the automation of the program verification activity. Building
on the logics developed in Work Packages 2-5, we develop algorithms and tool support with the
goal of improving the economic viability of sound formal verification of complex real-world
systems software.

We have already obtained significant results in this area, both with respect to tool support for
verification of deep correctness properties, and with respect to fully automatic program analyses.

• We have implemented the aspect-oriented approach for proving linearisability of concurrent
queues developed in WP5 inside the Cave thread-modular concurrent program verifier,
and used it to verify automatically the linearisability of the Herlihy and Wing queue.

• Bringing decomposition ideas (see also WP2) into program analysis, we built a composi-
tional analysis that is as precise as a top-down analysis. We developed a compositional
version of the connection pointer analysis by Ghiya and Hendren and applied it to real-
world Java programs. As expected, the compositional analysis scales much better than
the original top-down version. The loss of precision ranges only between 2-5%.

• We have developed an approach for extending a separation logic-based verifier to support
modular specification and verification of the interactive behavior of C programs. Our
approach is compositional in two senses: it supports building higher-level interaction APIs
on top of lower-level ones; and it supports programs that use multiple independently-
developed interaction APIs.

• We have developed a preliminary encoding of the abstract reachability-based approach for
modular verification of TSO relaxed memory programs developed in WP3 into the anno-
tation language of VeriFast, and used it to verify three important concurrency patterns.

• We have extended VeriFast with support for rely-guarantee reasoning, in the form of shared
boxes. We have used them to verify a number of fine-grained concurrent algorithms.

• We have developed an interprocedural shape analysis for effectively cutpoint-free programs.
We also present a variation of our technique which allows procedure invocations to have up
to a bounded number of live references to cutpoint objects. Our work shows that most of
the benchmarks used for evaluating shape analysis algorithms are comprised of effectively
cutpoint-free programs.

• In preparation for extending VeriFast with annotation inference capabilities, we have devel-
oped a detailed formalization and soundness proof of an approach for local shape analysis
based on separation logic from the literature.

2 Extension of Cave

Automatic Verification of Concurrent Queues [5] (attached to D5.1) As part of
WP6 we have implemented the aspect-oriented approach for proving linearisability of concurrent
queues developed in WP5 inside Cave, and used it to verify automatically the linearisability of
the Herlihy and Wing queue.

Cave is a thread-modular concurrent program verifier. Its input is a program consisting of
some initialisation code and a number of concurrent methods, which are all executed in parallel
an unbounded number of times each. When successful, it produces a proof in RGSep that the
program has no memory errors and none of its assertions are violated at runtime.

The main modifications we had to perform to the tool were: (1) to add code that instruments
dequeue methods with a prophecy argument guessing its return value; (2) to improve Cave’s
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abstraction function so that it can remember properties of the form v /∈ X, as these are needed
to verify the basic aspect-oriented properties of queues; and (3) to add some glue code that
constructs the verification conditions corresponding to the aspect-oriented linearisability proof
technique and runs the underlying prover to verify them.

As Cave does not support arrays (it only supports linked lists), we gave the tool a linked-
list version of the Herlihy and Wing queue, for which it successfully verified that there are no
linearisability violations.

3 Program Analyses

Modular Lattices for Compositional Interprocedural Analysis [3] (attached) Inter-
procedural analyses are compositional when they compute over-approximations of procedures in
a bottom-up fashion. These analyses are usually more scalable than top-down analyses which
compute a different procedure summary for every calling context. However, compositional anal-
yses are rare in practice, because it is difficult to develop such analyses with enough precision.
In this paper, we establish a connection between a restricted class of compositional analyses and
so called modular lattices, which require certain associativity between the lattice join and meet
operations. Our connection provides sufficient conditions for building a compositional analysis
that is as precise as a top-down analysis.

We developed a compositional version of the connection pointer analysis by Ghiya and Hen-
dren which is slightly more conservative than the original top-down analysis in order to meet our
modularity requirement. We implemented and applied our compositional connection analysis
to real-world Java programs. As expected, the compositional analysis scales much better than
the original top-down version. The top-down analysis times out in the largest two of our five
programs, and the loss of precision due to the modularity requirement in the remaining programs
ranges only between 2-5%.

Our work is a case study in a new way for designing and developing interprocedural analyses
that can handle real code: It demonstrates that it is possible to design analyses that are as
precise as top-down analyses and as scalable as bottom-up ones. In parallel, it also shows the
challenges in developing such analyses and, in particular, to the importance of designing the
right join operator.

Interprocedural Shape Analysis for Effectively Cutpoint-Free Programs [11] (at-
tached) We present a framework for local interprocedural shape analysis that computes pro-
cedure summaries as transformers of procedure-local heaps (the parts of the heap that the
procedure may reach). A main challenge in procedure-local shape analysis is the handling of
cutpoints, objects that separate the input heap of an invoked procedure from the rest of the
heap, which—from the view-point of that invocation—is non-accessible and immutable. In this
paper, we limit our attention to effectively cutpoint-free programs—programs in which the only
objects that separate the callee’s heap from the rest of the heap, when considering live reference
fields, are the ones pointed to by the actual parameters of the invocation. This limitation (and
certain variations of it, which we also describe) simplifies the local-reasoning about procedure
calls because the analysis needs not track cutpoints. Furthermore, our analysis (conservatively)
verifies that a program is effectively cutpoint-free.

Our work extends the state-of-the-art in interprocedural shape analysis using the three-
valued-logic framework (TVLA) of Sagiv et al. We also present a variation of our technique
which allows procedure invocations to have up to a bounded number of live references to cut-
point objects. This extension provides a new perspective on the relation between TVLA-based
analyses and ones based on separation logic, where, intuitively, such references are treated as
additional parameters to the procedure. Most importantly, our work shows that most of the
benchmarks used for evaluating shape analysis algorithms are comprised of effectively cutpoint-
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free programs. Thus opening a new research direction: verifying heap-manipulating programs
with an unbounded number of live references to cutpoint objects.

4 Extensions of VeriFast

VeriFast [9, 8, 7] is a prototype sound modular program verification tool being developed at
KUL. It accepts as input a C or Java program annotated with preconditions, postconditions,
loop invariants and other assertions expressed in a variant of separation logic, and it verifies
each function/method against its contract through symbolic execution, using a separation logic
representation of memory, very much like Smallfoot [1]. In contrast to Smallfoot, VeriFast is
optimized for verification of deep functional properties instead of automation.

The following results of this work package have been developed in the context of Ver-
iFast. The I/O, TSO, and shared boxes extensions have been incorporated into the lat-
est VeriFast distribution, and example annotated programs are included in the directory
examples/{io,tso,shared_boxes}.

Interactive Behavior [13] (attached) We have developed an approach for modularly spec-
ifying and verifying the interactive behavior of C programs, through a form of spatio-temporal
reasoning: the specification is given in the form of a spatial assertion over a resource algebra
describing a Petri net which expresses the temporal constraints on the program’s behavior. The
approach abstracts over the precise alphabet of the program’s interaction, thus supporting com-
positionality both in the form of modules defining composite I/O actions on top of other modules
and in the form of programs performing I/O actions implemented by multiple independent mod-
ules.

The approach is best understood by example. Here is a specification in the annotation
language of VeriFast of a C program that prints “Hi”:

void putchar(char c);
//@ requires time(?t0) &*& putchar(t0, c, ?t1);
//@ ensures time(t1);

void main()
//@ requires time(?t0) &*& putchar(t0, ’H’, ?t1) &*& putchar(t1, ’i’, ?t2);
//@ ensures time(t2);

{
putchar(’H’);
putchar(’i’);

}

The precondition of main describes a Petri net with three places t0, t1, and t2, and two
transitions, corresponding to printing “H” and “i”. It also describes a marking: there is a single
token at place t0. The postcondition describes a marking where the token is at place t2, and
furthermore, the two transitions have been consumed. The only way for the program to arrive
at the state described in the postcondition is by printing “H” and “i”.

A more complex example, which illustrates the compositionality of the approach, is the
following:

/*@
predicate cat(time t0, list<char> cs, time t1) =

getchar(t0, ?c, ?t2) &*&
c < 0 ?

cs == nil &*& t1 == t2
:

putchar(t2, c, ?t3) &*& cat(t3, ?cs1, t1) &*&
cs == cons(c, cs1);
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@*/
void cat()

//@ requires time(?t0) &*& cat(t0, ?cs, ?t1);
//@ ensures time(t1);

{
for (;;)

//@ invariant time(?t2) &*& cat(t2, _, t1);
{

int r = getchar();
if (r < 0) break;
putchar(r);

}
}

The function cat reads characters from standard input until it reaches end-of-file, and writes
them to standard output as it reads them. Notice the two forms of compositionality: firstly, the
contract of cat is of the same form as that of putchar above; it is not possible to tell whether
a function is a primitive I/O operation. Secondly, the functions putchar and getchar could be
defined by independently developed libraries; there is no need to define the alphabet of I/O
actions in a single place.

The technical report [13] formalizes the programming language and the proof system, defines
the soundness property, and shows a detailed proof outline for an example program.

Relaxed Memory Consistency: TSO [6] (attached to D3.1) We have developed a
preliminary encoding of the abstract reachability-based approach for modular verification of
TSO relaxed memory programs developed in WP3 into the annotation language of VeriFast,
and used it to verify three interesting patterns: a C TSO lock implementation, a C program
that uses TSO operations to achieve zero-overhead unrestricted safe field access as would be
required in a Java virtual machine, and a C program using TSO operations to implement a
zero-overhead producer-consumer pattern.

In the development of our encoding, we needed to take special care to make sure that
the abstract updates associated with TSO updates and the abstract lower bounds associated
with TSO reads do not depend on ghost variables. Indeed, the naive approach of specifying
the abstract updates and abstract lower bounds as ghost arguments of the TSO operations is
unsound, since VeriFast allows ghost arguments to depend on ghost variables.

In our current encoding, we work around this issue by requiring the list of all abstract updates
and abstract lower bounds to be used by operations on a given TSO space to be specified when
the TSO space is created. The specific abstract update or lower bound for a particular operation
is then selected by passing an index into this list as a non-ghost argument to the TSO operation
(which appears in the program as a C function call). Furthermore, to allow the abstract updates
and lower bounds to depend on the (non-ghost) state of the thread, we allow a variable number
of additional non-ghost arguments to be passed to the TSO operations. These are passed on as
extra arguments to the abstract updates and lower bounds.

This encoding is sound but it has the downside that it requires modifications to the C
program: extra arguments to the TSO operations, and extra variables to track the thread state.

A better approach which we envision for future work is to extend VeriFast with support for
additional ghost-levels of code and variables, beyond the level of reality (the lowest ghost-level)
and the single existing ghost-level. Information flow from higher to lower ghost-levels would be
disallowed. For the TSO encoding, we would use three ghost-levels: the real level, the semi-
ghost level, and the full ghost level. Full ghost variables can be modified as part of TSO updates;
abstract updates and lower bounds are specified as semi-ghost arguments.
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Rely-Guarantee Reasoning [14] (attached) In plain separation logic, a thread either has
full ownership of a memory location and knows the value at the location, or it has no ownership
and no knowledge of the value of the location. Existing work proposes a marriage of rely-
guarantee reasoning [10] and separation logic to address this. We describe the shared boxes
mechanism, which marries separation logic and rely-guarantee reasoning in VeriFast.

To allow multiple threads to access a set of memory locations concurrently, while at the same
time allowing each thread to retain partial knowledge of the values of the memory locations,
the proof author can create a shared box. Upon creation, the shared box takes ownership of the
memory locations described by its box invariant. Threads may mutate the memory held by a
shared box only if the mutation complies with one of the action specifications declared in the box
class. An action specification consists of a precondition and a postcondition over the variables
bound by the box invariant. Furthermore, threads may retain partial knowledge about a shared
box in the form of an instance of a handle predicate declared in the box class, and verified to be
stable with respect to the box class’ actions.

Shared boxes are not the only means available in VeriFast to retain partial knowledge about
shared data. The other means is through ghost variables and fractional permissions [2]. In
principle, any program can be verified using ghost variables and fractional permissions. However,
expressing arbitrary history constraints in this way can be very cumbersome; shared boxes offer
a more direct, more convenient mechanism.

We introduce and motivate the shared boxes mechanism using a minimalistic example and a
realistic example. The minimalistic example is a counter program where one thread continuously
increments a counter and other threads check that the counter does not decrease. For the realistic
example, we verify functional correctness of the Michael-Scott queue [12], a lock-free concurrent
data structure. We define the syntax and semantics of a simple C-like programming language,
and we define a separation logic with shared boxes and prove its soundness. We discuss the
implementation in VeriFast and the examples we verified using our VeriFast implementation.

Invariant Inference: Detailed Proof [15] (attached) Currently, VeriFast provides only
limited automation: in general, predicate definitions must be folded and unfolded explicitly; any
inductive properties must be applied explicitly through lemma calls; and loop invariants must
be provided by the user.

In [4], the authors propose a local shape analysis based on separation logic: given a pre-
condition for a function that manipulates linked lists, the algorithm proposed by the authors
attempts to infer loop invariants and postconditions fully automatically.

To alleviate the annotation burden when using VeriFast, we are working to integrate the
algorithm from [4] into VeriFast. However, the description, soundness argument, and termination
argument of the algorithm in [4] are somewhat lacking in clarity and detail, especially to readers
new to the field. Therefore, as a first step, we have elaborated a detailed formalisation and
soundness proof of the algorithm.

In particular, we formalized the syntax of programs, the concrete semantics, the symbolic
execution, and the abstract execution, and we proved that symbolic execution soundly approxi-
mates concrete execution, and that abstract execution soundly approximates symbolic execution.
Furthermore, we offer a detailed proof of the fact that the abstraction function maps any sym-
bolic state into one of a finite number of canonical symbolic states, thus proving termination of
the analysis.
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Modular Lattices for Compositional Interprocedural Analysis

Ghila Castelnuovo Mayur Naik Noam Rinetzky Mooly Sagiv Hongseok Yang
Tel-Aviv University Georgia Institute of Technology Tel-Aviv University University of Oxford

Abstract
Interprocedural analyses are compositional when they compute
over-approximations of procedures in a bottom-up fashion. These
analyses are usually more scalable than top-down analyses which
compute a different procedure summary for every calling context.
However, compositional analyses are rare in practice, because it is
difficult to develop such analyses with enough precision. In this
paper, we establish a connection between a restricted class of com-
positional analyses and so called modular lattices, which require
certain associativity between the lattice join and meet operations.
Our connection provides sufficient conditions for building a com-
positional analysis that is as precise as a top-down analysis.

We developed a compositional version of the connection pointer
analysis by Ghiya and Hendren which is slightly more conservative
than the original top-down analysis in order to meet our modular-
ity requirement. We implemented and applied our compositional
connection analysis to real-world Java programs. As expected, the
compositional analysis scales much better than the original top-
down version. The top-down analysis times out in the largest two of
our five programs, and the loss of precision due to the modularity
requirement in the remaining programs ranges only between 2-5%.

1. Introduction
Scaling program analysis to large programs is an ongoing challenge
for program verification. Typical programs include many relatively
small procedures. Therefore, a promising direction for scalability
is analyzing each procedure in isolation, using pre-computed sum-
maries for called procedures and computing a summary for the ana-
lyzed procedure. Such analyses are called bottom-up interprocedu-
ral analysis or compositional analysis. Notice that the analysis of
the procedure itself need not be compositional and can be costly. In-
deed, bottom-up interprocedural analyses have been found to scale
well [3, 5, 8, 14, 21].

The theory of bottom-up interprocedural analysis has been stud-
ied in [7]. In practice, designing and implementing a bottom-up
interprocedural analysis is challenging for several reasons: it re-
quires accounting for all potential calling contexts of a procedure
in a sound and precise way; the summary of the procedures can be
quite large leading to infeasible analyzers; and it may be costly to
instantiate procedure summaries. An example of the challenges un-
derlying bottom-up interprocedural analysis is the unsound original
formulation of the compositional pointer analysis algorithm in [21].
A corrected version of the algorithm was subsequently proposed
in [19] and recently proven sound in [15] using abstract interpre-
tation. In contrast, top-down interprocedural analysis [6, 17, 20] is
much better understood and has been integrated into existing tools
such as SLAM [1], Soot [2], WALA [9], and Chord [16].

This paper contributes to a better understanding of bottom-up
interprocedural analysis. Specifically, we attempt to characterize
the cases under which bottom-up and top-down interprocedural
analyses yield the same results. To guarantee scalability, we limit
the discussion to cases in which bottom-up and top-down analyses

use the same underlying abstract domains.
We use connection analysis [11], which was developed in the

context of parallelizing sequential code, as a motivating example
of our approach. Connection analysis is a kind of pointer analysis
that aims to prove that two references can never point to the same
weakly-connected heap component, and thus ignores the direction
of pointers. Despite its conceptual simplicity, connection analysis is
flow- and context-sensitive, and the effect of program statements is
non-distributive. In fact, the top-down interprocedural connection
analysis is exponential, and indeed our experiments indicate that
this analysis scales poorly.

Main Contributions. The main results of this paper can be sum-
marized as follows:
• We formulate a sufficient condition on the effect of commands

on abstract states that guarantees bottom-up and top-down inter-
procedural analyses will yield the same results. The condition is
based on lattice theory. Roughly speaking, the idea is that the
abstract semantics of primitive commands and procedure calls
and returns can only be expressed using meet and join opera-
tions with constant elements, and that elements used in the meet
must be modular in a lattice theoretical sense [13].

• We formulate a variant of the connection analysis in a way
that satisfies the above requirements. The main idea is to over-
approximate the treatment of variables that point to null in all
program states that occur at a program point.

• We implemented two versions of the top-down interprocedural
connection analysis for Java programs in order to measure the
extra loss of precision of our over-approximation. We also im-
plemented the bottom-up interprocedural analysis for Java pro-
grams. We report empirical results for five benchmarks of sizes
15K–310K bytecodes. The original top-down analysis times out
in over six hours on the largest two benchmarks. For the remain-
ing three benchmarks, only 2-5% of precision was lost by our
bottom-up analysis due to the modularity requirement compared
to the original top-down version.
This work is based on the master thesis of [4] which contains

additional experiments, elaborations, and proofs.

2. Informal Explanation
This section presents the use of modular lattices for compositional
interprocedural program analyses in an informal manner.

2.1 A Motivating Example
Fig. 1 shows a schematic artificial program illustrating the poten-
tial complexity of interprocedural analysis. The main procedure in-
vokes procedure p0, which invokes p1 with an actual parameter a0
or b0. For every 1 ≤ i ≤ n, procedure pi either assigns ai with
formal parameter ci-1 and invokes procedure pi+1 with an actual
parameter ai or assigns bi with formal parameter ci-1 and invokes
procedure pi+1 with an actual parameter bi. Procedure pn either as-
signs an or bn with formal parameter cn-1. Fig. 2 depicts the two
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// a0,...,an,b0,...,bn,g1, and g2 are static variables

static main() {
g1 = new h1; g2 = new h2; a0 = new h3; b0 = new h4;
a0.f = g1; b0.f = g2;
p0();

}

p0() {if(*) p1(a0) else p1(b0)}

p1(c0) {
if(*) {a1 = c0; p2(a1)} else {b1 = c0; p2(b1)} }

p2(c1) {
if(*) {a2 = c1; p3(a2)} else {b2 = c1; p3(b2)} }

...
pn-1(cn-2) {

if(*) {an-1 = cn-2; pn(an-1)}
else {bn-1 = cn-2; pn(bn-1)}

}

pn(cn-1) if(*) {an = cn-1 else bn = cn-1}

Figure 1. Example program.

dconn = {{g1, a0, c0}, {g2, b0}, {a1}, {b1}, . . . , {an}, {bn}}
d′point = {〈a0, h3〉, 〈b0, h4〉, 〈c0, h3〉, 〈h3, f, h1〉, 〈h4, f, h2〉, 〈g1, h1〉, 〈g2, h2〉}

dconn = {{g1, a0}, {g2, b0, c0}, {a1}, {b1}, . . . , {an}, {bn}}
d′point = {〈a0, h3〉, 〈b0, h4〉, 〈c0, h4〉, 〈h3, f, h1〉, 〈h4, f, h2〉, 〈g1, h1〉, 〈g2, h2〉}

Figure 2. Concrete states at the entry of procedure p1 (see Fig. 1)
and the corresponding connection and points-to abstractions.

concrete states that can occur when the procedure p1 is invoked.
There are two different concrete states corresponding to the then-
and the else-branch in p0.

2.2 Connection Analysis and Points-to Analysis
Connection Analysis. We say that two heap objects are con-
nected in a state when we can reach from one object to the other by
following fields forward or backward. Two variables are connected
when they point to connected heap objects.

The goal of the connection analysis is to soundly estimate con-
nection relationships between variables. The abstract states d of
the analysis are families {Xi}i∈I of disjoint sets of variables. Two
variables x, y are in the same set Xi, which we call a connection
set, when x and y may be connected. Fig. 2 depicts two abstract
states at the entry of procedure p1. There are two calling contexts
for the procedure. In the first one, a0 and c0 point to the same heap
object, whose f field goes to the object pointed to by g1. In addi-
tion to these two objects, there are two further ones, pointed to by
b0 and g2 respectively, where the f field of the object pointed to

d1 = {{g1, a0, a1, a2, . . . , an-1, cn-1}, {g2, b0},
{an}, {b1}, . . . , {bn-1}, {bn}}

d2 = {{g1, a0, a1, a2, . . . , bn-1, cn-1}, {g2, b0},
{an-1}, {an}, {b1}, . . . , {bn}}

...
d(2n−1) = {{g1, a0, b1, b2, . . . , bn-1, cn-1}, {g2, b0},

{a1}, . . . , {an-1}, {an}, {bn}}
d(2n−1+1) = {{g1, a0}, {g2, b0, a1, a2, . . . , an-1, cn-1},

{an}, {b1}, . . . , {bn-1}, {bn}}
...

d2n = {{g1, a0}, {g2, b0, b1, b2, . . . , bn-1, cn-1},
{a1}, . . . , {an-1}, {an}, {bn}}

Figure 3. Connection abstraction at the entry of procedure pn of
the program in Fig. 1.

by b0 points to the object pointed to by g2. As a result, there are
two connection sets {a0, g1, c0} and {b0, g2}. The second calling
context is similar to the first, except that c0 is aliased with b0 in-
stead of a0. The connection sets are changed accordingly, and they
are {a0, g1} and {b0, g2, c0}. In both cases, the other variables are
pointing to null, and thus are not connected to any variable.
Points-to Analysis. The purpose of the points-to analysis is to
compute points-to relations between variables and objects (which
are represented by allocation sites). The analysis expresses points-
to relations as a set of tuples of the form 〈x, h〉 or 〈h1, f, h2〉. The
pair 〈x, h〉 means that variable x may point to an object allocated
at the site h, and the tuple 〈h1, f, h2〉 means that the f field of an
object allocated at h1 may point to an object allocated at h2. Fig. 2
depicts the abstract states at the entry to procedure p1. Also in this
case, there are two calling abstract contexts for p1. In one of them,
c0 may point to h3, and in the other, c0 may point to h4.

2.3 Top-Down Interprocedural Analysis
A standard approach for the top-down interprocedural analysis is to
analyze each procedure once for each different calling context. This
approach often has scalability problems. One of the reasons is the
large number of different calling contexts that arise. In the program
shown in Fig. 1, for instance, for each procedure pi there are two
calls to procedure pi+1, where for each one of them, the connection
and the points-to analyses compute two different calling contexts
for procedure pi+1. Therefore, in both the analyses, the number of
calling contexts at the entry of procedure pi is 2i.

Fig. 3 shows the connection-abstraction at the entry of proce-
dure pn. Each abstract state in the abstraction corresponds to one
path to pn. For example, the first state corresponds to selecting the
then-branch in all p0,...,pn-1, while the second state corresponds to
selecting the then-branch in all p0,...,pn-2 , and the else-branch in
pn-1. Finally, the last state corresponds to selecting the else-branch
in all p0,...,pn-1.

2.4 Bottom-Up Compositional Interprocedural Analysis
Bottom-up compositional analyses avoid the explosion of calling
context by computing for each procedure a summary which is in-
dependent of the input, and instantiating as a function of particular
calling contexts. Unfortunately, it is hard to analyze a procedure
independently of its calling contexts and at the same time compute
a summary that is sound and precise enough. One of the reasons is
that the abstract transfer functions may depend on the input abstract
state, which is often unavailable for the compositional analysis. For
example, in the program in Fig. 1, the abstract transformer for the
assignment ai = ci-1 in the points-to analysis is

[[ai = ci-1]]
](d) = (d\{〈ai, z〉|z ∈ Var})∪{〈ai, w〉|〈ci-1, w〉 ∈ d} .
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Note that the rightmost set depends on the input abstract state d.

2.5 Modular Lattices for Compositional Interprocedural
Analysis

This paper formulates a sufficient condition for performing com-
positional interprocedural analysis using lattices theory. Our condi-
tion requires that the abstract domain be a lattice with a so-called
modularity property, and that the effects of primitive commands
(such as assignments) on abstract elements be expressed by apply-
ing the u and t operations to the input states. If this condition
is met, we can construct a bottom-up compositional analysis that
summarizes each procedure independently of particular inputs.

DEFINITION 1. Let D be a lattice. A pair of elements 〈d0, d1〉 is
called modular, denoted by d0Md1, iff

d v d1 implies that (d t d0) u d1 = d t (d0 u d1)

An element d1 is called right-modular if d0Md1 holds for all
d0 ∈ D. D is called modular if d0Md1 holds for all d0, d1 ∈ D.

Intuitively, a lattice is modular when it satisfies a restricted form
of associativity between its t and u operations [13]. (Note, for ex-
ample, that every distributive lattice is modular, but not all modular
lattices are distributive.) In our application to the interprocedural
analysis, the left-hand side of the equality in Def. 1 represents the
top-down computation and the right-hand side corresponds to the
bottom-up computation. Therefore, modularity ensures that the re-
sults coincide.

Our approach requires that transfer functions of primitive com-
mands be defined by the combination of − u d0 and − t d1 for
some constant abstract elements d0 and d1, independent of the in-
put abstract state where d0 elements are right-modular. Our encod-
ing of points-to analysis described in Sec. 2.2 does not meet this
requirement on transfer functions, because it does not use t with
a constant element to define the meaning of the statement x = y.
In contrast, in connection analysis the transfer function of the state-
ment x = y is defined by

[[x = y]]] = λd. (d u Sx) t Uxy
where Sx, Uxy are fixed abstract elements and do not depend on
the input abstract state d. In Sec. 4, we formally prove that the
connection analysis satisfies both the modularity requirement and
the requirement on the transfer functions.

We complete this informal description by illustrating how the
two requirements lead to the coincidence between top-down and
bottom-up analyses. Consider again the assignment [[ai = ci-1]]

],
in the body of some procedure pi. Let {dk}k denote abstract states
at the entry of pi, and suppose there is some d such that

∀k : ∃d′k v Sai : dk = d t d′k.
The compositional approach first chooses the input state d, and
computes [[ai = ci-1]]

](d). This result is then adapted to any dk
by being joined with d′k, whenever this procedure is invoked with
the abstract state dk. This adaptation of the bottom-up approach
gives the same result as the top-down approach, which applies
[[ai = ci-1]]

] on dk directly, as shown below:

[[ai = ci-1]]
](d) t d′k = ((d u Sai) t Uaici-1) t d′k

= ((d u Sai) t d′k) t Uaici-1

= ((d t d′k) u Sai) t Uaici-1

= (dk u Sai) t Uaici-1

= [[ai = ci-1]]
](dk).

The second equality uses the associativity and commutativity of the
t operator, and the third holds due to the modularity requirement.

3. Programming Language
Let PComm, G, L, and PName be sets of primitive commands,
global variables, local variables, and procedure names, respec-
tively. We use the following symbols to range over these sets:

a, b ∈ PComm, g ∈ G, x, y, z ∈ G ∪ L, p ∈ PName.

We formalize our results for a simple imperative programming
language with procedures:

Commands C ::= skip | a | C;C | C + C | C∗ | p()
Declarations D ::= proc p() = {var ~x;C}

Programs P ::= var ~g;C | D;P

A program P in our language is a sequence of procedure declara-
tions, followed by a sequence of declarations of global variables
and a main command. Commands contain primitive commands
a ∈ PComm, left unspecified, sequential composition C;C′, non-
deterministic choice C+C′, iteration C∗, and procedure calls p().
We use + and ∗ instead of conditionals and while loops for theoreti-
cal simplicity: given appropriate primitive commands, conditionals
and loops can be easily defined.

Declarations D give the definitions of procedures. A procedure
is comprised of a sequence of local variables declarations ~x and a
command, which we refer to as the procedure’s body. Procedures
do not take any parameters or return any values explicitly; values
can instead be passed to and from procedures using global vari-
ables. To simplify presentation, we do not consider mutually recur-
sive procedures in our language; direct recursion is allowed. We
denote by Cbodyp and Lp the body of procedure p and the set of its
local variables, respectively.

We assume that L and G are fixed arbitrary finite sets. Also, we
consider only well-defined programs where all the called proce-
dures are defined.

Standard Semantics. The standard semantics propagates every
caller’s context to the callee’s entry point and computes the effect
of the procedure on each one of them. Formally,

[[p()]]](d) = [[return]]](([[Cbodyp]]
] ◦ [[entry]]])(d), d)

where Cbodyp is the body of the procedure p, and

[[entry]]] : D → D and [[return]]] : D ×D → D
are the functions which represent, respectively, entering and return-
ing from a procedure.

Relational Collecting Semantics. The semantics of our program-
ming language tracks pairs of memory states 〈σ, σ′〉 coming from
some unspecified set Σ of memory states. σ is the entry memory
state to the procedure of the executing command (or if we are exe-
cuting the main command, the memory state at the start of the pro-
gram execution), and σ′ is the current memory state. We assume
that we are given the meaning [[a]] : Σ → 2Σ of every primitive
command, and lift it to sets of pairs ρ ⊆ R = 2Σ×Σ of memory
states by applying it in a pointwise manner to the current states:

[[c]](ρ) = {〈σ, σ′〉 | 〈σ, σ〉 ∈ ρ ∧ σ′ ∈ [[c]](σ)} .
The meaning of composed commands is standard:

[[C1 + C2]](ρ) = [[C1]](ρ) ∪ [[C2]](ρ)
[[C1;C2]](ρ) = [[C2]]([[C1]](ρ))

[[C∗]](ρ) = leastFixλρ′. ρ ∪ [[C]](ρ′).

The effect of procedure invocations is computed using the auxiliary
functions entry, return, combine, and ·|G, which we explain below.

[[p()]](ρc) = [[return]]([[Cbodyp]] ◦ [[entry]](ρc), ρc), where
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[[entry]] : R→ R
[[entry]](ρc) = {〈σe, σe〉 | σe = σc|G ∧ 〈σc, σc〉 ∈ ρc}

[[return]] : R×R → R
[[return]](ρx, ρc) = {combine(σc, σc, σx|G) | 〈σc, σc〉 ∈ ρc

∧ 〈σx, σx〉 ∈ ρx ∧ σc|G = σe|G}
[[combine]] : Σ× Σ× Σ→R (assumed to be given)

( · |G) : Σ→ Σ (assumed to be given)
Function entry computes the relation ρe at the entry to the invoked
procedure. It removes the information regarding the caller’s local
variables from the current states σc coming from the caller’s rela-
tion at the call-site ρc using function ( · |G), which is assumed to
be given. Note that in the computed relation, the entry state and the
calling state of the callee are identical.

Function return computes relation ρr , which updates the caller’s
current state with the effect of the callee. The function computes
triples 〈σc, σc, σx|G〉 out of relations 〈σc, σc〉 and 〈σx, σx〉 com-
ing from the caller at the calls site and to the callee at the return site.
return considers only relations where the global part of the caller’s
current state matches that of the callee’s entry state. Note that at the
triple, the middle state, σc, contains the values of the caller’s local
variables, which the callee cannot modify, and the last state, σx|G,
contains the updated state of the global parts of the memory state.
Procedure combine combines these two kinds of information and
generates the updated relation at the return site.

EXAMPLE 2. For memory states 〈sg, sl, h〉 ∈ Σ comprised of
environments sg and sl, giving values to global and local variables,
respectively, and a heap h, ( · |G) and combine are defined as

〈sg, sl, h〉|G = 〈sg,⊥, h〉,
[[combine]](〈sg, sl, h〉,〈sg, sl, h〉,〈s′g,⊥, h′〉)=(〈sg, sl, h〉,〈s′g, sl, h′〉).

4. Intraprocedural Analysis using Modularity
In this section we show how the modularity properties of lattice
elements can help in the analysis of programs without procedures.
(Programs with procedures are handled in Sec. 5.) The main idea is
to require that only meet and join operators are used to define the
abstract semantics of primitive commands and that the argument of
the meet is right-modular. We begin with the connection analysis
example, and then describe the general case.

4.1 Intraprocedural Connection Analysis
Abstract Domain. The abstract domain consists of equivalence
relations on the variables from L ∪ G and a minimal element ⊥.
Intuitively, variables belong to different partitions if they never
point to connected heap objects (i.e., those that are not connected
by any chain of pointers even when the directions of these pointers
are ignored). For instance, if there is a program state occurring
at a program point pt in which x.f and y denote the same heap
object, then it must be that x and y belong to the same equivalence
class of the analysis result at pt. We denote by Equiv(Υ) the set of
equivalence relations over a set Υ. Every equivalence relation on Υ
induces a unique partitioning of Υ into its equivalence classes and
vice versa. Thus, we use these binary-relation and partition views
of an equivalence relation interchangeably throughout this paper.

DEFINITION 3. A partition lattice over a set Υ is a 6-tuple
Dpart(Υ) = 〈Equiv(Υ),v,⊥part,>part,t,u〉 .
• For any equivalence relations d1, d2 in Equiv(Υ),

d1 v d2 ⇔ ∀v1, v2 ∈ Υ, v1

d1∼= v2 ⇒ v1

d2∼= v2,

where v1

di∼= v2 means that v1 and v2 are related by di.
• The minimal element ⊥part = {{a} | a ∈ Υ} is the identity

relation, relating each element only with itself.

[[x = null]]](d) = [[y = new]]](d) = d u Sx̂
[[x = y]]](d) = [[x = y.f ]]](d) = (d u Sx̂) t Ux̂ŷ
[[x.f = y]]](d) = d t Ux̂ŷ

where Sx̂ = {{x̂}} ∪ {{z | z ∈ Υ \ {x̂}}
Ux̂ŷ = {{x̂, ŷ}} ∪ {{z} | z ∈ Υ \ {x̂, ŷ}}

Table 1. Abstract semantics of primitive commands in the connec-
tion analysis for d 6= ⊥. [[a]]](⊥) = ⊥ for any command a. Ux̂ŷ is
used to merge the connection sets of x̂ and ŷ. Sx̂ is used to separate
x̂ from its current connection set. In Sec. 4.1, x̂ is x and ŷ is y. In
Sec. 5, x̂ denotes x′ and ŷ denotes y′.

• The maximum element>part = {Υ} is the complete relation, re-
lating each element to every element in Υ. It defines the partition
with only one equivalence class:

• The join is defined by d1 t d2 = (d1 ∪ d2)+, where we take the
binary-relation view of equivalence relations d1 and d2 and−+

is the transitive closure operation.
• The meet is defined by d1 u d2 = d1 ∩ d2. Here again we take

the binary-relation view of di’s.

For an element x ∈ Υ, the connection set of x in d ∈
Equiv(Υ), denoted [x], is the equivalence class of x in d.

Throughout the paper, we refer to an extended partition domain
D = Dpart∪{⊥}, which is the result of adding a bottom element⊥
to the original partition lattice, where for every d ∈ Dpart, ⊥ < d.

Abstract Semantics. Table 1 shows the abstract semantics of
primitive commands for the connection analysis.

Assigning null or a newly allocated object to a variable x
separates x from its connection set. Therefore, the analysis takes
the meet of the current abstract state with Sx — the partition with
two connection sets {x} and the rest of the variables.

The effect of the statement x = y is to separate the variable
x from its connection set and to add x to the connection set of y.
This is realized by performing a meet with Sx, and then a join with
Uxy — a partition with {x, y} as a connection set and singleton
connection sets for the rest of the variables.

The abstraction does not distinguish between the objects pointed
to by y and y.f . Thus, following [11], we set x to be in the same
connection set as y after the assignment x = y.f . As a result, the
same abstract semantics is used for both x = y.f and x = y.

The concrete semantics of x.f = y redirects the f field of
the object pointed to by x to the object pointed to by y. The
abstract semantics treats this statement in a rather conservative way,
performing “weak updates”: We merge the connection sets of x and
y by joining the current abstract state with Uxy .

4.2 Conditionally Compositional Intraprocedural Analysis
DEFINITION 4 (Conditionally Adaptable Functions). Let D be a
lattice. A function f : D → D is conditionally adaptable if it
has the form f = λd.((d u dp) t dg) for some dp, dg ∈ D and
the element dp is right-modular. We refer to dp as f ’s meet element
and to dg as f ’s join element.

We focus on static analyses where the transfer function for every
atomic command a is some conditionally adaptable function [[a]]].
We denote the meet elements of [[a]]] by P [[a]]]. For a command
C, we denote by P [[C]]] the set of meet elements of primitive sub-
commands occurring in C.

LEMMA 5. LetD be a lattice. Let C be a command which does not
contain procedure calls. For every d1, d2 ∈ D if d2 v dp for
every dp ∈ P [[C]]], then [[C]]](d1 t d2) = [[C]]](d1) t d2 .

4



Lem. 5 can be used to justify compositional summary-based in-
traprocedural analyses in the following way: Take a command C
and an abstract value d2 such that the conditions of the lemma hold.
Computing the abstract value [[C]]](d1 t d2) can be done by com-
puting d = [[C]]](d1), possibly caching (d1, d) in a summary for
C, and then adapting the result by joining d with d2.1

LEMMA 6. The transfer functions of primitive commands in the
intraprocedural connection analysis are conditionally adaptable.

In contrast, and perhaps counter-intuitively, our framework for the
interprocedural analysis has non-conditional summaries, which do
not have a proviso like d2 v P [[C]]]. It achieves this by requiring
certain properties of the abstract domain used to record procedures
summaries, which we now describe.

5. Compositional Analysis using Modularity
In this section, we define an abstract framework for compositional
interprocedural analysis using modularity and illustrate the frame-
work using the connection analysis. To make the material more ac-
cessible, we formulate some of the definitions specifically for the
connection analysis and defer the general definitions to [4].

