
Aspect-Oriented Linearizability Proofs

Thomas A. Henzinger1, Ali Sezgin1, and Viktor Vafeiadis2

1 IST Austria {tah,asezgin}@ist.ac.at
2 MPI-SWS viktor@mpi-sws.org

Abstract. Linearizability of concurrent data structures is usually proved by mono-
lithic simulation arguments relying on identifying the so-called linearization points.
Regrettably, such proofs, whether manual or automatic, are often complicated and
scale poorly to advanced non-blocking concurrency patterns, such as helping and
optimistic updates.
In response, we propose a more modular way of checking linearizability of con-
current queue algorithms that does not involve identifying linearization points.
We reduce the task of proving linearizability with respect to the queue specifica-
tion to establishing four basic properties, each of which can be proved indepen-
dently by simpler arguments. As a demonstration of our approach, we verify the
Herlihy and Wing queue, an algorithm that is challenging to verify by a simula-
tion proof.

1 Introduction

Linearizability [8] is widely accepted as the standard correctness requirement for con-
current data structure implementations. It amounts to showing that all methods are
atomic and obey the high-level sequential specification of the data structure. For ex-
ample, an unbounded queue must support the following two methods: enqueue, which
extends the queue by appending one element to its end, and dequeue, which removes
and returns the first element of the queue.

The standard way to prove that a concurrent queue implementation is linearizable
is to prove an invariant which relates the state of the implementation to the state of
the specification. A well-established approach (e.g. [1–5, 11, 13–15]) is to identify the
linearization points, which when performed by the implementation change the state of
the specification, and to then construct a forward or backward simulation.

While for a number of concurrent algorithms, spotting the linearization points may
be straightforward (and has even been automated to some extent [15]), in general speci-
fying the linearization points can be very difficult. For instance, in implementations us-
ing a helping mechanism, they can lie in code not syntactically belonging to the thread
and operation in question, and can even depend on future behavior. There are numer-
ous examples in the literature, where this is the case; to mention only a few concurrent
queues: the Herlihy and Wing queue [8], the optimistic queue [10], the elimination
queue [12], the baskets queue [9], the flat-combining queue [6].

The HW Queue. In this paper, we focus on the Herlihy and Wing queue [8] (henceforth,
HW queue for short) that illustrates nicely the difficulties encountered when defining a

2 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

1: var q.back : int← 0
2: var q.items : array of val

← {NULL, NULL, . . .}

3: procedure enq(x : val)
4:

〈
i← INC(q.back)

〉
. E1

5:
〈
q.items[i]← x

〉
. E2

6: procedure deq() : val
7: while true do
8:

〈
range← q.back − 1

〉
. D1

9: for i = 0 to range do
10:

〈
x← SWAP(q.items[i], NULL)

〉
. D2

11: if x 6= NULL then return x

Fig. 1. Herlihy and Wing queue [8].

simulation relation based on linearization points. The code is given in Fig. 1. The queue
is represented as a pre-allocated unbounded array, q.items, initially filled with NULLs,
and a marker, q.back, pointing to the end of the used part of the array. Enqueuing
an element is done in two steps: the marker to the end of the array is incremented
(E1), thereby reserving a slot for storing the element, and then the element is stored at
the reserved slot (E2). Dequeue is more complex: it reads the marker (D1), and then
searches from the beginning of the array up to the marker to see if it contains a non-
NULL element. It removes and returns the first such element it finds (D2). If no element
is found, dequeue starts again afresh. Each of the four statements surrounded by 〈〉
brackets and annotated by Ei or Di for i = 1, 2 is assumed to execute in isolation.

Consider the following execution fragment, where · denotes context switches be-
tween concurrent threads,

(t : E1) · (u : E1) · (v : D1, D2) · (u : E2) · (t : E2) · (w : D1)

which have threads t and u executing enqueue instances, v and w executing dequeue
instances. At the end of this fragment, v is ready to dequeue the element enqueued
by u, and w is ready to dequeue the element enqueued by t. In order to define a sim-
ulation relation from this interleaving sequence to a valid sequential queue behavior,
where operations happen in isolation, we have to choose the linearization points for the
two completed enqueue instances. The difficulty lies in the fact that no matter which
statements are chosen as the linearization points for the two enqueue instances, there is
always an extension to the fragment inconsistent with the particular choice of lineariza-
tion points. For instance, if we choose (t : E1) as the linearization point for t, then the
extension

(v : D2, return) · (z : D1, D2, return)

requiring u’s element be enqueued before that of t’s, will be inconsistent. If on the other
hand, any statement which makes u linearize before t, then the extension

(w : D2, return) · (z : D1, D2, D2, return)

requiring the reverse order of enqueueing will be inconsistent. This shows not only that
finding the correct linearization sequence can be challenging, but also that the simula-
tion proofs will require to reason about the entire state of the system, as the local state
of one thread can affect the linearization of another.

