
Replicated Data Types: Specification, Verification, Optimality

Sebastian Burckhardt
Microsoft Research

Alexey Gotsman
IMDEA Software Institute

Hongseok Yang
University of Oxford

Marek Zawirski
INRIA & UPMC-LIP6

Abstract
Geographically distributed systems often rely on replicated eventu-
ally consistent data stores to achieve availability and performance.
To resolve conflicting updates at different replicas, researchers
and practitioners have proposed specialized consistency protocols,
called replicated data types, that implement objects such as reg-
isters, counters, sets or lists. Reasoning about replicated data types
has however not been on par with comparable work on abstract data
types and concurrent data types, lacking specifications, correctness
proofs, and optimality results.

To fill in this gap, we propose a framework for specifying repli-
cated data types using relations over events and verifying their im-
plementations using replication-aware simulations. We apply it to
7 existing implementations of 4 data types with nontrivial conflict-
resolution strategies and optimizations (last-writer-wins register,
counter, multi-value register and observed-remove set). We also
present a novel technique for obtaining lower bounds on the worst-
case space overhead of data type implementations and use it to
prove optimality of 4 implementations. Finally, we show how to
specify consistency of replicated stores with multiple objects ax-
iomatically, in analogy to prior work on weak memory models.
Overall, our work provides foundational reasoning tools to support
research on replicated eventually consistent stores.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; eventual consistency; weak memory

1. Introduction
To achieve availability and scalability, many networked computing
systems rely on replicated stores, allowing multiple clients to issue
operations on shared data on a number of replicas, which commu-
nicate changes to each other using message passing. For example,
large-scale Internet services rely on geo-replication, which places
data replicas in geographically distinct locations, and applications
for mobile devices store replicas locally to support offline use. One
benefit of such architectures is that the replicas remain locally avail-
able to clients even when network connections fail. Unfortunately,
the famous CAP theorem [19] shows that such high Availability
and tolerance to network Partitions are incompatible with strong
Consistency, i.e., the illusion of a single centralized replica han-
dling all operations. For this reason, modern replicated stores often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535848

provide weaker forms of consistency, commonly dubbed eventual
consistency [36]. ‘Eventual’ usually refers to the guarantee that

if clients stop issuing update requests, then the replicas
will eventually reach a consistent state. (1)

Eventual consistency is a hot research area, and new replicated
stores implementing it appear every year [1, 13, 16, 18, 23, 27,
33, 34, 37]. Unfortunately, their semantics is poorly understood:
the very term eventual consistency is a catch-all buzzword, and
different stores claiming to be eventually consistent actually pro-
vide subtly different guarantees. The property (1), which is a form
of quiescent consistency, is too weak to capture these. Although
it requires the replicas to converge to the same state eventually, it
doesn’t say which one it will be. Furthermore, (1) does not provide
any guarantees in realistic scenarios when updates never stop ar-
riving. The difficulty of reasoning about the behavior of eventually
consistent stores comes from a multitude of choices to be made in
their design, some of which we now explain.

Allowing the replicas to be temporarily inconsistent enables
eventually consistent stores to satisfy clients’ requests from the
local replica immediately, and broadcast the changes to the other
replicas only after the fact, when the network connection permits
this. However, this means that clients can concurrently issue con-
flicting operations on the same data item at different replicas; fur-
thermore, if the replicas are out-of-sync, these operations will be
applied to its copies in different states. For example, two users shar-
ing an online store account can write two different zip codes into
the delivery address; the same users connected to replicas with dif-
ferent views of the shopping cart can also add and concurrently
remove the same product. In such situations the store needs to en-
sure that, after the replicas exchange updates, the changes by dif-
ferent clients will be merged and all conflicts will be resolved in a
meaningful way. Furthermore, to ensure eventual consistency (1),
the conflict resolution has to be uniform across replicas, so that, in
the end, they converge to the same state.

The protocols achieving this are commonly encapsulated within
replicated data types [1, 10, 16, 18, 31, 33, 34] that implement ob-
jects, such as registers, counters, sets or lists, with various conflict-
resolution strategies. The strategies can be as simple as establishing
a total order on all operations using timestamps and letting the last
writer win, but can also be much more subtle. Thus, a data type
can detect the presence of a conflict and let the client deal with it:
e.g., the multi-value register used in Amazon’s Dynamo key-value
store [18] would return both conflicting zip codes in the above ex-
ample. A data type can also resolve the conflict in an application-
specific way. For example, the observed-remove set [7, 32] pro-
cesses concurrent operations trying to add and remove the same
element so that an add always wins, an outcome that may be appro-
priate for a shopping cart.