The main message is that the meet elements of atomic com-
mands are right-modular and greater than or equal to all the ele-
ments in a sublattice of the domain which is used to record the
effect of the caller on the callee’s entry state. This allows to sum-
marize the effects of procedures in a bottom-up manner, and to get
the coincidence between the results of the bottom-up and top-down
analyses.

5.1 Partition Domains for Ternary Relations
We first generalize the abstract domain for the intraprocedural
connection analysis described in Sec. 4.1 to the interprocedural
setting.

Recall that the return operation defined in Sec. 3 operates on
triplets of states. For this reason, we use an abstract domain that
allows representing ternary relations between program states. We
now formulate this for the connection analysis. For every global
variable g ∈ G, g denotes the value of g at the entry to a procedure
and g′ denotes its current value. The analysis computes at every
program point a relation between the objects pointed to by global
variables at the entry to the procedure (represented by G) and the
ones pointed to by global variables and local variables at the current
state (represented by G′ and L′, respectively).

For technical reasons, described later, we also use the set Ġ
to compute the effect of procedure calls. These sets are used to
represent partitions over variables in the same way as in Sec. 4.1.
Formally, we define D = Equiv(Υ) ∪ {⊥} in the same way as in
Def. 3 of Sec. 4.1 where Υ = G ∪ G′ ∪ Ġ ∪ L′ and

G′ = {g′ | g ∈ G} G = {ḡ | g ∈ G}
Ġ = {ġ | g ∈ G} L′ = {x′ | x ∈ L}

1 Interestingly, the notion of condensation in [12] is similar to the impli-
cations of Lem. 5 (and to the frame rule in separation logic) in the sense
that the join (or ∗ in separation logic) distributes over the transfer func-
tions. However, [12] requires the distribution S(a+ b) = a+ S(b) hold
for every two elements a and b in the domain. Our requirements are less re-
strictive: In Lem. 5, we require such equality only for elements smaller than
or equal to the meet elements of the transfer functions. This is important for
handling the connection analysis in which condensation property does not
hold. (In addition, the method of [12] is developed for domains for logical
programs using completion and requires the refined domain to be compati-
ble with the projection operator, which is specific to logic programs. and be
finitely generated [12, Cor. 4.9].)

RX = {{x | x ∈ X}} ∪ {{x} | x ∈ Υ \X}
Din = {d ∈ D | d v RG}
Dout = {d ∈ D | d v RG′}
Dinout = {d ∈ D | d v RG∪G′}
Dinoutloc = {d ∈ D | d v RG∪G′∪L′}

Table 2. Constant projection element RX for an arbitrary set X
and the sublattices of D used by the interprocedural relational
analysis. RX is the partition that contains a connection set for all
the variables in X and singletons for all the variables in Υ \ X .
Each one of the sublattices represents connection relations in the
current state between objects which were pointed to by local or
global variables at different stages during the execution.

REMARK 1. Formally, the interprocedural connection analysis
computes an over-approximation of the relational concrete seman-
tics defined in Sec. 3. A Galois connection between the D and a
standard (concrete collecting relational) domain for heap manipu-
lating programs is defined in [4].

5.2 Triad Partition Domains
We first informally introduce the concept of Triad Domain. Triad
domains are used to perform abstract interpretation to represent
concrete domains and their concrete semantics as defined in Sec. 3.
A triad domain D is a complete lattice which conservatively repre-
sents binary and ternary relations (hence the name “triad”) between
memory states arising at different program points such as the entry
point to the caller procedure, the call-site, and the current program
point. The analysis uses elements d ∈ D to represent ternary re-
lations when computing procedure returns. For all other purposes
binary relations are used. More specifically, the analysis makes spe-
cial use of the triad sublattices of D defined in Table 2, which we
now explain.

Each sublattice is used to abstract binary relations between sets
of program states arising at different program points. We construct
these sublattices by first choosing projection elements dproji from
the abstract domain D, and then defining the sublattice Di to be
the closed interval [⊥, dproji ], which consists of all the elements
between ⊥ and dproji according to the v order (including ⊥ and
dproji ). Moreover, for every i ∈ {in, out, inout, inoutloc}, we
define the projection operation ( · |i) as follows: d|i = d u dproji .
Note that d|i is always in Di.

In the connection analysis, projection elements dproji are defined
in terms of RX ’s in Table 2:

dprojin =RG, dprojout =RG′ , dprojinout =RG∪G′ , dprojinoutloc =RG∪G′∪L′ .

RX is the partition that contains a connection set containing all the
variables in X and singleton sets for all the variables in Υ \X .

Each abstract state in the sublattice Dout represents a partition
on heap objects pointed to by global variables in the current state,
such that two such heap objects are grouped together in this parti-
tion when they are weakly connected, i.e., we can reach from one
object to the other by following pointers forward or backward. For
example, suppose that a global variable g1 points to an object o1

and a global variable g2 points to an object o2 at a program point
pt, and that o1 and o2 are weakly connected. Then, the analysis re-
sult will be an equivalence relation that puts g′1 and g′2 in the same
equivalence class.

Each abstract state in Din represents a partition of objects
pointed to by global variables upon the procedure entry where
the partition is done according to weakly-connected components.

The sublattice Dinout is used to abstract relations in the current
heap between objects pointed to by global variables upon proce-
dure entry and those pointed to by global variables in the current
program point. For example, if at point pt in a procedure p an ob-
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ιentry =
⊔

g∈G
Ug′ḡ = {{g′, g}, {ġ} | g ∈ G}

[[entry]]](d) = (d uRG′) t ιentry
[[return]]](dexit, dcall) = (fcall(dcall) t fexit(dexit uRG∪G′)) uRG∪G′∪L

[[p()]]](d) = [[return]]](([[Cbodyp]]
] ◦ [[entry]]])(d), d)

[[p()]]]BU(d) = [[return]]]([[Cbodyp]]
](ιentry), d)

Table 3. The definition of ιentry and the interprocedural abstract
semantics for the top-down and bottom-up connection analyses.
ιentry is the element that represents the identity relation between
input and output, and Cbodyp is the body of procedure p.

ject is currently pointed to by a global variable g1 and it belongs
to the same weakly connected component as an object that was
pointed to by a global variable g2 at the entry point of p, then the
partition at pt will include a connection set with g1 and g′2.

Similarly, the sublattice Dinoutloc is used to abstract relations in
the current heap between objects pointed to by global variables
upon procedure entry and global and local variables in the current
program point.

5.3 Interprocedural Top Down Triad Connection Analysis
We describe here the abstract semantics for the top-down inter-
procedural connection analysis. The intraprocedural semantics is
shown in Table 1. Notice that there is a minor difference between
the semantics of primitive commands for the intraprocedural con-
nection analysis defined in Sec. 4.1 and for the analysis in this sec-
tion. In the analysis without procedures we use x, whereas in the
analysis of this section we use x′.

The abstract meaning of procedure calls in the connection anal-
ysis is defined in Table 3. Again, we refer to the auxiliary constant
elements RX for a set X defined in Table 2.

When a procedure is entered, local variables of the procedure
and all the global variables g at the entry to the procedure are
initialized to null. This is realized by applying the meet operation
with auxiliary variable RG′ . Then, each of the g is initialized with
the current variable value g′ using ιentry. The ιentry element denotes
a particular state that abstracts the identity relation between input
and output states. In the connection analysis, it is defined by a
partition containing {g, g′} connection sets for all global variables
g. Intuitively, this stores the current value of variable g into g, by
representing the case where the object currently pointed to by g is
in the same weakly connected component as the object that was
pointed to by g at the entry point of the procedure.

The effect of returning from a procedure is more complex. It
takes two inputs: dcall, which represents the partition at the call-
site, and dexit, which represents the partition at the exit from the
procedure. The meet operation of dexit with RG∪G′ emulates the
nullification of local variables of the procedure. The computed
abstract values emulate the composition of the input-output relation
of the call-site with that of the return-site. Variables of the form
ġ are used to implement a natural join operation for composing
these relations. fcall(dcall) renames global variables from g′ to ġ and
fexit(dexit) renames global variables from g to ġ to allow natural
join. Intuitively, the old values g of the callee at the exit-site are
matched with the current values g′ of the caller at the call-site.
The last meet operation represents the nullification of the temporary
values ġ of the global variables.

In [4] we generalize these definitions to generic triad analyses.

5.4 Bottom Up Triad Connection Analysis
In this section, we introduce a bottom-up semantics for the connec-
tion analysis. Primitive commands are interpreted in the same way

as in the top-down analysis. The effect of procedure calls is com-
puted using the function [[p()]]]BU(d), defined in Table 3, instead
of [[p()]]](d). The two functions differ in the first argument they use
when applying [[return]]]: [[p()]]]BU(d) uses a constant value, which
is the abstract state at the procedure exit computed when analyzing
p() with ιentry. In contrast, [[p()]]](d) uses the abstract state result-
ing at the procedure exit when analyzing the call to p() with d.

5.5 Coincidence Result in Connection Analysis
We are interested in finding a sufficient condition on an analysis,
for the following equality to hold:

∀d ∈ D. [[p()]]]BU(d) = [[p()]]](d) .

We sketch the main arguments of the proof, substantiating their va-
lidity using examples from the interprocedural connection analysis
in lieu of more formal mathematical arguments, given in [4].

5.5.1 Uniform Representation of Entry Abstract States
Any abstract state d arising at the entry to a procedure in the top-
down analysis is uniform, i.e., it is a partition such that for every
global variable g, variables g and g′ are always in the same connec-
tion set. This is a result of the definition of function entry, which
projects the abstract element at the call-site into the sublattice Dout

and the successive join with the ιentry element. The projection re-
sults in an abstract state where all connection sets containing more
than a single element are comprised only of primed variables. Then,
after joining d|out with ιentry, each old variable g resides in the same
partition as its corresponding current primed variable g′.

We point out that the uniformity of the entry states is due to the
property of ιentry that its connection sets are comprised of pairs of
variables of the form {x′, x}. One important implication of this
uniformity is that every entry abstract state d0 to any procedure has
a dual representation. In one representation, d is the join of ιentry
with some elements Ux′y′ ∈ Dout. In the other representation, d is
expressed as the join of ιentry with some elements Uxy ∈ Din. In the
following, we use the function o that replaces relationships among
current variables by those among old ones: o(Ux′y′) = Uxy; and
o(d) is the least upper bounds of ιentry and elements Uxy for all x, y
such that x′ and y′ are in the same connection set of d.

5.5.2 Delayed Evaluation of the Effect of Calling Contexts
Elements of the form Uxy , coming from Din, are smaller than or
equal to the meet elements of intraprocedural statements. In Lem. 6
of Sec. 4 we proved that the semantics of the connection analysis is
conditionally adaptable. Thus, computing the composed effect of
any sequence τ of intraprocedural transformers on an entry state
of the form d0 t Ux1y1 . . . t Uxnyn results in an element of the
form d′0 t Ux1y1 . . . t Uxnyn , where d′0 results from applying
the transformers in τ on d0. Using the observation we made in
Sec. 5.5.1, this means that we can represent any abstract element
d resulting at a call-site as d = d1 t d2, where d1 is the effect of τ
on ιentry and d2 ∈ Din is a join of elements of the form Uxy ∈ Din:

d = d1 t Ux1y1 . . . t Uxnyn . (1)

5.5.3 Counterpart Representation for Calling Contexts
Because of the previous reasoning, we can now assume that any
abstract value at the call-site to a procedure p() is of the form
d1 t d3, where d3 ∈ Din and it is a join of elements of form Uxy .

For each Uxy , the entry state resulting from analyzing p() when
the calling context is d1tUxy is either identical to the one resulting
from d1 or can be obtained from d1 by merging two of its connec-
tion sets. Furthermore, the need to merge occurs only if there are
variables w′ and z′ such that w′ and x are in one of the connection
sets of d1 and z′ and y are in another. This means that the effect of
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Uxy on the entry state can be expressed via primed variables:

d1 t Uxy = d1 t Uw′z′ .
This implies that if the abstract state at the call-site is d1 t d3, then
there is an element d′3 ∈ Dout such that

(d1 t d3)|out = d1|out t d′3 (2)

We refer to the element d′3 ∈ Dout, which can be used to represent
the effect of d3 ∈ Din at the call-site as d3’s counterpart, and
denote it by d̂3.

5.5.4 Representing Entry States with Counterparts
The above facts imply that we can represent an abstract state d at
the call-site as

d = d1 t d3 t d4, (3)
where d3, d4 ∈ Din. d3 is a join of the elements of the form
Uxy such that x and y reside in d1 in different partitions, which
also contain current (primed) variables, and thus possibly affect the
entry state; d4 is a join of all the other elements Uxy ∈ Din, which
are needed to represent d in this form, but either x̄ or ȳ resides in
the same partition in d1 or one of them is in a partition containing
only old variables. As explained in the previous paragraph, there is
an element d′3 = d̂3 that joins elements of the form Ux′y′ such that

(d1 t d3)|out = (d1 t d′3)|out (4)

and
d = d1 t d3 t d4 = d1 t d′3 t d4 . (5)

Thus, after applying the entry’s semantics, we get that abstract
states at the entry point of procedure are always of the form

[[entry]]](d) = (d1 t d′3)|out t ιentry (6)

where d′3 represents the effect of d3 t d4 on partitions containing
current variables g′ in d1. Because Ux′y′ v RG′ and d′3 joins
elements of form Ux′y′ , the modularity of the lattice gives that

(d1 t d′3)|out t ιentry = (d1|out t d′3) t ιentry
This implies that every state d0 at an entry point to a procedure is
of the following form:

d0 = ιentry t (Ux′y′ . . . t Ux′
l
y′
l
)

︸ ︷︷ ︸
d1|out

t (Ux′
l+1

y′
l+1

. . . t Ux′ny′n)
︸ ︷︷ ︸

d′3

.

Using the dual representation of entry state, we get that

ιentry t Ux′1y′1 . . . t Ux′ny′n = ιentry t o(Ux′1y′1 . . . t Ux′ny′n)

and thus the form of a state d0 at an entry point to a procedure is

d0 = ιentry t Ux1y1 t . . . t Uxnyn (7)

5.5.5 Putting It All Together
We now show that the interprocedural connection analysis can be
done compositionally. Intuitively, the effect of the caller’s calling
context can be carried over procedure invocations. Alternatively,
the effect of the callee on the caller’s context can be adapted
unconditionally for different caller’s calling contexts.

We sketch here an outline of the proof for case C = p() using
the connection analysis domain. The proof goes by induction on
the structure of the program. In Eq.3 we showed that every abstract
value that arises at the call-site is of the form d1 t d3 t d4, where
d3, d4 ∈ Din. Thus, we show that

[[C]]](d1 t d3 t d4) = [[C]]](d1) t d3 t d4 . (8)

Say we want to compute the effect of invoking p() on abstract
state d according to the top-down abstract semantics.

[[p()]]](d) = [[return]]]
((

([[Cbodyp]]
] ◦ [[entry]]])(d)

)
, d
)

First, let’s compute the first argument to [[return]]].

([[Cbodyp]]
] ◦ [[entry]]])(d)

= [[Cbodyp]]
]([[entry]]](d1 t d3 t d4))

= [[Cbodyp]]
](((d1 t d3 t d4)|out) t ιentry)

= [[Cbodyp]]
](((d1 t d3)|out) t ιentry)

= [[Cbodyp]]
]((d1)|out t d′3 t ιentry)

= [[Cbodyp]]
]((d1)|out t o(d′3) t ιentry)

= [[Cbodyp]]
]((d1)|out t ιentry) t o(d′3) (9)

The first equalities are mere substitutions based on observations we
made before. The last one comes from the induction assumption.

When applying the return semantics, we first compute the nat-
ural join and then remove the temporary variables. Hence, we get

(fcall(d1td3td4)tfexit([[Cbodyp]]
]((d1)|outtιentry)to(d′3)))|inoutloc

Let’s first compute the result of the inner parentheses.

fcall(d1 t d3 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t o(d′3))

= fcall(d1 t d′3 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t o(d′3))

= fcall(d
′
3) t fcall(d1 t d4) t

fexit(o(d
′
3)) t fexit([[Cbodyp]]

]((d1)|out t ιentry)) (10)

The first equality is by the definition of d′3 and the last equality
is by the isomorphism of the renaming operations fcall and fexit.

Note, among the join arguments, fexit(o(d′3)) and fcall(d
′
3).

Let’s look at the first element. o(d′3) replaces all the occurrences of
Ux′y′ in d′3 with Uxy . fexit replaces all the occurrences of Uxy in
o(d′3) with Uẋẏ . Thus, the first element is

Uẋ1ẏ1 t . . . t Uẋnẏn
which is the result of replacing in d′3 all the occurrences of Ux′y′
with Uẋẏ . Consider the second element. fexit replaces all occur-
rences of Ux′y′ in d′3 with Uẋẏ . Thus, also the second element is

Uẋ1ẏ1 t . . . t Uẋnẏn
Thus, we get that

(10) = fcall(d
′
3) t fcall(d1 t d4) t fexit([[Cbodyp]]

]((d1)|out t ιentry))
Moreover, fcall is isomorphic and by Eq.5

= fcall(d3 t d1 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry))

Remember (Eq.1) that d3 and d4 are both of form

Ux1y1 t . . . t Uxnyn
and that fcall(d) only replaces g′ occurrences in d; thus

fcall(Ux1y1 t . . . t Uxnyn) = Ux1y1 t . . . t Uxnyn
Finally, we get

= fcall(d1) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t (d3 t d4)

= [[p()]]](d1) t d3 t d4

5.5.6 Precision Coincidence
We combine the observations we made to informally show the coin-
cidence result between the top-down and the bottom-up semantics.
According to Eq.3, every state d at a call-site can be represented as
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d = d1 t d3 t d4, where d3, d4 ∈ Din

[[p()]]](d) = [[return]]]([[Cbodyp ]]]([[entry]]](d)), d)

= [[return]]]([[Cbodyp ]]](d1|out t ιentry t d′3), d)

= [[return]]]([[Cbodyp ]]](ιentry t o(d1|out) t o(d′3)), d) .(11)

The second equivalence is by Eq.6, and the second equivalence is
because d1|out, d′3 ∈ Dout and

ιentry t o(d1|out) t o(d′3) = ιentry t d1|out t d′3
We showed that for every d = d1td3td4, such that d3, d4 ∈ Din,

[[C]]](d1 t d3 t d4) = [[C]]](d1) t d3 t d4

for any command C. Therefore, since o(d′3), o(d1|out) ∈ Din,

(11) = [[return]]]([[Cbodyp ]]](ιentry) t o(d1|out) t o(d′3), d1 t d3 t d4) .

By Eq.5, d1 t d3 t d4 = d1 t d′3 t d4 Thus, we can remove
o(d′3) because fexit(o(d′3)) will be redundant in the natural join of
the [[return]]] operator. Using a similar reasoning, we can remove
fexit(o(d1|out)), since fcall(d1|out) v fcall(d1). Hence, finally,

(11) = [[return]]]([[Cbodyp ]]](ιentry), d1 t d3 t d4) = [[p()]]]BU(d) .

6. Experimental evaluation
In this section, we evaluate the effectiveness of our approach in
practice using the connection analysis for concreteness. We imple-
mented three versions of this analysis: the original top-down ver-
sion from [11], our modified top-down version, and our modular
bottom-up version that coincides in precision with the modified
top-down version. We next briefly describe these three versions.

The original top-down connection analysis does not meet the
requirements described in Sec. 5, because the abstract transformer
for destructive update statements x.f = y depends on the abstract
state; the connection sets of x and y are not merged if x or y points
to null in all the executions leading to this statement. We therefore
conservatively modified the analysis to satisfy our requirements,
by changing the abstract transformer to always merge x’s and y’s
connection sets. Our bottom-up modular analysis that coincides
with this modified top-down analysis operates in two phases. The
first phase computes a summary for every procedure by analyzing it
with an input state ιentry. The summary over-approximates relations
between all possible inputs of this procedure and each program
point in the body of the procedure. The second phase is a chaotic
iteration algorithm which propagates values from callers to callees
using the precomputed summaries, and is similar to the second
phase of the interprocedural functional algorithm of [18, Figure 7].

We implemented all three versions of connection analysis de-
scribed above using Chord [16] and applied them to five Java
benchmark programs whose characteristics are summarized in Ta-
ble 4. They include two programs (grande2 and grande3) from
the Java Grande benchmark suite and two (antlr and bloat) from
the DaCapo benchmark suite. We excluded programs from these
suites that use multi-threading, since our analyses are sequential.
Our larger three benchmark programs are commonly used in eval-
uating pointer analyses. All our experiments were performed using
Oracle HotSpot JRE 1.6.0 on a Linux machine with Intel Xeon 2.13
GHz processors and 128 Gb RAM.

We next compare the top-down and bottom-up approaches in
terms of precision (Sec. 6.1) and scalability (Sec. 6.2). We omit
the modified top-down version of connection analysis from further
evaluation, as we found its performance difference from the orig-
inal top-down version to be negligible, and since its precision is
identical to our bottom-up version (in principle, due to our coinci-
dence result, as well as confirmed in our experiments).

6.1 Precision
We measure the precision of connection analysis by the size of the
connection sets of pointer variables at program points of interest.
Each such pair of variable and program point can be viewed as a
separate query to the connection analysis. To obtain such queries,
we chose the parallelism client proposed in the original work on
connection analysis [11], which demands the connection set of
each dereferenced pointer variable in the program. In Java, this
corresponds to variables of reference type that are dereferenced
to access instance fields or array elements. More specifically, our
queries constitute the base variable in each occurrence of a getfield,
putfield, aload, or astore bytecode instruction in the program. The
number of such queries for our five benchmarks are shown in the
“# of queries” column of Table 5. To avoid counting the same set of
queries across benchmarks, we only consider queries in application
code, ignoring those in JDK library code. This number of queries
ranges from around 0.6K to over 10K for our benchmarks.

A precise answer to a query x.f (a field access) or x[i] (an
array access) is one that is able to disambiguate the object pointed
to by x from objects pointed to by another variable y. In the
connection analysis abstraction, x and y are disambiguated if they
are not connected. We thereby measure the precision of connection
analysis in terms of the size of the connection set of variable x,
where a more precise abstraction is one where the number of other
variables connected to x is small. To avoid gratuitously inflating
this size, we perform intra-procedural copy propagation on the
intermediate representation of the benchmarks in Chord.

Fig. 4 provides a detailed comparison of precision, based on the
above metric, of the top-down and bottom-up versions of connec-
tion analysis, separately for field access queries (column (a)) and
array access queries (column (b)). Each graph in columns (a) and
(b) plots, for each distinct connection set size (on the X axis), the
fraction of queries (on the Y axis) for which each analysis com-
puted connection sets of equal or smaller size. Graphs marked (*)
indicate where the sizes of connection sets computed by the top-
down analysis are not plotted because the analysis timed out after
six hours. This happens for our two largest benchmarks (weka and
bloat). The graphs for the remaining three benchmarks (grande2,
grande3, and antlr) show that the precision of our modular bottom-
up analysis closely tracks that of the original top-down analysis: the
points for the bottom-up and top-down analyses, denoted N and ◦,
respectively, overlap almost perfectly in each of the six graphs. The
ratio of the connection set size computed by the top-down analysis
to that computed by the bottom-up analysis on average across all
queries is 0.977 for grande2, 0.977 for grande3, and 0.952 for antlr.
While we do not measure the impact of this precision loss of 2-5%
on a real client, we note that for our largest two benchmarks, the
top-down analysis does not produce any useful result.

6.2 Scalability
Table 5 compares the scalability of the top-down and bottom-up
analyses in terms of three different metrics: running time, memory
consumption, and the total number of computed abstract states. As
noted earlier, the bottom-up analysis runs in two phases: a summary
computation phase followed by a summary instantiation phase. The
above data for these phases is reported in separate columns of the
table. On our largest benchmark (bloat), the bottom-up analysis
takes around 50 minutes and 873 Mb memory, whereas the top-
down analysis times out after six hours, not only on this benchmark
but also on the second largest one (weka).

The “# of abstract states” columns provide the sum of the sizes
of the computed abstractions in terms of the number of abstract
states, including only incoming states at program points of queries
(in the “queries” sub-column), and incoming states at all program
points, including the JDK library (in the “total” sub-column). Col-
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(a) Precision comparison for field accesses. (b) Precision comparison for array accesses. (c) Scalability comparison.

Figure 4. Comparison of the precision and scalability of the original top-down and our modular bottom-up versions of connection analysis.
Each graph in columns (a) and (b) shows, for each distinct connection set size (on the X axis), the fraction of queries (on the Y axis) for
which the analyses computed connection sets of equal or smaller size. This data is missing for the top-down analysis in the graphs marked
(*) because this analysis timed out after six hours on those benchmarks. For the remaining benchmarks, the near perfect overlap in the points
plotted for the two analyses indicates very minor loss in precision of the bottom-up analysis over the top-down analysis. Column (c) compares
scalability of the two analyses in terms of the total number of abstract states computed by them. Each graph in this column shows, for each
distinct number of incoming abstract states computed at each program point (on the X axis), the fraction of program points (on the Y axis)
with equal or smaller number of such states. The numbers for the top-down analysis in the graphs marked (*) were obtained at the instant of
timeout. These graphs clearly show the blow-up in the number of states computed by the top-down analysis over the bottom-up analysis.
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description # classes # methods # bytecodes
app only total app only total app only total

grande2 Java Grande kernels 17 61 112 237 8,146 13,724
grande3 Java Grande large-scale applications 42 241 231 1,162 27,812 75,139
antlr Parser and translator generator 116 358 1,167 2,400 128,684 186,377
weka Machine-learning library for data-mining tasks 62 530 575 3,391 40,767 223,291
bloat Java bytecode optimization and analysis tool 277 611 2,651 4,699 194,725 311,727

Table 4. Benchmark characteristics. The “# of classes” column is the number of classes containing reachable methods. The “# of methods”
column is the number of reachable methods computed by a static 0-CFA call-graph analysis. The “# of bytecodes” column is the number of
bytecodes of reachable methods. The “total” columns report numbers for all reachable code, whereas the “app only” columns report numbers
for only application code (excluding JDK library code).

# of queries Bottom-Up analysis Top-Down analysis
summary computation summary instantiation

time memory time memory # of abstract states time memory # of abstract states
queries total queries total

grande2 616 0.6 sec 78 Mb 0.9 sec 61 Mb 616 1,318 1 sec 37 Mb 616 3,959
grande3 4,236 43 sec 224 Mb 1:21 min 137 Mb 4,373 8,258 1:11 min 506 Mb 4,354 27,232
antlr 5,838 16 sec 339 Mb 30 sec 149 Mb 6,207 21,437 1:23 min 1.1 Gb 8,388 79,710
weka 2,205 46 sec 503 Mb 2:48 min 228 Mb 2,523 25,147 > 6 hrs 26 Gb 5,694 688,957
bloat 10,237 3:03 min 573 Mb 30 min 704 Mb 36,779 131,665 > 6 hrs 24 Gb 139,551 962,376

Table 5. The number of queries to connection analysis and three metrics comparing the scalability of the original top-down and our modular
bottom-up versions of the analysis on those queries: running time, memory consumption, and number of incoming abstract states computed
at program points of interest. These points include only query points in the “query” sub-columns and all points in the “total” sub-columns.
All three metrics show that the top-down analysis scales much more poorly than the bottom-up analysis.

umn (c) of Fig. 4 provides more detailed measurements of the lat-
ter numbers. The graphs there show, for each distinct number of
incoming states computed at each program point (on the X axis),
the fraction of program points (on the Y axis) with equal or smaller
number of incoming states. The numbers for the top-down analysis
in the graphs marked (*) were obtained at the instant of timeout.
The graphs clearly show the blow-up in the number of states com-
puted by the top-down analysis over the bottom-up analysis.

7. Conclusions
We show using lattice theory that when an abstract domain has
enough right-modular elements to allow transfer functions to be
expressed as joins and meets with constant elements—and the
elements used in the meet are right-modular—a compositional
(bottom-up) interprocedural analysis can be as precise as a top-
down analysis. Using the above, we developed a new bottom-up
interprocedural algorithm for connection pointer analysis of Java
programs. Our experiments indicate that, in practice, our algorithm
is nearly as precise as the existing algorithm, while scaling signif-
icantly better. In [4] we apply the same technique to derive a new
bottom-up analysis for a variant of the copy-constant propagation
problem [10]. The algorithm utilizes a sophisticated join to com-
pute the effect of copy statements of the form x:=y. Notice that
this is not simple under our restrictions since constant values of y
are propagated into x. Indeed, we found that designing the right
join operator is the key step when using our approach.
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8. Compositional Constant Propagation Analysis
In this section we describe an encoding of a bottom-up interproce-
dural copy constant propagation analysis as a triad analysis.

8.1 Programming Language
We define a simple programming language which manipulates in-
teger variables. The language is defined according to the require-
ments of our general framework. (See Sec. 3.) In this section, we
assume that programs have only global integer variables g ∈ G
which are initialized to 0. We also assume that the primitive com-
mands a ∈ PComm are of the form

x := c , x := y , and x := * ,

pertaining to assignments to a variable x of a constant value c, of
the value of a variable y, or of an unknown value, respectively. We
denote by KP ⊂fin N the finite set of constants which appear in a
program P . We assume KP contains 0. We denote by GP ⊂fin G
the finite set of global variables which appear in a program P .

In the following, we assume a fixed arbitrary program P and
denote by K = KP the (fixed finite) set of constants that appear in
P , and by G = GP the (fixed finite) set of global variables of P .

For technical reasons, explained in Sec. 8.5, we assume that the
analyzed program contains a special global variable t which is not
used directly by the program, but is used only to implement copy
assignments of the form x := y using the following sequence of
assignments

t:=y; y:=0; x:=0; y:=t; x:=t; t:=0.

(Note that, in particular, we assume that there are no statements of
the form x := x.)

8.2 Concrete Semantics
8.2.1 Standard Intraprocedural Concrete Semantics
A standard memory state s ∈ S = G 7→ N maps variables to their
integer values. The meaning of primitive commands a ∈ AComm
is standard, and defined below.

[[x := c]](s) = {(s[x 7→ [[c]]])}
[[x := y]](s) = {(s[x 7→ s(y)])}
[[x := ∗]](s) = {(s[x 7→ n]) | n ∈ N}

Note that [[a]] : S → 2S for a primitive a.

8.2.2 Relational Concrete Semantics
An input-output pair of standard memory states r = (s, s′) ∈ R =
S × S records the values of variables at the entry to the proce-
dure (s) and at the current state (s′). The meaning of intraprocedu-
ral statements in lifted to input-output pairs as described in Sec. 3.
The interprocedural semantics is defined, as described in Sec. 3, us-
ing the functions ·|G : S → S and [[combine]] : S × S × S → R,
whose meaning is defined below:

s|G = s
[[combine]](s1, s2, s3) = (s1, s3)

Informally, the projection of the state on its global part does not
modify the state due to our assumption a state is a mapping of
global variables to values. For a similar reason, the combination of
the caller’s input-output pair at the call-site with that of the callee
at the exit-site results in a pair of memory states where the first one

records the memory at the entry-site of the caller and the second
one records the state at the exit-site of the callee.

8.3 Abstract Semantics
Notations. For every global variable g ∈ G, g denotes the value
of g at the entry to a procedure and g′ denotes its current value.
Similarly to the connection analysis, we use an additional set Ġ of
variables to compute the effect of procedure calls. We denote by
υ ∈ Υ = G′ ∪ G ∪ Ġ the set of all annotated variables which are
ranged by a meta variable υ.

We denote by ζ ∈ VAL = Υ ∪ K ∪ {∗} the set of abstract
values ranged over by ζ. VAL is comprised of annotated variables,
constants which appear in the program, and the special value ∗.

8.3.1 Abstract Domain
Let Dmap be the set of all maps from variables υ ∈ Υ to 2VAL

Dmap = Υ 7→ 2VAL .

We denote the set Dtrans ⊆ Dmap of transitively closed maps by

Dtrans = {dde | d ∈ Dmap} ,
where

dde = λυ ∈ Υ.{υ} ∪
{
ζ ∈ d(υn)

∣∣∣∣
∃υ0, . . . , υn. υ0 = υ ∧
∀0 ≤ i < n. υi+1 ∈ d(υi)

}
.

Note that a map d ∈ Dmap is transitively closed, i.e., d ∈ Dtrans ,
if and only if it associates υ to a set containing υ, i.e., υ ∈ d(υ),
and for any υ′ ∈ d(υ) it holds that d(υ′) ⊆ d(υ).

The abstract domain D of the copy constant propagation analy-
sis is an augmentation of Dtrans with an explicit bottom element.

D = 〈Dconst ,v,⊥,>,t,u〉, where

Dconst = Dtrans ∪ {⊥}

d1 v d2 ⇔ d1 = ⊥ ∨ ∀υ ∈ Υ. d1(υ) ⊆ d2(υ)

> = λυ ∈ Υ .VAL

d1 t d2 =





d1 d2 = ⊥
d2 d1 = ⊥
dd1 ∪ d2e otherwise

d1 u d2 =

{
⊥ d1 = ⊥ ∨ d2 = ⊥
d1 ∩ d2 otherwise

8.3.2 Abstract Intraprocedural Transformers
The abstract meaning of the primitive intraprocedural statements is
defined as follows:

[[x := c]]] = (λd.d u Sx′) t Ux′c
[[x := y]]] = (λd.d u Sx′) t Ux′y′
[[x := ∗]]] = (λd.d u Sx′) t Ux′∗

where

Sx′(υ) = λυ ∈ Υ.

{
{x′} υ = x′

VAL \ {x′} υ 6= x′

Ux′ζ = λυ ∈ Υ.

{
{x′, ζ} υ = x′

{υ} υ 6= x′

In the following, we show that the abstract transfer functions of
the copy constant propagation analysis are conditionally adaptable.
We first prove a simple lemma that holds for every lattice.
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LEMMA 7. For any lattice (D,v) and elements d, d′, ds ∈ D such
that d′ v ds it holds that

d′ t (d u ds) v (d′ t d) u ds .

Proof By the definition of t it holds that

d v (d′ t d) and d′ v (d′ t d) .

By the monotonicity of u, we get that

d u ds v (d′ t d) u ds and d′ u ds v (d′ t d) u ds .
By the monotonicity and the idempotence of t, we get that

(d′ u ds) t (d u ds) v (d′ t d) u ds .
By the assumption d′ v ds. Hence, d′ u ds = d′, and it follows
that

d′ t (d u ds) v (d′ t d) u ds .

2

DEFINITION 8 (General projection and separation elements). Let
X ⊆ Υ. We denote by

SX(υ) = λυ ∈ Υ.

{
{υ} υ ∈ X
VAL \X υ 6∈ X

the separation element of X and by

RX = SΥ\X

the projection element of X .

LEMMA 9. For every X ⊆ Υ, SX is right-modular.

Proof We need to prove that for all d, d′ ∈ D such that d′ v SX it
holds that

(d′ t d) u SX = d′ t (d u SX) .

By Lem. 7, it holds that

(d′ t d) u SX w d′ t (d u SX) .

Thus it suffices to show that

d1 = (d′ t d) u SX v d′ t (d u SX) = d2 . (∗)
We prove (*) by induction on the size of X .

Base Case. For |X| = 1, we get that SX = S{υ} for some
υ ∈ Υ. Pick υ0 ∈ Υ. We need to show that d1(υ0) ⊆ d2(υ0).
There can be two case: either υ0 = υ or not.

If υ0 = υ, then d1(υ0) ⊆ S{υ′}(υ0) = {υ0}. By definition
of the domain, which includes only transitively closed maps, υ0 ∈
d′(υ0). Hence, d1(υ0) ⊆ {υ0} ⊆ d2(υ0).

Otherwise, υ0 6= υ. Pick υ1 ∈ d1(υ0). By the definition of S{υ}
and the meet operation, υ1 6= υ, and again by the definition of the
meet operation, υ1 ∈ (d′ t d)(υ0). Thus, there exists a minimal
sequence ζ0, . . . , ζn such that ζ0 = υ0 ∧ ζn = υ1 and for all
0 ≤ i < n, ζi+1 ∈ d′(ζi) ∪ d(ζi).

CLAIM 10. For all 0 ≤ j < n, ζj 6= υ.

Proof ζ0 = υ′ 6= υ, by the assumption.
Assume that there exists some 0 < j < n such that ζj =

υ. By the minimality of the sequence, ζj−1 6= υ and ζj+1 6=
υ, and since d′ v S{υ}, ζj = υ /∈ d′(ζj−1) and ζj+1 /∈
d′(ζj) = d′(υ) and thus ζj ∈ d(ζj−1) and ζj+1 ∈ d(ζj).
d is transitively closed and from this, ζj+1 ∈ d(ζj−1). Thus,
the sequence ζ0, . . . , ζj−1, ζj+1, . . . , ζn is a valid sequence for
υ′, υ′′, and this is a contradiction to the minimality of the original
sequence.

2

By the claim, we got that for all 0 ≤ j < n,

ζi+1 ∈ (d′(ζi) ∪ d(ζi)) \ {υ} By the previous claim
⇒ ζi+1 ∈ (d′(ζi) ∪ d(ζi)) ∩ S{υ}(ζi) By the definition of S{υ}

= (d′(ζi) ∩ S{υ}(ζi)) ∪ (d(ζi) ∩ S{υ}(ζi))
= d′(ζi) ∪ (d(ζi) ∩ S{υ}(ζi)) By d′(ζi) ⊆ S{υ}(ζi)
= d′(ζi) ∪ (d u S{υ})(ζi) .

Therefore we can create a sequence for υ′, υ′′, by taking elements
only from d′ ∪ (duS{υ}), and hence υ′′ ∈ (d′ t (duS{υ}))(υ′).

Induction Step. Assume that the induction assumption holds for
sets X such that |X| = n, we will prove for sets X such that
|X| = n+ 1. Let υ ∈ X be an arbitrary element. Notice that by its
definition

SX = SX\{υ} u S{υ} .
Therefore,

(d′ t d) u SX = (d′ t d) u (SX\{υ} u S{υ})
= ((d′ t d) u SX\{υ}) u S{υ}
v (d′ t (d u SX\{υ})) u S{υ}
= d′ t ((d u SX\{υ}) u S{υ})
= d′ t (d u (SX\{υ} u S{υ}))
= d′ t (d u SX)

2

LEMMA 11. The abstract transfer functions of the atomic com-
mands are conditionally adaptable.