Aspect-Oriented Linearizability Proofs 3

Our Contribution. In our experience, this and similar tricks for reducing synchroniza-
tion among threads so as to achieve better performance, make concurrent algorithms
extremely difficult to reason about when one is constrained to establishing a simula-
tion relation. However, if two methods overlap in time, then the only thing enforced by
linearizability is that their effects are observed in some and same order by all threads.
For instance, in the example given above, the simple answer for the particular order-
ing between the linearization points of the enqueue instances of t and u, is that it does
not matter! As long as enqueue instances overlap, their values can be dequeued in any
order.

Building on this observation, our contribution is to simplify linearizability proofs
by modularizing them. We reduce the task of proving linearizability to establishing
four relatively simple properties, each of which may be reasoned about independently.
In (loose) analogy to aspect-oriented programming, we are proposing “aspect-oriented”
linearizability proofs for concurrent queues, where each of these four properties will be
proved independently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:
(1) must not allow dequeuing an element that was never enqueued;
(2) it must not allow the same element to be dequeued twice;
(3) it must not allow elements to be dequeued out of order; and
(4) it must correctly report whether the queue is empty or not.

Although similar properties were already mentioned by Herlihy and Wing [8], we
for the first time prove that suitably formalized versions of these four properties are
not only necessary, but also sufficient, conditions for linearizability with respect to the
queue specification, at least for what we call purely-blocking implementations. This is
a rather weak requirement satisfied by all non-blocking methods, as well as by possi-
bly blocking methods, such as HW deq() method, whose blocking executions do not
modify the global state.

The rest of the paper is structured as follows: Section 2 recalls the definition of
linearizability in terms of execution histories; Section 3 formalizes the aforementioned
four properties, and proves that they are necessary and sufficient conditions for proving
linearizability of queues; Section 4 returns to the HW queue example and presents a
detailed manual proof of its correctness; and Section 5 explains how the bulk of this
proof was also performed automatically by an adaptation of CAVE [15]. Finally, in
Sec. 6 we discuss related work, and in §7 we conclude.

2 Technical Background

In this section, we introduce common notations that will be used throughout the paper
and recall the definition of linearizability.

Histories, Linearizability. For any function f from A to B and A′ ⊆ A, let f(A′) def
=

{f(a) | a ∈ A′}. Given two sequences x and y, let x · y denote their concatenation, and
let x ∼perm y hold if one is a permutation of the other.

A data structure D is a pair (D,ΣD), where D is the data domain and ΣD is the
method alphabet. An event of D is a triple (m, di, do), for some m ∈ ΣD, d1, d2 ∈ D.

4 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

Intuitively, (m, di, do) denotes the application of method m with input argument di
returning the output value do. A sequence over events of D is called a behavior. The
semantics of data structure D is a set of behaviors, called legal behaviors.

Each event a = (m, di, do) generates two actions: the invocation of a, written as
inv(a), and the response of a, written as res(a). We will also usemi(di) andmr(do) to
denote the invocation and the response actions, respectively. When a particular method
m does not have an input (resp., output) parameter, we will write (m,⊥, x) (resp.,
(m,x,⊥)), and mi() (resp., mr()) for the corresponding invocation (resp., response)
action.

In this paper, a history of D is a sequence of invocation and response actions of D.
We will assume the existence of an implicit identifier in each history c that uniquely
pairs each invocation with its corresponding response action, if the latter also occurs in
c. A history c is well-formed if every response action occurs after its associated invoca-
tion action in c. We will consider only well-formed histories. An event is completed in
c, if both of its invocation and response actions occur in c. An event is pending in c, if
only its invocation occurs in c. We define remPending(c) to be the sub-sequence of c
where all pending events have been removed. An event e precedes another event e′ in
c, written e ≺c e

′, if the response of e occurs before the invocation of e′ in c. For event
e, Before(e, c) denotes the set of all events that precede e in c. Similarly, After(e, c)
denotes the set of all events that are preceded by e in c. Formally,

Before(e, c)
def
= {e′ | e′ ≺c e} and After(e, c)

def
= {e′ | e ≺c e

′} .

History c is called complete if it does not have any pending events. For a possibly
incomplete history c, a completion of c, written ĉ, is a (well-formed) complete his-
tory such that ĉ = remPending(c · c′) where c′ contains only response events. Let
Compl(c) denote the set of all completions of c.

A history is called sequential if all invocations in c are immediately followed by
their matching responses, with the possible exception of the very last action which can
only be the invocation of a pending event. We identify complete sequential histories
with behaviors ofD by mapping each consecutive pair of matching actions in the former
to its event constructing the latter. A sequential history s is a linearization of a history
c, if there exists ĉ ∈ Compl(c) such that ĉ ∼perm s and whenever e ≺ĉ e

′ we have
e ≺s e

′.

Definition 1 (Linearizability [8]). A set of histories C is linearizable with respect to
a data structure D, if for any c ∈ C, there exists a linearization of c which is a legal
behavior of D.