Replicated data type implementations are often nontrivial, since
they have to maintain not only client-observable object state, but
also metadata needed to detect and resolve conflicts and to han-
dle network failures. This makes reasoning about their behavior
challenging. The situation gets only worse if we consider multi-

ple replicated objects: in this case, asynchronous propagation of
updates between replicas may lead to counterintuitive behaviors—
anomalies, in database terminology. The following code illustrates
an anomaly happening in real replicated stores [1, 18]:
Replica r1→ x.wr(post) i= y.rd // comment← Replica r2

y.wr(comment) j=x.rd // empty
(2)

We have two clients reading from and writing to register objects x
and y at two different replicas; i and j are client-local variables.
The first client makes a post by writing to x at replica r1 and then
comments on the post by writing to y. After every write, replica r1

might send a message with the update to replica r2. If the messages
carrying the writes of post to x and comment to y arrive to replica r2

out of the order they were issued in, the second client can see the
comment, but not the post. Different replicated stores may allow
such an anomaly or not, and this has to be taken into account when
reasoning about them.

In this paper, we propose techniques for reasoning about even-
tually consistent replicated stores in the following three areas.

1. Specification. We propose a comprehensive framework for
specifying the semantics of replicated stores. Its key novel com-
ponent is replicated data type specifications (§3), which provide
the first way of specifying the semantics of replicated objects
with advanced conflict resolution declaratively, like abstract data
types [25]. We achieve this by defining the result of a data type
operation not by a function of states, but of operation contexts—
sets of events affecting the result of the operation, together with
some relationships between them. We show that our specifications
are sufficiently flexible to handle data types representing a variety
of conflict-resolution strategies: last-write-wins register, counter,
multi-value register and observed-remove set.

We then specify the semantics of a whole store with multiple
objects, possibly of different types, by consistency axioms (§7),
which constrain the way the store processes incoming requests in
the style of weak shared-memory models [2] and thus define the
anomalies allowed. As an illustration, we define consistency mod-
els used in existing replicated stores, including a weak form of
eventual consistency [1, 18] and different kinds of causal consis-
tency [23, 27, 33, 34]. We find that, when specialized to last-writer-
wins registers, these specifications are very close to fragments of
the C/C++ memory model [5]. Thus, our specification framework
generalizes axiomatic shared-memory models to replicated stores
with nontrivial conflict resolution.

2. Verification. We propose a method for proving the correctness
of replicated data type implementations with respect to our speci-
fications and apply it to seven existing implementations of the four
data types mentioned above, including those with nontrivial opti-
mizations. Reasoning about the implementations is difficult due to
the highly concurrent nature of a replicated store, with multiple
replicas simultaneously updating their object copies and exchang-
ing messages. We address this challenge by proposing replication-
aware simulations (§5). Like classical simulations from data refine-
ment [21], these associate a concrete state of an implementation
with its abstract description—structures on events, in our case. To
combat the complexity of replication, they consider the state of an
object at a single replica or a message in transit separately and as-
sociate it with abstract descriptions of only those events that led to
it. Verifying an implementation then requires only reasoning about
an instance of its code running at a single replica.

Here, however, we have to deal with another challenge: code at
a single replica can access both the state of an object and a message
at the same time, e.g., when updating the former upon receiving the
latter. To reason about such code, we often need to rely on cer-
tain agreement properties correlating the abstract descriptions of
the message and the object state. Establishing these properties re-

quires global reasoning. Fortunately, we find that agreement prop-
erties needed to prove realistic implementations depend only on ba-
sic facts about their messaging behavior and can thus be established
once for broad classes of data types. Then a particular implementa-
tion within such a class can be verified by reasoning purely locally.

By carefully structuring reasoning in this way, we achieve easy
and intuitive proofs of single data type implementations. We then
lift these results to stores with multiple objects of different types by
showing how consistency axioms can be proved given properties of
the transport layer and data type implementations (§7).

3. Optimality. Replicated data type designers strive to optimize
their implementations; knowing that one is optimal can help guide
such efforts in the most promising direction. However, proving
optimality is challengingly broad as it requires quantifying over all
possible implementations satisfying the same specification.

For most data types we studied, the primary optimization target
is the size of the metadata needed to resolve conflicts or handle net-
work failures. To establish optimality of metadata size, we present
a novel method for proving lower bounds on the worst-case meta-
data overhead of replicated data types—the proportion of metadata
relative to the client-observable content. The main idea is to find a
large family of executions of an arbitrary correct implementation
such that, given the results of data type operations from a certain
fixed point in any of the executions, we can recover the previous
execution history. This implies that, across executions, the states at
this point are distinct and thus must have some minimal size.