Proof By Lem. 9, S′x = S{x′} is right-modular and all the transfer
functions are of form

f = λd.((d u dp) t dg) .
where dp = Sx′ for some x′ ∈ Υ.

2

8.4 Soundness of the Top Down Analysis
The soundness of the copy constant propagation analysis is formal-
ized by the concretization function γ : D → 2S×S , where

(s, s′) ∈ γ(d) ⇐⇒(
∀x ∈ G. (s(x) ∈ d(x) ∩ K) ∨ (∗ ∈ d(x))

)∧
(
∀x′ ∈ G′. s′(x) ∈ ((d(x) ∩ K) ∪ {s(y) | y ∈ d(x))}) ∨ (∗ ∈ d(x))

)
.

Intuitively, an input-output pair (s, s′) is conservatively repre-
sented by an abstract element d if and only if (a) the input state
maps a variable g to n if n is one of the constants mapped to g by d
or if ∗ ∈ d(g) and (b) the output state maps a variable g to n if n is
one of the constants mapped to g′ by d, the value of global variable
y at the entry state that is mapped to g′ by d, or if ∗ ∈ d(g′).

LEMMA 12 (Soundness). The abstract transformers pertaining
to intraprocedural primitive commands, |G, and combine over-
approximate the concrete ones.

8.5 Precision Improving Transformations
In Sec. 8.1, we place certain restrictions on the analyzed programs.
Specifically, we forbid copy assignments of the form x:=y between
arbitrary global variables x and y, and, instead, require that the
value of y be copied to x through a sequence of assignments that use
a temporary variable t. In the concrete semantics, our requirements
do not affect the values of the program’s variables outside of the
sequences of intermediate assignments. In the abstract semantics,
however, adhering to our requirements can improve the precision
of the analysis, as we explain below.
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Consider the execution of the sequence of abstract transformers
pertaining to the (non deterministic) command x:=y + y:=3 on an
abstract state d, in which 3 6∈ d(y′). Applying the abstract trans-
former [[x := y]]] to d results in an abstract element d′, where
y′ ∈ d(x′). Applying [[y := 3]]] to d results in an abstract state
d′′, where 3 ∈ d′′(y′). Perhaps surprisingly, in the abstract state
d′′′ = d′ t d′′, which conservatively represent the possible states
after the non-deterministic choice (+), we get that 3 ∈ d′′′(x′).
This is sound, but imprecise. The reason for the imprecision is
that our domain includes only transitively closed maps and having
y′ ∈ d′(x′) results in an undesired correlation between the possible
values of x in d′′′ and that of y in d′′. In particular, the assignment
of 3 to y is propagated to x in a flow-insensitive manner.

Rewriting the copy assignment using t according to our restric-
tions breaks such undesired correlations. Consider, for example, the
sequence of abstract transformers pertaining to the aforementioned
command: t:=y; y:=0; x:=0; y:=t; x:=t; t:=0, and apply
this sequence to d. In the abstract state d̂ arising just before t is
assigned 0 we get that t′ ∈ d̂(x′) and t′ ∈ d̂(y′) but y′ 6∈ d̂(x′)
and x′ 6∈ d̂(y′). Assigning 0 to t breaks the correlation between t
and x and y.

8.6 Copy Constant Propagation as a Triad Analysis
8.6.1 Triad Domain
LEMMA 13. D is a triad domain.

Projection Elements

Proof We define the projection elements

dprojin = RG
dprojtmp

= RĠ

dprojout = RG′

By Lem. 9, dprojin , dprojtmp
and dprojout are right-modular.

Isomorphism functions We define the renaming functions

fΥ
call, f

Υ
exit, f

Υ
inout : Υ→ Υ

fΥ
call(υ̃) =





υ̇ υ̃ = υ′

υ′ υ̃ = υ̇

υ̃ otherwise

fΥ
exit(υ̃) =





υ̇ υ̃ = υ

υ υ̃ = υ̇

υ̃ otherwise

fΥ
inout(υ̃) =





υ υ̃ = υ′

υ′ υ̃ = υ

υ̃ otherwise

Let fVAL
call , fVAL

exit , fVAL
inout be the renaming function induced on 2VAL

and finally let fcall, fexit, finout be the renaming functions induced
on D,

fi(d) =

{
⊥ d = ⊥
λυ ∈ Υ. fVAL

i (d(fΥ
i
−1

(υ))) otherwise
(12)

where i ∈ [call, inout, exit].

CLAIM 14.
fcall(RG′) = RĠ, fcall(RG) = RG, fcall(RĠ) = RG′

fexit(RG′) = RG′ , fexit(RG) = RĠ, fexit(RĠ) = RG
finout(RG′) = RG, finout(RG) = RG′ , finout(RĠ) = RĠ

Proof We prove the claim on fcall and RG′ . The other cases are
symmetric.

fcall(RG′) = fcall

(
λυ ∈ Υ.

{
{υ} υ ∈ Υ \ G′
K ∪ G′ υ ∈ G′

)

= λυ ∈ Υ.

{
{υ} υ ∈ Υ \ Ġ
K ∪ Ġ υ ∈ Ġ

= RĠ

2

CLAIM 15. For all d ∈ Dout

fexit(finout(d)) = fcall(d)

Proof Let d ∈ Dout and let υ ∈ Υ. If d = ⊥ then

fcall(d) = fexit(finout(d)) = ⊥ .
Otherwise, by Eq.12,

fcall(d)(υ) = fVAL
call (d(fΥ

call
−1

(υ)))

and

((fexit ◦ finout)(d))(υ) = fexit(finout(d))(υ)

= fVAL
exit (finout(d)(fΥ

exit
−1

(υ))

= fVAL
exit (fVAL

inout(d(fΥ
inout
−1

(fΥ
exit
−1

(υ))

= (fVAL
exit ◦ fVAL

inout)(d(fΥ
inout
−1 ◦ fΥ

exit
−1

)(υ))

If υ /∈ Ġ, then

fΥ
call
−1

(υ) /∈ G′

and

fΥ
inout
−1 ◦ fΥ

exit
−1

(υ) /∈ G′

and therefore

d(fΥ
call
−1

(υ)) = {fΥ
call
−1

(υ)}
and

d(fΥ
inout
−1 ◦ fΥ

exit
−1

(υ)) = {fΥ
inout
−1 ◦ fΥ

exit
−1

(υ)}
Hence,

fcall(d)(υ) = fVAL
call ({fΥ

call
−1

(υ)}) = {υ}
and

(fexit◦finout)(d)(υ) = (fVAL
exit ◦fVAL

inout)({fΥ
inout
−1◦fΥ

exit
−1

(υ)}) = {υ}
Otherwise, if υ ∈ Ġ, by the definition of the renaming functions

fΥ
call
−1

(υ) = (fΥ
inout
−1 ◦ fΥ

exit
−1

)(υ)

and by the definition of Dout,

d(fΥ
call
−1

(υ)) ⊆ G′

and therefore again by the definition of the renaming functions

fVAL
call (d(fΥ

call
−1

(υ))) = (fVAL
exit ◦ fVAL

inout)(d(fΥ
call
−1

(υ)))

2

CLAIM 16. For all d ∈ Din

fcall(d) = d

Proof By the definition of Din and of fcall.

2
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ιentry element We define

ιentry = [υ′ 7→ {υ′, υ} | υ ∈ G]∪[υ 7→ {υ′, υ} | υ ∈ G]∪[υ̇ 7→ {υ̇} | υ ∈ G]

CLAIM 17. For every d ∈ Dout, d t ιentry = finout(d) t ιentry.
Proof
d t ιentry = dd ∪ ιentrye

=



λυ ∈ Υ.





d(g′) ∪ {g′, ḡ} υ = g′ ∈ G′

{ḡ} ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ




= λυ ∈ Υ.

{
{h̄, h′ | h′ ∈ d(g′)} υ = g′ ∈ G′ ∨ υ = ḡ ∈ G

{ġ} υ = ġ ∈ Ġ

=



λυ ∈ Υ.





{g′} ∪ {g′, ḡ} υ = g′ ∈ G′

{h̄ | h′ ∈ d(g′)} ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ




=



λυ ∈ Υ.





{g′} ∪ {g′, ḡ} υ = g′ ∈ G′

finout(d)(ḡ) ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ




= finout(d) t ιentry
2

2
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Abstract

We present a sound verification approach for verifying input/output properties of programs. Our
approach supports compositionality (you can build high-level I/O actions on top of low-level ones),
modularity (you can define and implement input/output actions without taking into account which
other actions exist) and other features.

1 Introduction

Many software verification approaches are based on Hoare logic. A Hoare triple consists of a precondition,
a program, and a postcondition. If a Hoare triple is true, then every execution of the program starting
from any state satisfying the precondition results in a state satisfying the postcondition. Hoare logic
has been extended to support e.g. aliasing, concurrency, and so forth. But a certain limitation is often
left untackled. Indeed, the pre- and postcondition of a Hoare triple typically constrain the state of
a program by only looking at the initial and final state of memory. This makes it possible to prove
e.g. that a quicksort implementation sorts properly, but it does not state that this result is e.g. printed
on the screen. For the user of a program, the proofs about the state of memory of a program are
useless if the user never sees the result on his screen. In the end, the program is supposed to correctly
perform input/output, a problem typically left untouched. However, this is not the challenge itself. The
interesting part of the challenge lays in the side constraints such as compositionality and modularity:

Modularity A programmer of a library typically does not consider all possible other libraries that
might exist. Still, a programmer of an application can use multiple libraries in his program, even though
these libraries do not know of each other’s existence. Similarly, we want to write specifications of a
library without keeping in mind existence of other libraries.

Compositionality In regular software development, a programmer typically does not call the low-
level system calls. Instead, he calls high-level libraries, which might be implemented in terms of other
libraries, implemented on top of other libraries, and so on. This is the concept of compositionality. The
verification approach for I/O should support programs written in a compositional manner. Furthermore,
it should be possible to write the formal I/O specifications themselves in a compositional manner, i.e.
in terms of other libraries’ I/O actions instead of in terms of the low-level system calls.

Other Besides compositionality and modularity, the I/O verification should also

• be sound (i.e. not searching for bugs but proving absence of bugs) and static (i.e. not detecting
errors at runtime, but proving that such errors will never occur)

• blend in well with existing verification techniques that solve other problems like aliasing (or solve
them itself)
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• support non-deterministic behaviour (e.g. operations can fail, or return unspecified values, like
reading user input)

• support underspecified specifications (e.g. the specifications describe two possibilities and the im-
plementor can choose freely.

• support arguments for operations (e.g. when writing to a file, the content and the filename are
arguments that should be part of the specifications)

• support concurrency

• support unspecified ordering of operations. If the order is unimportant, the specification should
not fix them such that the implementor can choose freely.

• support specifying ordering of operations, also if the operations are specified and implemented by
independent teams. e.g. it might be necessary that the put-shield-on operation happens before the
start-explosion operation.

• support non-terminating programs: a non-terminating program can still only do the allowed I/O
operations in the allowed order.

• support terminating programs: a program is only allowed to terminate if the I/O operations done
are as specified and invoked.

• support operations that depend on the outcome of the previous operation, e.g. a specification like
“read a number, and then print a number that is one higher than the read number”.

This technical report provides an elegant way to perform sound modular compositional input/output
verification based on separation logic and supports all the requirements explained above.

Section 2 describes the approach in a tutorial-style fashion, so it does not explain how it works but
only how to use it. Section 3 formalizes the approach. Section 4 gives a proof outline of an example.

2 How to use the approach: a tutorial

We describe the input/output verification approach in a tutorial-style fashion. So this section does not
explain how it works but only how to use it.

To get a better understanding, it might help to experiment. You can do so by using the VeriFast ver-
ifier, available for free from http://people.cs.kuleuven.be/~bart.jacobs/verifast/. The VeriFast
distribution contains some examples of verifying I/O properties of programs. At the moment of writing,
they are in the directory examples/io.

2.1 Warming up

When writing {P}C {Q}, we call P the precondition, Q the postcondition, and C a program (here, a
function is also considered a program). A pre- and a postcondition both consist of an assertion. An
assertion states some properties about the state of the program. Usually, the state of the program is the
state of memory of the program. A precondition expresses some properties the program is allowed to
assume to be true before execution; the postcondition are properties the program is supposed to make
true after every possible execution starting from a state where the precondition is true. If this is the
case, we say {P}C {Q} is true.

Formal verification consists of proving that, starting from any state where the precondition is true,
every execution of the program will result in a state for which the postcondition is true.

The pre- and postcondition together is what we call a contract. In this tutorial, we will learn only
how to write contracts that specify the input-output behavior of programs. The formal semantics are
out of scope of the tutorial and studied in section 3.
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2.2 Time

We give a small input-output contract, namely one where no input-output is allowed.

{}

// any implementation that doesn’t crash or race and does no input-output

{}

Indeed, the empty pre- and postcondition do not allow input/output. Let’s keep disallowing I/O
while making the contract bigger:

{time(t1)}

// any implementation that doesn’t crash or race and does no input-output

{time(t1)}

The precondition time(t_1) can conceptually be considered as stating that the current time is t1.
For starters, you can think of a time as a point in time you are used to, e.g 8 AM or noon. Performing
an input-output action would increase the time. The postcondition is the same as the precondition, so
the program must make sure all constraints on the list of performed (and future) input-output actions
still hold after execution. The only way to do this, is to not perform any input-output.

2.3 Actions

{time(t1) * print_char_io(t1, ‘h’, t2)}

print_char(‘h’);

{time(t2)}

The above contract states the only input-output behavior the program is allowed to perform, is writing
the character ‘h’, and that, after execution of the program, the program must have done this input-output
behavior.

print_char_io(t_1, ‘h’, t_2) states it is possible to go from time t1 to time t2 by writing the
character ‘h’. You can consider print_char_io(t_1, ‘h’, t_2) as a permission1 to print ‘h’ provided
the current time is t1, and a promise that the time will increase to t2 when doing so.

The postcondition says the time must become t2, and because the only “permission” to obtain t2 is
by performing the input-output action of writing ‘h’, the program must have written ‘h’ to satisfy the
postcondition. It cannot print ‘h’ twice, because it has no permission to print ‘h’ starting from a time
t2.

2.4 Choice

In the previous contract, there was only one permission provided to obtain t2. In the following contract,
two permissions are provided. As a result, the implementation can choose freely which of the two
permissions to use.

{time(t1) * print_char_io(t1, ‘h’, t2) * print_char_io(t1, ‘w’, t2)}

print_char(’w’);

{time(t2)}

So, the implementation can either print ‘h’ or ‘w’. It can even choose at runtime what to do (e.g. using
a (non I/O performing) random generator). It, however, can not do both.

2.5 Sequence

The following contract states the program must print “hi” and should be self-explaining by now.

{time(t1) * print_char_io(t1, ‘h’, t2) * print_char_io(t2, ‘i’, t3)}

print_char(‘h’);

print_char(‘i’)

{time(t3)}

Note that you can combine sequencing and choice, e.g.

1 technically, it is not always entirely correct to do so, but it most often works to reason about it as such.
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{time(t1) * print_char_io(t1, ‘h’, t2) * print_char_io(t2, ‘i’, t4)

* print_char_io(t1, ‘l’, t3) * print_char_io(t3, ‘o’, t4)

* print_char_io(t4, ‘!’, t5)}

// ... (implementation here)

{time(t5)}

The above program prints either “hi!” or “lo!”.

2.6 Defining actions

So far, we treated print_char_io as an action coming from nowhere. You can define your own action
in terms of other actions:

predicate print_string_io(t1, str, t2) =

if str = nil then

t1 = t2

else (

print_char_io(t1, head(str), t_between)

* print_string_io(t_between, tail(str), t2)

)

print_string_io(t1, ‘‘hi!’’, t2) can conceptually be considered a “shorthand” to

print_char_io(t1, ‘h’, t_between0)

* print_char_io(t_between0, ‘i’, t_between1)

* print_char_io(t_between1, ‘!’, t2)

Technically, it’s not really a shorthand but a predicate in the sense of [1]. When using a proof checker,
one can write predicates without understanding the underlying theory because errors will be spotted by
the proof checker.

Now we can finally write a clean hello world:

function print_string(str) =

{time(t1) * print_string_io(t1, str, t2)}

while str != nil

print_char(head(str));

str := tail(str)

{time(t2)}

function helloworld() =

{time(t1) * print_string_io(t1, ‘‘hello world!’’, t2)}

print_string(‘‘hello world!’’)

{time(t2)}

Of course, the implementation (and contract) of print_string is usually not considered part of the hello-
world program, but part of a (standard) library, just like C’s helloworld typically does not contain the
implementation of printf.

Note that we sneaked in compositionality: we defined an I/O action print_string_io in terms of
lower-level I/O actions (here print_char_io). You can now also define higher-level actions in terms of
print_string_io.

2.7 Interleaved actions

Quite often, the order in which things happen matters. For example, you might want to put on the
goggles before turning on the laser beam. But sometimes order does not matter, and in these cases it
would be annoying if the specifications restrict the order in which the implementor can write his program.
Sometimes the specification should leave space for the implementor by not being too restrictive.

An example: consider Unix’ cat, a small program that just writes what it reads. The following
contract would be annoying (read_string_io is similar to print_string_io and reads until e.g. end of
file).
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{time(t1) * read_string_io(t1, str, t2) * print_string_io(t2, str, t3)}

// ...

{time(t3)}

Indeed: the programmer’s implementation would be forced to first read everything, and then write
everything. This would be impractical, certainly in case of limited memory.

Let’s try again:

predicate readwrite_io(t1, str, t2) =

read_char_io(t1, c, t_between0)

* if c < 0 then (

t2 = t_between0

* str = nil

) else (

c == head(str)

* print_char_io(t1, head(str), t_between1)

* readwrite_io(t_between1, tail(str), t2)

)

{time(t1) * readwrite_io(t1, str, t2)}

// ...

{time(t2)}

This would certainly solve the memory problem. But it introduces another one. What if the implementor
wants to keep a buffer? For example, he might want to read 10 bytes, and then write 10 bytes, then read
10, and so forth. The contract disallows this. If we want to disallow this, we’re ready. But if we want to
allow the programmer to use any buffer size he wants, we can use a feature called split-join.

This is a solution:

{time(t1)

* split(t1, t2, t3)

* read_string_io(t2, str, t4)

* print_string_io(t3, str, t5)

* join(t4, t5, t6)

}

// ...

{time(t6)}

Here, the implementor can interleave reads and writes as much or as little as he wants. Technically, he is
even allowed to write everything before reading everything, if he is able to prove that in every execution
the written output will be the same as the read input (which he will not be able to do).

You should now be able to tell the difference with:

{time(t1) * read_string_io(t1, str, t2) * print_string_io(t1, str, t2)}

// ...

{time(t2)}

(Spoiler: with split you must both read and print, but the order between reading and printing is unspec-
ified. Without split, you must or read or print, but not both).

We’re not ready yet. We saw that the precondition of print_string is

time(t1) * print_string_io(t1, str, t2)

So, in order to call this function, one must have a “time” t1 that is equal to the first argument of
print_string_io. Which is, right after the precondition of cat, not the case.

One can obtain time(t2) * time(t3) out of time(t1) * split(t1, t2, t3). Hence the name
“split”: it splits time. Similarly, one can obtain time(t3) out of join(t1, t2, t3) * time(t1) * time(t2).
Join joins times together.

Note that without split-join, the approach would be completely unusable in practice.
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2.8 Time revisited

Earlier, we said you can consider a time like t1 as a point in the real-world time, like 8 AM or noon.
This might be a confusing way to reason since time is not always before or after another time. Indeed,
when splitting time, we obtain two times which do not have much relative ordering.

2.9 Other properties

The above part of the tutorial might give a misleading impression on the expressiveness of the approach.
Since the approach blends in with separation logic-based verification, we have all the expressiveness of
separation logic-based verification.

For example, if we want to express “No single program shall ever write to a file without opening it”,
we can simply do this by putting a permission in the postcondition of the function to open a file that
expresses that the file has been opened, and require this permission in the precondition of the function
to read from files. This was already possible before and the approach presented in this technical report
is compatible with it.

Also, the approach can be combined with concurrency. In case two threads can do actions where there
is no locking required, one can simply use split-join to allow any interleaving of these actions. If locking
is required, the permissions to perform the action can be included among the permissions protected by
the lock (the invariant of the lock).

3 Formalisation

We present a simple programming language and a verification approach.
v ∈ VarNames, vl ∈ ListVarNames, n, r ∈ Z, bio ∈ BioNames, l ∈ Lists, f ∈ FuncNames

l ::= nil | n :: l

e ::= n | v | e+ e | e− e | head(el)

el ::= l | vl | el ++ el | tail(el)

b ::= true | ¬ b | e = e | b ∧ b | e < e | el = el

c ::= skip | v := e | c ; c | if b then c else c | while b c | v := bio(e) | v := f((e), (el))

The language is standard except it supports doing Basic Input Output actions (BIOs). A BIO can
be thought of as a system call, but for readability we use names (bio ∈ BioNames) as their identifiers
instead of numbers. The arguments of a BIO can be considered as data written to the outside world,
while the return-value can be considered as data that is read from the outside world. This way, a BIO
allows doing both input and output.

We define Commands as the set of commands creatable by the grammar symbol “c” and quantify
over it with c. Stores = {sv ∪ sl | sv ∈ VarNames ⇀ Z ∧ sl ∈ ListVarNames ⇀ Lists}, quantified over
by s.

We assume a set FuncDefs ⊂ {(f, (v), (vl), c) | f ∈ FuncNames ∧ v ∈ VarNames∧ vl ∈ ListVarNames∧
c ∈ Commands ∧ mod(c) ∩ (v ∪ vl) = ∅}. Here, mod(c) returns the set of variables that command c
writes to. FuncDefs represents the functions of the program under consideration. Note that we disal-
low functions for which the body assigns to a parameter of the functions. We also disallow overlap in
parameter names.
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Evaluation of expressions
JnKs = n

Je1 + e2Ks = Je1Ks + Je2Ks
Je1 − e2Ks = Je1Ks − Je2Ks
JvKs = s(v) if v defined in s, otherwise 0.

Jhead(el)Ks = head(JelKls).
JlKls = l

JvlKls = s(vl) if vl defined in s, otherwise nil.

Jel1 ++ el2Kls = Jel1Kls ++ Jel1Kls.
Jtail(el)Kls = tail(JelKls).
JtrueKbs = true

J¬bKbs = ¬JbKbs
Jb1 ∧ b2Kbs = Jb1Kbs ∧ Jb2Kbs
Je1 = e2Kbs = (Je1Ks = Je2Ks)
Je1 < e2Kbs = Je1Ks < Je2Ks
Jel1 = el2Kbs = (Jel1Ks = Jel2Ks)

Notation For a (partial) function f , f [a := b] is the (partial) function {(x, y)|(x 6= a∧x ∈ dom(f)∧y =
f(x)) ∨ (x = a ∧ y = b)}.

For lists, we use the infix functions ++ for concatenation and :: for cons. We write the empty list as
nil.

We frequently notate lists with overline, e.g. e denotes a (implicitly quantified) list of expressions. We
leave the technical parts implicit, e.g. when two lists are expected to have the same length. Sometimes
we use such a list as a set. We abbreviate JeK as JeK. We overline sets to obtain the set of lists of elements
of this set, e.g. VarNames denotes the set of lists of variable names.

For an assertion P , P [e/v] is the formula obtained by replacing all free occurrences of the variable v
with e. We write multiple such replacements as P [e/v]. We also use this notation for replacing logical
variables, logical expressions, etc.

For multisets A and B, A−B denotes the multiset obtained by removing the occurrences of B in A,
e.g. {[1, 1, 1, 2, 2, 3]} − {[1, 2, 2]} = {[1, 1, 3]}. A + B yields the multiset such that for every x, the number
of occurrences of x in A + B (which can be zero) equals the number of occurrences of x in A plus the
number of occurrences of x in B.

Step semantics We define Traces as the set of lists over the set {bio(n) | bio ∈ BioNames ∧ n ∈⋃
m>0 Zm}. An element of the list, bio(n, r), expresses the BIO bio has happened with arguments n and

return value r. The order of the items in the list expresses the order in time in which they happened.
We quantify over Traces with τ .

Continuations = Commands ∪ {partial,done}, quantified over by κ.
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Assign

s, v := e ⇓ s[v := JeKs],nil,done

AssignList

s, vl := el ⇓ s[vl := JelKls],nil,done

IfThen
JbKbs = true s, cthen ⇓ s′, τ, κ

s, if b then cthen else celse ⇓ s′, τ, κ

IfElse
JbKbs = false s, celse ⇓ s′, τ, κ

s, if b then cthen else celse ⇓ s′, τ, κ

WhileIn
JbKbs = true s, c ;while b c ⇓ s′, τ, κ

s,while b c ⇓ s′, τ, κ

WhileOut
JbKbs = false

s, while b c ⇓ s,nil,done

Skip

s, skip ⇓ s,nil,done

Seq2

s1, c1 ⇓ s2, τ2,done s2, c2 ⇓ s3, τ3, κ
s1, c1; c2 ⇓ s3, τ2 ++ τ3, κ

Seq

s1, c1 ⇓ s2, τ2,partial
s1, c1; c2 ⇓ s2, τ2,partial

Empty

s, c ⇓ s,nil,partial

Bio
i ∈ Z

s, v := bio(e) ⇓ s[v := i], bio(JeKs, i) :: nil,done

FuncCall

∅[v, vl := JeKs, JelKs], c ⇓ sf , τ, κ (f, (v), (vl), c) ∈ FuncDefs

s, v := f((e), (el)) ⇓ s[v := JresultKsf ], τ, κ

Note that the step semantics do not only support terminating runs, but also partial runs. This allows
us to verify the input/output behavior of programs that do not terminate.

Assertions We define Times as the set of times and quantify over it with t. Intuitively, a time t can
be considered as a name for a timestamp with unknown value, or as a set of constraints on a timestamp.

We define Chunks as {time(t) | t ∈ Times} ∪ {bio(t1, n, r, t2) | bio ∈ BioNames ∧ n ∈ ⋃m≥0 Zm ∧ r ∈
Z ∧ t1, t2 ∈ Times} and Heaps as Chunks→ N. We will use the heap for permissions (rather than memory
footprint) and treat it like separation logic [2].

V n ∈ IntegerLogicalVarNames, V t ∈ TimeLogicalVarNames, V l ∈ ListLogicalVarNames,
p ∈ PredNames, V ∈ IntegerLogicalVarNames ∪ TimeLogicalVarNames ∪ ListLogicalVarNames.

En ::= n | v | V n | En + En | En − En | head(El)

Et ::= t | V t

El ::= l | vl | V l | El ++El | tail(El)

B ::= true | En = En | Et = Et | El = El | ¬B | En < En

P,Q,R ::= B | emp | P ? P | bio(Et, En, En, Et) | split(Et, Et, Et) | join(Et, Et, Et) | time(Et) |
p(En, El, Et) | P ∨ P | ∃V. P

We assume all sets of variable names (IntegerLogicalVarNames, VarNames, ...) to be disjoint.
We use P,Q and R to quantify over the assertions formed by grammar symbol P.
We define Interpretations = {in ∪ it ∪ il | in ∈ IntegerLogicalVarNames ⇀ Z ∧ it ∈

TimeLogicalVarNames ⇀ Times ∧ il ∈ ListLogicalVarNames ⇀ Lists} and quantify over it with i.
An interpretation maps logical variables to values.

emp denotes the heap is empty and ? is the separating conjunction [2]. The existential quantors for
integers, times, and lists are necessary such that they can be used in definitions of inductive predicates.

We use predicates based on and similar to [1]. A predicate can be considered as a named assertion,
but the assertion can contain the predicate name to allow recursion. A predicate definition consists of
a predicate name, a number of integer argument names, a number of list argument names, a number of
time argument names (all argument names distinct), and an assertion. We disallow mutual recursion.
We write PredDefs for the set of predicate definitions for the program under consideration. This is
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the set of definitions for (the contracts of) a particular program, not the set of all possible definitions.

PredDefs ⊂ PredNames× (V n)× (V l)× (V t)× P.
An assertion bio(t1, e, er, t2) expresses the permission to perform the BIO bio with arguments e at

timestamp t1 and includes the prediction that performing that BIO at the given time will return er and
finish at time t2.

The split and join assertions allow interleaved actions and choosing freely which actions happen
first. We refer to the tutorial for better insight in the expressiveness of these assertions.

In the tutorial, we wrote assertions of the form if b then P else Q. This is shorthand notation for
(b ? P ) ∨ (¬b ? Q).

Evaluation of assertion expressions
JnKs,i = n

JvKs,i = s(v) if v defined in s, otherwise 0.

JV nKs,i = i(V n) if V n defined in i, otherwise 0.

JV tKs,i = i(V t) if V t defined in i, otherwise undefined.

JEn
1 + En

2 Ks,i = JEn
1 Ks,i + JEn

2 Ks,i
JEn

1 − En
2 Ks,i = JEn

1 Ks,i − JEn
2 Ks,i

JlKs,i = l.

JvlKs,i = s(vl) if vl defined in s, otherwise nil.

JV lKs,i = i(V l) if V l defined in i, otherwise nil.

JEl
1 ++El

2Ks,i = JEl
1Ks,i ++ JEl

2Ks,i.
Jhead(El)Ks,i = head(JElKs,i)
Jtail(El)Ks,i = tail(JElKs,i)
JEn

1 = En
2 Ks,i = (JEn

1 Ks,i = JEn
2 Ks,i)

JEt
1 = Et

2Ks,i = (JEt
1Ks,i = JEt

2Ks,i)
JEl

1 = El
2Ks,i = (JEl

1Ks,i = JEl
2Ks,i)

J¬BKs,i = ¬JBKs,i
JEn

1 < En
2 Ks,i = JEn

1 Ks,i < JEn
2 Ks,i

JtrueKs,i = true

Satisfaction relation of formulae For predicates, we assume a context I which we will define later.
I ⊆ PredNames × Z × Lists × Times × Heaps. I expresses, for a given predicate name and argument
values, the heap chunks a predicate assertion covers.

I, s, h, i |= B ⇐⇒ JBKs,i = true ∧ h = ∅
I, s, h, i |= bio(t1, En, En

r , t2) ⇐⇒ h = {[bio(t1, JEn, En
r Ks,i, t2)]}

I, s, h, i |= join(t1, t2, t3) ⇐⇒ h = {[join(t1, t2, t3)]}
I, s, h, i |= split(t1, t2, t3) ⇐⇒ h = {[split(t1, t2, t3)]}
I, s, h, i |= time(t) ⇐⇒ h = {[time(t)]}
I, s, h, i |= emp ⇐⇒ h = {[ ]}
I, s, h, i |= P ? Q ⇐⇒ ∃h1, h2 . h1 + h2 = h ∧ I, s, h1 |= P ∧ I, s, h2 |= Q

I, s, h, i |= p(En, El, t) ⇐⇒ (p, (JEnKs,i), (JElK), (t), h) ∈ I
I, s, h, i |= P ∨Q ⇐⇒ (I, s, h, i |= P ) ∨ (I, s, h, i |= Q)

I, s, h, i |= ∃V n. P ⇐⇒ ∃n ∈ Z. I, s, h, i |= P [V n := n]

I, s, h, i |= ∃V l. P ⇐⇒ ∃l. I, s, h, i |= P [V l := l]

I, s, h, i |= ∃V t. P ⇐⇒ ∃t. I, s, h, i |= P [V t := t]
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Note that the satisfaction relation is undefined for formulae with unbound variables of V n, V l and
V l.

We assumed I so far but did not define it yet.

I0 = ∅
In+1 = { (p, (n), (l), (t), h) | ∃V n, V l, V t, P. (p, (V n), (V l), (V t), P ) ∈ PredDefs ∧

In, ∅, h, ∅ |= P [n, l, t/V n, V l, V t] }

We define I as
⋃

n∈N In.

Validity of Hoare triples Intuitively, the Hoare triple {P} c {Q} expresses that the program c satisfies
the contract with precondition P and postcondition Q.

For examples of Hoare triples and their meaning, we refer to the tutorial (section 2).
Note that a program that satisfies the contract cannot perform any other I/O operations, cannot do

them in another order, cannot do them more than once, etc.
We define a relation traces ⊂ (Heaps × Traces × Heaps). {h1} τ {h2} denotes (h1, τ, h2) ∈ traces. It

expresses that τ is allowed by h1. An implementation is thus allowed to produce the trace τ . Thus, a
heap is mapped to a set of allowed traces. Remember that an element in the heap can make a prediction
about the world, e.g. bio(t1, n, r, t2) predicts performing the BIO bio with arguments n (at a certain
time) will have return-value r. Thus, a heap can contradict itself, e.g. {[time(t1), some bio(t1, 1, 2, t2),
some bio(t1, 1, 3, t2)]} contradicts itself because it says performing the BIO some bio (at time t1 with
argument 1) will return 2 and will return 3. After a BIO that violates a prediction, all further BIOs are
allowed.

TraceBio
r = r′ ⇒

{
h+ {[time(t2)]}

}
τ
{
h′}{

h+ {[time(t1), bio(t1, n, r, t2)]}
}
bio(n, r′) :: τ

{
h′
}

TraceNil

{
h
}

nil
{
h
}

TraceSplit{
h+ {[time(t2), time(t3)]}

}
τ
{
h′
}

{
h+ {[time(t1), split(t1, t2, t3)]}

}
τ
{
h′
}

TraceJoin {
h+ {[time(t3)]}

}
τ
{
h′
}

{
h+ {[time(t1), time(t2), join(t1, t2, t3)]}

}
τ
{
h′
}

We define validity of a Hoare triple. Intuitively, it expresses that any execution starting from a state
(a store, a heap and an interpretation) that satisfies the precondition, results in a trace that is allowed by
the heap. In case the execution is a finished one (i.e. the program terminated), the state at termination
must satisfy the postcondition.

∀P, c,Q. |= {P} c {Q} ⇐⇒
∀s, h, i. I, s, h, i |= P ⇒
∀s′, τ ′, κ′. s, c ⇓ s′, τ ′, κ′ ⇒
∃h′.

{
h
}
τ ′
{
h′
}
∧

(κ′ = done⇒ I, s′, h′, i |= Q)

In case you expected a universal quantifier for h′, note that the concrete execution does not use a
heap. If it would use a heap, h′ would be introduced in the universal quantification together with s′, τ ′

and κ′.
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Proof rules

Assignment

{P [e/v]} v := e {P}
AssignmentList

{P [el/vl]} vl := el {P}

Composition
{P1} c1 {P2} {P2} c2 {P3}

{P1} c1; c2 {P3}

Consequence

P1 ⇒ P2 {P2} c {P3} P3 ⇒ P4

{P1} c {P4}

While
{b ? P} c {P}

{P}while b c {¬b ? P}
Skip

{P} skip {P}

If
{P ? b} cthen {Q} {P ? ¬b} celse {Q}
{P} if b then cthen else celse {Q}

Disjunction
{P1}c{Q} {P2}c{Q}
{P1 ∨ P2} c {Q}

Bio

{P [er/v] ? bio(t1, e, er, t2)?time(t1)} v := bio(e) {P?time(t2)}

Split
{time(t2)?time(t3)} c {time(t4)}

{time(t1)?split(t1, t2, t3)} c {time(t4)}

Join
{time(t3)} c {time(t4)}

{time(t1)?time(t2)?join(t1, t2, t3)} c {time(t4)}

Frame
{P} c {Q} fv(R) ∩ mod(c) = ∅

{P ? R} c {Q ? R}

FuncCall

{P} c {Q} fv(P ) ⊆ (v ∪ vl)
fv(Q) ⊆ (v ∪ vl ∪ {result}) {result, v} ∩ fv(e ∪ el) = ∅ (f, (v), (vl), c) ∈ FuncDefs

{P [e, el/v, vl]} v := f((e), (el)) {Q[e, el, v/v, vl, result]}

Exists
{P} c {Q}

{∃V. P} c {∃V. Q}

Substitution

{P} c {Q} fv(En, El) ∩mod(c) = ∅
{P [En, El, Et/V n, V l, V t]} c {Q[En, El, Et/V n, V l, V t]}

Here, fv of an expression or formula returns the set of free variables of the expression or formula.
The frame rule is studied in [2].

We say a Hoare triple {P} c {Q} is derivable, written ` {P} c {Q}, if it can be derived using the
above proof rules.

Theorem 3.1 (Soundness). ∀P, c,Q. ` {P} c {Q} ⇒ |= {P} c {Q}.
A proof is future work.

4 Example

Consider the example below. The contract specifies it reads from standard input (until end-of-file), and
writes what it reads to both standard output and standard error. It is written in a compositional manner:
an action tee_out represents the action of writing to both standard output and standard error. The
action that represents the whole program is built upon the tee_out action. The specifications allow a
read-buffer of any size. The implementation chooses a read-buffer of size 2. This example is also shipped
with VeriFast. At the moment of writing you can find it in examples/io/tee/tee buffered.c in the
VeriFast release ZIP or tar.

predicate tee_out(t1, c, t2) =

split(t1, t_stdout1, t_stderr1)

* print_char(t_stdout1, c, t_stdout2)

* print_char_stderr_io(t_stderr1, c, t_stderr2)
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* join(t_stdout2, t_stderr2, t2)

function tee_out(c) =

{

time(t1) * tee_out(t1, c, t2)

}

tmp := write_char(c);

tmp := write_char_stderr(c)

{

time(t2)

}

predicate reads(t1, contents, t2) =

read(t1, c, t_read)

* if c >= 0 then

length(contents) > 0 * c == head(contents)

* reads(t_read, tail(contents), t2)

else

t2 == t_read * contents == nil

predicate tee_out_string(t1, contents, t2) =

if contents == nil then

t2 == t1

else

tee_out(t1, head(contents), t_out)

* tee_out_string(t_out, tail(contents), t2)

predicate tee(t1, text, t2) =

split(t1, t_read1, t_write1)

* reads(t_read1, text, t_read2)

* tee_out_string(t_write1, text, t_write2)

* join(t_read2, t_write2, t2)

function main() =

{

time(t1) * tee(t1, text, t2)

}

c2 := 0;

while (c2 >= 0) (

c1 := read_char();

if (c1 >= 0) (

c2 := read_char();

tmp := tee_out(c1);

if (c2 >= 0)(

tmp := tee_out(c2)

)

) else (

c2 := -1

)

)

{

time(t2)

}

We give a proof outline. We start with the function tee out.