Queues. The method alphabet ΣQ of a queue is the set {enq, deq}. We will take the
data domain to be the set of natural numbers, N, and a distinguished symbol NULL
not in N. Events are written as enq(x), short for (enq, x,⊥), and deq(x), short for
(deq,⊥, x). Events with enq are called enqueue events, and those with deq are called
dequeue events.

Let c be a history. Enq(c) denotes the set of all enqueue events invoked (and not
necessarily completed) in c. Similarly, Deq(c) denotes the set of all dequeue events

Aspect-Oriented Linearizability Proofs 5

invoked in c. A set A ⊆ Enq(c)∪Deq(c) is closed under ≺c if a ∈ A and b ≺c a, then
b ∈ A.

For an enq event e in c, Valc(e) denotes the value to be inserted by e in c. For-
mally, Valc(enq(x)) = x. Similarly, for a completed deq event d in c, Valc(d) denotes
the value removed by d in c. Formally, Valc(deq(x)) = x. For a pending deq event,
Valc(deq(x)) is undefined.

We will use a labelled transition system, LTSQ, to define the queue semantics. The
states of LTSQ are sequences over N, the initial state is the empty sequence ε. There is
a transition from q to q′ with action a, written q a−→ q′, if (i) a = enq(x) and q′ = q · x,
or (ii) a = deq(x) and q = x′ · q′, or (iii) a = deq(NULL) and q = q′ = ε. A queue is
partial if the last transition (NULL returning dequeue event) is not allowed.

A run of LTSQ is an alternating sequence q0l1q1 . . . lnqn of states and queue events

such that for all 1 ≤ i ≤ n, we have qi−1
li−→ qi. The trace of a run is the sequence

l1 . . . ln of the events occurring on the run. A queue behavior b is legal iff there is a run
of LTSQ with trace b.

We find it useful to express the queue semantics in an alternative formulation.

Definition 2. A queue behavior b has a sequential witness if there is a total mapping
µseq from Deq(b) to Enq(b) ∪ {⊥} such that

– µseq(d) = e implies Valb(d) = Valb(e),
– µseq(d) = ⊥ iff Valb(d) = NULL,
– µseq(d) = µseq(d

′) 6= ⊥ implies d = d′,
– e ≺b e

′ and there exists d′ with µseq(d
′) = e′ imply µ−1seq(e) ≺b d

′,
– µseq(d) = ⊥ implies that

|{e ∈ Enq(b) | e ≺b d}| = |{d′ ∈ Deq(b) | d′ ≺b d ∧ µseq(d
′) 6= ⊥}|.

Proposition 1. A queue behavior b is legal iff b has a sequential witness.

Proof (Sketch). If b is legal, then, by definition, it has a run r in LTSQ with trace b. Let d

be a dequeue event occurring in b. Then there is a transition q d−→ q′ in r. If d = deq(x)
for some x ∈ N, then set µseq(d) = e where e is the enqueue event enq(x) which has
inserted x into the state sequence. If d = deq(NULL), then set µseq(d) = ⊥. Then, it is
easy to check that µseq satisfies all the conditions of being a sequential witness for b.

For the other direction, let µseq be a sequential witness for b. We observe that i)
an element x is in state q iff an enqueue event enq(x) has happened on the prefix of
the run ending at q and the dequeue event with µseq(d) = e has not happened on the
same prefix, ii) for any two enqueue events e, e′ with e ≺b e

′, Valb(e) occurs in a state
before Valb(e′), iii) the relative ordering of inserted elements in a state does not change
as long as both are in the state, iv) each enqueue event inserts exactly one element to
the state, v) each dequeue event deq(x) with x 6= NULL removes exactly one element
from the state, and vi) the dequeue event deq(NULL) does not change the state. Then,
by induction on the length of b, we show that b has a run in LTSQ. ut

6 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

3 Conditions for Queue Linearizability

3.1 Generic Necessary and Sufficient Conditions

We start by reducing the problem of checking linearizability of a given history, c, with
respect to the queue specification to finding a mapping from its dequeue events to its
enqueue events satisfying certain conditions. Intuitively, we map each dequeue event to
the enqueue event whose value the dequeue removed, or to nothing if the dequeue event
returns NULL. We say that the mapping is safe if it pairs each deq event with a proper
enq event, implying that elements are inserted exactly once and removed at most once.
A safe mapping is ordered if it additionally respects precedence induced by c. Finally,
an ordered mapping is a linearizability witness if all NULL returning deq events see at
least one state where the queue is logically empty. Below, we formalize these notions.

Definition 3 (Safe Mapping). A mapping Match from Deq(c) to Enq(c)∪{⊥} is safe
for c if
(1) for all d ∈ Deq(c), if Match(d) 6= ⊥, then Valc(d) = Valc(Match(d));
(2) for all d ∈ Deq(c), Match(d) = ⊥ iff Valc(d) = NULL; and
(3) for all d, d′ ∈ Deq(c), if Match(d) = Match(d′) 6= ⊥, then d = d′.