Using our method, we prove that four of the implementations
we verified have an optimal worst-case metadata overhead among
all implementations satisfying the same specification. Two of these
(counter, last-writer-wins register) are well-known; one (optimized
observed-remove set [6]) is a recently proposed nontrivial opti-
mization; and one (optimized multi-value register) is a small im-
provement of a known implementation [33] that we discovered dur-
ing a failed attempt to prove optimality of the latter. We summarize
all the bounds we proved in Fig. 10.

We hope that the theoretical foundations we develop will help
in exploring the design space of replicated data types and replicated
eventually consistent stores in a systematic way.

2. Replicated Data Types
We now describe our formal model for replicated stores and intro-
duce replicated data type implementations, which implement op-
erations on a single object at a replica and the protocol used by
replicas to exchange updates to this object. Our formalism follows
closely the models used by replicated data type designers [33].

A replicated store is organized as a collection of named ob-
jects Obj = {x, y, z, . . .}. Each object is hosted at all replicas
r, s ∈ ReplicaID. The sets of objects and replicas may be infinite,
to model their dynamic creation. Clients interact with the store by
performing operations on objects at a specified replica. Each ob-
ject x ∈ Obj has a type τ = type(x) ∈ Type, whose type signa-
ture (Opτ ,Valτ) determines the set of supported operations Opτ
(ranged over by o) and the set of their return values Valτ (ranged
over by a, b, c, d). We assume that a special value ⊥ ∈ Valτ be-
longs to all sets Valτ and is used for operations that return no
value. For example, we can define a counter data type ctr and
an integer register type intreg with operations for reading, incre-
menting or writing an integer a: Valctr = Valintreg = Z ∪ {⊥},
Opctr = {rd, inc} and Opintreg = {rd} ∪ {wr(a) | a ∈ Z}.

We also assume sets Message of messages (ranged over by m)
and timestamps Timestamp (ranged over by t). For simplicity, we
let timestamps be positive integers: Timestamp = N1.
DEFINITION 1. A replicated data type implementation for a data
type τ is a tuple Dτ = (Σ, ~σ0,M, do, send, receive), where ~σ0 :

Figure 1. Illustrations of a concrete (a) and two abstract executions (b, c)

1: x.inc
2: send

3: receive
4: x.inc
5: send

6: receive
7: x.rd8: receive

to r3

r1 r2 r3
(a) 1: x.inc

4: x.inc

7: x.rd: 1

vis

vis

(b)

1: x.inc

4: x.inc

7: x.rd: 2

vis

vis

(c)
vis

ReplicaID→ Σ, M ⊆ Message and

do : Opτ × Σ× Timestamp→ Σ× Valτ ;
send : Σ→ Σ×M ; receive : Σ×M → Σ.

We denote a component of Dτ , such as do, by Dτ .do. A tuple Dτ
defines the class of implementations of objects with type τ , meant
to be instantiated for every such object in the store. Σ is the set of
states (ranged over by σ) used to represent the current state of the
object, including metadata, at a single replica. The initial state at
every replica is given by ~σ0.
Dτ provides three methods that the rest of the store implemen-

tation can call at a given replica; we assume that these methods
execute atomically. We visualize store executions resulting from re-
peated calls to the methods as in Fig. 1(a), by arranging the calls on
several vertical timelines corresponding to replicas at which they
occur and denoting the delivery of messages by diagonal arrows. In
§4, we formalize them as sequences of transitions called concrete
executions and define the store semantics by their sets; the intuition
given by Fig. 1(a) should suffice for the following discussion.

A client request to perform an operation o ∈ Opτ triggers the
call do(o, σ, t) (e.g., event 1 in Fig. 1(a)). This takes the current
state σ ∈ Σ of the object at the replica where the request is
issued and a timestamp t ∈ Timestamp provided by the rest of
the store implementation and produces the updated object state and
the return value of the operation. The data type implementation can
use the timestamp provided, e.g., to implement the last-writer-wins
conflict-resolution strategy mentioned in §1, but is free to ignore it.

Nondeterministically, in moments when the network is able to
accept messages, a replica calls send. Given the current state of the
object at the replica, send produces a message inM to broadcast to
all other replicas (event 2 in Fig. 1(a)); sometimes send also alters
the state of the object. Using broadcast rather than point-to-point
communication does not limit generality, since we can always tag
messages with the intended receiver. Another replica that receives
the message generated by send calls receive to merge the enclosed
update into its copy of the object state (event 3 in Fig. 1(a)).