{time(t1) * tee_out(t1, c, t2)}
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{time(t_stdout1) * time(t_stderr1))

* print_char_io(t_stdout1, c, t_stdout2)

* print_char_stderr_io(t_stderr1, c, t_stderr2)

* join(t_stdout2, t_stderr2, t2)

}

write_char(c);

{time(t_stdout2) * time(t_stderr1))

* print_char_stderr_io(t_stderr1, c, t_stderr2)

* join(t_stdout2, t_stderr2, t2)

}

write_char_stderr(c)

{time(t_stdout2) * time(t_stderr2)) * join(t_stdout2, t_stderr2, t2)}

{time(t2)}

Before looking at the main function, we define a helper predicate:

predicate invariant(c2, t2) =

if c2 >= 0 then

time(t_r1) * reads(t_r1, text, t_r2)

* time(t_w1) * tee_out_string(t_w1, text, t_w2)

* join(t_r2, t_w2, t2)

else

time(t2)

Next, we give a proof outline for the main function:

{ time(t1) * tee(t1, text, t2) }

{ 0 = 0 * time(t1) * tee(t1, text, t2)}

c2 := 0;

{ invariant(c2, t2) }

while (c2 >= 0) (

{

c1’ = c1’ * time(t_r1) * read(t_r1, c1’, t_rb1) *

if c1’ >= 0 then ( length(text’) > 0 * c1’ = head(text’) * reads(t_rb1, tail(text’), t_r2) )

else ( t_r2 = t_rb1 * text’ = nil )

* time(t_w1) * tee_out_string(t_w1, text’, t_w2)

* join(t_r2, t_w2, t2)

}

c1 := read_char();

{

time(t_rb1) *

if c1 >= 0 then ( length(text’) > 0 * c1 = head(text’) * reads(t_rb1, tail(text’), t_r2) )

else ( t_r2 = t_rb1 * text’ = nil )

* time(t_w1) * tee_out_string(t_w1, text’, t_w2)

* join(t_r2, t_w2, t2)

}

if (c1 >= 0) (

{

c2’ = c2’ * time(t_rb1) * read(t_rb1, c2’, t_rb2)

* length(text’) > 0 * c1 = head(text’)

* if c2’ >= 0 then ( length(tail(text’)) > 0 * c2’ = head(tail(text’))

* reads(t_rb2, tail(tail(text’)), t_r2) )

else ( t_r2 = t_rb2 * tail(text’) = nil )

* time(t_w1) * tee_out_string(t_w1, text’, t_w2)

* join(t_r2, t_w2, t2)

}

c2 := read_char();

{
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time(t_rb2) * length(text’) > 0 * c1 = head(text’)

* if c2 >= 0 then ( length(tail(text’)) > 0 * c2 = head(tail(text’))

* reads(t_rb2, tail(tail(text’)), t_r2) )

else t_r2 = t_rb2 * tail(text’) = nil

* time(t_w1) * tee_out(t_w1, head(text’), t_wb1)

* tee_out_string(t_wb1, tail(text’), tw2)

* join(t_r2, t_w2, t2)

}

tmp := tee_out(c1);

{

time(t_rb2) * length(text’) > 0 * c1 = head(text’)

* if c2 >= 0 then ( length(tail(text’)) > 0 * c2 = head(tail(text’))

* reads(t_rb2, tail(tail(text’)), t_r2) )

else ( t_r2 = t_rb2 * tail(text’) = nil )

* time(t_wb1) * tee_out_string(t_wb1, tail(text’), tw2)

* join(t_r2, t_w2, t2)

}

if (c2 >= 0)(

{

* time(t_rb2) * reads(t_rb2, tail(tail(text’)), t_r2)

* length(text’) > 1 * c1 = head(text’) * c2 = head(tail(text’))

* time(t_wb1) * tee_out(t_wb1, head(tail(text’)), t_wb2)

* tee_out_string(t_wb2, tail(tail(text’)), t_w2)

* join(t_r2, t_w2, t2)

}

tmp := tee_out(c2);

{

* time(t_rb2) * reads(t_rb2, tail(tail(text’)), t_r2)

* length(text’) > 1 * c1 = head(text’) * c2 = head(tail(text’))

* time(t_wb2) * tee_out_string(t_wb2, tail(tail(text’)), t_w2)

* join(t_r2, t_w2, t2)

}

) else (

{ c2 < 0 * time(t2) }

)

{ invariant(c2, t2) }

) else (

{ -1 = -1 * time(t2) }

c2 := -1;

{ invariant(c2, t2) }

)

{ invariant(c2, t2) }

)

{ time(t2) }
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Abstract

VeriFast is a verifier for single-threaded and multithreaded C and Java
programs. It takes a C or Java program annotated with preconditions and
postconditions in a separation logic notation, and verifies statically that
these preconditions and postconditions hold, using symbolic execution.
In plain separation logic, a thread either has full ownership of a memory
location and knows the value at the location, or it has no ownership and
no knowledge of the value of the location. Existing work proposes a mar-
riage of rely-guarantee reasoning and separation logic to address this. In
this document, we describe the shared boxes mechanism, which marries
separation logic and rely-guarantee reasoning in VeriFast.

We introduce and motivate the shared boxes mechanism using a min-
imalistic example and a realistic example. The minimalistic example is
a counter program where one thread continuously increments a counter
and other threads check that the counter does not decrease. For the real-
istic example, we verify functional correctness of the Michael-Scott queue,
a lock-free concurrent data structure. We define the syntax and seman-
tics of a simple C-like programming language, and we define a separation
logic with shared boxes and prove its soundness. We discuss the imple-
mentation in VeriFast and the examples we verified using our VeriFast
implementation.

1 A Minimalistic Example

Consider the following program:

c := cons(0);
fork (while true do 〈n := [c]; [c] := n + 1〉);
while true do fork (〈m := [c]〉; 〈m′ := [c]〉;assert m ≤ m′)

We use the usual notation for heap-manipulating programs from the separation
logic literature. The command x := cons(e) allocates a sequence of consecutive
heap locations and initializes them with the values of the expressions e; the
example allocates a single cell (which we will refer to as the counter cell), and
initializes it to zero. We use the following notation for concurrent programming:
command fork c executes command c in a new thread; 〈c〉 denotes atomic
execution of command c.
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After allocating the counter cell and storing its address in variable c, the
program forks one thread that repeatedly atomically increments the cell, and
an unbounded number of threads that inspect the cell twice and assert that its
value increases monotonically.

We wish to prove that the assert command never fails. Notice that this
program cannot be verified in plain separation logic, since no single thread can
be the exclusive owner of the counter cell. Concurrent Separation Logic (CSL),
which extends separation logic with support for critical sections accessing shared
resources with resource invariants, also does not support this example directly,
since a resource invariant could only state that the cell’s value is nonnegative
and could not describe the evolution of the counter cell’s value.

A combination of CSL and ghost cells with fractional permissions [1, 6]
could verify this example, using a dynamic form of the resource invariant-based
Owicki-Gries method [8, 6] for reasoning about concurrent programs: the shared
resource containing the counter cell could be extended with a ghost linked list
built from ghost cells. Each inspector thread, during its first inspection of the
counter cell value, would add a ghost node to the end of this list, containing as
its value the observed counter cell value. The thread would retain in its local
state a fraction of the linked list, from the head up to the thread’s node. The
resource invariant would state that each node value is a lower bound for the
current counter cell value. Upon the second inspection, the thread could match
up the linked list in the resource with its local knowledge and conclude that the
new counter cell value must be at least the previously observed value.

Such building of ghost objects probably yields a complete proof system. Still,
in the present document, we present an alternative approach, which allows the
proof author to express his insights more conveniently and more directly: shared
boxes.

A shared box can be thought of at a high level as a shared resource from
CSL equipped with a two-state invariant (or, equivalently, a rely condition)
instead of a regular single-state invariant. This enables the proof author to
express directly any desired constraints on the evolution of the shared resource.
Furthermore, we allow assertions in thread proof outlines to include shared box
assertions, assertions about the state of the shared resource that are checked to
be stable with respect to the shared box’s rely condition.

To verify the example, we put the counter cell in a shared box whose rely
condition states that the cell’s value may not decrease. Each inspector thread’s
proof outline, between the two inspections, includes a shared box assertion stat-
ing that the counter cell’s value is bounded below by the first observed value.

This general idea is very similar to what has been proposed before (e.g. [9,
4, 3, 2]). However, in order to integrate this mechanism conveniently into our
VeriFast verification tool, we have made a number of design decisions:

• Shared boxes can be created dynamically, but each shared box must be
an instance of a statically declared box class.

• A box class has a name and a parameter list.

• A box class’s rely condition is specified in the form of the combination of
a box invariant and a set of action specifications.

• A box invariant is a VeriFast separation logic assertion that may use the
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box class parameters and may bind additional logical variables, together
with the box class parameters called the box state variables.

• An action specification consists of an action name, a parameter list, a pre-
condition, and a postcondition. The precondition is a boolean (i.e. pure,
non-spatial) expression over the action parameters and the box state vari-
ables. The postcondition is a boolean expression over the action parame-
ters and two versions of the box state variables: the old versions and the
new versions.

• Whenever a thread mutates the resources held by a box, it must specify an
action name and action arguments, and VeriFast checks that the operation
complies with the action precondition and postcondition.

• Shared box assertions are expressed as box handle predicate assertions,
referring to one of a set of box handle predicates (or handle predicates for
short) declared as part of the box class. A handle predicate declaration
consists of a name, a parameter list, and a handle predicate invariant,
which is a boolean expression over the handle parameters and the box
state variables.

• Each handle predicate declaration must include a preserved-by clause for
each box class action, which may state any ghost commands (such as
lemma invocations) required to establish that the handle predicate invari-
ant is preserved by the action.

We formalize the syntax of our proof system. Let B ∈ B range over box class
names, A ∈ A over action names, P ∈ P over handle predicate names, x ∈ X
over program variable names, and X ∈ L over logical variable names. The
syntax of box classes, assertions a, and program commands c is as follows:

boxClass ::= boxclass B(X) { inv ∃X. a actionSpec handlePred }
actionSpec ::= action A(X) req b ens b

handlePred ::= handlePred P (X) { inv b }
e ::= z | x | X | e+ e | e− e
b ::= e = e | e < e | b ∧ b | ¬b
f ::= e/e

a ::= b | a ∨ a | ∃X. a | e f7→ e | a ∗ a | [f ]B(e, e) | P (e, e, e)
c ::= x := e | c; c | if b then c else c | while b do c

| x := cons(e) | x := [e] | [e] := e | 〈c〉 | fork c

We assume that logical variables X do not appear inside program commands
c. Notice that we do not formalize preserved-by clauses; we will formalize the
stability constraints but leave the mechanism for proving them unspecified. Our

proof system supports fractional permissions f on points-to assertions e
f7→ e

and box assertions [f ]B(e, e). The first argument of a box assertion is the box
identifier ; the first argument of a handle predicate assertion P (e, e, e) is the
handle identifier, and the second argument is the box identifier.

The box class declaration and proof outline for the example program are
shown in Figure 1. Notice that in the formal system, in an action postcondition,
we use unprimed versions of the box invariant variables to denote the old values,
and primed versions to denote the new values.
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boxclass incrbox(c) {
inv ∃v. c 7→ v
action incr() req true ens v ≤ v′

handlePred observed(val) { inv val ≤ v }
}

{true}
c := cons(0);
{c 7→ 0}
{[1]incrbox( , c)} CreateBox
fork (
{[ ]incrbox( , c)}
while true do
〈n := [c]; [c] := n + 1〉 Action incr()

);
{[ ]incrbox( , c)}
while true do (
〈m := c〉;
{∃b. [ ]incrbox(b, c) ∗ observed( , b,m)}
〈m′ := c〉;
{[ ]incrbox( , c) ∗m ≤ m′}
assert m ≤ m′

)

Figure 1: Proof of the minimalistic example program
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StablePred
boxclass B(X) {
inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred P (U) { inv b′′ }
· · ·

}

∀v, w,w′, z, u, r, r′.
(r � (I ∧ b′′)[vwu/XY U ]) ∧
(r′ � I[vw′/XY ]) ∧
(b ∧ b′)[vwzw′/XY ZY ′]
⇒ b′′[vw′u/XY U ]

A ` stable P

Stable
boxclass B(X) { · · · action A1..n · · · handlePred P1..m · · · }

∀i, j. Ai ` stable Pj

stable B

CreateBox
boxclass B(X) { inv ∃Y . I · · · } {[1]B( , v) ∗R} c {Q}

{I[vw/XY ] ∗R} c {Q}

Action
boxclass B(X) {

inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred Pi(U i) { inv bi }

}

∀w.
{I[vw/XY ] ∗Πibi[vwui/XY U i] ∗R}
c

{∃w′. I[vw′/XY ] ∗Πj(b
′′
j ∨ b′j [vw′u′j/XY U

′
j ]) ∗ (b ∧ b′)[vww′z/XY Y ′Z] ∗R′}

{[π]B(β, v) ∗ΠiPi( , β, ui) ∗R} 〈c〉 {[π]B(β, v) ∗Πj(b
′′
j ∨ P ′j( , β, u′j)) ∗R′}

Figure 2: Proof rules
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Our proof system extends separation logic with extra rules for box class
stability checking, box creation, and shared box mutation. The extra rules are
shown in Figure 2. Note: there are restrictions on nested applications of the
Action rule. For now, we assume that no such nested applications occur.

We assume that each declared box class B is stable: stable B. This means
that each of the class’ handle predicates is stable with respect to each of its
actions. Stability of a handle predicate with respect to an action means that
given arbitrary values v of the box class parameters, old values w and new values
w′ of the box invariant variables, values z of the action parameters, and values u
of the handle predicate parameters, and arbitrary old and new resource bundles
r and r′ representing the old and new contents of the shared box, if the box
invariant holds in the pre- and post-state, the action pre- and postcondition
hold, and the handle predicate invariant holds in the pre-state, then the handle
predicate invariant holds in the post-state.

Rule CreateBox allows a shared box instance to be created at any time
provided its invariant holds for some part of the current locally held resources.
Those resources are then consumed and a box chunk (a resource representing
the existence of a shared box instance) is produced.

Rule Action allows the verification of an atomic command 〈c〉 that accesses
the resources held by a shared box instance of class B, with identifier β, and
with arguments v. This requires that the thread own a fraction π of the box
chunk. During verification of command c, the box invariant becomes available.
It must be re-established before the atomic command is exited. Furthermore,
local resources R may be passed into the atomic command and resources R′ may
be extracted and retained locally. Also, handle predicates may be consumed and
produced. Any number of handle predicate chunks Pi for the box instance may
be consumed on entry; their invariants bi are assumed to hold in the pre-state.
Any other number of handle predicates P ′j may be produced on exit, provided
their invariants b′j are established in the post-state. They may be produced
conditionally under conditions ¬b′′j . It is checked that there is some action A
and argument list z such that the action’s precondition and postcondition are
satisfied by the command.

In rule Action as presented in Figure 2, handle identifiers are ignored.
Handle identifiers are important in advanced scenarios which will be discussed
in a later section.

We show the example proof in the form of an annotated C program, as
accepted and successfully verified by VeriFast, in Figure 3. This example is in-
cluded in the VeriFast distribution in file examples/shared_boxes/incrbox.c.

2 Soundness Proof

In this section, we formalize the soundness property targeted by our proof system
and then we prove it.

2.1 Operational Semantics

We first formalize a small-step operational semantics for our programming lan-
guage.
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#include <threading.h>
#include "atomics.h"
/*@ box_class incr_box(int *x) {

invariant *x |-> ?value;
action increase();

requires true;
ensures old_value <= value;

handle_predicate observed(int v) {
invariant v <= value;
preserved_by increase() {}

}
} @*/
//@ predicate_family_instance thread_run_data(inc)(int* x) = [_]incr_box(_, x);
void inc(int *x) /*@ : thread_run @*/

/*@ requires thread_run_data(inc)(x); @*/ /*@ ensures true; @*/ {
//@ open thread_run_data(inc)(x);
while(true) /*@ invariant [_]incr_box(_, x); @*/ {

;
/*@
consuming_box_predicate incr_box(_, x)
perform_action increase()
{ @*/ atomic_increment(x); /*@ };
@*/

}
}
void reader(int *x) /*@ requires [_]incr_box(_, x); @*/ /*@ ensures false; @*/ {

for (;;) /*@ invariant [_]incr_box(_, x); @*/ {
;
/*@
consuming_box_predicate incr_box(_, x)
perform_action increase()
{ @*/ int m0 = atomic_load_int(x); /*@ }
producing_fresh_handle_predicate observed(m0);
@*/
/*@
consuming_box_predicate incr_box(_, x)
consuming_handle_predicate observed(_, m0)
perform_action increase()
{ @*/ int m1 = atomic_load_int(x); /*@ };
@*/
assert(m0 <= m1);

}
}
int main() /*@ requires true; @*/ /*@ ensures true; @*/ {

int x;
//@ create_box id = incr_box(&x);
//@ leak incr_box(id, &x);
//@ close thread_run_data(inc)(&x);
thread_start(inc, &x);
reader(&x);

}

Figure 3: The minimalistic example as an annotated C program accepted by
VeriFast.
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The set of machine configurations γ ∈ Configs is defined as follows:

s ∈ Stores = X → Z
R ∈ Heaps = Z⇀ Z

κ ∈ Continuations ::= done | c;κ
θ ∈ ThreadConfigs = Stores × Continuations

γ ∈ Configs = Heaps × (ThreadConfigs → N)

A configuration consists of a heap and a multiset1 of thread configurations. A
thread configuration θ consists of a store and a continuation. A continuation is
either done, indicating that the thread has finished, or a command followed by
another continuation.

We use the notation {[a, b, c]} to represent a multiset: {[a1, . . . , an]} = 0 +
{[a1]}+ · · ·+{[an]} where 0 = λx. 0 represents the empty multiset and M +{[a]} =
M [a := M(a) + 1]. We use the notations + and ] interchangeably for multiset
addition.

We define a big-step relation ⇓ ⊆ (Heaps ×Stores ×Commands)× (Heaps ×
Stores ∪ {abort}) for commands that may appear inside atomic commands:

Assign

(R, s, x := e) ⇓ (R, s[x := s(e)])

Lookup
s(e) ∈ domR

(R, s, x := [e]) ⇓ (R, s[x := R(s(e))])

LookupAbort
s(e) /∈ domR

(R, s, x := [e]) ⇓ abort

Mutate
s(e) ∈ domR

(R, s, [e] := e′) ⇓ (R[s(e) := s(e′)], s)

MutateAbort
s(e) /∈ domR

(R, s, [e] := e′) ⇓ abort

SeqAtomic

(R, s, c) ⇓ (R′, s′) (R′, s′, c′) ⇓ o
(R, s, c; c′) ⇓ o

SeqAbort

(R, s, c) ⇓ abort

(R, s, c; c′) ⇓ abort

IfTrueAtomic
s(b) (R, s, c) ⇓ o

(R, s, if b then c else c′) ⇓ o

IfFalseAtomic
¬s(b) (R, s, c′) ⇓ o

(R, s, if b then c else c′) ⇓ o

AtomicAtomic
(R, s, c) ⇓ o

(R, s, 〈c〉) ⇓ o
1A multiset over elements of a set A is a function M : A → N where M(a) is the number

of occurrences of a in M .
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We define a small-step relation ⊆ Configs×(Configs∪{abort}) as follows:

Cons
0 < `

{`, . . . , `+ n− 1} ∩ dom(R) = ∅ R′ = R[` := s(e1), . . . , `+ n− 1 := s(en)]

(R, {[(s, x := cons(e1, . . . , en);κ)]} ]Θ) (R′, {[(s[x := `], κ)]} ]Θ)

Seq

(R, {[(s, (c; c′);κ)]} ]Θ) (R, {[(s, c; (c′;κ))]} ]Θ)

IfTrue
s(b)

(R, {[(s, if b then c else c′;κ)]} ]Θ) (R, {[(s, c;κ)]} ]Θ)

IfFalse
¬s(b)

(R, {[(s, if b then c else c′;κ)]} ]Θ) (R, {[(s, c′;κ)]} ]Θ)

WhileTrue
s(b)

(R, {[(s,while b do c;κ)]} ]Θ) (R, {[(s, c;while b do c;κ)]} ]Θ)

WhileFalse
¬s(b)

(R, {[(s,while b do c;κ)]} ]Θ) (R, {[(s, κ)]} ]Θ)

Fork

(R, {[(s, fork c;κ)]} ]Θ) (R, {[(s, c;done), (s, κ)]} ]Θ)

Atomic
(R, s, c) ⇓ (R′, s′)

(R, {[(s, 〈c〉;κ)〉 ]Θ) (R′, {[(s′, κ)]} ]Θ)

AtomicAbort
(R, s, c) ⇓ abort

(R, {[(s, 〈c〉;κ)〉 ]Θ) abort

2.2 Meaning of Assertions

The assertions of our proof system denote resource bundles r ∈ R:

`, v, β, h, u ∈ Z
α ∈ Chunks ::= ` 7→ v | B(β, v) | P (h, β, u)

r ∈ R = Chunks → [0, 1]

A chunk is either a points-to chunk ` 7→ v, a box chunk B(β, v), or a handle
predicate chunk P (h, β, u). A resource bundle is a function from chunks to real
numbers between 0 and 1, inclusive. Note that the heaps R ∈ Heaps can be
identified with a subset of the resource bundles: we will identify heap R with
the resource bundle {(` 7→ v) 7→ 1 | (` 7→ v) ∈ R}.

We define consistency of a resource bundle as follows:

∀`, v1, v2. r(` 7→ v1) > 0 ∧ r(` 7→ v2) > 0⇒ v1 = v2

∀B, β, v1, v2. r(B(β, v1)) > 0 ∧ r(B(β, v2)) > 0⇒ v1 = v2

∀P, h, β1, u1, β2, u2. r(P (h, β1, u1)) > 0 ∧ r(P (h, β2, u2)) > 0⇒ β1 = β2 ∧ u1 = u2

consistent r
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We define satisfaction r � a of a closed assertion in the obvious way. We say
a implies a′ iff ∀r. r � a⇒ r � a′.

2.3 Soundness Property

The soundness property that we target with our proof system is that if {true} c {true}
then (∅, {[(0, c;done)]}) 6 ∗ abort.

2.4 Soundness with respect to the Big-Step Semantics

We extend the big-step semantics to operate on resource bundles as follows:

r + rF = R+ rR (R, s, c) ⇓ (R′, s′) R′ + rR = r′ + rF

(r, s, c) ⇓ (r′, s′)

r + rF = R+ rR (R, s, c) ⇓ abort

(r, s, c) ⇓ abort

Separation logic is sound with respect to the big-step semantics:

Lemma 1. If {a} c {a′} was derived without using the CreateBox or Action
rules, and r, s � a and (r, s, c) ⇓ o, then ∃r′, s′. o = (r′, s′) ∧ r′, s′ � a′.

Proof. By induction on the derivation of the Hoare triple.

2.5 Safety Relation

We define the semantic assertions SemAsns = 2R×Stores .
We define a safety relation safe ⊆ Commands × SemAsns × R × Stores in

Figure 4.
We prove a correspondence between correctness and safety of a command.

(We prove a generalized property, involving a frame r and a weakened postcon-
dition Q; this makes the induction hypothesis strong enough for the frame rule
and the rule of consequence.)

Lemma 2. If {a} c {a′} and a′ ∗ r ⇒ Q, then a ∗ r ⇒ safe(c,Q).

Proof. By induction on the derivation.

We define safety of a continuation:

safe(done, r, s)
safe(c, safe(κ), r, s)

safe(c;κ, r, s)

We define safety of a machine configuration:

ιB : Z⇀fin B × Z∗
ιP : Z⇀fin P × Z× Z∗ ρ : dom ιB → R r = R ] ιB ] ιP

r = Σβρ(β) + Σiri ∀(β 7→ (B, vβ)) ∈ ιB. ρ(β) � IB [vβwβ/XBY B ]
∀(h 7→ (P, β, u)) ∈ ιP. bP [vβwβu/XβY βUP ] ∀i. ri, si � safe(κi, true)

safe (R,Σi{[(si, κi)]})
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Q(r, s[x := s(e)])

safe(x := e,Q, r, s)

Lookup

r � s(e) π7→ v Q(r, s[x := v])

safe(x := [e], Q, r, s)

Mutate
r, s � e 7→ v ∗ (e 7→ e′ →∗ Q)

safe([e] := e′, Q, r, s)

AtomicNoBox
∀o. (r, s, c) ⇓ o⇒ ∃r′, s′. o = (r′, s′) ∧Q(r′, s′)

safe(c,Q, r, s)

AtomicBox
boxclass B(X) {
inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred Pi(U i) { inv bi }
}

r, s � [π]B(β, v) ∗ΠiPi( , β, ui) ∗
(∀w.
I[vw/XY ] ∗Πibi[vwui/XY U i] →∗
safe(c,∃w′.
I[vw′/XY ] ∗Πj(b

′′
j ∨ b′j [vw′u′j/XY U

′
j ])

∗ (b ∧ b′)[vww′z/XY Y ′Z]
∗ ([π]B(β, v) ∗Πj(b

′′
j ∨ P ′j( , β, u′j))→∗ Q)))

safe(〈c〉, Q, r, s)

CreateBox
r, s � I[vw/XY ] ∗ ([1]B( , v)→∗ Q)

safe(c,Q, r, s)

Figure 4: Safety of a command
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In words: a machine configuration is safe if there exists a set of box instances
(with a box identifier, a box class, values for the box parameters, and values
for the box invariant variables) and a set of handle predicate instances (with a
handle predicate name, a handle identifier, a box identifier, and a set of han-
dle predicate arguments) such that there exists a partitioning of the available
resources (i.e. one points-to chunk for each heap cell plus one box chunk for
each box instance plus one handle chunk for each handle) into one bundle for
each box and one bundle for each thread, such that each box’s bundle satisfies
the box invariant and all handle predicate invariants pertaining to it, and each
thread’s bundle ensures the safety of that thread’s continuation.

Lemma 3. Safety of a machine configuration is preserved by machine steps:

safe γ ∧ γ  o⇒ ∃γ′. o = γ′ ∧ safe γ′

Proof. By induction on the derivation of safe(κi, true, ri, si) for the thread i
that performs the step. We elaborate an illustrative case.

• Case CreateBox. The thread’s bundle ri can be split into a part rI that
satisfies the resource invariant of some box class B, and a residue r′. We
pick a new box identifier β and extend ιB with the new box instance. We
define the new bundle for thread i as r′i = r′+{[B(β, v)]}. Since no handles
have β as their box identifier, all constraints are satisfied. We finish by
applying the induction hypothesis.

Theorem 1 (Soundness). If {true} c {true} then (∅, {[(0, κ)]}) 6 ∗ abort.

Proof. The initial configuration is safe. We can derive by induction on the
number of steps that any reachable outcome is a safe configuration.

3 Verifying the Michael-Scott Queue

We show an encoding of the Michael-Scott queue concurrent data structure (for
a garbage-collected language) into our formal syntax in Figure 5.

We wish to verify this implementation against the following specification:

{I(ε)} q := create() {queue(1, q, I)}

∀α. {I(α) ∗ P} ρ {I(α · v) ∗Q}
{queue(π, q, I) ∗ P} enqueue(q, v, ρ) {queue(π, q, I) ∗Q}

{I(ε) ∗ P} ρ {I(ε) ∗Q(0)} ∀v, α. {I(v · α) ∗ P} ρ′ {I(α) ∗Q(v)}
{queue(π, q, I) ∗ P} x := dequeue(q, ρ, ρ′) {queue(π, q, I) ∗Q(x)}

These specifications are similar to the specification style of [6], but with some
differences. When a queue is created, a queue invariant I, an assertion param-
eterized by a sequence of values, is associated with it. Upon creation of the
queue, the invariant, instantiated with the empty sequence, is consumed. The
client may include fractional ownership of ghost cells in this invariant to track
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procedure create() returns (result){
n := cons(next := 0, value := 0);
q := cons(head := n, tail := n);
result := q

}
procedure enqueue(q, x) {
new := cons(next := 0, value := x);
done := 0;
while done = 0 do (
〈t := [q.tail]〉;
〈n := [t.next]; if n = 0 then [t.next] := new〉;
if n = 0 then

done := 1
else
〈t′ := [q.tail]; if t′ = t then [q.tail] := n〉

)
}
procedure dequeue(q) returns (result){
done := 0;
while done = 0 do (
〈h := [q.head]〉;
〈n := [h.next]〉;
if n = 0 then (

result := 0; done := 1
) else (
〈t := [q.tail]; if t = h then [q.tail] := n〉;
〈h′ := [q.head]; if h′ = h then [q.head] := n〉;
if h′ = h then (
〈result := [n.value]〉;
done := true

)
)

)
}

Figure 5: The Michael-Scott queue
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information about the contents of the queue. Therefore, when the queue is up-
dated, these ghost cells may also need to be updated. This is made possible by
allowing the proof author to associate ghost commands ρ and ρ′ which update
these ghost cells with calls of enqueue and dequeue. the Hoare triples for enqueue
and dequeue have premises specifying the behavior of these ghost commands.

To verify the data structure, we declare the box class msqueue box, as follows:

boxclass msqueue box(q, I) {
inv ∃i, nodes, vs, h, t.
lseg(i, 0, nodes, vs) ∗ q.head 7→ nodesh ∗ q.tail 7→ nodest
∗ h ≤ t ∗ |nodes| − 1 ≤ t ∗ I(vsh+1..|vs|)

action enqueue(n, v)
ens nodes′ = nodes · n ∧ vs′ = vs · v

action dequeue()
ens h′ = h + 1

action move tail()
ens t′ = t + 1

handlePred was head(hd) { inv ∃j ≤ h. hd = nodesj }
handlePred was head with succ(hd, nn) {
inv ∃j ≤ h. hd = nodesj ∧ nn = nodesj+1

}
handlePred was head with succ not tail(hd, nn) {
inv ∃j ≤ h. hd = nodesj ∧ nn = nodesj+1 ∧ j < t

}
handlePred node has value(n, v) { inv ∃j. n = nodesj ∧ v = vsj }
handlePred was tail(tn) { inv ∃j ≤ t. tn = nodesj }
handlePred was tail with succ(tn, nn) {

inv ∃j ≤ t. tn = nodesj ∧ nn = nodesj+1

}
}

Here, we adopt three notational conventions (which have not yet been imple-
mented in VeriFast): firstly, for each box invariant variable Y whose primed
version is not mentioned in an action postcondition, that postcondition gets an
additional conjunct saying Y ′ = Y ; secondly, each action postcondition implic-
itly gets an additional disjunct saying that nothing has changed; thirdly, an
action precondition that is not declared explicitly defaults to true.

A proof outline for the queue is shown in Figures 6 and 7.

4 Additional Features

In this section we briefly describe additional features of VeriFast’s shared boxes.

4.1 Handle Identifiers

The examples we used in the preceding sections had the property that at no
point in time did any thread perform a distinguished role in the protocol: all
threads were subject to the same restrictions, or, in other words still, the rely
condition did not mention thread identities.
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predicate queue(f, q, I) = [f ]msqueue box( , q, I)
procedure create() returns (result){
{I(ε)}
n := cons(next := 0, value := 0);
q := cons(head := n, tail := n);
result := q
{lseg(n, 0, n, 0) ∗ q.head 7→ n ∗ q.tail 7→ n ∗ I(ε)}
{[1]msqueue box( , q, I)} CreateBox

}
procedure enqueue(q, x) {
{queue(f, q, I) ∗ P}
new := cons(next := 0, value := x);
done := 0;
{queue(f, q, I) ∗ (done = 0 ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∨ done = 1 ∗Q)}
while done = 0 do (
{[f ]msqueue box(β, q, I) ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P}
〈t := [q.tail]〉;
{[f ]msqueue box(β, q, I) ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∗ was tail( , β, t)}
〈n := [t.next]; if n = 0 then ([t.next] := new; ρ)〉;{

[f ]msqueue box(β, q, I) ∗ (n = 0 ∗Q ∨
n 6= 0 ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∗ was tail with succ( , β, t, n))

}

if n = 0 then
done := 1

else
〈t′ := [q.tail]; if t′ = t then [q.tail] := n〉

)
{queue(f, q, I) ∗Q}

}

Figure 6: Proof of the Michael-Scott queue, part 1 of 2
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procedure dequeue(q) returns (result){
{queue(f, q, I) ∗ P}
done := 0;
{queue(f, q, I) ∗ (done = 0 ∗ P ∨ done = 1 ∗Q(result))}
while done = 0 do (
{[f ]msqueue box( , q, I) ∗ P}
〈h := [q.head]〉;
{[f ]msqueue box(β, q, I) ∗ P ∗ was head( , β, h)}
〈n := [h.next]; if n = 0 then ρ〉;
{[f ]msqueue box(β, q, I) ∗ (n = 0 ∗Q ∨ n 6= 0 ∗ P ∗ was head with succ( , β, h, n))}
if n = 0 then (
result := 0; done := 1

) else (
〈t := [q.tail]; if t = h then [q.tail] := n〉;
{[f ]msqueue box(β, q, I) ∗ P ∗ was head with succ not tail( , β, h, n)}
〈h′ := [q.head]; if h′ = h then ([q.head] := n; ρ′)〉;{

[f ]msqueue box(β, q, I) ∗
(h = h′ ∗ (∃v. Q(v) ∗ is good node( , β, n, v)) ∨ h 6= h′ ∗ P )

}

if h′ = h then (
〈result := [n.value]〉;
done := true

)
)

)
{queue(f, q, I) ∗Q(result)}

}

Figure 7: Proof of the Michael-Scott queue, part 2 of 2
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In many other concurrent algorithms, thread identities do play a role in a rely
condition. For example, in the case of a spin lock, only the thread that acquired
the lock may release it (except if the thread explicitly yielded ownership of the
lock to some other thread). As another example, in an algorithm that uses
hazard pointers for memory reclamation, such as the Treiber stack [7], only the
thread that removed a node from the data structure may deallocate it.

VeriFast supports these scenarios by associating a handle identifier with each
handle predicate. Action specifications may specify which participants may
perform the action by constraining the special variable actionHandles, which
denotes the list of the handle identifiers of the handles consumed by the action.
As a result, only those threads which own particular handle predicate chunks
can perform certain actions.

Similarly, a handle predicate invariant may mention the handle predicate’s
identifier using the special variable predicateHandle.

To support stable and unique identities, for each handle predicate that is
produced by an action, the proof author must specify the handle identifier (which
must be the identity of one of the handles that was consumed) or else that the
handle identifier should be a fresh one.

The following examples that ship with VeriFast in the examples/shared_boxes
directory use handle identifiers:

Example Description
spinlock.c Spinlock

ticket_lock.c Ticketed lock
concurrentstack.c Treiber stack with hazard pointers

cowl.c Copy-on-write list

4.2 Nested actions

In order to build fine-grained concurrent data structures on top of other fine-
grained concurrent data structures, it is useful to be able to nest actions. Note,
however, that care must be taken to deal correctly with box re-entry, i.e. per-
forming multiple nested actions on the same box. Obviously, it would be un-
sound to produce the box invariant multiple times.

VeriFast supports nested actions. Box re-entry is ruled out by assigning
a unique box level to each box (whose relationship to existing box levels may
be specified by the proof author), and checking that an inner action is on a
higher-level box than its outer action.

The following examples use nested actions:

Example Description
gotsmanlock.c Gotsman lock [5]

atomic_integer.c Atomic integer
spinlock_with_atomic_integer Spinlock on top of atomic integer
ticketlock_with_atomic_integer Ticketed lock on top of atomic integer

It is important to note, however, that composing fine-grained concurrent
data structures each verified using shared boxes does not always require nested
actions. For example, the examples cell_refcounted.c, cowl.c, and lcl_set.c
(a set implementation using a lock-coupling list) are built on top of gotsmanlock.c
without the need for nested actions.
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4.3 Action permissions

An alternative way to deal with algorithms where participants have distinct
roles, is using action permissions, first introduced in CAP [3]. VeriFast supports
action permissions: an action may be declared as permbased. As in CAP, an
action permission chunk is produced when the box is created. Performing a
permbased action requires (a fraction of) the action permission chunk.

The examples ticketlock_cap.c and ticketlock_with_atomic_integer.c
use action permissions.

Both of these examples use permbased actions that have parameters. In this
case, upon creation of the box, conceptually a distinct chunk is produced for
each value of the parameter. To represent this finitely in VeriFast’s symbolic
heap, a dispenser chunk is produced which represents the action permission
chunks for all parameter values except for a given list of values for which a
separate action permission has been split off.

4.4 Spatial handle predicate invariants

In CAP [3], stability of a shared region assertion may depend on chunks locally
held by the thread. VeriFast supports this as well by allowing spatial handle
predicate invariants. One example that illustrates this is ticketlock_cap.c.

5 Conclusion

Through the mechanism of shared boxes, VeriFast integrates rely-guarantee rea-
soning into its separation logic-based program logic. We introduced the mecha-
nism through the motivating examples of a monotonic counter and the Michael-
Scott queue, formalized the proof system and sketched a soundness proof, and
briefly discussed additional features and additional examples available in the
VeriFast distribution. Perhaps most notably, we achieved a reasonably clean
proof of a Treiber stack with hazard pointers.
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Abstract. We present a framework for local interprocedural shape analysis that
computes procedure summaries as transformers of procedure-local heaps (the
parts of the heap that the procedure may reach). A main challenge in procedure-
local shape analysis is the handling of cutpoints, objects that separate the input
heap of an invoked procedure from the rest of the heap, which—from the view-
point of that invocation—is non-accessible and immutable.
In this paper, we limit our attention to effectively cutpoint-free programs—
programs in which the only objects that separate the callee’s heap from the rest
of the heap, when considering live reference fields, are the ones pointed to by
the actual parameters of the invocation. This limitation (and certain variations of
it, which we also describe) simplifies the local-reasoning about procedure calls
because the analysis needs not track cutpoints. Furthermore, our analysis (con-
servatively) verifies that a program is effectively cutpoint-free,

1 Introduction

Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [3]. However, performing
strong pointer updates requires a flow-sensitive and context-sensitive analysis and ex-
pensive heap abstractions, which may be doubly-exponential in the program size [25].
The presence of procedures escalates the problem because of interactions between the
program stack and the heap [22] and because recursive calls may introduce additional
exponential factors in an analysis. This makes interprocedural shape analysis a chal-
lenging problem.