Definition 4 (Ordered Mapping). A safe mapping Match for c is ordered if
(1) for all d ∈ Deq(c), we have d 6≺c Match(d); and
(2) for all d ∈ Deq(c) and e′ ∈ Enq(c), if e′ ≺c Match(d), then there exists d′ ∈ Deq(c)
such that e′ = Match(d′).

Definition 5 (Linearization Witness). An ordered mapping Match for c is a lineariza-
tion witness if for any d ∈ Deq(c) with Valc(d) = NULL, there exists a subset D′ ⊆
Deq(c) such that Match(D′) is closed under ≺c and D′ ∩ After(d, c) = ∅ and
Before(d, c) ∩ Enq(c) ⊆ Match(D′).

The main result of this section is stated below.

Theorem 1. A set of histories C is linearizable with respect to queue iff every c ∈ C
has a completion ĉ ∈ Compl(c) that has a linearization witness.

Proof. (⇒) If c ∈ C is linearizable with respect to queue, then there is a linearization
s of c which is a legal queue behavior. By Prop. 1, s has a sequential witness µseq. The
mapping µseq satisfies the conditions of a linearization witness since all ≺c orderings
are preserved in s.

(⇐) Pick a c ∈ C and let ĉ ∈ Compl(c) be its completion that has a linearization
witness Match . Let < be some arbitrary total order on the events of ĉ. We construct the
linearization of ĉ inductively as follows:

Let c′ be the prefix of ĉ that has been processed, and let s′ be the resulting sequential
history. All events in s′ are placed. Events that are not placed but are pending after c′

are called candidate. We extend c′ until the first response action that happens after c′ in
ĉ. Formally, let c′ · ce · ar be a prefix of ĉ such that ce contains only invocation actions
and ar is a response action. Let A denote the set of all candidate events after c′ · ce · ar.
The new s′ is obtained by appending some a ∈ A as the next event if

Aspect-Oriented Linearizability Proofs 7

(1) a is an enqueue event, and there does not exist another enqueue event e such that
Match−1(e) ≺ĉ Match−1(a) and e is not placed in s′; or
(2) a is a dequeue event with Val ĉ(a) 6= NULL, Match(a) is placed in s′, and there does
not exist another dequeue event d such that Match(d) ≺ĉ Match(a) and d is not placed
in s′; or
(3) a is a dequeue event with Val ĉ(a) = NULL and the number of enqueue events in s′

is equal to the number of dequeue events d with Val ĉ(d) 6= NULL in s′.
In case both first and second conditions are satisfied, the candidate element minimal
with respect to< is appended to s′. This iteration is repeated until there are no candidate
events that satisfy any of the conditions, at which point the inductive step ends with
setting c′ to c′ · ce · ar. The existence of Match guarantees that such a sequence can
be constructed. The constructed sequence s has Match also as a sequential witness,
completing the proof. ut

3.2 Necessary and Sufficient Conditions for Complete Histories

We now focus on complete histories, namely ones with no pending events. We observe
that their linearizability violations can always be manifested in terms of the dequeued
values. Intuitively, the possible violations are:

(VFresh) A dequeue event returns a value not inserted by any enqueue event.
(VRepet) Two dequeue events return the value inserted by the same enqueue event.
(VOrd) Two values are enqueued in a certain order, and either they are dequeued in the

reverse order or only the later value is dequeued.
(VWit) A dequeue event returning NULL even though the queue is never logically empty

during the execution of the dequeue event.

We have the following result which ties the above violation types to linearizable
queues.

Proposition 2. A complete history c has a linearization which is a legal queue behavior
iff it has none of the VFresh, VRepet, VOrd, VWit violations.

Proof (Sketch). First, note that as c has no pending events, Compl(c) = {c}. If c has a
linearization which is a legal queue behavior, then by Theorem 1, c has a linearization
witness Match , and so none of the violations can happen. As Match is safe, (VFresh)
and (VRepet) cannot happen; as it is ordered, (VOrd) cannot occur; and as it is a lin-
earization witness, likewise (VWit) cannot happen. Similarly, in the other direction, the
absence of all the violations ensures the existence of a linearizability witness. ut

We remark that none of the violations mentions the possibility of an element in-
serted by an enqueue being lost forever. This is intentional, as such histories are ruled
out by the following proposition.

Proposition 3. Given an infinite sequence of complete histories c1, c2, . . . not contain-
ing any of the violations above, where for every i, ci is a prefix of ci+1, and the number
of dequeue events in ci is less than that of ci+1, if c1 contains an enqueue event enq(x),
then exists some cj containing deq(x).

8 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

Proof. We prove this by contradiction. If there is no deq(x) event, then enq(x) is al-
ways in the queue, and so, from the absence of VWit violations, none of the dequeue
events following enq(x) can return NULL. Also, since dequeue events cannot return
values that were not previously enqueued (VFresh) and cannot return the same value
multiple times (VRepet), and since the number of dequeue events is increasing, then
there must also be new enqueue events. However, only finitely many of those are not
preceded by enq(x) which completes in c1. This means that eventually one dequeue
event has to return an element inserted by enq(y) such that enq(x) ≺cj enq(y), which
is VOrd. ut

For checking purposes, we find it useful to re-state the third violation as the follow-
ing equivalent proof obligation.

