
Brief Announcement: Concurrency-Aware Linearizability

Nir Hemed
Tel Aviv University

nirh@mail.tau.ac.il

Noam Rinetzky
Tel Aviv University

maon@cs.tau.ac.il

ABSTRACT
Linearizabilty allows to describe the behaviour of concurrent ob-
jects using sequential specifications. Unfortunately, as we show in
this paper, sequential specifications cannot be used for concurrent
objects whose observable behaviour in the presence of concurrent
operations should be different than their behaviour in the sequential
setting. As a result, such concurrency-aware objects do not have
formal specifications, which, in turn, precludes formal verification.

In this paper we present Concurrency Aware Linearizability (CAL),
a new correctness condition which allows to formally specify the
behaviour of a certain class of concurrency-aware objects. Tech-
nically, CAL is formalized as a strict extension of linearizabil-
ity, where concurrency-aware specifications are used instead of se-
quential ones. We believe that CAL can be used as a basis for mod-
ular formal verification techniques for concurrency-aware objects.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming; D.2.4
[Software Engineering]: Software/Program Verification

Keywords
Linearizability; sequential specification; concurrent specification

1. INTRODUCTION
Linearizability [4] is a property of the externally-observable be-

haviour of concurrent objects [4]. Intuitively, a concurrent object
is linearizable if in every execution each operation seems to take
effect instantaneously between its invocation and response, and
the resulting sequence of (seemingly instantaneous) operations re-
spects a given sequential specification. Unfortunately, as we show
below, for some concurrent objects it is impossible to provide a
sequential specification: their behaviour in the presence of concur-
rent (overlapping) operations is, and should be, observably differ-
ent from their behaviour in the sequential setting. For these ob-
jects, which we refer to as Concurrency-Aware Concurrent Objects
(CA-objects), the traditional notion of linearizability is simply not
expressive enough to allow for describing all desired behaviours

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PODC’14, July 15–18, 2014, Paris, France.
ACM 978-1-4503-2944-6/14/07.
http://dx.doi.org/10.1145/2611462.2611513.

without introducing undesired ones. As a result, CA-objects are
not given a formal specification. The lack of formal specifications
is problematic as it precludes formal proofs.

Concurrency-Aware Linearizabilty (CAL) is a correctness con-
dition which addresses the aforementioned problem. CAL enables
programmers to provide natural and intuitive specifications for an
important class of CA-objects. Technically, CAL is an extension
of linearizabilty where Concurrency-Aware specifications are used
to describe concurrency-dependent behaviours. Sequential speci-
fications are a special case of concurrency-aware specifications in
which concurrent behaviours can be explained by sequential ones.
Running Example. Exchanger objects (as found, e.g., in java.
util.concurrent.Exchanger) serve as a synchronization
point at which threads can pair up and atomically swap elements.
Exchangers are useful in applications such as genetic algorithms
and pipeline designs, and are embedded in practice in thread-pool
implementations as well as other higher-level data structures [5, 6].

Figure 1(E) shows a simplified version of the wait-free exchanger
of [5] in which retires are omitted. Intuitively, a client thread uses
the Exchanger by invoking the exchange() method with a
value that it offers to swap (in our case a positive int). exchange()
attempts to find a partner thread and, if successful, instantaneously
exchanges the offered value with the one offered by the partner. If
a partner thread is not found, exchange() returns -1, indicating
that the operation has failed. More technically, the exchange is per-
formed by using Offer objects, consisting of the data offered
for exchange and a hole pointer. A successful swap occurs when
the hole pointer in the Offer of one thread points to the Offer
of another thread. This can be achieved in two ways: A thread that
finds that the value of g is null can set it to its Offer (line 10) and
wait for a partner thread to match with (sleep in line 11). Upon
awakening, it checks whether it was paired with another thread by
executing a CAS on its own hole (line 12). If the CAS succeeds,
then a match did not occur, and setting the hole pointer to point to
the fail sentinel signals that the thread is no longer interested in
the exchange. If the CAS fails then some other thread has already
matched the Offer and the exchange can complete successfully.
If g is not null, then the thread attempts to update the hole field
of the Offer pointed to by g from its initial null value to its own
Offer (line 16). An additional CAS (line 17) sets g back to null.
By doing so, it helps to remove already-matched offers from the
global pointer; hence, the CAS in line 17 is unconditional.
Exchanger objects do not have a formal specification. This