This paper introduces a new approach for local [10,18] interprocedural shape anal-
ysis for a class of imperative programs. The main idea is to restrict the aliasing between
! Supported by NSF under grants CCF-0540955, CCF-0810053, and CCF-0904371, by ONR
under grant N00014-09-1-0510, by ARL under grant W911NF-09-1-0413, and by AFRL un-
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live access paths at procedure calls. This allows procedure invocations to be analyzed
ignoring non-relevant parts of the heap, more specifically, the parts of the heap not
reachable from actual parameters. Moreover, shape analysis verifies that the above re-
strictions are satisfied.

The restricted class of programs is chosen based on observations made in [20].
There, Rinetzky et al. present a non-standard semantics in which procedures operate
on procedure-local heaps containing only the objects reachable from actual parame-
ters. The most complicated aspect of [20] is the treatment of sharing from the global
heap and local variables of pending calls into the procedure-local heap. The problem
is that the local heap can be accessed via access paths that bypass actual parameters.
Therefore, objects in the local heap are treated differently when they separate the local
heap (accessible by a procedure) from the rest of the heap (which—from the viewpoint
of that procedure—is non-accessible and immutable). These objects are referred to as
cutpoints [20].

Example 1. Fig. 1 illustrates the notions of local heaps and cutpoints. To gain intuition, Fig. 1
shows these notions using the familiar store-based semantics. (See, e.g., [18]). The figure depicts
a memory state of a program comprised of four procedures: main, foo, bar, and zoo. The
figure depicts a memory state that may occur at the entry to zoo. The stack of activation records
is depicted on the left side of the diagram. Each activation record is labeled with the name of the
procedure it is associated with. Thus, as we can see, zoo was invoked by bar; procedure bar
was invoked by foo; and foo was invoked by the main procedure. The activation record at the
top of the stack pertains to the current procedure (zoo). All other activation records pertain to
pending procedure calls. Thus, for example, the access paths z1.f1.f1, y9, and x5.f2 are
pending access paths.

Heap-allocated objects are depicted as rectangles labeled with their location. The value of
a reference variable (resp. field) is depicted by an edge labeled with the name of the variable
(resp. field). The shaded cloud marks the part of the heap that zoo can access (i.e., the part of the
heap containing the relevant objects for the invocation). The cutpoints for the invocation of zoo
(u8 and u9 ) are heavily shaded. Note that u7 is not a cutpoint because it is also pointed to by
h7 , zoo’s formal parameter.

Cutpoints present a major challenge for shape abstractions: Procedure-local heaps
together with special handling of cutpoints was found to be key in obtaining efficient
and precise interprocedural shape-analysis algorithms [28]. Thus, the shape abstraction
cannot abstract away the sharing patterns induced by cutpoints between the procedure-
local heap of the procedure and the rest of the heap. These sharing patterns may lack
any regular shape. However, the regularity of the sharing pattern is, in fact, what enables
the effective shape abstraction of unbounded linked data structures.

We observe that cutpoints need special treatment in the analysis of a procedure be-
cause the caller may use its direct references to the cutpoint after the procedure returns.
We develop an interprocedural shape analysis in which such direct usages are forbid-
den. We refer to a reference that, at the time when a procedure is invoked, points to a
cutpoint and does not come from an object in the callee’s local heap as a piercing refer-
ence for that invocation. An execution is effectively cutpoint-free if in every invocation
that occurs during the execution, all the piercing references for that invocation are not
live [26] at the time of the invocation, i.e., their r-values are not used later on in the
execution before being set. A program is effectively cutpoint-free if all its executions
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Fig. 1. An illustration of the cutpoints for an invocation in a store-based small-step (stack-based)
operational semantics at the entry to zoo. We assume that h7 is zoo’s formal parameter.

are. When analyzing effectively cutpoint-free programs, there is no need to give special
care to cutpoint objects. However, to verify that a program is effectively cutpoint-free,
special care needs to be taken regarding future usages of piercing references.

In this paper we present ECPF, a small-step operational semantics [16] that handles
effectively cutpoint-free programs. This semantics is interesting because procedures op-
erate on local heaps, i.e., every procedure invocation starts executing on a memory state
in which parts of the heap not relevant to the invocation are ignored. Thus, ECPF sup-
ports the notion of heap-locality [10,18] while permitting the usage of a global heap and
destructive updates. Moreover, the absence of cutpoints drastically simplifies the mean-
ing of procedure calls. ECPF tracks the set of piercing references and checks that their
values are never used, thus dynamically verifying that the program execution is indeed
effectively cutpoint-free. As a result, ECPF is applicable to arbitrary programs, and
does not require an a priori classification of a program as effectively cutpoint-free. We
show that for effectively cutpoint-free programs, ECPF is observationally equivalent
to the standard global heap semantics.

ECPF gives rise to a functional [6,27] interprocedural shape analysis for effectively
cutpoint-free programs. The analysis tabulates abstractions of memory states before
and after procedure calls. Mimicking the semantics, memory states are represented in
a procedure-local way ignoring parts of the heap not relevant to the procedure with no
special abstraction for cutpoints. This reduces the complexity of the analysis because
the analysis of procedures does not represent information about references and the heap
from calling contexts. Indeed, this makes the analysis local in the heap and thus allows
reusing the summarized effect of a procedure at different calling contexts.

Technically, our algorithm is built on top of the 3-valued logical framework for
program analysis of [13, 25]. Thus, it is parametric in the heap abstraction and in the
concrete effects of program statements, which allows experimenting with different in-
stances of interprocedural shape analyzers. For example, we can employ different ab-
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stractions for singly-, doubly-linked lists, and trees. Also, a combination of theorems
in Appendix A.2 and [25] guarantees that every instance of our interprocedural frame-
work is sound (see Sec. 5).

Main results. The contributions of this paper can be summarized as follows:
1. We define the notion of effectively cutpoint-free programs, in which the context
not reachable from a procedure’s actual parameters can be ignored when reasoning
about the procedure’s possible effect.

2. We define an operational semantics for a simple imperative language with refer-
ences and procedures. The semantics dynamically checks that a program execution
is effectively cutpoint-free. Procedures operate on procedure-local heaps, thus sup-
porting the notion of heap-locality while permitting the usage of a global heap and
destructive updates.

3. We present an interprocedural shape analysis for effectively cutpoint-free pro-
grams. The analysis is local in the heap and thus allows reusing the effect of a
procedure at different calling contexts and at different call-sites.

4. We describe several extensions to our approach that allow its efficiency, precision,
and applicability to be improved by utilizing a limited form of user-supplied anno-
tations.

Outline. The rest of the paper is organized as follows. Sec. 2 presents an informal
overview of our approach. Sec. 3 introduces our programmingmodel. Sec. 4 defines our
new local heap semantics, which checks whether a program is effectively cutpoint-free.
Sec. 5 conservatively abstracts this semantics and provides the semantic foundation of
the local interprocedural shape analysis algorithm described in Sec. 6. Sec. 7 describes
certain efficiency-oriented extensions of our approach and certain relaxations of our
restrictions aimed at increasing the class of effectively cutpoint-free programs. Sec. 8
describes related work, and Sec. 9 concludes.

2 Overview

This section provides an overview of our framework for interprocedural shape analysis
using procedure-local heaps. The presentation is at an intuitive level; a more detailed
treatment of this material is presented in the later sections of the paper.

2.1 Motivating Example
Fig. 2 shows a simple Java program that splices three non-shared, disjoint, acyclic
singly-linked lists using a recursive splice procedure. This program serves as a run-
ning example in this paper.

2.2 Procedure-Local Heaps
In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked on
local heaps containing only objects reachable from actual parameters. We refer to these
objects as the relevant objects for the invocation.
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public class List{
List n = null;
int data;

public List(int d){
this.data = d;

}

static public List create3(int k) {
List t1 = new List(k);
List t2 = new List(k+1);
List t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}

static public int getData(List w) {
assert(w != null);
int d = w.data;
return d;

}

public static List splice(List p, List q) {
List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}

public static void main(String[] argv) {
List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(t, z);
int i = 0;
"0 : // if (y == null) i++;
"1 : // if (y == x) i++;
"2 : // int i = getData(y);
print(i);

}
}

Fig. 2. An effectively-cutpoint-free program written in Java

Example 2. Fig. 3 shows the concrete memory states that occur at the call t=splice(x,y).
Sc

3 shows the state at the point of the call, and Se
3 shows the state on entry to splice. Here,

splice is invoked on local heaps containing the (relevant) objects reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the
lists referenced by x and y guarantees that destructive updates performed by splice
can only affect access paths that pass through an object referenced by either x or y.

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)
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Fig. 3. Concrete states for the invocation t = splice(x, y) in the running example.

2.3 Cutpoints and Cutpoint-Freedom

Obviously, this is not always the case. In particular, consider the second call in
the example program, s=splice(t,z). Fig. 4(a) shows the concrete states when
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s=splice(t,z) is invoked. S ccp

4 shows the state on invocation, and S
rcp

4 the state
when the call returns. As shown in the figure, the destructive updates of the splice
procedure change not only paths from t and z, but also change the access paths from y.

To emphasize the effect of this invocation, consider a variant of the example pro-
gram in which the invocation s=splice(t,z) has been replaced with an invocation
s=splice(y,z), as shown in Fig. 4(b). In this variant, the invocation can only affect
access paths that pass through an object referenced by either y or z.

We capture the difference between these invocations by introducing the notion of
a cutpoint [20]. A cutpoint for an invocation is an object that is: (i) reachable from an
actual parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without
going through an object that is pointed-to by an actual parameter (that is, it is either
pointed-to by a variable or by an object not reachable from the parameters). In other
words, a cutpoint is a relevant object that separates the part of the heap that is reachable
for the invocation from the rest of the heap, but not pointed-to by a parameter.

For example, the object pointed-to by y at the call s=splice(t,z) (Fig. 4(a)) is
a cutpoint, thus this invocation is not cutpoint-free [23]. In contrast, in the invocation
s=splice(y,z) (Fig. 4(b)) no object is a cutpoint, and thus this invocation is cutpoint-
free [23].

call splice(t,z) return s=splice(t,z) call splice(y,z) return s=splice(y,z)
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Fig. 4. Concrete states for: (a) the invocation s=splice(t,z) in the program of Fig. 2;
(b) a variant of this program with an invocation s=splice(y,z).

2.4 Effective Cutpoint-Freedom

The importance of cutpoints is that they allow the analysis to handle more precisely
the notion of procedure local variables: No invocation of splice can modify the local
variables of main. Thus, when control returns to main, it is guaranteed that the local
variable y points to the same object that it pointed to before the invocation, and the
main procedure can use the y reference to access directly that object. In general, it is
very challenging to design a shape analysis that can track relations between arbitrary
objects across the execution of procedure calls. However, if the caller does not use its
direct references to the cutpoints after the procedure returns, the analysis does not need
to track this relation.
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For example, note that after main regains control, it does not use the value of the
y variable. Thus, although the invocation s=splice(t,z) has a cutpoint, and is thus
not cutpoint-free, in the context of the whole execution this invocation is effectively
cutpoint free.

The semantics utilizes the above observation and instead of giving special treatment
to the cutpoint objects, it assigns a special inaccessible value to all piercing references.
The inaccessible value is used to track references which should not be used. It is a
simple mechanism which the semantics uses to check (in runtime) whether a piercing
pointer is used , e.g., in a dereference operation or during the evaluation of a condition,
and if such a usage occurs to abort the execution and report that the program is not
effectively cutpoint-free. (See Sec. 4).

Example 3. Fig. 5 shows the concrete memory states that occur at the call s=splice(t,z).
Sc

5 shows the state at the point of the call, in which the object pointed to by y is a cutpoint. In
Sr

5 , the return state of that call, y no longer points to an object, instead it has the inaccessible
value, depicted by a black bullet. The semantics intentionally does not utilize the information it
has regarding the identity of objects. It acts as if it “forgets” that the object referenced by y at
the call state is the third node in the returned list, mimicking in the concrete semantics the loss
of information that occurs in the analysis. Note that the cutpoint object is not treated differently
during the execution of splice, e.g., Se

5 and Sx
5 show the states on entry to splice of the call

and at its exit, respectively.
Also note that if any of the statements in lines !0 − !2 was to be uncommented, variable y

would have been live at the time of the call s=splice(t,z), and thus the execution would not
have been effectively cutpoint-free.

call s=splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)
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Fig. 5. Concrete states for the invocation s = splice(t, z) in the running example.

2.5 Interprocedural Shape Analysis

The algorithm computes procedure summaries by tabulating pairs of abstract in-
put memory-states and abstract output memory-states. The tabulation is restricted to
abstract memory-states that occur in the analyzed program. The tabulated abstract
memory-states represent procedure-local heaps, but do not keep track of cutpoints.
However, they do record the inaccessible values. Therefore, these abstract states are
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independent of the context in which a procedure is invoked. As a result, the summary
computed for a procedure could be used at different calling contexts and at different
call-sites while sustaining enough information to verify effective cutpoint freedom.

3 Programming Model

For expository reasons we limit our attention to a small imperative programming lan-
guage. It has references to objects. Objects have fields, which can be either references
to other objects or integers. The analyses developed here can be applied to Java-like
languages and other imperative pointer languages alike (unless pointer arithmetic is
used).

We abstract from specific control-flow statements and simply assume the presence
of one control-flow graph per procedure. Control-flow graph edges are annotated with
any one of the following statements below, where x.f denotes the f field of the object
referenced by x. The statement x = alloc() returns a reference to a newly created
object. Conditionals are implemented using assume statements.

stms ::= x = null | x = y | x = y.f |
x.f = y | x = alloc() | assume(x !" y) |
y = p(x1, . . . , xk) | return

In our running example we take the liberty to use integer variables and fields as well.
In the rest of the paper, we assume that we are working with a fixed arbitrary pro-

gramP . For a procedure p, Vp denotes the set of its local variables andFp ⊆ Vp denotes
the set of its formal parameters. A procedure returns a value by assigning it to a des-
ignated variable ret. We assume that parameters are passed by value and that formal
parameters cannot be assigned to. The set of all local variables of P is written V . We
write F to denote the set of all field names in P .

We assume a standard store-based operational semantics for our language, very
much like GSB defined previously in [19, 20]. GSB treats live cutpoints properly.

4 Concrete Semantics

In this section, we define ECPF (effectively cutpoint-free), a non-standard semantics
that checks whether a program execution is effectively cutpoint-free. ECPF defines the
execution traces that are the foundation of our analysis.

ECPF is a store-based semantics (see, e.g., [18]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the allocated
objects. ECPF , on the other hand, is a procedure-local heap semantics [20]: A memory
state that occurs during the execution of a procedure does not represent objects that, at
the time of the invocation, are not reachable from the actual parameters.

ECPF is a small-step operational semantics [16]. Instead of encoding a stack of
activation records inside the memory state, as is traditionally done, ECPF maintains a
stack of program states [12, 21]: Every program state consists of a program point and
a memory state. The program state of the current procedure is stored at the top of the
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stack, and it is the only one that can be manipulated by intraprocedural statements. We
refer to this memory state as the current memory state. When a procedure is invoked,
the entry memory state of the callee is computed by a Call operation according to the
caller’s current memory state, and pushed onto the stack. When a procedure returns, the
stack is popped, and the caller’s return memory state is updated using a Ret operation
according to its memory state before the invocation (the call memory state) and the
callee’s (popped) exit memory state. TheCall andRet operations of ECPF are defined
in Fig. 8.

The use of a stack of program states allows us to represent in every memory state
the (values of) local variables and the local heap of just one procedure. The lifting of an
intraprocedural semantics to an interprocedural semantics, that uses a stack of program
states, is formally defined in [19].

An execution trace of a program P always begins with P ’s main executing on an
initial memory state in which all its reference variables have the value null and the heap
is empty. We say that a memory state is reachable in a program P if it occurs as the
current memory state in an execution trace of P .

ECPF is a procedure-local heap semantics [20]: when a procedure is invoked, it
starts executing on an input heap containing only the set of relevant objects for the
invocation. An object is relevant for an invocation if it is a parameter object, i.e., either
referenced by an actual parameter or reachable from one.

A procedure-local heap semantics and its abstractions benefit from not having to
represent irrelevant objects. However, in general, the semantics needs to take special
care of cutpoints. In this paper, we avoid the need to take special care of cutpoint ob-
jects by assuming and verifying that a program is effectively cutpoint free: We refer
to a reference that at invocation time points to a cutpoint and does not come from an
object in the callee’s local heap as a piercing reference for that invocation. An execu-
tion is effectively cutpoint-free if in every of its invocations during an execution all the
piercing references for that invocation are dead at the time of the invocation, i.e., their
r-values are not used before being set. A program is effectively cutpoint-free if all of its
executions are.

For effectively cutpoint-free programs, there is no need to give special care to cut-
point objects. However, to verify that a program is effectively cutpoint-free, special care
needs to be taken regarding the piercing references. In this section, we describe the way
ECPF validates at runtime that an execution is effectively cutpoint-free.

4.1 Memory States

Fig. 6 defines the concrete semantic domains and the meta-variables ranging over them.
We assume Loc to be an unbounded set of locations. A value v ∈ Val is either a
location, null, or •, the inaccessible value used to represent references to locations that
should not be accessed.

A memory state in the ECPF semantics is, essentially, a 2-level store. Formally,
a memory state is a 3-tuple σ = 〈ρ, L, h〉: ρ ∈ E is an environment assigning values
for the variables of the current procedure. L ⊂ Loc is the set of allocated locations. (A
dynamically allocated object is identified by its location. We interchangeably use the
terms object and location.) h ∈ H assigns values to fields of allocated objects.
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l ∈ Loc
v ∈ Val = Loc ∪ {null} ∪ {•}
ρ ∈ E = V ⇀ Val
h ∈ H = Loc ⇀ F ⇀ Val
σ ∈ Σ = E×2Loc×H

Fig. 6. Semantic domains.

In ECPF , reachability is defined with respect to relevant objects: Informally, an
object l2 is reachable from an object l1 in a memory state σ if there is a directed path
in the heap of σ from l1 to l2. An object l is reachable in σ if it is reachable from a
location that is pointed-to by some variable. Note that •-valued references do not point
to any object.

4.2 Operational Semantics of Intraprocedural Statements

The meaning of atomic statements is described by a transition relation i! ⊆ (Σ ×
stms) × Σ ' {σ•}, where σ• is a special error state indicating a forbidden usage of the
inaccessible value.

Fig. 7 defines the axioms for atomic intraprocedural statements. These are handled
as in a standard 2-level store semantics like GSB.7 The main difference between the
ECPF semantics and GSB with respect to the meaning of intraprocedural statements
is captured by the side-conditions of the form ρ(x) = • or ρ(y) = •, which prevent
usage of the inaccessible locations.

〈x = null,σ〉 i! 〈ρ[x '→null], L, h〉
〈x = y,σ〉 i! 〈ρ[x '→ρ(y)],L, h〉
〈x = y.f,σ〉 i! 〈ρ[x '→h(ρ(y), f)], L, h〉 ρ(y) ∈ Loc

〈y.f = x,σ〉 i! 〈ρ, L, h[(ρ(y), f) '→ρ(x)]〉 ρ(y) ∈ Loc

〈x = alloc(),σ〉 i! 〈ρ[x '→ l],L∪{l}, h[l '→I ]〉 l∈Loc \ L

〈assume(x &' y),σ〉 i! σ ρ(x) &' ρ(y)

〈x = y,σ〉 i! σ• ρ(y) = •
〈x = y.f,σ〉 i! σ• ρ(y) = • or h(ρ(y)) = •
〈y.f = x,σ〉 i! σ• ρ(y) = • or ρ(x) = •
〈assume(x &' y),σ〉 i! σ• ρ(x) = • or ρ(y) = •

Fig. 7. Axioms for intraprocedural statements, where in each line σ is understood as a shorthand
for 〈ρ, L, h〉 . I denotes the function λf ∈ F .null. &' stands for either = or )=. When convenient,
we sometimes treat h as an uncurried function, i.e., as a function from Loc × F to Val .
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4.3 Operational Semantics of Interprocedural Statements

Fig. 8 defines the meaning of the Call and Ret operations pertaining to an arbitrary
procedure call y = p(x1, . . . , xk) assuming p’s formal parameters are z1, . . . , zk, the
memory state at the call site is σc = 〈ρc, Lc, hc〉, and the memory state at the exit of p
is σx = 〈ρx, Lx, hx〉. The Call operation is used to compute the state update along a
call edge in the control-flow graph; theRet operation computes the state update along a
return edge. As defined in Sec. 3, variable ret is used to communicate the return value.
We use the function Rh(L) to compute the locations that are reachable in heap h from
the set of locations L. This function is formally defined in Appendix A.1.

Cally=p(x1,...,xk)(σc) = σe

σe = 〈ρe, Lc, hc|Lrel 〉
ρe = [zi '→ ρc(xi) | 1≤ i≤k]

Rety=p(x1,...,xk)(σc,σx) = σr

σr = 〈ρr, Lx, hr〉
ρr = (block ◦ ρc)[y '→ρx(ret)]

hr = (block ◦ hc|Lc\Lrel
) ∪ hx

where:
Lparameters = {ρc(xi) ∈ Loc | 1≤ i≤k}
Lrel = Rhc (Lparameters)

Lcutpoints = (Lrel \ Lparameters) ∩
({ρc(z) | z ∈ Vq} ∪ {hc(l)f ∈ Loc | l ∈ Lc \ Lrel , f ∈ F)

block = λv ∈ Val .

{
• v ∈ Lcutpoints

v otherwise

Cally=p(x1,...,xk)(σc) = σ• ρc(x1) = • or · · · or ρc(xk) = •
Rety=p(x1,...,xk)(σc,σx) = σ• ρx(ret) = •

Fig. 8.Call andRet operations for an arbitrary procedure call y = p(x1, . . . , xk) by an arbitrary
procedure q, where it is understood that σc = 〈ρc, Lc, hc〉, σx = 〈ρx, Lx, hx〉, and Vq denotes
the set of local variables of procedure q.

Procedure calls The Call operation computes the callee’s entry memory state (σe)
from the state at the call-site (σc). The entry memory state is computed by binding
the values of the formal parameters in the callee’s environment to the values of the
corresponding actual parameters (ρe) and restricting the caller’s heap to the relevant
objects for the invocation (Lrel).

Example 4. Fig. 3 shows the entry state Se
3 that results from applying the Call operation pertain-

ing to the invocation t=splice(x, y) to the call memory stateSc
3. Fig. 5 shows the entry state

Se
5 that results from applying the Call operation pertaining to the invocation s=splice(t,

z) to the call memory state Sc
5.
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Procedure returns TheRet operationmaps the memory state at the exit of a procedure
(σx) together with the state at call-site (σc) to the return state σr from which the caller
resumes its computation.Ret updates the caller’s memory state by carving out the input
heap passed to the callee from the caller’s heap (hc|Lc\Lrel

) and replacing it with the
callee’s (possibly) mutated heap (hx).

In ECPF , an object never changes its location, and locations are never reallocated.
Thus, any pointer to a relevant object in the caller’s memory state (either by a field of
an irrelevant object or a variable) points after the replacement to an up-to-date version
of the object.

Blocking piercing references. ECPF detects forbidden accesses that violate the
effective-cutpoint-freedomcondition, and aborts the program in an error state if such an
access is detected. Technically, when a procedure invocation returns, ECPF assigns the
special value • to all piercing references, an operation which we refer to as blocking,
and uses this special value to detect forbidden accesses. (Recall that in an effectively
cutpoint-free execution, every live reference that points to an object which separate the
callee’s heap from the caller’s heap should point to a parameter object, i.e., to one of
the objects in Lparameters.)

Example 5. Fig. 3 shows the return state Sr
3 , that results from applying the Ret operation per-

taining to the invocation t=splice(x, y) to the call memory state Sc
3 and the exit memory

state Sx
3 . Fig. 5 shows the return state Sr

5 , that results from applying the Ret operation pertaining
to the invocation s=splice(t, z) to the call memory state Sc

5 and the exit memory state Sx
5 .

The second node in the list pointed to by t at the call state Sc
5 is a cutpoint. Thus, variable y gets

blocked when computing Sr
5 .

4.4 Observational Soundness

We say that two values are comparable in ECPF if neither one is •. We say that a
ECPF memory state σ is observationally sound with respect to a standard semantics
σG if for every pair of access paths that have comparable values in σ, they have equal
values in σ iff they have equal values in σG. ECPF simulates the standard 2-level store
semantics: Executing the same sequence of statements in the ECPF semantics and in
the standard semantics either results in a ECPF memory states that is observationally
sound with respect to the resulting standard memory state, or the ECPF execution gets
to an error state due to a constraint breach (detected by ECPF). A program is effectively
cutpoint-free if it does not have an execution trace that gets to an error state. (Note that
the initial state of an execution in ECPF is observationally sound with respect to its
standard counterpart).

Our goal is to detect structural invariants that are true according to the standard
semantics. ECPF acts like the standard semantics as long as the program’s execution
satisfies certain constraints. ECPF enforces these restrictions by blocking references
that a program should not access. Similarly, our analysis reports an invariant concerning
equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths in ECPF for an effectively
cutpoint-free program is also an invariant in the standard semantics. This makes abstract
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interpretations of ECPF suitable for verifying data-structure invariants, for detecting
memory access violations, and for performing compile-time garbage collection.

5 Abstract Interpretation

In this section, we present ECPF#, an abstract interpretation [5] of the ECPF se-
mantics. ECPF# is the basis of our static-analysis algorithm which uses the 3-valued
logic-based framework of [25]. The soundness of the abstract semantics with respect to
GSB7 is guaranteed by the combination of the theorems in Appendix A.2 and [25]:
– In Appendix A.2, we show that for effectively cutpoint-free programs, ECPF is
observationally equivalent to GSB.

– In [25], it is shown that every program-analyzer that is an instance of the 3-valued
logic-based framework is sound with respect to the concrete semantics it is based
on.

5.1 Abstract States

We conservatively represent unbounded sets of unbounded memory states using a
bounded set of bounded 3-valued logical structures, which we refer to as abstract states.
Note that there are actually three different notions of concrete states. The most concrete
states are those in GSB, containing full information including integer variables and
fields. Integers are already abstracted away when we talk about ECPF , which, on top
of that, also yields errors when cutpoint references are illegally used. ECPF states
are equivalently encoded into two-valued logical structures by viewing objects as in-
dividuals in a logical structure and references as binary predicates (see below). Note,
however, that location identifiers play no role in the logical structure encoding. Indeed,
the semantics does not distinguish between isomorphic structures.

We use the term concrete state whenever we talk about a state that is not a 3-valued
logical structure. We believe that, despite the resulting imprecision, our intentions are
clear. In drawings, we use the same graphical notations to depict concrete states in all
of the aforementioned semantics. (Integer values, when drawn, should be ignored when
considering a figure to be a graphical depiction of a state in ECPF or of a logical
structure.)

3-valued logical structures. A 3-valued logical structure is a logical structure with an
extra truth-value 1

2 , which denotes values that may be 1 or may be 0. The information
partial order on the set {0, 1

2 , 1} is defined as 0 ( 1
2 ) 1, and 0 * 1 = 1

2 . Formally, a
3-valued logical structure is S #=〈US!

, ιS
! 〉 where:

– US! is the universe of the structure.
– ιS

! is an interpretation function mapping predicates to their truth-value in the struc-
ture, i.e., for every predicate p ∈ P of arity k, ιS(p) : US!k → {0, 1

2 , 1}.
7 GSB is a standard two-level store semantics for heap-manipulating programs. It is formally
defined in [20].
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A 2-valued logical structure is a 3-valued logical structure where the truth-values of
predicates are either 0 or 1. The set of 3-valued logical structures is denoted by 3Struct .
The set of 2-valued logical structures is denoted by 2Struct .

Abstraction function. We abstract sets of ECPF memory states by a point-wise appli-
cation of an extraction function β : Σ ⇀ 3Struct mapping an ECPF memory state
to its best representation by an abstract state. The extraction function β is defined as
a composition of two functions: (i) βshape : Σ ⇀ 2Struct , which maps an ECPF
memory state to a 2-valued logical structure and (ii) canonical abstraction [25], which
maps 2-valued logical structures to a bounded number of 3-valued logical structures.

Representing Memory States using 2-Valued Logical Structures We represent
ECPF memory states using 2-valued logical structures. Every individual in the struc-
ture corresponds to a heap-allocated object. Predicates of the structure correspond to
properties of heap-allocated objects.

Core predicates. Tab. 1 shows the core predicates used in this paper. A binary pred-
icate f(v1, v2) holds when the f ∈ F field of v1 points to v2. The designated binary
predicate eq(v1, v2) is the equality predicate, which records equality between v1 and v2.
A unary predicate x(v) holds for an object that is referenced by the reference variable
x ∈ V of the current procedure.8 The predicate ia holds only for a unique individual,
which represents the inaccessible locations. The role of the predicates inUc and inUx
is explained in Sec. 5.2.

Instrumentation predicates. Instrumentation predicates record derived properties of in-
dividuals, and are defined using a logical formula over core predicates. Instrumentation
predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Tab. 2 lists the instrumentation
predicates used in this paper. We use F (v1, v2) as a shorthand to denote that v1 has a
field f ∈ F which points to v2 and F ∗(v1, v2) as the reflexive transitive closure of F .
(For a formal definition, see Appendix B).

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a reference variable x by drawing an edge from x to the
individual representing the object that x references. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
binary equality predicate eq . The inaccessible value is depicted as a line ending with •.
Example 6. The structure Sc

3 of Fig. 3 shows a 2-valued logical structure that represents the
memory state of the program at the call t=splice(x, y). The depicted numerical values are
only shown for presentation reasons, and have no meaning in the logical representation.

The structure Sr
5 of Fig. 5 shows a 2-valued logical structure that represents the memory state

of the program at the return of s=splice(t, y). Note that the value of y is the inaccessible
value.
8 For simplicity, we use the same set of predicates for all procedures. Thus, our semantics en-
sures that ιS(x) = λu.0 for every local variable x that does not belong to the current call.
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Table 1. Predicates used to represent (concrete) memory states.

Predicate Intended Meaning
f(v1, v2) the f-field of object v1 points to object v2

eq(v1, v2) v1 and v2 are the same object
x(v) reference variable x points to the object v

ia(v) v is an inaccessible location

inUc(v) v originates from the caller’s memory state at the call site
inUx(v) v originated from the callee’s memory state at the exit site

Table 2. The instrumentation predicates used in this paper.

Predicate Intended Meaning Defining Formula
robj (v1, v2) v2 is reachable from v1 by some field path ¬ia(v1) ∧ ¬ia(v2) ∧ F ∗(v1, v2)

ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬ia(v)

a field of more than one object in the local heap ¬eq(v1, v2) ∧ F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx(v) v is reachable from variable x ¬ia(v) ∧ ∃vx : x(vx) ∧ F ∗(vx, v)

Bounded Abstraction We now formally define how memory states are represented
using abstract memory states. The idea is that each object from the (concrete) state is
mapped to an individual in the abstract state. An abstract memory state may include
summary nodes, i.e., individuals that correspond to one or more concrete nodes in one
of the concrete states represented by the abstract state. For a summary node u ∈ U # in
abstract state S# = 〈U #, ι#〉 it holds that ι(eq)(u, u) = 1

2 .

Canonical abstraction. A 3-valued logical structure S # is a canonical abstraction
of a 2-valued logical structure S if there exists a surjective function υ : U S → US!

satisfying the following conditions: (i) For all u1, u2 ∈ US , υ(u1) = υ(u2) iff for all
unary predicates p ∈ P , ιS(p)(u1) = ιS(p)(u2), and (ii) for all predicates p ∈ P of
arity k and for all k-tuples u#

1, u
#
2, . . . , u

#
k ∈ US! ,

ιS
!

(p)(u#
1, u

#
2, . . . , u

#
k) =

⊔

u1,...,uk∈Us

υ(ui)=u!
i

ιS(p)(u1, u2, . . . , uk).

3-valued logical structures are also drawn as directed graphs. Definite values
(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values ( 1

2 )
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 7. Fig. 9 shows the abstract states (as 3-valued logical structures) representing the con-
crete states of Fig. 3. Note that only the local variables p and q are represented inside the call
to splice(p,q). Representing only the local variables inside a call ensures that the number
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of unary predicates to be considered when analyzing the procedure is proportional to the num-
ber of its local variables. This reduces the overall complexity of our algorithm to be worst-case
doubly-exponential in the maximal number of local variables rather than doubly-exponential in
their total number (as in e.g., [22]).

splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)
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Fig. 9. Abstract states for the invocation t = splice(x, y); in the running example.

The Importance of Reachability Recording derived properties by means of instrumen-
tation predicates may provide additional information that would have been otherwise
lost under abstraction. In particular, because canonical abstraction is directed by unary
predicates, adding unary instrumentation predicates may further refine the abstraction.
This is called the instrumentation principle in [25]. In our framework, the predicates
that record reachability from variables play a central role. They enable us to identify
the individuals representing objects that are reachable from actual parameters. For ex-
ample, in the 3-valued logical structure S c#

9 depicted in Fig. 9, we can detect that the
top two lists represent objects that are reachable from the actual parameters because
either rx or ry holds for these individuals. None of these predicates holds for the indi-
viduals at the (irrelevant) list referenced by z. We believe that these predicates should
be incorporated in any instance of our framework.

5.2 Abstract Operational Semantics

The meaning of statements is described by a transition relation #!⊆ (3Struct ×stms)×
3Struct . Because our framework is based on [25], the encoding of the meaning of state-
ments in ECPF (as transformers of 2-valued structures), also defines the corresponding
abstract semantics (as transformers of 3-valued structures). This abstract semantics is
obtained by reinterpreting logical formulae using a 3-valued logic semantics and serves
as the basis for our static analysis. In particular, reinterpreting the side conditions of in-
traprocedural statements conservatively verifies that the program is effectively cutpoint-
free.

For brevity, we omit the aforementioned encoding from the body of the paper and
provide it in Appendix B. We wish to note that all the transformers, including the inter-
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procedural operations Call and Ret are specified using predicate-update formulae 9 in
first-order logic with transitive closure.

6 Interprocedural Static Analysis

Abstract interpretation of the ECPF semantics provides the semantic foundations for
an interprocedural static-analysis algorithm that computes procedure summaries by tab-
ulating abstract input memory-states to abstract output memory-states. The tabulation
is restricted to abstract memory-states that occur in the analyzed program. The inter-
procedural tabulation algorithm is the variant of the IFDS-framework [17] presented
in [23], adapted to assume and verify effective cutpoint freedom.

enter splice(p,q) exit splice(p,q)
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Fig. 10. Partial tabulation of abstract states for the splice procedure.

Example 8. Fig. 10 shows a partial tabulation of abstract local heaps for the splice procedure
of the running example. The figure shows 3 possible input states of the list pointed-to by p.
Identical possible input states of the list pointed-to by q, and their combinations are not shown.
As mentioned in Sec. 1, the splice procedure is only analyzed 9 times before its tabulation is
complete, producing a summary that is then reused whenever the effect of splice(p, q) is
needed.

Note that this tabulation represents the input/output relation for any call to splice, includ-
ing ones with cutpoints, e.g., the call s=splice(t, y) and all recursive calls to splice in
our running example.
9 Predicate-update formulae express the semantics of statements: Suppose that σ is a memory
state that arises before statement st , that σ′ is the store that arises after st is evaluated on σ,
and that S is the 2-valued logical structure that encodes σ. A collection of predicate-update
formulae–one for each predicate p in the vocabulary of S–allows one to obtain the structure S′

that encodes σ′. When evaluated in structure S, the predicate-update formula for a predicate
p indicates what the value of p should be in S′. See [25, Observation 2.6]. Evaluation of the
predicate-update formulae in 3-valued logic captures the transfer function for st of the abstract
semantics. See [25, Observation 2.9].
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7 Extensions and Relaxations

In this section, we describe several extensions that use a limited form of annotations on
procedures to improve the analysis algorithmic’s efficiency, precision, and applicability.

7.1 Blindspots

ECPF records in every state the value of every formal parameter at the entry to the
procedure. This is done to allow the caller to observe the (possibly mutated) part of the
heap that was relevant to the callee after the callee returns. However, in certain cases,
such observations are not needed or even desirable.

For example, in the program of Fig. 2, the variable y is not used after the call
t=splice(x, y). Thus, the effort invested to restore its value when the call returns
is, for all practical purposes, wasted. Furthermore, direct access to the list returned
by splice through one of the actual parameters might be considered a form of bad
programming. (A clearer example might be a merge procedure that merges two sorted
lists. When an invocation of merge returns, one actual parameter references the head of
the list and the other one references one of the list elements. Using the actual parameters
at this point makes the code less readable and more sensitive to the implementation
details of merge. Thus, it is reasonable to expect that the caller uses the returned value,
but not the actual parameters.)

Blindspots (for a procedure invocation) are parameter objects for which all the vari-
ables and fields pointing to them at the time of the call, excluding fields of relevant
objects for the invocation, are dead when the procedure returns. 10 ECPF , and its ab-
stract interpretations, can utilize an annotation (e.g., in the form of a subset of the ac-
tual/formal parameters) that states which of the parameter objects are blindspots. Such
information can improve the efficiency of the analysis algorithim by allowing it to avoid
tracking unnecessary information. It also allows verifying good programming style.

For example, Fig. 11 shows the call, entry, exit, and return states that occur in the
ECPF during the invocation t=splice(x,y) when both parameter objects are an-
notated as a blindspots. Based on this annotation, the exit state does not record the value
of the formal parameters, allowing for more compact summaries. Note that at the return
state, x and y are blocked. As a result, the returned list can be accessed only through t.

7.2 Tolerance for a Bounded Number of Cutpoints

ECPF , and its abstract interpretations, can allow for procedure invocations to have
up to a bounded number of live cutpoints, i.e., cutpoints that are accessed directly by
a piercing reference after the procedure returns. The main idea is to treat cutpoints
as additional parameters: Every procedure is modified to have k additional (hidden)
formal parameters (where k is the bound on the number of allowed cutpoints). When
a procedure is invoked, the (modified) semantics binds the additional parameters with
references to the cutpoints.
10 Note that a blindspot for a procedure invocation is not necessarily a dead object.
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call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)
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Fig. 11. Concrete states for the invocation t = splice(x, y) when both parameter objects
are annotated as a blindspots.