(POrd) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2),
a dequeue event d2 cannot return Valc(e2) if Valc(e1) is not removed in c or is
removed by d1 with d2 ≺c d1.

Thus, we need an invariant which specifies all those executions satisfying the premise
of POrd, and prove that such an execution cannot end with a dequeue event (in the sense
that no other method is preceded by that dequeue event) returning the value of e2.

3.3 Necessary and Sufficient Conditions for Purely-Blocking Queues

There is a subtle complication in the statement of Theorem 1. The witness mapping
is chosen relative to some completion of the concurrent history under consideration.
However, because implementations may become blocked, such completions may ac-
tually never be reached. This means that one cannot reason about the correctness of
a queue implementation by considering only reachable states. What we would ideally
like to do is to claim that if the implementation violates linearizability, then there is a
finite complete history of the implementation which has no witness. In other words, if
the implementation contains an incomplete history with no witness, then that execution
is the prefix of a complete history of the implementation.

Let C be the set of all possible execution histories of a library implementation.
We call a library implementation completable iff for every history c ∈ C, we have
Compl(c) ∩ C 6= ∅. For completable implementations, it suffices to consider only
complete executions.

Theorem 2. A completable queue implementation is linearizable iff all its complete
histories have none of the VFresh, VRepet, VOrd and VWit violations.

Proof. (⇒) If some complete history has a violation, by Prop. 2, it has no linearization,
contradicting the assumption that the implementation is linearizable.

(⇐) Consider an arbitrary history c of the implementation. As the implementation
is completable, there exists a completion ĉ ∈ Compl(c) that is a valid history of the
implementation. From our assumptions, ĉ cannot have a violation, and so by Prop. 2, ĉ
has a linearization, and therefore so does c. ut

Aspect-Oriented Linearizability Proofs 9

Since it may not be obvious how to easily prove that an implementation is com-
pletable, we introduce the stronger notion of purely-blocking implementations, that is
straightforward to check. We say that an implementation is purely-blocking when at
any reachable state, any pending method, if run in isolation will terminate or its entire
execution does not modify the global state.

Proposition 4. Every purely-blocking implementation is completable.

Proof. Given a history c ∈ C, we will construct ĉ ∈ Compl(c) ∩ C. We fix a total
order of pending events, and consider them in that order. For a pending method e, if
running it in isolation terminates, then extend c with the corresponding response for e.
Otherwise, the execution of e does not modify any global state and so can be removed
from the history without affecting its realizability. ut

We remark that our new notion of purely-blocking is a strictly weaker requirement
than the standard non-blocking notions: obstruction-freedom, which requires all pend-
ing methods to terminate when run in isolation, as well as the stronger notions of lock-
freedom and wait-freedom. (See [7] for an in depth exposition of these three notions.)

4 Manually Verifying the Herlihy-Wing Queue

Let us return to the HW queue presented in §1 and prove its correctness manually fol-
lowing our aspect-oriented approach.

First, observe that HW queue is purely-blocking: enq() always terminates, and
deq() can update the global state only by reading x 6= NULL at E2, in which case it
immediately terminates. So from Prop. 4 and Theorem 2, it suffices to show that it does
not have any of the four violations. The last one, VWit, is trivial as the HW deq() never
returns NULL. So, we are left with three violations whose absence we have to verify:
VFresh, VRepet, and VOrd.

Intuitively, there are no VFresh violations because deq() can return only a value that
has been stored inside the q.items array. The only assignments to q.items are E1 and
D2: the former can only happen by an enq(x), which puts x into the array; the latter
assigns NULL.

Likewise, there are no VRepet violations because whenever in an arbitrary history
two calls to deq() return the same x, then at least twice there was an element of the
q.items array holding the value x and was updated to NULL by the SWAP instruction
at D2. Therefore, at least two assignments of the form q.items[] ← x happened; i.e.
there were at least two enq(x) events in the history.

We move on to the more challenging third condition, VOrd. We actually consider
its equivalent reformulation, POrd. Fix a value v2 and consider a history c where every
method call enqueuing v2 is preceded by some method call enqueuing some different
value v1 and there are no deq() calls returning v1 (there may be arbitrarily many con-
current enq() and deq() calls enqueuing or dequeuing other values). The goal is to
show that in this history, no deq() return v2.

Let us suppose there is a dequeue d returning v2, and try to derive a contradiction.
For d to return v2, it must have read range ≥ i2 such that q.items[i2] = v2. So, d must
have read q.back at D1 after enq(v2) incremented it at E1.