is not surprising; describing the concurrent behaviour that requires
that exchange() succeeds only if two threads invoke the method
simultaneously is, as we show below, impossible using the form
of sequential specifications suggested in [4]. As a result, correct-
ness proofs of concurrent objects that utilize Exchanger-like ob-

(E)

1 class Offer {
2 int data;
3 Offer hole;
4 Offer(int d){data = d; hole = null;}
5 }

6 Offer g = null;
7 Offer fail = new Offer(-1);

8 int exchange(int d){ // we assume 0 ≤ d
9 Offer n = new Offer(d);

10 if (CAS(g, null, n)){
11 sleep(50);
12 CAS(n.hole, null, fail)
13 return n.hole.data;
14 }
15 Offer cur = g;
16 bool success = CAS(cur.hole, null, n);
17 CAS(g, cur, null);
18 if (success)
19 return cur.data;
20 else return -1;
21 }

(P)

(H1)

(H2)

(H3)

(SH) (CAH) (CH)

Figure 1: (E) a simplified Exchanger, (P) a client program, (H1) a concurrent history, (H2) an undesired sequential history, (H3)
a CA-history, a graphical depiction of a (SH) sequential history, a (CAH) CA-history, and a (CH) concurrent history.

jects are not modular. For example, the proof of the HSY-stack [3]
mixes reasoning about the implementation of an (Exchanger-
like) elimination array with its particular usage by the stack.

2. CONCURRENCY-AWARE LINEARIZABIL-
ITY (CAL)

Linearizability relates an implementation of a concurrent object
with a sequential specification. Both the implementation and the
specification are formalized as prefix-closed sets of histories. A
history H = ψ1ψ2 . . . is a sequence of methods invocations and
responses. Specifications are given using sequential histories in
which every response is immediately preceded by its matching in-
vocation. Implementations, on the other hand, allow for arbitrary
interleaving of actions by different threads, as long as the subse-
quence of actions of every thread is sequential. Informally, a con-
current object OSC is linearizable with respect to a specification
OSA if every history H in OSC can be explained by a history S
in OSA that “looks similar” to H . The similarity is formalized by
a real-time relation H vRT S, which requires S to be a permuta-
tion of H preserving the per-thread order of actions and the order
of non-overlapping operations.1

Why it is impossible to provide a sequential specification for
Exchangers? Consider the client program P shown in Fig-
ure 1(P) which uses an Exchanger object. Figures 1(H1-H3)
show three histories, where an exchange(n) operation returning
value n’ is depicted using an interval bounded by a “call(n)”
and a “ret(n’)” actions. Note that histories H1 and H3 might
occur when P executes, but H2 cannot.

History H1 corresponds to the case where threads t1 and t2 ex-
change items 3 and 10 respectively and t3 fails to pair-up. His-
tory H2 is one possible sequential explanation of H1. Using H2

1For brevity, formal details, e.g., the treatment of history com-
pletions, are deferred to the Appendix.

to explain H1 raises the following problem: if H2 is allowed by
the specification then every prefix of H2 must be allowed as-well.
In particular, history H ′

2 in which only t1 performs its operation
should be allowed. Note that in H ′

2 a thread exchanges an item
without finding a partner. Clearly, H ′

2 is an undesired behaviour.
In fact, any sequential history that attempts to explainH1 would al-
low for similar undesired behaviours. (In general, only executions
in which all exchange() operations fail can be explained by se-
quential histories.) We conclude that any sequential specification
of the Exchanger is either too restrictive or too loose.