We can allow for a bounded number of cutpoints by having an annotation regarding
the maximal number of allowed cutpoints11 or by having the user provide a specification
(using first-order formulae with transitive closure) of a distinguished set of explicitly-
allowed cutpoints. For example, a cutpoint at the last element of a list can be treated
differently then other cutpoints.

Fig. 12 depicts the call, entry, exit, and return states that occur in the ECPF during
the invocation s = splice(t, z) when procedures are allowed to have at least
one cutpoint, or, alternatively, when the second element of the first list is specified as an
explicitly-allowed cutpoint. The hidden parameterX 1 gets bound to the cutpoint at the
entry state and used to restore the value of y at the return state.

call splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)
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Fig. 12. Concrete states for the invocation s = splice(t, z) when one cutpoint is allowed
or alternatively, when access path t.n is specified as an explicitly-allowed cutpoint.

7.3 Restricted Access to the Inaccessible Value

For a program to be effectively cutpoint-free, every piercing reference must not be live
at the time of the actual invocation. The reason behind this requirement is to allow
the semantics/analysis to avoid maintaining certain aliasing relations, yet still main-
tain a certain notion of observational soundness with respect to the standard semantics.
11 This is the essence of the treatment of cutpoints by Gotsman et al. [8].
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However, certain usages of piercing references are innocuous, i.e., our notion of obser-
vational soundness is still maintained as long as programs use piercing references in
certain restricted ways. For example, statements such as x = y, as well as conditions
involving comparisons between •-valued references and null, are innocuous. In the
former case, the assignment neither affects the control flow of the program nor may
lead to a memory fault. In the latter case, it always holds that a •-valued reference is not
null-valued; thus the condition of the assume statement always evaluates to the same
value in both semantics.

Effectively, the above observation allows us to relax the requirements of executions
to be effectively cutpoint-free: Instead of forbidding all future usages of piercing ref-
erences (i.e., requiring that they are not live when the invocation of the callee returns),
we need only to forbid “effective” future usages of this pointers, i.e., we need only to
forbid them from being dereferenced or compared with non-null values both in assume
statements and in assertions.

7.4 Arbitrary Cutpoints in Pure Procedures

An additional relaxation regarding the requirements of a procedure invocation to be
effectively cutpoint-free is possible when a procedure invocation is found to be pure. A
pure invocation does not modify the shared state. Thus, the abstract representation of
the heap at the call site can be reused at the return site. As a result, for reconstructing
the layout of the heap, the number of cutpoints is irrelevant, and piercing references do
not need to be blocked.

The above approach has one rather significant complication: In case the procedure’s
return value is a pointer to a heap-allocated object, figuring out which object in the call
state corresponds to the one returned by the procedure is not simple. (This complication
arises because the abstract semantics does not retain the identity of locations.)

One possible remedy is not to use this relaxation when the return value of the in-
voked procedure is a (non-null) reference. Another possible remedy is to apply a meet
operator between the call state and the exit state (after certain renaming operations,
similar to the ones used in [11]). We note that the framework of [25] provides an al-
gorithmic meet operator [1]. We also note that (some) information regarding cutpoints
can (potentially) make the results of the meet operator more precise.

8 Discussion and Related Work

In this section, we review closely related work.
Rinetzky and Sagiv [22] explicitly represent the runtime stack and abstract it as a

linked-list. In this approach, the entire heap, and the runtime stack are represented at
every program point. As a result, the abstraction may lose information about properties
of the heap for parts of the heap that cannot be affected by the procedure at all.

Jeannet et al. [11] consider procedures as transformers from the (entire) heap before
the call to the (entire) heap after the call. Irrelevant objects are summarized into a single
summary node. Relevant objects are summarized using a two-store vocabulary. One
vocabulary records the current properties of the object. The other vocabulary encodes
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the properties that the object had when the procedurewas invoked. The latter vocabulary
allows to match objects at the call-site and at the exit-site. Note that this scheme never
summarizes together objects that were not summarized together when the procedure
was invoked. For cutpoint-free programs, this may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministically
replaces elements between the list tails. The method of [11] will not summarize list
elements that originated from different input lists. Thus, it will generate exponentially
more mappings in the procedure summary than the ones produced by our method. On
the other hand, the method of [11] can establish properties of called procedures that
our method cannot establish (e.g., that a procedure to reverse a list actually reverses all
elements of the list).

Rinetzky et al. [20] present a procedure-local storeless concrete semantics and de-
scribe an abstract interpretation of their semantics that can be used for interprocedural
shape-analysis for programs manipulating singly linked lists. Their abstract interpreta-
tion algorithm explicitly records cutpoint objects in the local heap, and may become
imprecise when there is more than one cutpoint. Our algorithm can be seen as a special-
ization of [20] that provides a partial answer to this problem. In addition, because we
restricted our attention to effectively cutpoint-free programs, our semantics and analysis
are much simpler than the ones in [20].

In [23], the problem of abstracting cutpoint-induced sharing patterns is addressed
by forbidding cutpoints: We developed an interprocedural shape analysis for the class of
cutpoint-free programs, in which program invocations never generate cutpoints. In the
present paper, we extend the framework developed in [23] to a larger class of programs:
effectively cutpoint-free programs. One can see [23] as an eager form of enforcing ef-
fective cutpoint-freedom, while the present paper takes a more lazy approach.

Hackett and Rugina [9] develop a staged analysis to obtain a relatively scalable in-
terprocedural shape analysis. Their approach uses a scalable imprecise pointer-analysis
to decompose the heap into a collection of independent locations. The precision of this
approach might be limited because it relies on pointer-expressions that appear in the
program’s text. The analysis tabulates global heaps, potentially leading to a low reuse
of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented by Chong and Rugina [4] without an implementation. The main idea
there is to record for every object both its current properties and the properties it had at
that time the procedure was invoked.

Gotsman et al. [8] describe a heap-modular interprocedural shape analysis for singly
linked lists that can handle a bounded numbers of cutpoints. The main idea is to treat
a bounded number of cutpoint-labels as, essentially, additional parameters: Every pro-
cedure can be seen as having k additional (hidden) formal parameters (where k is the
bound on the number of allowed cutpoints). When a procedure is invoked, their anal-
ysis (non-deterministically) binds these additional parameters with references to the
cutpoints. If the procedure has more than k cutpoint, they turn every piercing reference
to a dangling pointer, which, essentially, makes the reference inaccessible. Thus, their
analysis does not differentiate between dangling references and piercing references.
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However, every program that it manages to analyze is a k-cutpoint-tolerant effectively
cutpoint-free program.

Yang et al. [28] present a heap-modular interprocedural shape analysis that, similar
to [8], is based on a domain of separation-logic formulae. Their experimental results in-
dicate that the use of local heaps provides a speedup of 2−3× in the analysis compared
to a global heap analysis. Furthermore, the use of an interprocedural analysis that passes
only the reachable portion of the heap was found to be one of the three key reasons for
the scalability of their analysis. (The other two key reasons being an efficient join op-
erator and the discard of intermediate states.) In this analysis, cutpoints are passed as
additional (hidden) parameters to called procedures, but their number is not bounded.
This is one of the possible reasons that their analysis may not terminate (although in
many interesting cases it does). In later work [2], the problem of cutpoint abstraction
is reduced because the compositional nature of the analysis allows to represent only a
subset of the reachable heap.

Marron et al. [14] present a context-sensitive shape analysis that is employed for au-
tomatic parallelization of sequential heap manipulating programs. The interprocedural
analysis is based on an abstraction of local heaps with cutpoints. The analysis employs
an abstraction of cutpoint-labels that uses two main ideas: (i) avoid summarizing cut-
points that are generated by the local variables of the immediate caller and (ii) abstract
all other cutpoints by recording the set of roots of access paths. The analysis also uses
liveness information to avoid recording as cutpoints objects that are only pointed to by
dead references.

Rubinstein [24] provides a preliminary study regarding the classification of cut-
points that occur in real-life Java programs. The study is conducted by monitoring pro-
gram executions. Algorithms for detecting usages of piercing references 12 are presented
but not implemented. While the experimental results are non-conclusive, they do indi-
cate that in several interesting cases the unbounded number of cutpoints occur when
the program manipulates shared immutable data structures. This can motivate special
treatment for pure (i.e., readonly) methods (see Sec. 7.4).

A local interprocedural may-alias analysis is given in [7]. The key observation there
is that a procedure operates uniformly on all aliasing relationships involving variables
of pending calls. This method applies to programs with cutpoints. However, the lack
of must-alias information may lead to a loss of precision in the analysis of destructive
updates. For more details on the relation between [7] and local heap shape analysis
see [19].

Local reasoning [10, 18] provides a way of proving properties of a procedure inde-
pendently of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. The ECPF semantics resembles the
frame rule in the sense that the effect of a procedure call on a large heap can be obtained
from its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the
heap based on user-supplied specifications. In contrast, in our work, the partitioning
of the heap is built into the concrete semantics, and abstract interpretation is used to
establish properties in the absence of user-supplied specifications.

12 The term a live cutpoint is used in [24] to refer to an object which gets dereferenced using a
piercing reference.
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Another relevant body of work is that concerning encapsulation, also known as
confinement or ownership. (A review about different encapsulation models can be
found in [15]). These works allow modular reasoning about heap-manipulating (object-
oriented) programs. The common aspect of these works, as described in [15], is that
they all place various restrictions on the kind of sharing allowed in the heap, while
pointers from the stack are generally left unrestricted. In our work, the semantics al-
lows for arbitrary heap sharing within the same procedure, but restricts both the heap
sharing and the stack live sharing across procedure calls.

9 Conclusions and Future Work

In this paper, we presented an interprocedural shape analysis for effectively cutpoint-
free programs. The analysis is local in the heap and thus allows reusing the effect of
a procedure at different calling contexts. We presented the first non-trivial solution for
procedure calls with an unbounded number of cutpoints. The solution is limited because
it applies only to pure (read-only) procedures; however, we believe that it opens the
door for future work to address the important, and still open, problem of handling an
unbounded number of live cutpoints under abstraction.

In general, we believe that the distinction between live piercing references and dead
ones can benefit analyses that abstract an unbounded number of cutpoints by allowing
them to focus on only abstracting cutpoints that are pointed to by live piercing refer-
ences. We consider this issue to be future work.
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A Formal Details Pertaining to the ECPF Semantics

In this section, we provide the technical details that were glanced over in Sec. 4.
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A.1 Reachability

In this section, we give formal definitions for the notions of reachability. These def-
initions are based on the corresponding standard notions in 2-level stores. Intuitively,
location l2 is reachable from a location l1 in a memory state σ if there is a directed
path in the heap of σ from l1 to l2. A locations l is reachable in σ if it is reachable
from a location which is referenced by some variable. Note that the inaccessible value,
similarly to the null value, is not a location.

Definition 1 (Heap path). A sequence of locations ζ : {0, . . . , n | n ∈ N} → Loc is
a directed heap path in a heap h ∈ H, if for every 0 ≤ i < |ζ| − 1 there exists f i ∈ F
such that h(ζ(i), fi) = ζ(i + 1). A directed heap path ζ goes from l1, if ζ(0) = l1, it
goes to l2 if ζ(|ζ| − 1) = l2. A heap path ζ traverses through l if there exists i such that
0≤ i< |ζ| and l = ζ(i).

Definition 2 (Reachability). A location l2 is reachable from a location l1 in a memory
state σ = 〈ρ, L, h〉, if there is a directed heap path in h going from l1 to l2.

Definition 3 (Reachable locations). A locations l is reachable in σ if it is
reachable from a location which is referenced by some variable. We de-
note the set of reachable locations in σ ∈ Σ by R(σ), i.e., R(σ) =
{l ∈ L|x ∈ V and l is reachable in σ from ρ(x) ∈ Loc} .

A.2 Properties of the ECPF Semantics

In this section, we formally define the notions of observational soundness and of sim-
ulation between the ECPF semantics and the standard semantics. To be precise, when
referring to the standard semantics we refer to the standard store-based semantics GSB
defined in [19, 20]. In short, memory states in GSB are represented in the same way as
memory states in ECPF . The main difference between GSB and ECPF is that the op-
erational semantics never blocks references in GSB, and thus • is not a possible value.

Access paths We introduce access paths, which are the only means by which a program
can observe a state. Note that the program cannot observe location names.

Definition 4 (Field Paths). A field path δ ∈ ∆ = F ∗ is a (possibly empty) sequence of
field identifiers. The empty sequence is denoted by ε.

Definition 5 (Access path). An access path α = 〈x, δ〉 ∈ AccPath = V × ∆ is a pair
consisting of a local variable and a field path.

Definition 6 (Access path value in the ECPF semantics). The value of an access path
α = 〈x, δ〉 in state σ = 〈ρ, L, h〉 of the ECPF semantics, denoted by [[α]]ECPF (σ), is
defined to be ĥ(ρ(x), δ), where

ĥ : Val × ∆ ⇀ Val such that

ĥ(v, δ) =





v if δ = ε (note that v might be • )
ĥ(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise (note that v might be • )
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Note that an access to a field of the inaccessible value is not defined.

Definition 7 (Comparable values). A pair of values of the ECPF semantics v1, v2 ∈
Val are comparable, denoted by v1

?
!" v2, if v1 .= • and v2 .= •.

Definition 8 (Access path value in the GSB semantics). The value of an access path
α = 〈x, δ〉 in state σG = 〈ρ, L, h〉 of the GSB semantics, denoted by [[α]]GSB(σG), is
defined to be h(ρ(x), δ), where Val G = Val \ {•} and

h : ValG × ∆ ⇀ ValG such that

h(v, δ) =





v if δ = ε

h(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise

Observational soundness We define the notion of observational soundness between
a ECPF memory state σ and a standard 2-level store σG of the GSB semantics as
the preservations in σG of all equalities and inequalities which hold in σ.7 Note that
the preservation in the other direction is not required. Also note that an equality resp.
inequality of values of access paths holds in σ only when the two access paths have
comparable values. For simplicity, we define [[null]]ECPF(σ) = [[null]]GSB(σ) = null.

Definition 9 (Observational soundness). The memory state σ ∈ Σ is observationally
sound with respect to memory state σG ∈ ΣG, denoted by σG " σ, if for every α,β ∈
AccPath ∪ {null} it holds that
if [[α]]ECPF (σ)

?
!" [[β]]ECPF (σ) then

[[α]]ECPF (σ)) = [[β]]ECPF (σ)⇔ [[α]]GSB(σG) = [[β]]GSB(σG)

We define the notion of observational soundness between two ECPF memory states
(resp. two standard memory states) in a similar manner.

Simulation Before we define the notion of simulation we briefly review some execution
traces accessing-functions (formally defined in [19]). Given an execution trace π, the
initial resp. final memory state of an execution trace π, denoted by in(π) resp. out(π),
is the current memory state in the first resp. last stack of program states. π(i) returns
the stack at the ith step of the execution and |π(i)| returns its height. path(π) is the se-
quence of program points which the execution traverses. i.e., path(π)(i) is the program
point in the ith step of the execution. (We assume that every statement is labeled by a
program point.)

The following theorem shows that ECPF simulates the standard semantics. In the
lemma, we denote by path(π) the sequence of intraprocedural statements andCall and
Return operations executed in π. We also use [π]k to denote the memory state of the
current procedure at π(k), the kth program state of π

Theorem 1 (Simulation). Let P be an effectively cutpoint-free program according to
the ECPF semantics. Let πS be a trace of a program P according to the standard
semantics. There exists a trace πE of P according to the ECPF semantics such that
the folowing holds (i) |πS | = |πE |, (ii) path(πS) = path(πE), and (iii) [πS ]k " [πE ]k
for every 0 ≤ k < |πS |.
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Sketch of Proof: The proof is done by induction on the length of the execution. We look
at memory states as graphs. The graph nodes are the allocated objects and the graph
edges are the object fields. The graph nodes may be labeled by variables. The graph
edges are labeled by field names.

We prove that observational equivalence is preserved by showing a stronger prop-
erty: every memory state [πE ]k produced by the ECPF can be seen as a subgraph of
[πS ]k, the corresponding memory state of the GSB semantics. Furthermore, that two
graphs agree on the values of live references.

We maintain an injective and a surjective function 0 from the set of objects that are
reachable from the variables of the current procedure in a memory state of the GSB to
the set of objects in the corresponding memory state of the ECPF semantics. Clearly
when a program starts, and prior to the allocation of any object, the two memory states
are isomorphic. It is easy to verify that atomic statement preserves the isomorphism:
0 remains unchanged, except that object allocation maps the new location to the new
individual.

When a procedure is invoked, the mapping 0 is projected on the set of objects passed
to the invoked procedure. When a procedure returns, the mapping of locations that
were irrelevant for the invocation remains as in the call site. The mapping for locations
that were relevant for the invocation, as well as those that were allocated during the
invocation, are taken from the exit site. Note that the induction assumption ensures that
the above scheme is well defined.

To show that the return memory state produced by the ECPF semantics is a sub-
graph of the corresponding return memory state of the GSB semantics agrees with it
on the values of live references, we make the following argument: The computation of
return states in the ECPF semantics blocks piercing references. The computation of
the return states in the GSB semantics does not. Thus, it remains to show that all the
references that gets blocked by the ECPF semantics are not live in the GSB semantics.

The computation of return states in the ECPF semantics restores all references from
the caller’s local heap to parameter objects which, by the induction assumption, must be
in the 0 relation. It only blocks the value of piercing references (i.e., it changes the value
of every pointer field or variable pointing to a cutpoint). The execution π S never uses a
a field f of an object o such that the f -field in 0(o) at the corresponding ECPF points
to the inaccessible location. Otherwise, πE is a non effectively cutpoint-free execution
of P in ECPF which is a contradiction to the assumption that P is effectively cutpoint-
free. For similar reasons, the value of a variable which gets blocked by the ECPF
semantics does not get used by the GSB semantics.

Lemma 1. Let P be an effectively cutpoint-free program. The following holds:

[Invariants] An invariant concerning equality of values of access paths in the ECPF
semantics is an invariant in the standard semantics

[Cleanness] P does not dereferences null references in the standard semantics.

Lemma 2. Let P be an effectively cutpoint-free program. A reference, that at a given
program point always has the inaccessible value, is not live at that program point in the
standard semantics.
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Definition 10 (Observational equivalence). The ECPF memory states σ1,σ2 ∈ Σ
are observationally equivalent, denoted by σ1 ≶ σ2, if σ1 " σ2 and σ2 " σ1.

The following lemma shows that ECPF is indifferent to location names.

Theorem 2 (Indifference to location names). Let π1,π2 be execution traces of a pro-
gram P according to the ECPF semantics. If |π1(1)| = |π2(1)| = 1, in(π1) ≶ in(π2)
and path(π1) = path(π2) then out(π1) ≶ out(π2).

B Update Formulae

In this section, we encode the abstract transformers using the notations of [25].

B.1 Intraprocedural Statements

The meaning of assignments is specified by defining the values of the predicates in
the outgoing structure using first-order logic formulae with transitive closure over the
incoming structure [25]. The inference rules for assignments are rather straightforward.
We encode conditional using assume() statements.

The operational semantics for assignments is specified by predicate-update formu-
lae: for every predicate p and for every statement st , the value of p in the 2-valued
structure which results by applying st to S, is defined in terms of a formula evaluated
over S.

The predicate-update formulae of the core-predicates for assignment is given in
Fig. 13. The table also specifies the side condition which enables that application of the
statement. These conditions check that null-dereference is not performed and that the
inaccessible value is not used. The value of every core-predicate p after the statement
executes, denoted by p′, is defined in terms of the core predicate values before the
statement executes (denoted without primes). Core predicates whose update formula is
not specified, are assumed to be unchanged, i.e., p ′(v1, . . .) = p(v1, . . .).

None of the assignments, except for object allocation, modifies the underlying uni-
verse. Object allocation is handled as in [25]: A new individual is added to the universe
to represent the allocated object; the auxiliary predicate new is set to hold only at that
individual; only then, the predicate-update formulae is evaluated.

The semantics transitions into the error state (σ•) under the same conditions as the
ECPF semantics, i.e., when an inaccessible-valued variable or field are accessed. (See
Fig. 7). The following side condition trigers such a transition when a variable x points
to an inaccessible location ∃v : x(v) ∧ ia(v2). Similarly, the following side condition
trigers such a transition when the f-field of the object pointed to by a variable x points
to an inaccessible location ∃v1, v2 : x(v1) ∧ f(v1, v2) ∧ ia(v2).

B.2 Interprocedural Statements

The treatment of procedure call and return could be briefly described as follows: (i) con-
structing the memory state at the callee’s entry site (Se) and (ii) the caller’s memory
state at the call site (Sc) and the callee’s memory state at the exit site (Sx) are used to
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Statement Predicate-update formulae side− condition

y = null y′(v) = 0

y = x y′(v) = x(v) ∀v1 : ¬(x(v1) ∧ ia(v1))

y = x.f y′(v) = ∃v1 : x(v1) ∧ f(v1, v) ∃v1 : x(v1) ∧ ¬ia(v1) ∧
∀v2 : ¬(x(v1) ∧ f(v1, v2) ∧ ia(v2))

y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1) ∃v1 : y(v1) ∧ ¬ia(v1)

y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2)) ∃v1 : y(v1) ∧ ¬ia(v1) ∧
∀v2 : ¬(x(v2) ∧ ia(v2))

y = alloc eq ′(v1, v2) = eq(v1, v2) ∨ new (v1) ∧ new(v2)

new ′(v) = 0

Fig. 13. The predicate-update formulae defining the operational semantics of assignments. Note
that we always assume that a reference variable is nullified before re-assigned.

construct the caller’s memory state at the return site (Sr). We now formally define and
explain these steps.

Fig. 14 specifies the procedure call rule for an arbitrary call statement y =
p(x1, . . . , xk) by an arbitrary function q. The rule is instantiated for each call state-
ment in the program.

Computing The Memory State at the Entry Site. Se, the memory state at the en-
try site to p, represents the local heap passed to p. It contains only these individuals
in Sc that represent objects that are relevant for the invocation. It also contains the in-
dividual representing the inaccessible value. The formal parameters are initialized by
updCally=p(x1,...,xk)

q , defined in Fig. 15(a). The latter, specifies the value of the predi-
cates in Se using a predicate-update formulae evaluated over S c. We use the convention
that the updated value of x is denoted by x ′. Predicates whose update formula is not
specified, are assumed to be unchanged, i.e., x ′(v1, . . .) = x(v1, . . .). Note that only
the predicates that represent variable values are modified. In particular, field values,
represented by binary predicates, remain in p’s local heap as in S c.

Computing The Memory State at the Return Site. The memory state at the return-
site (Sr) is constructed as a combination of the memory state in which p was in-
voked (Sc) and the memory state at p’s exit-site (Sx). Informally, Sc provides the in-
formation about the (unmodified) irrelevant objects and S x contributes the information
about the destructive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation
is effectively cutpoint-free guarantees that the only live references into the local heap
are references to objects referenced by an actual parameter. This allows us to reflect the
effect of p into the local heap of q by: (i) replacing the relevant objects in S c with Sx,
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Table 3. Formulae shorthands and their intended meaning.

Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈F f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) (eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2))

R{x1,...,xk}(v) ¬ia(v) ∧ v is reachable from x1 or x2∨
x∈{x1,...,xk} ∃v1 : x(v1) ∧ F ∗(v1, v) or . . . or xk

isCPq,{x1,...,xk}(v) R{x1,...,xk}(v) ∧ v is a cutpoint
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

Cally=p(x1,...,xk)(Sc) = Se Rety=p(x1,...,xk)(Sc, Sx) = Sr

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u) ∨ ia(v)}
ιe = updCally=p(x1,...,xk)

q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P .





ιc[inUc '→ λv.1](p)(u1, . . . , um) : u1 = w1.c, . . . , um = wm.c
ιx[inUx '→ λv.1](p)(u1, . . . , um) : u1 = w1.x, . . . , um = wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 |= inUx(u) ∨ (inUc(u) ∧ ¬ia(u) ∧ ¬R{x1,...,xk}(u))

ιr = updRety=p(x1,...,xk)
q (〈U ′, ι′〉)

Cally=p(x1,...,xk)(Sc) = σ• Sc |= ∃v : ia(v) ∧ (x1(v) ∨ · · · ∨ xk(v))

Rety=p(x1,...,xk)(Sc, Sx) = σ• Sx |= ∃v : ia(v) ∧ ret(v)

Fig. 14. The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q. The func-
tions updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Fig. 15.

the local heap at the exit from p; (ii) redirecting all references to an object referenced
by an actual parameter to the object referenced by the corresponding formal parameter
in Sx; (iii) block every piercing reference.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively.

Pointer redirection is specified by means of predicate update formulae, as defined
in Fig. 15(b). The most interesting aspect of these update-formulae is the formula
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a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ V \ {h1, . . . , hk}
b. Predicate update formulae for updRety=p(x1,...,xk)

q

z′(v) =





retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∨
∃v1 : z(v1) ∧ isCPq,{x1,...,xk}(v1) ∧ inUx(v) ∧ ia(v)

0 : z ∈ V \ Vq

f ′(v1, v2) = inUx(v1) ∧ inUx(v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬ia(v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2) ∨
inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧ isCPq,{x1,...,xk}(vsep) ∧ ia(v2)

inUc′(v) = inUx ′(v) = 0

Fig. 15. Predicate-update formulae for the core predicates used in the procedure call rule. We
assume that the p’s formal parameters are h1, . . . , hk. There is a separate update formula for
every local variable z ∈ V and for every field f ∈ F .

match{〈h1,x1〉,...,〈hk,xk〉}, defined below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def
=

inUc(v1) ∧ ia(v1) ∧ inUx(v2) ∧ ia(v2) ∨∨k
i=1 inUc(v1) ∧ xi(v1) ∧ inUx (v2) ∧ hi(v2)

This formula matches an individual that represents a (parameter) object which is ref-
erenced by an actual parameter at the call-site, with the individual that represents the
object which is referenced by the corresponding formal parameter at the exit-site. The
assumption that formal parameters are not modified allows us to match these two in-
dividuals as representing the same object. Once pointer redirection is complete, all in-
dividuals originating from Sc and representing relevant objects are removed, resulting
with the updated memory state of the caller. In addition, the formula matches the indi-
vidual representing the inaccessible value at the call site with the one representing the
inaccessible value at the return site, thus preserving the value of inaccessible references
from before the call.

We block piercing references using formula isCP q,{x1,...,xk}(v), defined in Tab. 3.
The formula holds when v is a cutpoint object. It is comprised of three conjuncts. The
first conjunct, requires that v be reachable from an actual parameter. The second con-
junct, requires that v not be pointed-to by an actual parameter. The third conjunct, re-
quires that v be an entry point into p’s local heap, i.e., is pointed-to by a local variable
of q (the caller procedure) or by a field of an object not passed to p.

Predicate update formulae for instrumentation predicates. Fig. 16 provides the up-
date formulae for instrumentation predicates used by the procedure call rule. We use
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PTX(v) as a shorthand for
∨

x∈X x(v). The intended meaning of this formula is to
specify that v is pointed to by some variable from X ⊆ V . We use bypass X(v1, v2)
as a shorthand for (F (v1, v2) ∧ ¬RX(v1))

∗. The intended meaning of this formula
is to specify that v2 is reachable from v1 by a path that does not traverse any ob-
ject which is reachable from any variable in X ⊆ V . Note that, again, formula
match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2) again plays a central role.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ ¬(PTx1,...,xk(v) ∨ isCPq,{x1,...,xk}(v))∨
∃v1, v2 : R{x1,...,xk}(v1) ∧ R{x1,...,xk}(v2) ∧

F (v1, v) ∧ F (v2, v) ∧ ¬eq(v1, v2))

r′
y(v) =

{
rxi (v) : y = hi

0 : y ∈ V \ {h1, . . . , hk}
b. Predicate update formulae for updRety=p(x1,...,xk)

q

ils′(v) = ils(v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v)) ∨
PTx1,...,xk(v) ∧ ∃v1, v2, v3 : match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∧ ¬eq(v2, v3) ∧

inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ F (v2, v1) ∧
(inUc(v3) ∧ ¬R{x1,...,xk}(v3) ∧ F (v3, v1) ∨ inUx(v3) ∧ F (v3, v))

r′
obj (v1, v2) = robj (v1, v2) ∧ inUx (v1) ∧ inUx (v2) ∨
robj (v1, v2) ∧ inUc(v1) ∧ inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx(v2) ∧ ∃va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf ) ∧
bypass{x1,...,xk}(v1, va) ∧ robj (vf , v2)

r′
x (v) = inUc(v) ∧ rx (v) ∧ ¬R{x1,...,xk}(v) ∨

inUx(v) ∧ ∃vx, va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf ) ∧
x(vx) ∧ bypass{x1,...,xk}(vx, va) ∧ robj (vf , v)

Fig. 16. The predicate update formulae for the instrumentation predicates used in the procedure
call rule. We give the semantics for an arbitrary function call y = p(x1, . . . , xk) by an arbitrary
function q. We assume that the p’s formal parameters are h1, . . . , hk.
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1 Introduction
Shape analysis is a static analysis of the source code of a program to determine shapes
and manipulations of the dynamically allocated data structures at each point which that
program can reach in an execution.

To do so, the analysis presented in this report computes (an overapproximation of) the
set of states that the program can possibly be in, at each point in the program. This is
done by computing all possible states that the program can be in, before execution of each
statement of the program, i.e., that statement’s invariant.

Here, we use a denotational style semantics to define semantics of programs. In denota-
tional semantics, we consider a domain set D. The semantics of statements (also that of the
whole program) is then defined as a function on that domain; i.e., the semantics of a state-
ment c is JcK ∶ D → D. Here, we use the power set, 2S, of a set of states, S, as the domain. As
a result, given the invariant of a statement, computing the invariant of the next statement
is straightforward. We simply apply the statement’s semantics to its invariant and get the
invariant of the next statement 1. We assume that the set of all states that the program can
possibly be in before execution of the program begins (program’s precondition) is provided
together with the program being analyzed. The analysis then computes invariants of all
program statements and also the postcondition of the whole program.

As the set of states that the program can be in is generally not computable, accurate
computation of invariants is impossible. Therefore, we compute a sound overapproximation
of them. We compute an overapproximation so that we have a guarantee that whenever a
state is part of an invariant, it is also represented as part of the overapproximation of that
invariant computed by the analysis. Here, the word sound is put to emphasize the fact that
if a program has a reachable faulty state, so does the overapproximation. This assures that
whenever the analysis indicates that a program is free of memory faults it is indeed the
case 2.
∗Based on [DOY06], a paper with the same title by Dino Distefano, Peter W O’Hearn, and Hongseok Yang.

Here, we give a rigorous presentation and soundness proof of the shape analysis approach they presented.
1In case the next statement is a loop, the result is not the invariant of the next statement (the loop) but, as we

shall see, can be used to compute the invariant of that loop
2The other direction, of course, does not hold (the analysis can indicate that a program is unsafe while it is not)

as a sound and complete analysis is non-computable as mentioned above
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The term “program state”, as repeatedly referred to above, is generic and can cover a
wide range of possibilities. The states of a program may simply be representations of its
store (assigning values to program variables) and heap or they can be describing properties
about data structures residing in the heap such as sortedness of a linked list, it being the
reverse of another linked list, etc. In this regard, there are shape analyses that can be
used to obtain a wide range of information about the programs they analyze, e.g., those
presented in [LRS04, OCDY06, CR08, CRN07]. In this report, we consider a very simple
programming language, SimpleLang, in which all program variables are assumed to be
pointers pointing to heap cells. Heap cells, then, are themselves considered as pointers
pointing to other heap cells. In other words, this programming language can be used to
write programs manipulating singly-linked lists where the data field(s) of the linked lists
are abstracted away, i.e., each linked list cell is considered to only point to the next cell in
the linked list.

As we will discuss shortly, we will define three semantics for this language. One is a
low-level semantics considered as the reference semantics. This semantics simply repre-
sents states as stores and heaps, respectively, a mapping from program variables to heap
cells and a partial mapping from heap cells to where they point to (in case allocated). The
other two are high level semantics, representing states with a variant of symbolic heaps.
Symbolic heaps are a special form of separation logic formulas defined for symbolic execu-
tion [BCO05]. This representation uses (separation logic) predicates to indicate fragments
of heap containing acyclic linked list segments of length at least one. Choosing to represent
states in this symbolic way, not only does it allow to confirm lack of memory faults from
a successful analysis but also gives information about different linked lists residing in the
heap and their cyclicities.

In the rest of this report, we describe the syntax of SimpleLang and define three differ-
ent semantics for programs expressed in this language, namely, concrete semantics, sym-
bolic semantics and abstract semantics.

In concrete semantics (Semκ), we use a low level representation of a store and a heap
to describe states. In other words, a state is a pair of a heap and a store, or an error state
representing a state where a memory fault has occurred. Heap cells are represented by
natural numbers, their memory address. A store is represented by a mapping that maps
program variables to heap cells or nil (the null pointer), and a heap is represented by a
partial mapping that maps heap cells to heap cells or nil if they are allocated. Concrete
semantics is the basic semantics defined to correspond to a low level interpretation of the
language.

In symbolic semantics (Semσ), program states are defined with help of symbols. We use
nil and program variables as symbols to stand for themselves, i.e., the null pointer and
where program variables point respectively. We, in addition, introduce primed variables, to
represent heap cells that are (possibly) not pointed to by program variables, or nil. Primed
variables are by definition assumed to be existentially quantified in a state. A symbolic
state then, is either an error state or consists of a pair of a spatial part and a pure part.
The spatial part expresses spatial assertions, e.g., Ls(x, y′), which asserts that there is a
linked list segment starting from the heap cell pointed to by program variable x to some
other heap cell or nil as represented by primed variable y′. The pure part, on the other
hand, expresses equalities between symbols, e.g., asserting y′ equals nil .

In abstract semantics (Semα), on the other hand, we introduce an abstraction that is a
mapping from symbolic states to (abstract) symbolic states. The abstract semantics, then,
is symbolic semantics after which the abstraction is applied to the resulting states.

We will establish a modeling relation between concrete and symbolic states and show
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Semκ Semσ Semα

States pairs of heaps and
stores or error

pairs of spatial and
pure (equality)

assertions or error

Abstracted symbolic
states

Overapproximates – Semκ Semκ

∣ States ∣ Infinite Infinite Finite
Computing
Invariants Non-computational Non-computational Computational

Table 1: Summary of properties of concrete, symbolic and abstract semantics

x ∈ Vars

stm ∶∶= new(x) ∣ free(x) ∣ exp := exp ∣ while(bexp) {stm} ∣ stm; stm
exp-s ∶∶= x ∣ nil

exp ∶∶= exp-s ∣ x.next
bexp ∶∶= exp-s == exp-s ∣ exp-s != exp-s

Figure 1: The grammar of the programming language

that symbolic semantics and abstract semantics are both sound overapproximations of con-
crete semantics. Furthermore, we show that the set of abstract states is finite which means
abstract semantics can be used to compute invariants and ultimately for shape analysis.
Table 1 shows a summary of properties of concrete, symbolic and abstract semantics and
their relation.

In the rest of this report we assume that the reader is familiar with basic notions of
lattice and domain theory, e.g., complete lattices, the fact that the power set of any set with
subset relation forms a complete lattice, (Scott-)continuous functions, etc.

2 The Programming Language
Here, we define the simple language (SimpleLang) that we are going to use throughout
the rest of the report. This language is minimally designed for the purpose of formaliz-
ing concepts presented in this report. SimpleLang can express programs that manipulate
singly-linked lists where data field(s) are abstracted away, i.e., linked lists only have a
“next” field. Here, we give the syntax of SimpleLang and discuss its general semantics.

2.1 Syntax
The BNF grammar of SimpleLang is given in Figure 1. In this figure, the words in bold are
keywords and Vars is the set of program variables. A program is simply a statements (rep-
resented as stm in the grammar). In the sequel, we use x, y, z, . . . to refer to program vari-
ables. In addition, we use e, E, b and c (possibly indexed) to represent simple expressions
(exp-s in grammar), expressions (exp in grammar), boolean expressions (bexp in grammar)
and statements (stm in grammar), respectively.
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while(x != nil) {
y := x.next;
free(x);
x := y

}

Figure 2: Dispose program: a program disposing a list

All program variables are assumed to be pointers that can be nil (the null pointer) or
pointing to some memory location corresponding to a structure (in the sense of C struc-
tures) that has a next field. A program variable can be followed by a dot and the next key-
word which indicates accessing the next field of the structure pointed to by that variable.
Keywords new and free respectively allocate and deallocate memory cells. The new(x)
statement changes the value of variable x so that it points to the newly allocated memory
cell and the free(x) statement requires variable x to be pointing to some allocated memory
cell which will be deallocated after its execution.

Effectively, this language can express programs that represent manipulations of singly
linked data structures, e.g., cyclic or acyclic linked lists. As an example, Figure 2 depicts a
program that disposes a list whose head is pointed to by x.

2.2 General Semantics
Here, we give a general account of semantics, we discuss how a semantics for SimpleLang,
independent of the set of states, is defined. We use denotational semantics to define the
semantics of programs. Assuming S is the set of states, we define the domain of interpre-
tation as 2S (the power set of S). Hence, for a statement c, the semantics of c is a function
JcK ∶ 2S → 2S. In defining the semantics for a basic statement c (allocation, deallocation
and assignment), we define a preliminary semantics JcK† ∶ S → 2S and define the actual
semantics of c based on that.

JcK(S) = ⋃
st∈S

JcK†(st)

The semantics of the composition of statements is then defined as the composition of the
semantics functions of those statements. In other words,

Jc1; c2K = Jc2K ○ Jc1K

Given the semantics of the basic statements and the composition of statements, we de-
fine the semantics of the while loops, independent of the set of states chosen. To do so, we
use the function

filter ∶ bexp →S→S

which, given a boolean expression (bexp) and a set of states, filters out all states that are
not compatible with the given boolean expression.