10 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

procedure deq(v : val)
while true do〈

range← q.back − 1
〉

for i = 0 to range do
〈x← q.items[i];
assume(x = v ∧ x 6= NULL);
q.items[i]← NULL

〉
;

return x

 t
〈x← q.items[i];
assume(x = NULL);
q.items[i]← NULL

〉

Fig. 2. The HW dequeue method instrumented with the prophecy variable v guessing its return
value, where t stands for non-deterministic choice.

Since, enq(v1) ≺c enq(v2), it follows that enq(v2) will have read a larger value
of q.back at E1 than enq(v1). So, in particular, once enq(v1) finishes, the following
assertion will hold:

∃i1 < q.back. q.items[i1] = v1 ∧ (∀j < i1. q.items[j] 6= v2) (∗)

Note that since, by assumption, v1 can never be dequeued, and any later enq(v2) can
only affect the q.items array at indexes larger than i1, (∗) is an invariant.

Given this invariant, however, it is impossible for d to return v2, as in its loop it will
necessarily first have encountered v1.

5 Automation

As can be seen from our previous informal argument, establishing absence of VFresh
and VRepet violations was relatively straightforward, whereas proving POrd was some-
what more involved. Therefore, in this section, we will focus on automating the proof of
the third property, POrd. Towards the end of the section, we will discuss the automatic
verification of the absence of VWit violations for queue implementations, where deq

may return NULL.

Prophetic Instrumentation of Dequeues. Our proof technique relies heavily on instru-
menting the deq() function with a prophecy variable ‘guessing’ the value that will be
returned when calling it. Essentially, we construct a method, deq(v), such that the set
of traces of

⊔
x∈N∪{NULL} deq(x) is equal to the set of traces of deq(), where t stands

for non-deterministic choice. Figure 2 shows the resulting automatically-generated in-
strumented definition of deq(v) for the HW queue.

Our implementation of the instrumentation performs a sequence of simple rewrites,
each of which does not affect the set of traces produced:

return E assume(v = E); return E

if B then C else C ′ (assume(B);C) t (assume(¬B);C ′)

C; assume(B) assume(B);C provided fv(B) ⊆ Locals \ writes(C)
C; (C1 t C2)! (C;C1) t (C;C2)

(C1 t C2);C! (C1;C) t (C2;C)

Aspect-Oriented Linearizability Proofs 11

In general, the goal of applying these rewrite rules is to bring the introduced assume(v =
E) statements as early as possible without unduly duplicating code.

Proving Absence of VOrd Violations. It turns out that our automated technique for prov-
ing POrd also establishes absence of VFresh violations as a side-effect. We reduce the
problem of proving absence of VFresh and VOrd violations to the problem of checking
non-termination of non-deterministic programs with an unbounded number of threads.
The reduction exploits the instrumented deq(v) definition: deq() cannot return a result
x in an execution precisely if deq(x) cannot terminate in that same execution.

Theorem 3. A completable queue implementation has no VFresh and VOrd violations
iff for all n ∈ N and forall v1 and v2 such that v1 6= v2, the program3

Prg
def
= b← false; (deq(v2) ‖

n times︷ ︸︸ ︷
C‖ . . . ‖C)

does not terminate, where

C
def
= (enq(v1); b← true) t (assume(b); enq(v2)) t

⊔
x 6=v2

enq(x) t
⊔

x6=v1

deq(x) .

Proof. (⇒) We argue by contradiction. Consider a terminating history c of Prg . If
enq(v2) is not invoked in c, then as there are no VFresh violations, we know that no
deq() in c can return v2, contradicting our assumption that c is a terminating history of
Prg . Otherwise, if enq(v2) is invoked in c, then at some earlier point assume(b) was
executed, and since initially b was set to false, this means that b ← true was executed
and therefore enq(v1) ≺c enq(v2). Consequently, from POrd, if there is deq() in c
returns v2, there must be a deq() in c that can be completed to return v1, contradicting
our assumption that c is a terminating history of Prg .

(⇐) We have two properties to prove. For VFresh, it suffices to consider the re-
stricted parallel context that never chooses to execute the first two of the non-deterministic
choices. In this restricted context, namely one that never enqueues v2, deq(v2) does not
terminate, and so deq() cannot return v2. For VOrd, consider a history in which every
enq(v2) happens after some enqueue of a different value, say enq(v1), and in which
there is no deq(v1). Such a history can easily be produced by the unbounded parallel
composition of C, and so deq(v2) also does not terminate, as required. ut

To prove non-termination, we essentially prove the partial-correctness Hoare triple,
{true} Prg {false}. Given a sound program logic, the only way for such a triple to hold
is for the program to always diverge.

3 For simplicity, we assume that the methods cannot distinguish the thread in which they are
running (i.e., they do not use thread-local storage or thread identifiers). Handling thread iden-
tifiers properly is not difficult: we have to record a set of thread identifiers that are not currently
in use. Before each method invocation, we have to atomically pick and remove an identifier
from that set, and on returning from the method, we have to add the current identifier back the
set of unused identifiers.