We now turn to the definition of concurrency-aware lineariz-
ability. A key notion here is that of concurrency-aware histories.
A history H is concurrency-aware (CA-History) if for any his-
tory H1 such that H = H1ψ

′ψH2 if ψ′ is a response and ψ
is an invocation then the matching response of any invocation in
H1ψ

′ is also in H1ψ
′. Note that a CA-history may contain con-

current operations. However, it ensures that such operations over-
lap pairwise. This provides the illusion that all concurrent opera-
tions are performed instantaneously at the same point in time. Fig-
ure 1 illustrates a sequential history (SH), a CA-history (CAH),
and a concurrent history (CH). Note that every sequential history
is a CA-history and every CA-history is a concurrent history, but
not vice-versa. CAL extends linearizability by allowing specifica-
tions to be a (prefix-closed) set of CA-histories: A concurrent ob-
ject OSC is CA-linearizable with respect to a specification OSA,
if every history H in OSC has a “similar-looking” CA-history S
in OSA. The “similar-looking” relation used in CAL is the same
real-time order relation used to define linearizability [4]; the term
Concurrency-Aware Linearizability emphasizes that the specifica-
tion is comprised of concurrency-aware histories rather than a se-
quential ones.

Note that history H3, depicted in Figure 1, is a concurrency-
aware history. It describes the observable behavior as in H1 while
maintaining the same real-time order of operations and requiring

that exchange(3) and exchange(10) execute concurrently
and, seemingly, at the same point in time. Also note that every
prefix of H3 describes a behavior which is allowed by the imple-
mentation. Indeed, the behaviour of Exchanger objects can be
specified precisely using CA-histories.

3. CONCLUSIONS AND FUTURE WORK
We present Concurrency-Aware Linearizabilty (CAL), a new cor-

rectness condition for an important class of CA-objects, concurrent
objects whose behaviour does not have a sequential explanation.
CA-objects exist in practice but currently do not have formal spec-
ifications. CAL allows providing accurate formal specifications for
CA-objects using CA-histories, a restricted generalization of se-
quential histories. We believe that CAL can form the semantical
basis for modular and reusable correctness proofs for CA-objects.
Acknowledgements. This research was supported by the EU project
ADVENT.

References
[1] Abstraction for concurrent objects. TCS, 411(51-52), 2010.
[2] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable ren-

dezvousing. In Distributed Computing. 2011.
[3] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free

stack algorithm. In SPAA, 2004.
[4] M. P. Herlihy and J. M. Wing. Linearizability: A correctness

condition for concurrent objects. TOPLAS, 1990.
[5] W. N. Scherer III, D. Lea, and M. L. Scott. A scalable

elimination-based exchange channel. SCOOL, 2005.
[6] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable syn-

chronous queues. In PPoPP, 2006.
[7] W. N. Scherer III and M. L. Scott. Nonblocking concurrent

data structures with condition synchronization. In Distributed
Computing. 2004.

APPENDIX
In this section we formalize the notion of contentaion-aware lin-
earizability (CAL). We assume infinite sets of object names o ∈
O, method names f ∈ F , and threads identifiers t ∈ T .

DEFINITION 1. An object action is either an inocation ψ =
(t, inv o.f(n)) or a response ψ′ = (t′, res(n′)o′.f ′).

Intuitively, an invocation ψ = (t, inv o.f(n)) means transfer of
control from the client to the library, and responseψ′ = (t′, res(n′)o′.f ′)
means the return of control to the invoking client. As in [4], the ob-
servable behaviour of a concurrent object is represented by a set
of histories, which are sequences of invocations and responses of
methods calls.