Assuming S0 ⊆ S is the set of states before a while loop while(b){c}, we define the
function fS0(S) as follows:

fS0(S) = S0 ∪ JcK ○ filter(b)(S)
fS0 , is the function that assuming that states in S are some states that the program can be
in before the while loop (e.g., resulting from previous iterations of the loop), gets the new set
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of states that the program can be in before the loop. In other words, considering S0 as a set
of states that we already know that the program can be in before entering the while loop,
it evaluates the effect of one iteration of the while loop on members of S and considers the
resulting states to also be part of the states that the program can be in before entering the
while loop. In particular, assuming S0 is the set of states that the program can be in before
entering the while loop for the first time, fn+1

S0
(∅) is the set of states that the program can

be in before the while loop assuming the loop has already been evaluated up to n times.
Given the definitions above, we can see that:

fS0
(∅) = S0

f2
S0

(∅) = S0 ∪ JcK ○ filter(b)(S0)
f3
S0

(∅) = S0 ∪ JcK ○ filter(b)(S0) ∪ (JcK ○ filter(b))2(S0)
⋮

Hence, the set of all states that the program can be in before the while loop is:

∅ ∪ fS0
(∅) ∪ f2

S0
(∅) ∪ f3

S0
(∅) ∪ . . . (1)

On the other hand, our domain, 2S, together with ⊆ relation forms a complete lattice. More-
over, it is obvious, according to the definition of semantics as given above, that JcK for any
basic statement c is continuous. For composition of statements, we will shortly discuss
that the semantics defined below for the while loops (Formula 2, below) is also continuous,
which shows continuousness of the semantics of the body of while loops; even if they contain
other while loops. Hence, according to Kleene’s fixpoint theorem, the Formula 1, above, is
the least fixpoint of the function fS0 . Therefore, we define the semantics of while loops as
follows:

Jwhile(b){c}K(S) = filter(¬b)(lfix(λS′.S ∪ JcK ○ filter(b)(S′))) (2)

where, ¬b is simply the negation of b, i.e., the result of swapping “==” and “! =” in b.
Moreover, as alluded to earlier, the semantics definition of the while loops given above,

is continuous. This we can see from the fact that:

∀X ⊆ 2S. Jwhile(b){c}K( ⋃
X∈X

X) = ⋃
X∈X

Jwhile(b){c}K(X)

This means that the definition above for the semantics of the while loops can be used to
give an inductively defined semantics for all of SimpleLang.

It is worth noting that the fnS0
(∅) is increasing with respect to ⊆, i.e.,

∀n ∈N. fnS0
(∅) ⊆ fn+1

S0
(∅)

This can be easily shown with an induction over n. Hence, one can try to compute the
fixpoint of the semantics of the while loop by computing fS0(∅), f2

S0
(∅), . . . until reaching

the least fixpoint, i.e., some n for which fn+1
S0

(∅) = fnS0
(∅). Although, in the general case,

there is no guarantee that there is such a finite n for which fnS0
(∅) is the least fixpoint.

However, for the case of abstract semantics, as we will discuss, since the set of states (and
hence the domain which is its power set) is finite, such a finite n always exists. Throughout
the rest of this report, we show example programs for which we compute the fixpoint using
this approach and also discuss some examples for which no finite n exists such that fnS0

(∅)
is the least fixpoint.
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The way the semantics of the while loops are defined here is not the conventional way
in denotational semantics. There, usually the fixpoint is applied to the semantics function
itself; i.e., a lattice of (partial) semantics functions is defined for the while loop together with
a completion operation on those partial functions (adding to the domain of the definition of
the partial semantics functions). The semantics of the loops, then, is defined as the least
fixpoint of this completion operation over the lattice of partial functions. Here, the choice to
define the semantics of the while loops differently, is so that the fixpoint is applied to sets
of states rather than (partial) semantics functions.

Here, we have shown a way to define the semantics of the language using the prelimi-
nary semantics for basic statements and the filter function, independent of the set of states
chosen. Hence, in the rest of the report, in order to define a semantics, we simply define
the set of states, the preliminary semantics for basic statements and the filter function for
that semantics. Furthermore, to define the preliminary semantics of basic statements, we
define a relation of the form st, c⇒† st′ where c is a basic statement and st, st′ ∈S. We then
derive the preliminary semantics as follows:

JcK(S) = {st′ ∣ st ∈S ∧ st, c⇒† st′}

3 Concrete Semantics
In order to give a basic definition of the behavior of programs written in our simple lan-
guage, we define a denotational semantics called concrete semantics (Semκ). A state of
Semκ is either an error state ⊺κ or a simple representation of program memory, i.e., a map-
ping from program variables to heap cells and a representation of the program heap.

Definition 3.1 (Concrete States). Let Vars be the set of program variables. Then, we define
concrete program heaps, concrete stores and concrete states as follows:

– A heap h ∈ Hκ is a partial function h ∶N⇀ Values

– A store s ∈ STκ is a function s ∶ Vars → Values

– The set of concrete states is Sκ = (Hκ × STκ) ∪ {⊺κ}

Where, Values = N ∪ {nil}. Furthermore, for a heap h ∈ Hκ, we use dom(h) to refer to all
natural numbers for which h is defined. Where a ∈ N is a natural number for which h(a) is
undefined, we write h(a) = �. ∎

Note that, nil and memory location 0 are different; the former is the null pointer while
the latter is a valid memory address that can be allocated to and accessed, just like any
other memory address.

To depict concrete states, we use a table to represent heap and store. As an example, the
following table represents a concrete state (h, s) ∈ Sκ of the program depicted in Figure 2.
In this state, program variables x and y are respectively pointing to heap cell 10 and nil ;
while heap cell 10 points to heap cell 13 which in turn points to nil , i.e., x points to a linked
list of length 2.

h s
address value variable value

10 13 x 10
13 nil y nil

8



As we explained earlier, we only need to define the preliminary semantics for basic state-
ments and the filter function and we do this by establishing a relation ⇒†

κ on statements
and states.

In the sequel, we use f[a ↦ b] to denote the result of updating function f such that it
maps a to b. In particular, f[a ↦ �] denotes the updating of partial function f such that it
has no value for a.

f[a↦ b](d) = { b if d = a
f(d) otherwise

Definition 3.2. The rules defining the relation⇒†
κ used to define the preliminary concrete

semantics for basic program statements are as follows:

any basic statement c
⊺κ, c⇒†

κ ⊺κ
l ∈N ∖ dom(h) and n ∈ Values

(h, s),new(x);⇒†
κ (h[l ↦ n], s[x↦ l])

s(x) ∈ dom(h)
(h, s), free(x)⇒†

κ (h[s(x)↦ �], s)
s(x) /∈ dom(h)

(h, s), free(x)⇒†
κ ⊺κ

(h, s), x := e⇒†
κ (h, s[x↦ valκ(s, e)])

s(y) ∈ dom(h)
(h, s), x := y.next⇒†

κ (h, s[x↦ h(s(y))])

s(y) /∈ dom(h)
(h, s), x := y.next⇒†

κ ⊺κ
s(x) ∈ dom(h)

(h, s), x.next := e⇒†
κ (h[s(x)↦ valκ(s, e)], s)

s(x) /∈ dom(h)
(h, s), x.next := e⇒†

κ ⊺κ
s(x), s(y) ∈ dom(h)

(h, s), x.next := y.next⇒†
κ (h[s(x)↦ h(s(y))], s)

s(x) /∈ dom(h) or s(y) /∈ dom(h)
(h, s), x.next := y.next⇒†

κ ⊺κ
∎

Where valκ(s, e) for e, a simple expression, and s ∈ STκ is the concrete valuation of e
under s. It is defined as follows:

valκ(s, e) = { s(e) if e ∈ Vars
nil if e = nil

Definition 3.3. The concrete filter function filterκ is defined as follows:

filterκ(e1 == e2)(S) = {(h, s) ∈ S ∣ valκ(s, e1) = valκ(s, e2)} ∪ {⊺κ ∣ ⊺κ ∈ S}
filterκ(e1 != e2)(S) = {(h, s) ∈ S ∣ valκ(s, e1) ≠ valκ(s, e2)} ∪ {⊺κ ∣ ⊺κ ∈ S}

∎
This concludes the definition of concrete semantics. As an example, Figure 4 depicts

a computation of the least fixpoint for the while loop of the dispose program depicted in
Figure 2 by assuming an initial set S0 of states that the program can be in before entering
the loop. It also shows the result of the semantics of the while loop of this program applied
to S0.

On the other hand, Figure 5 shows that the least fixpoint of the semantics of the while
loop in the program depicted in Figure 3 is not obtainable with iterations of computing
fnS0

(∅).
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while(nil == nil) {
new(x);

}

Figure 3: Infinite allocation: a program that allocates heap cells indefinitely

S0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

JdisposeKκ(S0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

x nil
y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

n fnS0
(∅)

0 ∅

1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

,

h s
addr. val. var. val.

13 nil x 13
y 13

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

,

h s
addr. val. var. val.

13 nil x 13
y 13

,

h s
addr. val. var. val.

x nil
y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Figure 4: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the concrete semantics. In this case, f3

S0
is the least fixpoint. In

addition, JdisposeKκ is the concrete semantics of the whole dispose program (while loop).
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S0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

x 10

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n fnS0

(∅)
0 ∅

1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

x 10

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

1 nil x 1
,

h s
addr. val. var. val.

1 0 x 1
,

h s
addr. val. var. val.

2 nil x 2
, . . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭

3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

1 nil x 2
2 0

,

h s
addr. val. var. val.

1 0 x 10
10 nil

,

h s
addr. val. var. val.

2 nil x 10
10 13

, . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⋮ ⋮

Figure 5: Computation of the least fixpoint of the while loop semantics for the infinite
allocation program (Figure 3) in the concrete semantics. In this case, there does not exist
an n ∈N such that fnS0

is the least fixpoint.

4 Symbolic Semantics
In this section we introduce symbolic semantics for programs of SimpleLang. Symbolic
states are high-level representations of program memory where actual addresses of cells
are represented by symbols. Since we are using a symbolic representation of memory, we
do not need stores and need only to represent heaps. To do so, we use a variant of symbolic
heaps. Symbolic heaps are special separation logic formulas presented in [BCO05] to be
used for symbolic execution. A symbolic heap is a separation logic formula consisting of
conjunctions of a spatial formulas and pure assertions (assertions on equalities of symbolic
expressions). Here, we define symbolic states to be pairs of separation logic formulas of
spatial assertions and pure parts which represent equalities by explicit representation of
equivalence classes over symbols.

The spatial assertions we use for the spatial part of symbolic states express facts of the
form x ↦ y which signifies that the memory location indicated by symbol x represents a
heap cell pointing to symbol y or Ls(x, y) which signifies the fact that there is a linked
list segment in the heap starting from memory location represented by symbol x ending in
symbol y. We denote the set of symbols with Sym and it is defined as follows:

Sym = Vars ∪Vars ′ ∪ {nil}

where, Vars is the set of programs, they stand for memory locations pointed to by them,
Vars ′ is a countably infinite set of primed variables x′, y′, . . . that represent some memory
location (potentially) not pointed to by program variables and nil stands for the null pointer.

Definition 4.1 (Symbolic States). Symbolic states are defined as follows:
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– A spatial part Σ ∈ SPσ is a separation logic formula defined below:

ς1, ς2 ∈ Sym

Φ ∶∶= Ls(ς1, ς2) ∣ ς1 ↦ ς2 ∣ Junk ∣ emp ∣ Φ ∗Φ

– A pure part Π ∈ PRσ is a set Π ∶ 22Sym

of equivalence classes of symbols

– The set of symbolic states is Sσ = (SPσ × PRσ) ∪ {⊺σ}

Furthermore, we use ς1 =Π ς2 to stand for the fact that ς1 = ς2 or ς1 and ς2 belong to the
same equivalence class in Π and use ς1 ≠Π ς2 as its negation. In cases where we do not
distinguish between Ls and ↦, we use capital letter P (possibly indexed) to denote them,
i.e., we implicitly assume that P ∈ {Ls,↦}. ∎

We assume that the primed variables that appear in a symbolic state are all existen-
tially quantified. That is to say, by a symbolic state (Σ,Π) ∈ Sσ in which primed variables
x′1, . . . , x

′
n appear, we mean:

∃x′1, . . . , x′n. (Σ,Π)
In the above definition, ∗ is the separating conjunction. We later discuss the relation

between concrete and symbolic semantics and give the exact interpretation of separating
conjunction. For now, suffice it to say that a separation logic formula A ∗B means that the
heap of the program can be divided into two disjoint subheaps (no address is given a value
in both subheaps) such that one is represented by A and the other is represented by B. A
separation logic formula with no separating conjunction (a single instance of a predicate)
is called a (heap or memory) chunk. As the intuitive meaning of separating conjunction
explained here suggests, the separating conjunction (similarly to classical logic’s conjunc-
tion connective) is commutative and associative. Therefore, in the sequel we consider two
spatial parts of symbolic states equal if they only differ in the order of chunks. For further
reading on separation logic, refer to the seminal paper [Rey] by J. C. Reynolds, where he
introduces separation logic.

Intuitively, the heap chunk Ls(ς1, ς2) represents (part of) a heap where a non-empty
(i.e., ς1 ≠ ς2) acyclic linked list in the heap starting in the memory location represented by
ς1 ending in the memory location (if ς2 ≠ nil ) represented by ς2. The heap chunk ς1 ↦ ς2
represents (part of) a heap where memory location represented by ς1 points to memory
location (if ς2 ≠ nil ) represented by ς2. The heap chunk Junk , on the other hand, represents
(a part of) heap that contains at least one allocated memory location. This chunk simply
signifies memory leaks. Finally, the emp chunk represents (a part of) heap that is empty,
i.e., no memory location is allocated. As emp chunk represents an empty (part of) heap, in
the sequel, we assume two spatial parts Σ and Σ ∗ emp equal.

As we discussed earlier, all primed variables are implicitly assumed to be existentially
quantified. Therefore, we consider two symbolic states equal if they are equal up to renam-
ing of primed variables. That is, in addition to the fact that spatial parts are equal up to
reordering of their chunks and addition of emp chunks.

Definition 4.2 (Symbolic State Equality). Let st1, st2 ∈ Sσ be two symbolic states. Then,
st1 and st2 are equal (st1 = st2) if and only if

st1 = st2 = ⊺σ
or

st1 = (Σ1,Π1) and st2 = (Σ2,Π2) such that st1 = r̂(st2)
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for some bijection r ∶ Vars ′ → Vars ′. Where r̂(Σ,Π) is the simultaneous renaming of primed
variables in Σ and Π according to r and the equality between spatial parts is considered up
to reordering of their chunks and addition of emp chunks.

In the sequel, we will call such a renaming that makes two symbolic states equal their
equalizer renaming. ∎

Note that the definition above is obviously reflexive, symmetric and transitive, i.e., it is
an equivalence relation.

Definition 4.3 (Consistency of Symbolic States). A non-error symbolic state (Σ,Π) ∈ Sσ is
consistent (written as (Σ,Π) /⊢ false) if none of the following holds:

I. There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ or Σ = ς1 ↦ ς2 ∗Σ′ and ς1 =Π nil

II. There a Σ′ such that Σ = P1(ς1, ς2) ∗ P2(ς3, ς4) ∗Σ′ and ς1 =Π ς3

III. There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ such that ς1 =Π ς2

∎
Moreover, for e1, e2 ∈ Vars ∪ {nil}, we need to be able to determine whether a non-error

symbolic state (Σ,Π) ∈ Sσ entails e1 = e2 or e1 ≠ e2. For the case of equality, e1 = e2, we
simply see if e1 =Π e2. On the other hand, for the case of inequality, the entailment might be
drawn from the spatial part. In particular, we say (Σ,Π) entails e1 ≠ e2 if adding equality
of e1 and e2 to it makes it inconsistent. This is formally defined in the following.

Definition 4.4 (Equalities and Inequalities with Respect to Symbolic States). Let (Σ,Π) ∈
Sσ be a symbolic state and e1, e2 ∈ Vars∪{nil}. Then, the entailment of equality and inequal-
ity of e1 and e2 under (Σ,Π), written as (Σ,Π) ⊢ e1 = e2 and (Σ,Π) ⊢ e1 ≠ e2 respectively, are
defined as follows.

(Σ,Π) ⊢ e1 = e2 if e1 =Π e2

(Σ,Π) ⊢ e1 ≠ e2 if (Σ,Π[e1 ∶=∶ e2]) ⊢ false

where, Π[ς1 ∶=∶ ς2], for two symbols ς1 and ς2, is obtained by uniting the equivalence classes
of ς1 and ς2 if they exist or otherwise adding a new equivalence class {ς1, ς2}. ∎

In order to evaluate statements that access pointers x (e.g., free(x);), we need to explic-
itly have a points-to chunk, x ↦ ς for some symbol ς. Although, this is not always the case
when x represents an allocated heap cell; e.g., we have an Ls(x, ς) chunk instead. Therefore,
we define a rearrangement function which, given a symbolic state, st ∈ Sσ, and a program
variable x, gives a set of symbolic states all of which are of the form (Σ′ ∗x↦ ς,Π′) for some
ς if x represents an allocated heap cell in st or gives {⊺σ}, otherwise. The rearrangement
function is formally defined as follows.

Definition 4.5 (Rearrangement). Let st ∈Sσ be a symbolic heap and x ∈ Vars be a program
variable. Then, the rearrangement of st to reveal x (written as Rearr(st, x)) is defined as
follows:

Rearr(st, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(Σ ∗ x↦ ς2,Π)} if st = (Σ ∗ ς1 ↦ ς2,Π) for some ς1, ς2 ∈ Sym
and ς1 =Π x

{(Σ ∗ x↦ ς2,Π), if st = (Σ ∗Ls(ς1, ς2),Π) for ς1, ς2 ∈ Sym,
(Σ ∗ x↦ x′ ∗Ls(x′, ς2),Π)} ς1 =Π x and x′ is a fresh primed variable

{⊺σ} otherwise

∎
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Next, we define the preliminary symbolic semantics for basic statements and define the
filter function for symbolic semantics.

Definition 4.6 (Preliminary Symbolic Semantics for Basic Statements). The preliminary
symbolic semantics for basic statements is defined as follows:

any basic statement c
⊺σ, c⇒†

σ ⊺σ
x′, y′ fresh primed variables

(Σ,Π),new(x)⇒†
σ (Σ[x′/x] ∗ x↦ y′,Π[x′/x])

(Σ′ ∗ x↦ ς,Π′) ∈ Rearr((Σ,Π), x)
(Σ,Π), free(x)⇒†

σ (Σ′,Π′)
⊺σ ∈ Rearr((Σ,Π), x)
(Σ,Π), free(x)⇒†

σ ⊺σ
x′ fresh primed variable

(Σ,Π), x := e⇒†
σ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e[x′/x]])

x′ fresh primed variable, (Σ′ ∗ y ↦ ς,Π′) ∈ Rearr((Σ,Π), y)
(Σ,Π), x := y.next⇒†

σ ((Σ′ ∗ y ↦ ς)[x′/x], (Π′[x′/x])[x ∶=∶ ς[x′/x]])
⊺σ ∈ Rearr((Σ,Π), y)

(Σ,Π), x := y.next⇒†
σ ⊺σ

(Σ′ ∗ x↦ ς,Π′) ∈ Rearr((Σ,Π), x)
(Σ,Π), x.next := e⇒†

σ (Σ′ ∗ x↦ e,Π′)
⊺σ ∈ Rearr((Σ,Π), x)

(Σ,Π), x.next := e⇒†
σ ⊺σ

(Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′) ∈ Rearr((Σ,Π), x, y)

(Σ,Π), x.next := y.next⇒†
σ (Σ′ ∗ x↦ ς2 ∗ y ↦ ς2,Π′)

⊺σ ∈ Rearr((Σ,Π), x, y)
(Σ,Π), x.next := y.next⇒†

σ ⊺σ
where A[ς1/ς2] is replacement of ς2 with ς1 in A and Rearr(st, x, y) is short for

⋃
st′∈Rearr(st,x)

Rearr(st′, y)

∎
Definition 4.7 (Symbolic Filter Function). The symbolic filter function is defined as fol-
lows:
filterσ(e1 == e2)(S) = {(Σ,Π[e1 ∶=∶ e2]) ∣ (Σ,Π) ∈ S ∧ (Σ,Π) /⊢ e1 ≠ e2} ∪ {⊺σ ∣ ⊺σ ∈ S}

filterσ(e1 != e2)(S) = {(Σ,Π) ∣ (Σ,Π) ∈ S ∧ (Σ,Π) /⊢ false ∧ (Σ,Π) /⊢ e1 = e2} ∪ {⊺σ ∣ ⊺σ ∈ S}
∎

Figure 6 shows the symbolic computation of the least fixpoint of the semantics of the
while loop of the dispose program, depicted in Figure 2, starting in a set of states consisting
of a single symbolic state where x points to a linked list ending in nil . In this case, there
does not exist an n ∈N such that fnS0

(∅) is the least fixpoint. This is due to the introduction
of new primed variables which causes the pure part to grow indefinitely.

On the other hand, Figure 7 shows the symbolic computation of the least fixpoint of the
semantics of the while loop of the infinite allocation program, depicted in Figure 3, starting
in a set of states consisting of a single symbolic state where the heap is empty and there
are no pure assertions. Evidently, in the case of symbolic semantics, similarly to the case of
concrete semantics, the least fixpoint of the while loop in this program is not obtainable by
iterative computation of fnS0

(∅).
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S0 = {(Ls(l,nil),∅)}

n fnS0
(∅)

0 ∅
1 {(Ls(x,nil),∅)}
2 {(Ls(x,nil),∅), (emp,{{y,nil , x}}), (Ls(x′1,nil),{{y, x′1, x}})}

3
{(Ls(l,nil),∅), (emp,{{n,nil , l}}), (Ls(x′1,nil),{{x,x′1, y}}),
(emp,{{x′3, x′2, x′5},{y,nil , x}}), (Ls(x′4,nil),{{x,x′4, x},{x′3, x′2, x′5}})}

⋮ ⋮

Figure 6: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the symbolic semantics. In this case, there does not exist an n ∈ N
such that fnS0

is the least fixpoint.

S0 = {(emp,∅)}

n fnS0
(∅)

0 ∅
1 {(emp,∅)}
2 {(emp ∗ x↦ x′1,∅)}
3 {(emp ∗ x↦ x′3 ∗ x′2 ↦ x′1,∅)}
4 {(emp ∗ x↦ x′5 ∗ x′4 ↦ x′3 ∗ x′2 ↦ x′1,∅)}
⋮ ⋮

Figure 7: Computation of the least fixpoint of the while loop semantics for the infinite
allocation program (Figure 3) in the symbolic semantics. In this case, there does not exist
an n ∈N such that fnS0

is the least fixpoint.
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5 Overapproximation of Concrete Semantics by Sym-
bolic Semantics

In this section, we show that the symbolic semantics is a sound overapproximation of the
concrete semantics. Before we can establish this result though, we must define what con-
stitutes a symbolic state representing a concrete state.

We say a concrete state (h, s) models a symbolic state (Σ,Π), if there is a s′ ∶ Vars ′ →
Values such that the values assigned by s and s′ are compatible with the equalities of Π and
s and s′ can be used to translate the symbols in Σ such that Σ holds in h.

Definition 5.1 (Modeling Relation). Let (h, s) and (Σ,Π) be a concrete and symbolic state
respectively. Then, we say (h, s) models (Σ,Π) (written as (h, s) ⊧ (Σ,Π)) if there exists a
s′ ∶ Vars ′ → Values such that:

∀ς1, ς2 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)
and

(h, s)
s′

⊧ Σ

where valσ(s, s′, ς) is defined as follows:

valσ(s, s′, ς) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(ς) if ς ∈ Vars
s′(ς) if ς ∈ Vars ′

nil if ς = nil

Furthermore, (h, s)
s′

⊧ Σ is defined inductively as follows:

(h, s)
s′

⊧ emp if and only if dom(h) = ∅

(h, s)
s′

⊧ Junk if and only if dom(h) ≠ ∅

(h, s)
s′

⊧ ς1 ↦ ς2 if and only if ς1 ≠ nil ∧ h(a) = { valσ(s, s′, ς2) if a = valσ(s, s′, ς1)
� otherwise

(h, s)
s′

⊧ Ls(ς1, ς2) if and only if ς1 ≠ nil ∧ valσ(s, s′, ς1) ≠ valσ(s, s′, ς2)∧

((h, s)
s′

⊧ ς1 ↦ ς2 ∨ (h, s)
s′′

⊧ (ς1 ↦ z′ ∗Ls(z′, ς2)))
for some fresh z′ and s′′ = s′[z′ ↦ h(valσ(s, s′, ς1))]

(h, s)
s′

⊧ F ∗G if and only if h = h1 ⊎ h2 where (h1, s)
s′

⊧ F ∧ (h2, s)
s′

⊧ G

where, h1 ⊎ h2 is disjoint union of h1 and h2 and is undefined if dom(h1) ∩ dom(h2) ≠ ∅. ∎

Given the modeling relation, we define the the set of concrete states represented by a
set of symbolic states as follows.

Definition 5.2 (Representation Function). The representation function γ ∶ 2Sσ → 2Sκ is
the function that maps a set of symbolic states to the set of concrete states represented by
them.

γ(S) = { {(h, s) ∈Sκ ∣ (Σ,Π) ∈ S ∧ (h, s) ⊧ (Σ,Π)} if ⊺σ /∈ S
Sκ otherwise

∎
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In the following, we show that a symbolic state (Σ,Π) is inconsistent, i.e., (Σ,Π) ⊢ false
if and only if there are no concrete states modeling it. Furthermore, we show that whenever
two symbolic states are equal, a concrete state either models both of them or none of them.
This means that (Σ1,Π1) = (Σ2,Π2) implies, γ({(Σ1,Π1)}) = γ({(Σ2,Π2)}).

Theorem 5.3. Let (Σ,Π) be a symbolic state, then (Σ,Π) ⊢ false if and only if there is no
concrete state (h, s) such that (h, s) ⊧ (Σ,Π). ∎

Proof. We prove each side separately as follows:

⇒ (Σ,Π) ⊢ false, then ∀(h, s) ∈Sκ. (h, s) /⊧ (Σ,Π):
(Σ,Π) ⊢ false if at least one of the conditions I, II or III in 4.3 holds. We show that for
each of these cases, (Σ,Π) has no model.

I: There is a Σ′ such that Σ = Ls(ς1, ς2) ∗ Σ′ or Σ = ς1 ↦ ς2 ∗ Σ′ and we have
ς1 =Π nil . If (h, s) ⊧ (Σ,Π), there must exist an s′ ∶ Vars ′ → Values such that
valσ(s, s′, ς1) = valσ(s, s′,nil) = nil and we should have valσ(s, s′, ς1) = nil ∈ dom(h)
which is impossible as h ∶N⇀ Values.

II: There are two chunks P1(ς1, ς2) and P2(ς3, ς4) such that ς1 =Π ς3. This means, there

must be s′ and a subheap h′ such that dom(h′) ⊆ dom(h) and (h′, s)
s′

⊧ P1(ς1, ς2) ∗
P2(ς3, ς4). Thus, we should have h′ = h′1 ⊎ h′2 such that (h′1, s)

s′

⊧ P1(ς1, ς2) and

(h′2, s)
s′

⊧ P2(ς3, ς4). This can not be as we have

valσ(s, s′, ς1) = valσ(s, s′, ς3) ∈ dom(h′1) ∩ dom(h′2)

which contradicts the fact that h′ = h′1 ⊎ h′2, as it is undefined.
III: There is a chunk Ls(ς1, ς2) such that ς1 =Π ς2. Then, there must be an s′ and

a subheap h′ such that dom(h′) ⊆ dom(h) and (h′, s) ⊧ Ls(ς1, ς2) which in turn
means, we should have valσ(s, s′, ς1) ≠ valσ(s, s′, ς2) which is a contradiction (see
Definition 5.1).

⇐: ∀(h, s) ∈Sσ. (h, s) /⊧ (Σ,Π), then (Σ,Π) ⊢ false:
Instead of a direct proof, we show that the contrapositive holds. Namely, we show
(Σ,Π) /⊢ false → ∃(h, s) ∈Sκ. (h, s) ⊧ (Σ,Π):
As for any heap h, it holds that h = h⊎h� where dom(h�) = ∅, whenever (h, s) ⊧ (Σ,Π),
also (h, s) ⊧ (Σ ∗ emp,Π). Therefore, in the rest of the proof we assume that there are
no emp chunks in the spatial part.
Let Π = {π0, . . . , πn} then, we define s ∶ Vars → Values and s′ ∶ Vars ′ → Values as follows:

s(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if x ∈ πi ∧ nil /∈ πi
nil if {x,nil} ⊆ πi
U(x) otherwise

s′(x′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if x′ ∈ πi ∧ nil /∈ πi
nil if {x′,nil} ⊆ πi
U(x′) otherwise

where U ∶ Vars∪Vars ′ → {n+m+1, n+m+2, . . .} is an injective mapping that maps each
program variable or primed variable to some unique natural number greater than
n+m, where m is the number of Junk chunks in Σ. Furthermore, let h ∶N⇀ Values be
defined as follows:

h(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

valσ(s, s′, ς2) if a = valσ(s, s′, ς1) ∧Σ = P (ς1, ς2) ∗Σ′

n + i if a = n + i ∧ 1 ≤ i <m
� otherwise
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It is easy to see that (h, s)
s′

⊧ (Σ,Π), thus, we omit the proof here.

Theorem 5.4. Let (Σ1,Π1) and (Σ2,Π2) be two symbolic states such that (Σ1,Π1) = (Σ2,Π2).
Then a concrete state either models both or neither of them. In other words,

if (Σ1,Π1) = (Σ2,Π2) then (∀(h, s) ∈Sκ. (h, s) ⊧ (Σ1,Π1) if and only if (h, s) ⊧ (Σ2,Π2))

∎

Proof. To prove this theorem, we assume (Σ1,Π1) = (Σ2,Π2) and show that for an arbitrary
concrete state (h, s) ∈Sκ, (h, s) ⊧ (Σ1,Π1) then (h, s) ⊧ (Σ2,Π2). The other side (i.e., (h, s) ⊧
(Σ2,Π2) then (h, s) ⊧ (Σ1,Π1)) follows through a similar reasoning and is therefore omitted.

Let r ∶ Vars ′ → Vars ′ be the equalizer renaming of (Σ1,Π1) and (Σ2,Π2) and s′ ∶ Vars ′ →
Values be such that (h, s)

s′

⊧ (Σ1,Π1). Then, (h, s)
s′○r
⊧ (Σ2,Π2).

This simply follows from the fact that

∀x′ ∈ Vars ′. valσ(s, s′, x′) = valσ(s, s′ ○ r, r(x′))

Which can be easily seen from the definition of valσ(s, s′, ς), for a symbol ς, in Definition 5.1.

In preparation for the main result here, i.e., symbolic semantics being a sound overap-
proximation of concrete semantics, we show that the set of concrete states represented by
a set of symbolic states is preserved under replacement of a symbol with a fresh primed
variable. Furthermore, we show that the rearrangement to reveal a program variable is an
overapproximation, i.e., if (h, s) ⊧ (Σ,Π) then (h, s) ∈ γ(Rearr((Σ,Π), x)) for any x ∈ Vars.

Lemma 5.5. Let (Σ,Π) be a symbolic state, ς ∈ Sym be a symbol and x′ ∈ Vars ′ be a primed
variable that does not appear in (Σ,Π) . Then,

γ({(Σ,Π)}) ⊆ γ({(Σ,Π)[x′/ς]})

∎

Proof. Let s′1 ∶ Vars ′ → Values and s′2 ∶ Vars ′ → Values be two valuation functions for primed
variables such that:

s′2(y′) = { valσ(s, s′1, ς) if y′ = x′
s′1(y′) otherwise

We show that for any (h, s) ∈Sκ,

(h, s)
s′1⊧ (Σ,Π)→ (h, s)

s′2⊧ (Σ,Π)[x′/ς]

To show this, we only need to show that for any symbol ς1 ∈ Sym,

valσ(s, s′1, ς1) = valσ(s, s′2, ς1[x′/ς])

This, on the other hand, is obvious from the definition of s′2 above.

Lemma 5.6. Let st ∈Sσ be a symbolic state and x ∈ Vars be a program variable. Then,

γ({st}) ⊆ γ(Rearr(st, x))

∎
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Proof. If st = ⊺σ, γ(Rearr(⊺σ, x)) = γ({⊺σ}) =Sκ. If st = (Σ,Π), we can have three cases:

– There is a Σ′ such that Σ = ς1 ↦ ς2 ∗ Σ′ for some ς2 and ς1 =Π x. In this case,
Rearr((Σ,Π), x) = {(x ↦ ς2 ∗ Σ′,Π′)}. In addition, if (h, s) ⊧ (Σ,Π), there is an s′,

h1, h2 such that h = h1 ⊎ h2 and (h1, s)
s′

⊧ (ς1 ↦ ς2,Π) and (h2, s)
s′

⊧ (Σ′,Π). On the other

hand, ς1 =Π x and hence valσ(s, s′, x) = valσ(s, s′, ς1). Thus, (h1, s)
s′

⊧ (x ↦ ς2,Π) and as
a result

(h, s) ⊧ (x↦ ς2 ∗Σ′,Π′)

– There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ for some ς2 and ς1 =Π x. In this case,

Rearr((Σ,Π), x) = {(x↦ ς2 ∗Σ′,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

st1

, (x↦ x′ ∗Ls(x′, ς2) ∗Σ′,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

st2

}

According to Definition 5.1 and a reasoning similar to that of the previous case, if
(h, s) ⊧ (Σ,Π), then, either (h, s) ⊧ st1 or (h, s) ⊧ st1.

– None of the above hold. In this case, γ(Rearr((Σ,Π), x)) = γ({⊺σ}) =Sκ.

Lemma 5.7 (Symbolic Semantics of Basic Statements Overapproximates Concrete Seman-
tics). Let c be a basic statement. Then,

∀S ⊆Sσ. JcKκ(γ(S)) ⊆ γ(JcKσ(S))

∎

Proof. Since semantics functions and representation function, γ, are both continuous, we
simply need to show that

∀st ∈Sσ. JcKκ(γ({st})) ⊆ γ(JcKσ({st}))

If st = ⊺σ,
γ(JcKσ({⊺σ})) = γ(⊺σ) =Sκ

If st = (Σ,Π),

– c = new(x);

For st ∈ JcKσ({(Σ,Π)}), we have st = (x↦ y′∗Σ[x′/x],Π[x′/x]) where x′ and y′ are some
fresh primed variables.
On the other hand, if (h, s) ⊧ (Σ,Π), i.e., (h, s) ∈ γ({(Σ,Π)}), then, for any st′ ∈
JcKκ(h, s), we have,

st′ = (h[m↦ n], s[x↦m])
for some m /∈ dom(h) and n ∈N. Furthermore, h[m↦ n] = h ⊎ h′ where,

h′(x) = { n if x =m
� otherwise

According to Lemma 5.5, (h, s) ⊧ (Σ[x′/x],Π[x′/x]). On the other hand, since x does
not appear in (Σ[x′/x],Π[x′/x]), we have

(h, s[x↦m]) ⊧ (Σ[x′/x],Π[x′/x])
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In addition,
(h′, s[x↦m]) ⊧ (x↦ y′,Π[x′/x])

Thus,
(h[m↦ n], s[x↦m]) ⊧ (x↦ y′ ∗Σ[x′/x],Π[x′/x])

Consequently,
(h[m↦ n], s[x↦m]) ∈ γ(JcKσ({(Σ,Π)}))

– c = free(x);

If Rearr((Σ,Π), x) = {⊺σ}, it trivially holds.
Otherwise, for (h, s) ⊧ (Σ,Π), According to Lemma 5.6, (h, s) ∈ γ(Rearr((Σ,Π), x)).
Hence, there is a (Σ′ ∗ x↦ ς,Π) ∈ Rearr((Σ,Π), x) such that

(h, s) ⊧ (x↦ ς ∗Σ′,Π)

Therefore, h = h1 ⊎ h2 such that (h1, s) ⊧ (x ↦ ς,Π) and (h2, s) ⊧ (Σ′ ∗ Π). Thus, for
(h[s(x)↦ �], s) ∈ JcKκ(h, s),

(h[s(x)↦ �], s) = (h2, s) ∈ γ(Σ′ ∗Π)

Consequently,
(h[s(x)↦ �], s) ∈ γ(JcKσ({(Σ,Π)}))

– c = x := e;

Let x′ be a fresh primed variable and (h, s) be a concrete state such that (h, s) ⊧ (Σ,Π).
According to Lemma 5.5, we have (h, s) ⊧ (Σ[x′/x],Π[x′/x]). Here, we consider two
cases, first if x and e are the same (an assignment of x to itself!) and second if x and e
are two different simple expressions.
If x and e are the same variables, then we have s[x↦ valκ(s, e)]) = s and

(Σ[x′/x], (Π[x′/x])[x ∶=∶ (y[x′/x])]) = (Σ[x′/x],Π[x′/x])

If x and e are two different symbols, we have (e[x′/x]) = e and thus, we have to show

(h, (s[x↦ valκ(s, e)])) ⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e])

To see this, observe that

(h, (s[x↦ valκ(s, e)])) ⊧ (Σ[x′/x],Π[x′/x])

Notice that x does not appear in (Σ[x′/x],Π[x′/x]) and hence the value of s(x) is
irrelevant. Thus, there is an s′ such that

(h, (s[x↦ valκ(s, e)]))
s′

⊧ (Σ[x′/x],Π[x′/x])

On the other hand, since

∀ς1, ς1 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)

we have
(h, (s[x↦ valκ(s, e)]))

s′

⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e])
Consequently,

(h, (s[x↦ valκ(s, e)])) ∈ γ(JcKσ({(Σ,Π)}))
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– c = x.next := e;

If Rearr((Σ,Π), x) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, there is a (Σ′ ∗ x ↦ ς,Π) ∈
Rearr((Σ,Π), x), such that

(h, s) ⊧ (Σ′ ∗ x↦ ς,Π)

On the other hand, since (h, s) ⊧ (Σ′ ∗x↦ ς,Π), we have h = h1 ⊎h2, such that (h1, s) ⊧
(Σ′,Π) and (h2, s) ⊧ (x ↦ ς,Π). Therefore, since (h2[x ↦ valκ(e)], s) ⊧ (x ↦ e,Π), we
have

(h[x↦ valκ(s, e)], s) ⊧ (Σ′ ∗ x↦ e,Π) ∈ JcKσ({(Σ,Π)})
Consequently,

(h[x↦ valκ(s, e)], s) ∈ γ(JcKσ({(Σ,Π)}))

– c = x := y.next;

If Rearr((Σ,Π), y) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, we have

(h, s) ∈ γ(Rearr((Σ,Π), y))

Hence, there is a (Σ′ ∗ y ↦ ς,Π) ∈ Rearr((Σ,Π), y) such that

(h, s) ⊧ (Σ′ ∗ y ↦ ς,Π)

Now, let x′ be a fresh primed variable. Then, according to Lemma 5.5, (h, s) ⊧ ((Σ′∗y ↦
ς)[x′/x],Π[x′/x]).
Here, we should consider two cases, first if ς and x are the same (y’s next cell is x) and
second if ς and x are two different symbols.
If x and ς are the same variables, then, since h(s(y)) = s(x), we have

s[x↦ h(s(y))] = s

and

((Σ′′ ∗ y ↦ ς)[x′/x], ((Π[x′/x])[x ∶=∶ (ς[x′/x])])) = ((Σ′′ ∗ y ↦ ς)[x′/x],Π[x′/x])

Thus,
(h, s[x↦ h(s(y))]) ∈ γ(JcKσ({(Σ,Π)}))

On the other hand, if x and ς are two different symbols, since (h, s) ⊧ ((Σ′ ∗ y ↦
ς)[x′/x],Π[x′/x]), we have

(h, s[x↦ h(s(y))]) ⊧ ((Σ′ ∗ y ↦ ς)[x′/x],Π[x′/x])

Notice that x does not appear in ((Σ′ ∗y ↦ ς)[x′/x],Π[x′/x]) and thus the value of s(x)
is irrelevant. Thus, there is a s′ such that

(h, (s[x↦ h(s(y))]))
s′

⊧ (Σ[x′/x],Π[x′/x])
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On the other hand, since

∀ς1, ς2 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)

we have,

∀ς1, ς2 ∈ Sym. ς1 =(Π[x′/x])[x∶=∶ς] ς2 → valσ((s[x↦ s(y)]), s′, ς1) = valσ((s[x↦ s(y)]), s′, ς2)

and as a result,

(h, (s[x↦ s(y)]))
s′

⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ ς])

Consequently,
(h, (s[x↦ s(y)])) ∈ γ(JcKσ({(Σ,Π)}))

– c = x.next := y.next;

If Rearr((Σ,Π), x, y) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, there is

(Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′) ∈ Rearr((Σ,Π), x, y)

such that (h, s) ⊧ (Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′).