12 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

Implementation within CAVE. To prove such triples, we have mildly adapted the imple-
mentation of CAVE [15], a sound but incomplete thread-modular concurrent program
verifier that can handle dynamically allocated linked list data structures, fine-grained
concurrency. The tool takes as its input a program consisting of some initialization code
and a number of concurrent methods, which are all executed in parallel an unbounded
number of times each. When successful, it produces a proof in RGSep that the program
has no memory errors and none of its assertions are violated at runtime. Internally, it
performs RGSep action inference [16] with a rich shape-value abstract domain [14] that
can remember invariants of the form that value v1 is inside a linked list. CAVE also has
a way of proving linearizability by a brute-force search for linearization points (see [15]
for details), but this is not applicable to the HW queue and therefore irrelevant for our
purposes.

The main modifications we had to perform to the tool were: (1) to add code that
instruments deq() methods with a prophecy argument guessing its return value, thereby
generating deq(v); (2) to improve the abstraction function so that it can remember
properties of the form v2 /∈ X , which are needed to express the (∗) invariant of the
proof in §4; and (3) to add some glue code that constructs the Prg verification condition
and runs the underlying prover to verify it.

As CAVE does not support arrays (it only supports linked lists), we gave the tool a
linked-list version of the HW queue, for which it successfully verified that there are no
VFresh and VOrd violations.

Showing Absence of VWit Violations. Here, we have to show that any dequeue event
cannot return empty if it never goes through a state where the queue is logically empty.
This in turn means that we have to express non-emptiness using only the actions of the
history (and not referring to the linearization point or the gluing invariant which relates
the concrete states of the implementation to the abstract states of the queue). For the
following let us fix a (complete) concurrent history c and a dequeue of interest d which
returns NULL and does not precede any other event in c.

Let c′ be some prefix of c and let e ∈ Enq(c′) be a complete enqueue event in c′.
We will call e alive after c′ if there is no completion of c′ in which the dequeue event
deq(Valc′(e)) occurs. Let di denote the dequeue event which removes the element
inserted by the enqueue event ei; that is, di = deq(Valc(ei)). A sequence e0e1 . . . en
of enqueue events in Enq(c) is covering for d in c if the following holds:

– e0 is alive at c′ where c′ is the maximal prefix of c such that d /∈ Deq(c′).
– For all i ∈ [1, n], ei starts before d completes.
– For all i ∈ [1, n], we have ei ≺c di−1.
– en is alive at c.

Note that all di must exist by the third condition and that dn does not exist by the last
condition. Then, the sequence is covering for d if d0 does not start before d starts, and
every enqueue event ei completes before the dequeue event di−1 starts. Intuitively, this
means that at every state visited during the execution of d, the queue contains at least
one element. The property corresponding to the last violation (VWit) then becomes the
following:

Aspect-Oriented Linearizability Proofs 13

(PWit) A dequeue event d cannot return NULL if there is a covering for d.

We will actually re-state the same property in a simpler way by making the follow-
ing observation.

Proposition 5. There is a covering for d in c iff at every prefix c′ of c such that d is
running, there is at least one alive enqueue event.

Then, we can alternatively state PWit as follows:

(PWit′) A dequeue event d cannot return NULL if for every prefix c′ at which d is
pending there exists an alive enqueue event.

Note that POrd can also be stated in terms of alive enqueue events.

(POrd′) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2), a
dequeue event cannot return Valc(e2) if e1 is alive at c.

6 Related Work

Linearizability was first introduced by Herlihy and Wing [8], who also presented the
HW queue as an example whose linearizability cannot be proved by a simple forward
simulation where each method performs its effects instantaneously at some point during
its execution. The problem is, as we have seen, that neither of E1 or E2 can be given
as the (unique) linearization point of enq events, because the way in which two concur-
rent enqueues are ordered may depend on not-yet-completed concurrent deq events. In
other words, one cannot simply define a mapping from the concrete HW queue states
to the queue specification states. Nevertheless, Herlihy and Wing do not dismiss the
linearization point technique completely, as we do, but instead construct a proof where
they map concrete states to non-empty sets of specification states.

This mapping of concrete states to non-empty sets of abstract states is closely re-
lated to the method of backward simulations, employed by a number of manual proof
efforts [3, 5, 13], and which Schellhorn et al. [13] recently showed to be a complete
proof method for verifying linearizability. Similar to forward simulation proofs, back-
ward simulation proofs, are monolithic in the sense that they prove linearizability di-
rectly by one big proof. Sadly, they are also not very intuitive and as a result often
difficult to come up with. For instance, although the definition of their backward sim-
ulation relation for the HW queue is four lines long, Schellhorn et al. [13] devote two
full pages to explain it.

As a result, most work on automatically verifying linearizability (e.g. [2, 14, 15, 1])
has relied on the simpler technique of forward simulations, even though it is known to
be incomplete. The programmer is typically required to annotate each method with its
linearization points and then the verifier uses some kind of shape analysis that auto-
matically constructs the simulation relation. This approach seems to work well for sim-
ple concurrent algorithms such as the Treiber stack and the Michael and Scott queues,
where finding the linearization points may be automated by brute-force search [15], but
cannot handle more challenging examples such as the ones mentioned in the introduc-
tion.