DEFINITION 2. A history H is a finite sequence of invocations
and responses. We use Hi to denote the ith action of H and H|t to
denote the projection ofH onto actions of thread t. We denote by _
an expression that is irrelevant and implicitly existentially quanti-
fied. A history is sequential if every response action is immediately
preceded by a matching invocation. A history H is well-formed if
invocations and responses are properly matched: for every thread
t, H|t is sequential. A history is complete if it is well-formed and
every invocation has a matching response (i.e, for every thread t, if
H|t = _ψ then ψ is a response). History Hc is a completion of a
well-formed historyH if it is complete and can be obtained fromH

by (possibly) extending H with some response actions and (possi-
bly) removing some invocation actions. We denote by complete(H)
the set of all completions of H .

Linearizability is a relation between object systems, prefix-closed
sets of well-formed histories. Following [4], we define it using the
notion of real-time order.

DEFINITION 3. The real-time order between actions of a well-
formed history H is an irreflexive partial order ≺H on (indices of)
object actions:

Hi ≺H Hj ⇐⇒
∃i ≤ i′ < j′ ≤ j. tid(Hi) = tid(Hi′) ∧ tid(Hj) = tid(Hj′) ∧

(tid(Hi) = tid(Hj) ∨Hi′ = (_, res _) ∧Hj′ = (_, inv _))

A history H agrees with the real-time order of a history S, denoted
by H vRT S, if (i) for every thread t, H|t = S|t and (ii) there is
a bijection π : {1, · · · , |H|} → {1, · · · , |S|} such that

∀i.(Hi = Sπ(i)) ∧ (∀i, j.Hi ≺H Hj =⇒ Sπ(i) ≺S Sπ(j)) .
Intuitively, history S “agrees” with H if in both histories every
thread performs the same sequence of actions and the real-time or-
der induced by H is a subset of that of S, i.e. ≺H⊆≺S .

DEFINITION 4 (LINEARIZABILITY [4]). LetOSC andOSA
be object systems. We say that OSC is linearizable with respect to
OSA if every history H ∈ OS is sequential and

∀H ∈ OSC . ∃Hc ∈ complete(H). ∃S ∈ OSA. Hc vRT S .
We now turn on to formally define CAL. The key aspect is the

notion of CA-History, which is the building block of new class of
specifications which strictly extend sequential specifications. We
use the notion of complete histories to provide an alternative defi-
nition for CA-histories.

DEFINITION 5 (CONCURRENCY-AWARE HISTORY). A history
H is concurrency-aware (CA-History) if for any history H1 such
thatH = H1ψ

′ψH2 if ψ′ is a response and ψ is an invocation then
H1ψ

′ is a complete history. An object system is OS concurrency-
aware if each H ∈ OS is a concurrency-aware history.

A concurrency-aware history allows for some operations to be
executed concurrently by multiple threads. Moreover, it ensures
that out of the set of threads that are operating concurrently, no
thread will return before all other threads have invoked the oper-
ation (i.e. all operations must overlap pairwise). Figure 1 illus-
trates sequential history (SH), concurrency-aware history (CAH)
and concurrent history (CH). Note that while every sequential his-
tory is CA, the opposite does not hold.

Extending Definition 4, Concurrency-aware linearizabilty of an
object system is described using thevRT relation to a concurrency-
aware object system:

DEFINITION 6 (CONCURRENCY AWARE LINEARIZABILITY).
LetOSC andOSA be object systems. We say thatOSC is concurrency-
aware linearizable (CAL) with respect to OSA if

∀H ∈ OSC . ∃Hc ∈ complete(H). ∃S ∈ OSA. Hc vRT S

and every history H ∈ OSA is concurrency-aware.

Thus, CA-linearizable object is such that every interaction with it
can be “explained” by a CA-history of some concurrency-aware
object system OSA.

Note that the same real-time order vRT and notion of comple-
tions are used in the definitions of linearizability and concurrency-
aware linearizability; the term concurrency-aware linearizability
emphasizes that the specification is comprised of concurrency-aware
histories, rather than a sequential ones.