On the other hand, since (h, s) ⊧ (Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π), we have h = h1 ⊎ h2 ⊎ h3, such
that

(h1, s) ⊧ (Σ′,Π), (h2, s) ⊧ (x↦ ς1,Π) and (h3, s) ⊧ (y ↦ ς2,Π)
Therefore, we have

(h[x↦ h(s(y))], s) ⊧ (Σ′ ∗ x↦ ς2 ∗ y ↦ ς2,Π)

Consequently,
(h[x↦ h(s(y)))], s) ∈ γ(JcKσ({(Σ,Π)}))

After proving overapproximation results for basic statements, we show overapproxima-
tion of the filter function before proving the final result, i.e., overapproximation for the
whole of SimpleLang.

Lemma 5.8. Let S ⊆Sσ be a set of symbolic states and cond be a loop condition of the form
e1 == e1 or e1 != e2 for some simple expressions e1 and e2. Then,

filterκ(cond)(γ(S)) ⊆ γ(filterσ(cond)(S))

∎
Proof. Since the representation function, γ, and both filter functions are continuous, the
results for singletons naturally extend to all sets. In other words, we only need to show
that,

∀st ∈Sσ. filterκ(cond)(γ({st})) ⊆ γ(filterσ(cond)({st}))
If st = ⊺σ, γ(filterσ(cond)({st})) =Sκ. On the other hand, if st = (Σ,Π) and (Σ,Π) ⊢ false,

according to Theorem 5.3 and Definition 5.2, γ({(Σ,Π)}) = ∅ and thus,

filterκ(cond)(γ({(Σ,Π)})) = ∅

Therefore, in the rest of the proof we consider st = (Σ,Π) such that (Σ,Π) /⊢ false. We
proceed by case analysis on cond.
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Case: cond = ‘e1 == e2’

If (h, s) ∈ filterκ(cond)(γ({(Σ,Π)})), we have (h, s) ⊧ (Σ,Π) and valκ(s, e1) = valκ(s, e2).
As a result, (h, s) ⊧ (Σ,Π[e1 ∶=∶ e2]). This, according to Theorem 5.3 and Defini-
tion 4.4, shows that (Σ,Π) /⊢ e1 ≠ e2. Hence,

(Σ,Π[e1 ∶=∶ e2]) ∈ filterσ(cond)(Σ,Π)

Consequently,
(h, s) ∈ γ(filterσ(cond)({st}))

Case: cond = ‘e1 != e2’
If (h, s) ∈ filterκ(cond)(γ({(Σ,Π)})), we have (h, s) ⊧ (Σ,Π) and valκ(s, e1) ≠ valκ(s, e2).
According to Definition 4.4, we have (Σ,Π) /⊢ e1 = e2. Hence,

(Σ,Π) ∈ filterσ(cond)(Σ,Π)

Consequently,
(h, s) ∈ γ(filterσ(cond)({st}))

Finally, we can state and prove the main theorem of this section, i.e., the correspondence
of semantics.

Theorem 5.9 (Symbolic Semantics Overapproximates Concrete Semantics). Let c be any
statement or block of statements. Then,

∀S ⊆Sσ. JcKκ(γ(S)) ⊆ γ(JcKσ(S))

∎

Proof. We prove this theorem by structural induction on the structure of statements:

Base Case: The statement c is a basic statement. This is already proven in Lemma 5.7.

Inductive Case1: The statement c is of the form c1; c2 and, as induction hypothesis, we have:

∀S ⊆Sσ. Jc1Kκ(γ(S)) ⊆ γ(Jc1Kσ(S)) and ∀S ⊆Sσ. Jc2Kκ(γ(S)) ⊆ γ(Jc2Kσ(S))

From the definition of semantics of composition of statements, Jc1; c2K = Jc2K ○ Jc1K, it
follows that:

∀S ⊆Sσ. Jc1; c2Kκ(γ(S)) ⊆ γ(Jc1; c2Kσ(S))

Inductive Case2: The statement c is of the form while(b){c′} and, as induction hypothesis, we have:

∀S ⊆Sσ. Jc′Kκ(γ(S)) ⊆ γ(Jc′Kσ(S))

Assuming S ⊆Sσ is a set of symbolic states, we show that:

Jwhile(b){c′}Kκ(γ(S)) ⊆ γ(Jwhile(b){c′}Kσ(S))

Assuming that fκ,γ(S) and fσ,S are as defined for general semantics of the while loops,
respectively for concrete and symbolic semantics, we have:

Jwhile(b){c′}Kκ(γ(S)) = filterκ(¬b)(⋃
n∈N

fnκ,γ(S))
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and
Jwhile(b){c′}Kσ(S) = filterσ(¬b)(⋃

n∈N
fnσ,S)

By a simple induction on n, using induction hypothesis and Lemma 5.8, we can see
that:

∀n ∈ . fnκ,γ(S) ⊆ fnσ,S
Thus,

⋃
n∈N

fnκ,γ(S) ⊆ ⋃
n∈N

fnσ,S

On the other hand, according to Lemma 5.8, we have:

filterσ(¬b)(⋃
n∈N

fnσ,S) ⊆ filterκ(¬b)(⋃
n∈N

fnκ,γ(S))

Consequently,
Jwhile(b){c′}Kσ(S) ⊆ Jwhile(b){c′}Kκ(γ(S))

As a corollary, we get that whenever the concrete execution of the program, starting
in the empty memory, indicates an error in the program, so does the symbolic execution,
starting in the empty memory.

Corollary 5.10. For a statement (program) c,

if ⊺κ ∈ JcKκ(hε, sε) then ⊺σ ∈ JcKσ(emp,∅)

where,
hε(a) = � and sε(x) = nil

∎

6 Abstract Semantics
In this section we discuss an abstraction that maps symbolic states to abstract symbolic
states. Abstract semantics then is simply symbolic semantics having abstraction applied to
their results.

We define the abstraction in two phases; in the first phase, we remove all primed vari-
ables from the pure part and in the second phase, we contract the spatial part by collapsing
consecutive chains of linked list segments (if possible) and gathering all memory leaks into
a single Junk predicate.

Definition 6.1 (Removing Primed Variables from Pure Part). Let (Σ,Π) be a symbolic
state and π ∈ Π be an equivalence class in the pure part. The removal of primed variables
appearing in π, denoted as rpπ(Σ,Π) is defined as follows:

rpπ(Σ,Π) = (Σ[rep(π), . . . , rep(π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

/x′1, . . . , x′n], (Π ∖ {π}) ∪ ξ(π))

where

rep(π) = { x ∈ π ∖ {x′1, . . . , x′n} if π ∖ {x′1, . . . , x′n} ≠ ∅
x′i for some 1 ≤ i ≤ n
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and

ξ(π) = { {π ∖ {x′1, . . . , x′n}} if ∣π ∖ {x′1, . . . , x′n}∣ ≥ 1
∅ otherwise

and {x′1, . . . , x′n} ⊆ π is the set of all primed variables in π and [b1, . . . , bn/a1, . . . , an] denotes
simultaneous replacement of a1 by b1, . . . , an by bn.

In the sequel we will use rpΠ(Σ,Π) defined as

rpΠ(Σ,Π) = rpπ1(. . . (rpπm(Σ,Π)) . . . ) where Π = {π1, . . . , πm}

to be the result of removal of all primed variables from the pure part of a symbolic heap. ∎

Definition 6.2 (Spatial Abstraction Rules). The following are the rules for the abstraction
of the spatial part of a symbolic state.

x′ /∈ Vars ′(Σ,Π) ς ∈ Sym
(Σ ∗ P (x′, ς),Π) A↝ (Σ ∪ Junk ,Π)

(Garbage1)

x′, y′ /∈ Vars ′(Σ,Π)
(Σ ∗ P1(x′, y′) ∗ P2(y′, x′),Π) A↝ (Σ ∪ Junk ,Π)

(Garbage2)

y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2} ς1, ς2 ∈ Sym ς2 =Π nil

(Σ ∗ P1(ς1, y′) ∗ P2(y′, ς2),Π) A↝ (Σ ∗Ls(ς1,nil),Π)
(Abs1)

y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2, ς3, ς4} ς1, ς2, ς3, ς4 ∈ Sym ς2 =Π ς3

(Σ ∗ P1(ς1, y′) ∗ P2(y′, ς2) ∗ P3(ς3, ς4),Π) A↝ (Σ ∗Ls(ς1, ς2) ∗ P3(ς3, ς4),Π)
(Abs2)

Where,

Σ ∪ Junk = { Σ if Σ has a Junk chunk
Σ ∗ Junk otherwise

and Vars ′(Σ,Π) is the set of all primed variables that appear in Σ or Π. ∎

The rule Garbage1 simply collects all memory chunks that are not pointed to by any
program variables directly or indirectly – as x′ does not appear in Σ or Π. The rule Garbage2
handles the cases where there is a cycle that is not reachable directly or indirectly from
program variables (cyclic memory leak).

The rule Abs1 and Abs2 both merge linked list segments (or direct links) that form a
continuous linked list. The fact that we require the end of the contracting linked list to be
nil or already allocated in a separate portion of the heap is to make sure that the segments
being merged don’t form a cyclic linked list. Indeed if the end of the linked list segments
is allocated in another separate portion of the memory or is nil , it can’t be pointing to the
middle or beginning of that linked list segment and it is thus safe to merge them to a single
acyclic linked list segment.

Before we formally define the abstraction operation, we show that the set of rules for
abstraction of the spatial part are strongly normalizing, i.e., there are no infinite chains of
reduction.
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Lemma 6.3 (Strong Normalization of Spatial Abstraction). Let (Σ0,Π0) be a symbolic
state, then, there does not exist an infinite sequence (Σ0,Π0), (Σ1,Π1), . . . such that ∀i ∈
N. (Σi,Πi)

A↝ (Σi+1,Πi+1). ∎
Proof. It suffices to note that any of these rules decreases the collective number of Ls and
↦ chunks in the spatial part of the given symbolic states.

In the sequel, we use A↝ ∗ to denote the reflexive transitive closure of A↝ and we use

(Σ,Π)
A
/↝ to indicate that (Σ,Π) is a normal form, i.e., none of the rules of spatial abstraction

are applicable to (Σ,Π).
Before, defining the abstraction operation, we define the set of abstract states. That is,

the set of all consistent symbolic states that have no primed variables in their pure part
and none of the abstraction rules are applicable to them, together with the symbolic error
state, ⊺σ.

Definition 6.4 (Abstract States). The set of abstract states Sα is defined as follows:

Sα = {(Σ,Π) ∈Sσ ∣ (Σ,Π) /⊢ false ∧ (rpΠ(Σ,Π)) = (Σ,Π) ∧ (Σ,Π)
A
/↝} ∪ {⊺σ}

∎

The rewriting rules of Definition 6.2 form a rewriting relation, A↝. Since this rewrite sys-
tem is terminating, we can extract a function out of this relation that maps each symbolic
state to one of its normal forms. This can simply be done by fixing an order on applica-
tions of the rules. In our implementation, we simply go through abstraction rules from top
to bottom and for each of them keep reapplying them until they are no longer applicable.
This process is repeated until none of the rules are applicable. In the sequel, we assume
redA ∶Sσ →Sσ is such a function.

Definition 6.5 (Abstraction). The abstraction function, denoted by Abs ∶ 2Sσ → 2Sα is
defined as follows:

Abs(S) = {(Σ′,Π′) ∣ (Σ,Π) ∈ S ∧ redA(rpΠ(Σ,Π)) = (Σ′,Π′) ∧ (Σ′,Π′) /⊢ false} ∪ {⊺σ ∣ ⊺σ ∈ S}

∎
Abstract semantics is simply symbolic semantics where abstraction is applied to its re-

sult.

Definition 6.6 (Abstract Semantics). Let c be a basic statement, then the abstract seman-
tics of c denoted by JcKα ∶ 2Sα → 2Sα is defined as follows:

JcKα(S) = Abs(JcKσS)
∎

Figure 8 shows the abstract computation of the least fixpoint of the semantics of the
while loop of the dispose program, depicted in Figure 2, starting in a set of states consisting
of a single abstract state where x points to a linked list ending in nil .

Figure 9 shows the abstract computation of the least fixpoint of the semantics of the
while loop for the infinite allocation program, depicted in Figure 3, starting in a set of
states consisting of a single abstract state where the heap is empty and there are no pure
assertions. Contrary to the case of symbolic semantics and concrete semantics, the least
fixpoint of the while loop in this program, in abstract semantics, is obtainable by iterative
computation of fnS0

(∅).
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S0 = {(Ls(x,nil),∅)} JdisposeKα(S0) = {(emp,{y,nil , x})}

n fnS0
(∅)

0 ∅
1 {(Ls(x,nil),∅)}
2 {(Ls(x,nil),∅), (emp,{y,nil , x}), (Ls(y,nil),{y, x})}

Figure 8: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the abstract semantics. In this case, f2

S0
is the least fixpoint. In

addition, JdisposeKα is the abstract semantics of the whole dispose program (while loop).

S0 = {(emp,∅)} JinfallocKα(S0) = ∅

n fnS0
(∅)

0 ∅
1 {(emp,∅)}
2 {(emp ∗ x↦ x′1,∅)}
3 {(emp ∗ x↦ x′3 ∗ Junk ,∅)}

Figure 9: Computation of the least fixpoint of the while loop semantics for the infinite allo-
cation program (Figure 3) in the abstract semantics. In this case, f3

S0
is the least fixpoint.

In addition, JinfallocKα is the abstract semantics of the whole dispose program (while loop).

7 Overapproximation of Concrete Semantics by Abstract
Semantics

To show that abstract semantics is a sound overapproximation of concrete semantics, we
first show that abstraction is an overapproximation.

Lemma 7.1 (Overapproximation of Removal of Primed Variables). Let (Σ,Π) be a symbolic
state. Then,

∀(h, s) ∈Sσ. (h, s) ⊧ (Σ,Π)→ (h, s) ⊧ prΠ(Σ,Π)
∎

Proof. Assume that prπ(Σ,Π) = (Σ′,Π′) for some π ∈ Π. We show that if (h, s) ⊧ (Σ,Π), then
(h, s) ⊧ (Σ′,Π′). Assume that {x′1, . . . , x′n} ⊆ π is the set of all primed variables in π and
rep(π) is as in Definition 6.1. In addition, let ren ∶ Sym→ Sym be as follows:

ren(ς) = { rep(π) if ς = x′i for some 1 ≤ i ≤ n
ς otherwise

We show that, for any s′ ∶ Vars ′ → Values,

(h, s)
s′

⊧ (Σ,Π)→ (h, s)
s′

⊧ prπ(Σ,Π)

First, note that for all ς1, ς2 ∈ Sym,

ς1 =Π′ ς2 → ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)
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Second, for any chunk A of Σ, A′ = A[rep(π), . . . , rep(π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

/x′1, . . . , x′n] and subheap h′ of h, we

have,

(h, s)
s′

⊧ (A,Π)→ (h, s)
s′

⊧ (A′,Π′)
There are four possibilities forA; Junk , emp, ς1 ↦ ς2 and Ls(ς1, ς2). In the first two cases, A′ =
A. According to Definition 5.1, the the case for Ls, follows form the case for ↦. Therefore,

we consider the case where A = ς1 ↦ ς2. Due to Definition 5.1, (h, s)
s′

⊧ (ς1 ↦ ς2,Π), then,

h(a) = { valσ(s, s′, ς2) if a = valσ(s, s′, ς1)
� otherwise

On the one hand, A′ = ren(ς1)↦ ren(ς2). Thus, since ∀ς ∈ Sym. ς =π ren(ς), we have

∀ς ∈ Sym. valσ(s, s′, ς) = valσ(s, s′, ren(ς))

Therefore, (h, s)
s′

⊧ (A′,Π′).

Lemma 7.2 (Overapproximation of Spatial Abstraction). Let (Σ,Π) and (Σ′,Π′) be two
symbolic states such that (Σ,Π) A↝ (Σ′,Π′), then,

∀(h, s) ∈Sκ. (h, s) ⊧ (Σ,Π)→ (h, s) ⊧ (Σ′,Π′)

∎

Proof. We consider all the four cases. In what follows, we assume (h, s)
s′

⊧ (Σ,Π).
Garbage1. This can be if Σ = Σ1 ∗ P (x′, ς) for x′ not appearing in Σ1. In this case, there must be

two concrete heaps h′ and h′′ such that h = h′ ⊎ h′′ and (h′, s)
s′

⊧ (Σ1,Π) and (h′′, s)
s′

⊧
(P (x′, ς),Π) which means dom(h′′) ≠ ∅.
Here, there are two cases to consider Σ1 = Σ2 ∗ Junk or Σ1 has no Junk chunk. let
h′ = h′1 ⊎ h′2 such that in the first case (h′1, s) ⊧ (Σ2,Π) and dom(h′2) ≠ ∅ and in the
second case, h′1 = h′ and dom(h′2) = ∅.
In both cases, dom(h′2 ⊎ h′′) ≠ ∅ and thus, we have (h, s) ⊧ (Σ1 ∪ Junk ,Π). Note that
since h = (h′1 ⊎ h′2) ⊎ h′′, dom(h′2) ∩ dom(h′′) = ∅ and thus h′2 ⊎ h′′ is not undefined.

Garbage2. Proof is very similar to the previous case and is thus omitted.

Abs1. This can be if Σ = Σ1 ∗ P1(ς1, y′) ∗ P2(y′, ς2) for ς1, ς2 ∈ Sym and y′ neither appear in Σ1

nor in Π nor is it equal to ς1 or ς2 and we have ς2 =Π nil . We prove that if (h, s) ⊧ (Σ,Π)
then (h, s) ⊧ (Σ1 ∗Ls(ς1,nil),Π).
Since ς1 is allocated in (Σ,Π) and valσ(s, s′, ς2) = nil , valσ(s, s′, ς2) ≠ valσ(s, s′, ς1). On

the other hand, h = h1 ⊎ h2 ⊎ h3 such that (h1, s)
s′

⊧ (Σ1,Π), (h2, s)
s′

⊧ (P1(ς1, y′),Π)
and (h3, s)

s′

⊧ (P2(y′, ς2),Π). Therefore, (h2 ⊎ h3, s)
s′

⊧ (Ls(ς1, ς2),Π) and hence (h, s)
s′

⊧
(Σ1 ∗Ls(ς1,nil),Π).

Abs2. This case follows from a reasoning very similar to the previous case. The only thing to
note is that the reason for having valσ(s, s′, ς2) ≠ valσ(s, s′, ς1) is different. Namely, it is
due to the fact that ς2 =Π ς3 and therefore valσ(s, s′, ς2) = valσ(s, s′, ς3) and since ς1 and
ς3 are allocated in disjoint parts of the heap, we know they can not be corresponding
to the same address and thus valσ(s, s′, ς2) ≠ valσ(s, s′, ς1).
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Theorem 7.3 (Abstraction Overapproximates). Let S ⊆Sσ be a set of symbolic states, then:

γ(S) ⊆ γ(Abs(S))

∎

Proof. Since Abs is a continuous function, we need only to show:

∀st ∈S. γ({st}) ⊆ γ(Abs({st}))

If st = ⊺σ, γ(Abs({st})) =Sκ. Otherwise, if st = (Σ,Π), let’s assume

redA(rpΠ(Σ,Π)) = (Σ′,Π′)

In this case, according to Lemma 7.1 and Lemma 7.2,

γ({(Σ,Π)}) ⊆ γ({(Σ′,Π′)})

Therefore, according to Theorem 5.3, (Σ′,Π′) ⊢ false, only if (Σ,Π) ⊢ false. Hence,

γ({st}) ⊆ γ(Abs({st}))

Finally, the main result of this section, the overapproximation of concrete semantics by
symbolic semantics, is given below.

Theorem 7.4 (Abstract Semantics Overapproximates Concrete Semantics). Let c be any
statement or block of statements. Then,

∀S ⊆Sα. JcKκ(γ(S)) ⊆ γ(JcKα(S))

∎

Proof. This follows using a similar reasoning as in the proof of Theorem 5.9. The only
difference being the proof of the base case, i.e., the case of basic statements, follows from
Lemma 5.7 together with Theorem 7.3.

As an important corollary, we get that whenever the concrete execution of the program,
starting in the empty memory, indicates an error in the program, so does the abstract
execution, starting in the empty memory.

Corollary 7.5. For a statement (program) c,

if ⊺κ ∈ JcKκ(hε, sε) then ⊺σ ∈ JcKα(emp,∅)

where,
hε(a) = � and sε(x) = nil

∎
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8 Termination of Analysis with Abstract Semantics
In order to show termination of fixpoint computation – as fixpoints are used for the com-
putation of semantics of while loops –, we show that the set of abstract states is finite. We
define a notion of reduced-ness and show that a symbolic state is reduced if and only if it
is not changed under abstraction. Then, we show that the set of reduced symbolic states is
finite.

In order to formalize the concept of reduced-ness, we first define paths in symbolic states
and define some properties of symbols in symbolic states.

Definition 8.1 (Paths, Cycles, Length and Reachability). Let (Σ,Π) be a symbolic state,
then, a path in (Σ,Π) is a sequence ς0, ς1, . . . , ςn−1, ςn such that

∀0 ≤ i ≤ n. ςi ∈ Sym

∀1 ≤ i ≤ n. ∃ς ′, ς ′′ ∈ Sym. ςi−1 =Π ς ′ ∧ ςi =Π ς ′′ ∧Σς ′, ς ′′)
A cycle is a path ς0, . . . , ςn if ς0 =Π ςn.

In addition, the length of a path (or cycle) ς0, . . . , ςn, n here, is the syntactical length of a
path (or cycle), i.e., we don’t distinguish ↦ and Ls.

For ς0, ςn ∈ Sym, we say ςn is reachable from ς0 in (Σ,Π), if there is a path ς0, ς1, . . . , ςn−1, ςn
in (Σ,Π). ∎

Definition 8.2 (Shared, Internal, Possibly Dangling and Pointing to Possibly Dangling
Symbols). Let (Σ,Π) be a symbolic state, then,

Shared Symbols: A symbol ς is a shared symbol, if Σ = Σ′ ∗ P1(ς1, ς2) ∗ P2(ς3, ς4) such
that ς =Π ς2 =Π ς4.

Internal Symbols: A symbol ς is an internal node of a cycle in (Σ,Π) if and only if it is
not shared.

Possibly Dangling Symbols: A symbol ς is a possibly dangling symbol if ς ≠Π nil and

∃ς1, ς2 ∈ Sym. Σ = Σ′ ∗ P (ς1, ς2) ∧ ς2 =Π ς

and
/∃ ς3, ς4 ∈ Sym. Σ′ = Σ′′ ∗ P ′(ς3, ς4) ∧ ς3 =Π ς

Pointing to Possibly Dangling Symbols: A symbol ς points to a possibly dangling sym-
bol if Σ = Σ′∗P (ς1, ς2) for some ς1, ς2 ∈ Sym such that ς =Π ς1 and ς2 is a possibly dangling
symbol.

∎

Definition 8.3 (Reduced Symbolic States). Let (Σ,Π) be a symbolic state, then, (Σ,Π) is
reduced if and only if

1. There are no primed variables appearing in Π.

2. Every primed variable appearing in Σ is reachable from some program variable.

3. If a primed variable x′ appears in Σ, then, at least one of the followings hold

(a) x′ is shared
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(b) x′ is the internal node of a cycle of length exactly 2
(c) x′ is pointing to a possibly dangling variable
(d) x′ is possibly dangling

∎

Lemma 8.4. Let (Σ,Π) be a symbolic state such that (Σ,Π) /⊢ false. Then, (Σ,Π) is reduced

if and only if (Σ,Π)
A
/↝. ∎

Proof. We prove ‘if ’ and ‘only if ’ parts as follows:

⇒ . If (Σ,Π) is a reduced, we show that (Σ,Π)
A
/↝. As (Σ,Π) is reduced, there are no

primed variables in Π and thus, rpΠ(Σ,Π) = (Σ,Π). Furthermore, we show that if
any of the spatial abstraction rules is applicable in (Σ,Π), (Σ,Π) is not reduced which
contradicts our assumption.

Garbage1 ∶ If Garbage1 is applicable in (Σ,Π), we should have Σ = Σ′∗P (x′, ς) for some ς ∈ Sym
such that x′ /∈ Vars ′(Σ′,Π). In such a case, x′ is a primed variable not reachable
from any program variable which contradicts condition 2 of Definition 8.3.

Garbage2 ∶ If Garbage2 is applicable in (Σ,Π), we should have Σ = Σ′ ∗ P1(x′, y′) ∗ P2(y′, x′)
for some x′, y′ ∈ Vars ′ such that x′, y′ /∈ Vars ′(Σ′,Π). In such a case, x′ and y′

are primed variables not reachable from any program variable which contradicts
condition 2 of Definition 8.3.

Abs1 ∶ If Abs1 applies in (Σ,Π), we should have Σ = Σ′ ∗P1(ς1, y′)∗P2(y′, ς2) for ς1, y′, ς2 ∈
Sym such that y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2} and ς2 =Π nil .
Since y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2}, y′ is not shared. In addition, y′ can not be on a
cycle since there should be path from ς2 to ς1 which is impossible as ς2 =Π nil and
thus we would have (Σ,Π) ⊢ false which contradicts our assumption.
On the other hand, since ς2 =Π nil , ς2 can not be a dangling symbol and thus y′
can not be pointing to a dangling symbol. Moreover, y′ can not itself be possibly
dangling as it is appearing on the left hand side of P2(y′, ς2).

Abs2 ∶ If Abs2 applies in (Σ,Π), we should have Σ = Σ′ ∗ P1(ς1, y′) ∗ P2(y′, ς2) ∗ P3(ς3, ς4)
for ς1, y′, ς2, ς3, ς4 ∈ Sym such that y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2, ς3, ς4} and ς2 =Π ς3.
Since y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2, ς3, ς4} holds, y′ is not shared. Moreover, since ς2 =Π

ς3, ς2 can not be a dangling symbol and thus y′ can not be pointing to a dangling
symbol. On the other hand, y′ can not itself be possibly dangling as it is appearing
on the left hand side of P2(y′, ς2).
In addition, y′ can not be on a cycle of length exactly two. There are three ways
that can result in y′ to be part of a cycle of length two and we show that all three
of these cases are impossible.
1. We have ς2 =Π ς1 which is impossible given (Σ,Π) /⊢ false as ς2 =Π ς3 and ς3 is

allocated in a portion of the heap that is disjoined from the portion where ς1
is allocated.

2. We have Σ′ = Σ′′ ∗ P0(ς5, ς6) for ς6 =Π y′ and ς5 =Π ς2. This is impossible as
ς5 =Π ς5 would result in (Σ,Π) ⊢ false which contradicts our assumption.

3. We have y′ =Π ς4. This is impossible as ς4 =Π y′ would require y′ appearing
in Π which contradicts condition 1 of Definition 8.3 or have ς4 = y′ which
contradicts y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2, ς3, ς4}.
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⇐ . We assume that (Σ,Π)
A
/↝ and show that (Σ,Π) is reduced. First, we observe that since

no spatial abstraction rule changes Π, we have rpΠ(Σ,Π) = (Σ,Π) which means there
are no primed variables in Π. This justifies the first condition of Definition 8.3.
Let x′ be a primed variable in Σ not reachable from any program variable. We show
that at least one of the abstraction rules will apply which contradicts our assumption.
We consider the following cases. In the following, we use left occurrence and right
occurrence for referring to a symbol appearing in the first or second argument of a P
chunk, respectively.

– The primed variable x′ can not be only appearing in the left hand side of a P
chunk. If there is only one such chunk, Garbage1 would be applicable. If there
are more than one such chunks, (Σ,Π) would be inconsistent. Therefore, there
always exists a chunk P (ς, x′) in Σ for some ς ∈ Sym.

– We have x′ is not part of any cycles. Let’s assume that ρ = x′1, . . . , x
′
n, x

′ is a
maximal path ending in x′, i.e., there does not exist y′ such that there is a path
from y′ to x′1. Then, rule Garbage1 would be applicable as x′1 can not be appearing
in any chunk other that the one being part of ρ, otherwise, either consistency of
(Σ,Π) or maximality of ρ is violated.

– We have x′ is part of a cycle ρ. First note that ρ can not have any program
variables or nil as it would contradict x′ not being reachable by any program
variables or consistency of (Σ,Π).
Second, let us note that no symbol can be part of two different cycles in a consis-
tent symbolic state. Therefore, if any of the primed variables y′ of ρ is shared, it
can only be pointed to by some primed variable (as otherwise, it would violate x′
not being reachable by any program variables or consistency of (Σ,Π)). In such a
case, a reasoning like that of the previous case can show that Garbage1 would be
applicable to the beginning of such a path ending in y′.
In addition, note that the length of the cycle must be at least 2. If the cycle is of
length 1, i.e., we have P (x′, x′), if x′ is shared, we know that the beginning of the
path pointing to it has Garbage1 applicable to it. If x′ is not shared, since (Σ,Π)
is consistent, rule Garbage1 would be applicable to P (x′, x′).
Hence, we assume that all primed variables of ρ are not shared and the length of
the cycle is at least 2. As a result, no primed variable y′ in ρ can be appearing in
any chunk except for the chunks P1(x′1, y′) and P2(y′, x′2) such that x′1, y′, x′2 is part
of cycle ρ. Consequently, rule Abs2 would be applicable to P1(x′1, y′)∗P2(y′, x′2) as
x′2 is part of the cycle ρ and is hence equal to some allocated symbol under Π.

Now we consider the cases where Σ = Σ′ ∗ P (x′, ς) for some ς ∈ Sym or there is no such
chunk P (x′, y) in Σ. We consider these two cases respectively as follows:

Case 1: Σ = Σ′ ∗ P (x′, ς). If x′ is shared, the condition 3.a of Definition 8.3 is satisfied. So
in the rest of this case, we assume that x′ is not shared.
If x′ is part of a cycle, as mentioned earlier, the length of such a cycle must be at
least 2. If x′ is on a cycle of length 2, then the the condition 3.b of Definition 8.3
holds. If x′ is on a cycle of length greater than 2, then Abs2 would be applicable
which contradicts our assumption. Thus, in the rest of this case, we assume that
x′ is not part of any cycles.
Since x′ is not part of any cycles, and x′ is reachable from some program variable,
we know that there must be a path x, ς1, . . . , ςn, x′, ς, for some program variable x.
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If the length of this path is greater than 2, (n ≥ 1), as x′ is assumed not be shared,
the rule Abs2 would be applicable which is contradictory. Therefore, we assume
that Σ = Σ′∗P1(x,x′)∗P2(x′, ς). In such a case, if ς =Π nil , Abs1 would be applicable
which is contradictory. If ς =Π ς2 for some symbol ς2 and ς2 occurs on the left hand
side of a P chunk, Abs2 would be applicable which is again contradictory. Thus, ς
must be a dangling symbol, which implies that x′ is pointing to a dangling symbol
which is the condition 3.c of Definition 8.3.

Case 2: There is no Σ′ such that Σ = Σ′∗P (x′, ς). In this case, x′ only appears as the second
argument of some P chunk. So let’s assume Σ = Σ′∗P (ς1, x′) for some ς1 ∈ Sym. As
x′ does not appear at the left hand side of any P chunk, and there are no primed
variables appearing in Π, nothing equal to it based on Π can be appearing as the
left hand side of a P chunk. Consequently, x′ must be a dangling symbol which
is condition 3.d of Definition 8.3.

Now, in order to show that the set of consistent reduced symbolic states (which we just
proved is the same as the set of abstract symbolic states) is finite, we show that if a con-
sistent symbolic state is reduced, then, there is an upper bound on the number of primed
variables that can be appearing in it.

Lemma 8.5 (Partitioning of Primed Variables). Let (Σ,Π) be a consistent reduced symbolic
state. Then, the set {Xs, (Xc∖Xs), (Xp∖Xs), (Xd∖Xs)} whereXs,Xc,Xp andXd are defined
below, is a partitioning of primed variables appearing in Σ.

• x′ ∈Xs if x′ is shared

• x′ ∈Xc if s′ is the internal node of a cycle of length exactly 2

• x′ ∈Xp if x′ is pointing to a possibly dangling variable

• x′ ∈Xd if x′ is possibly dangling

∎

Proof. Since (Σ,Π) is reduced, we obviously have Vars ′(Σ) = Xs ∪ (Xc ∖Xs) ∪ (Xp ∖Xs) ∪
(Xd ∖Xs). The only thing that remains to be shown is that these sets are pairwise disjoint.

Obviously,
Xs ∩ (Xc ∖Xs) =Xs ∩ (Xp ∖Xs) =Xs ∩ (Xd ∖Xs) = ∅

If any primed variable is part of a cycle, it can neither be dangling nor can it be pointing
to a dangling symbol. Hence,

(Xc ∖Xs) ∩ (Xp ∖Xs) = (Xc ∖Xs) ∩ (Xd ∖Xs) = ∅

On the other hand, if a symbol is dangling, it can not be pointing to any (dangling)
symbol. As a result,

(Xc ∖Xs) ∩ (Xd ∖Xs) = ∅

Lemma 8.6 (Bound on Primed Variables of Consistent Reduced Symbolic States). Let
(Σ,Π) be a reduced symbolic state such that (Σ,Π) /⊢ false, then the number of primed
variables appearing in Σ is bound by 3n + 2, where n is the number of program variables. ∎
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Proof. Let Xs,Xc,Xp and Xd be as defined in Lemma 8.5. Furthermore, let ms,mc,mp and
md be respectively the cardinalities of sets Xs, (Xc ∖Xs), (Xp ∖Xs) and (Xd ∖Xs).

Since, symbols appearing on the left hand sides of Ls and ↦ predicates must be unique
(as (Σ,Π) /⊢ false) and considering that members of md can not appear as the left hand side
of any predicate, we have that

∣Σ∣ ≤ n +ms +mc +mp + 1

where ∣Σ∣ is the number of conjuncts of Σ. The 1 at the end is added for the sake of Junk
predicate. Furthermore, we do not consider emp chunks.

On the other hand, since all primed variables are reachable from some program variable,
they must all be appearing on the right hand side of some Ls or ↦. Particularly members
of ms must appear at least twice (as they are shared). Hence,

2ms +mc +mp +md ≤ ∣Σ∣

Altogether,
2ms +mc +mp +md ≤ n +ms +mc +mp + 1

From which we can draw the conclusion that

ms +md ≤ n + 1 (3)

For the upper bound of mc +mp, we can see that if x′ ∈ mc ∪mp, there must be a chunk
P (ς, x′) in Σ for ς ∈ Sym. In such a case, ς can not be in mc, mp and md. If ς ∈mc, then, ς is a
primed variable and together with x′ form a cycle of length 2 and are both not shared which
means rule Garbage2 should be applicable which, according to Lemma 8.4, is a contradiction
to the fact that (Σ,Π) is reduced. If ς ∈mp, then ς should be pointing to a possibly dangling
symbol but x′ is already allocated (as it is part of a cycle or is pointing to a possibly dangling
symbol) and can not be a possibly dangling symbol. If ς ∈md, then ς must be a possibly dan-
gling symbol which means it can not appear on the left hand side of any Ls or ↦ predicate
which contradicts our initial assumption that P (ς, x′) is a chunk of Σ. Consequently, ς can
only be a shared primed variable or a program variable. Hence,

mc +mp ≤ n +ms

From Equation 3, we get that ms ≤ n + 1 which means:

mc +mp ≤ 2n + 1 (4)

From Equation 3 and Equation 4, we have that

ms +mc +mp +md ≤ 3n + 2 (5)

Which means that a consistent reduced symbolic state can have at most 3n + 2 primed
variables appearing in it.

Theorem 8.7 (Finiteness of Abstract States). Let n be the number of program variables,
then, the number of reduced states is bounded by 2(2n+1)(16n2+20n+7).

Proof. Since there are no primed variables in the pure part of a reduced symbolic state,
there can be at most n + 1 elements in each equivalence class. This means that we can get
a very coarse bound of 22n+1 equivalence relations (pure parts).

34



On the other hand, from Lemma 8.6, we have that there can be at most 4n + 2 symbols
(primed and program variables) appearing on the left hand side of a Ls or ↦ predicate
and at most 4n + 3 symbols (primed and program variables together with nil ) appearing
on the right hand side. Therefore, there can be at most 16n2 + 20n + 6 + 1 chunks (one for
Junk predicate) that can possibly appear in spatial part. Therefore, there can be at most
216n2+20n+7 different spatial parts.

This means that in total there can be at most 2(2n+1)(16n2+20n+7) different reduced sym-
bolic states. Hence, Sα is finite.
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