14 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

Among this line of work, the most closely related one to this paper is the recent
work by Abdulla et al. [1], who verify linearizability of stack and queue algorithms
using observer automata that report specification violations such as our VOrd. Their
approach, however, still requires users to annotate methods with linearization points,
because checker automata are synchronized with the linearization points of the imple-
mentation.

We would also like to point out that the use of forward simulations is not limited to
automated verifications of linearizability. Several manual verification efforts have also
used forward simulations (e.g. [4, 3]).

To the best of our knowledge, there exist only two earlier published proofs of the
HW queue: (1) the original pencil-and-paper proof by Herlihy and Wing [8], and (2) a
mechanized backward simulation proof by Schellhorn et al. [13].

Both proofs are manually constructed. In comparison, our new proof is simpler,
more modular, and largely automatically generated.4 This is largely due to the fact
that we have decomposed the goal of proving linearizability into proving four simpler
properties, which can be proved independently. This may allow one to adapt the HW
queue algorithm, e.g. by checking emptiness of the queue and allowing deq to return
NULL, and affecting only the proof of absence of VWit violations without affecting the
correctness arguments of the other properties.

Our violation conditions are arguably closer to what programmers have in mind
when discussing concurrent data structures. Informal specifications written by program-
mers and bug reports do not mention that some method is not linearizable, but rather
things like that values were dequeued in the wrong order.

7 Conclusion

We have presented a new method for checking linearizability of concurrent queues. In-
stead of searching for the linearization points and doing a monolithic simulation proof,
we verify four simple properties whose conjunction is equivalent to linearizability with
respect to the atomic queue specification. By decomposing linearizability proofs in this
way, we obtained a simpler correctness proof of the Herlihy and Wing queue [8], and
one which can be produced automatically.

We believe that our new property-oriented approach to linearizability proofs will be
equally applicable to other kinds of concurrent shared data structures, such as stacks,
sets, and maps. In the future, we would like to build tools that will automate this kind
of reasoning for such data structures.

Acknowledgments. We would like to thank the reviewers for their feedback. The re-
search was supported by the EC FET FP7 project ADVENT, by the Austrian Science
Fund NFN RISE (Rigorous Systems Engineering) and by the ERC Advanced Grant
QUAREM (Quantitative Reactive Modeling).

4 We say ‘largely’ because we have not yet automated the verification of the absence of VRepet
violations, which requires a simple counting argument, nor the (admittedly trivial) proof that
the HW queue is purely-blocking. We intend to implement these in the near future.

Aspect-Oriented Linearizability Proofs 15

References

1. Abdulla, P.A., Haziza, F., Holı́k, L., Jonsson, B., Rezine, A.: An integrated specification and
verification technique for highly concurrent data structures. In: Piterman, N., Smolka, S.A.
(eds.) TACAS’13. LNCS, vol. 7795, pp. 324–338. Springer (2013)

2. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV’07. LNCS, vol. 4590, pp.
477–490. Springer (2007)

3. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation.
ENTCS 137(2), 93–110 (2005)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential linearisa-
tion points. In: Butler, M., Schulte, W. (eds.) FM’11. LNCS, vol. 6664, pp. 323–337. Springer
(2011)

5. Doherty, S., Moir, M.: Nonblocking algorithms and backward simulation. In: Keidar, I. (ed.)
DISC’09. LNCS, vol. 5805, pp. 274–288. Springer (2009)

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-
parallelism tradeoff. In: SPAA’10. pp. 355–364. ACM (2010)

7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Pub-
lishers Inc. (2008)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

9. Hoffman, M., Shalev, O., Shavit, N.: The baskets queue. In: Tovar, E., Tsigas, P., Fouchal,
H. (eds.) OPODIS’07. LNCS, vol. 4878, pp. 401–414. Springer (2007)

10. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues. In: Guer-
raoui, R. (ed.) DISC’04. LNCS, vol. 3274, pp. 117–131. Springer (2004)

11. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement. In: Cav-
alcanti, A., Dams, D. (eds.) FM’09. LNCS, vol. 5850, pp. 321–337. Springer (2009)

12. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable
and lock-free FIFO queues. In: SPAA’05. pp. 253–262. ACM (2005)

13. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV’12. LNCS, vol. 7358, pp. 243–259. Springer (2012)

14. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D., Müller-
Olm, M. (eds.) VMCAI’09. LNCS, vol. 5403, pp. 335–348. Springer (2009)

15. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV’10. LNCS, vol. 6174, pp. 450–464. Springer (2010)

16. Vafeiadis, V.: RGSep action inference. In: Barthe, G., Hermenegildo, M.V. (eds.) VM-
CAI’10. LNCS, vol. 5944, pp. 345–361. Springer (2010)