We now reproduce three replicated data type implementations
due to Shapiro et al. [33].They fall into two categories: in op-
based implementations, each message carries a description of the
latest operations that the sender has performed, and in state-based
implementations, a description of all operations it knows about.

Op-based counter (ctr). Fig. 2(a) shows an implementation of
the ctr data type. A replica stores a pair 〈a, d〉, where a is the
current value of the counter, and d is the number of increments
performed since the last broadcast (we use angle brackets for tuples
representing states and messages). The send method returns d and
resets it; the receive method adds the content of the message to
a. This implementation is correct, as long as each message is
delivered exactly once (we show how to prove this in §5). Since inc
operations commute, they never conflict: applying them in different
orders at different replicas yields the same final state.

State-based counter (ctr). The implementation in Fig. 2(b)
summarizes the currently known history by recording the contri-

Figure 2. Three replicated data type implementations

(a) Op-based counter (ctr)
Σ = N0 × N0

M = N0

~σ0 = λr. 〈0, 0〉

do(rd, 〈a, d〉, t) = (〈a, d〉, a)
do(inc, 〈a, d〉, t) = (〈a+ 1, d+ 1〉,⊥)

send(〈a, d〉) = (〈a, 0〉, d)
receive(〈a, d〉, d′) = 〈a+ d′, d〉

(b) State-based counter (ctr)
Σ = ReplicaID× (ReplicaID→ N0)

σ0 = λr. 〈r, λs. 0〉
M = ReplicaID→ N0

do(rd, 〈r, v〉, t) = (〈r, v〉,
∑
{v(s) | s ∈ ReplicaID})

do(inc, 〈r, v〉, t) = (〈r, v[r 7→ v(r) + 1]〉,⊥)

send(〈r, v〉) = (〈r, v〉, v)
receive(〈r, v〉, v′) = 〈r, (λs.max{v(s), v′(s)})〉
(c) State-based last-writer-wins register (intreg)
Σ = Z× (Timestamp] {0})
~σ0 = λr. 〈0, 0〉
M = Σ
do(rd, 〈a, t〉, t′) = (〈a, t〉, a)

do(wr(a′), 〈a, t〉, t′) = if t < t′ then (〈a′, t′〉,⊥) else (〈a, t〉,⊥)
send(〈a, t〉) = (〈a, t〉, 〈a, t〉)
receive(〈a, t〉, 〈a′, t′〉) = if t < t′ then 〈a′, t′〉 else 〈a, t〉

bution of every replica to the counter value separately (reminiscent
of vector clocks [29]). A replica stores its identifier r and a vector
v such that for each replica s the entry v(s) gives the number of
increments made by clients at s that have been received by r. A
rd operation returns the sum of all entries in the vector. An inc
operation increments the entry for the current replica. We denote
by v[i 7→ j] the function that has the same value as v everywhere,
except for i, where it has the value j. The send method returns the
vector, and the receive method takes the maximum of each entry in
the vectors v and v′ given to it. This is correct because an entry for s
in either vector reflects a prefix of the sequence of increments done
at replica s. Hence, we know that min{v(s), v′(s)} increments by
s are taken into account both in v(s) and in v′(s).

State-based last-writer-wins (LWW) register (intreg). Un-
like counters, registers have update operations that are not com-
mutative. To resolve conflicts, the implementation in Fig. 2 uses
the last-writer-wins strategy, creating a total order on writes by as-
sociating a unique timestamp with each of them. A state contains
the current value, returned by rd, and the timestamp at which it was
written (initially, we have 0 instead of a timestamp). A wr(a′) com-
pares its timestamp t′ with the timestamp t of the current value a
and sets the value to the one with the highest timestamp. Note that
here we have to allow for t′ < t, since we do not make any assump-
tions about timestamps apart from uniqueness: e.g., the rest of the
store implementation can compute them using physical or Lamport
clocks [22]. We show how to state assumptions about timestamps in
§4. The send method just returns the state, and the receive method
chooses the winning value by comparing the timestamps in the cur-
rent state and the message, like wr.

State-based vs. op-based. State-based implementations con-
verge to a consistent state faster than op-based implementations be-
cause they are transitively delivering, meaning that they can prop-
agate updates indirectly. For example, when using the counter in
Fig. 2(b), in the execution in Fig. 1(a) the read at r3 (event 7) re-
turns 2, even though the message from r1 has not arrived yet, be-
cause r3 learns about r1’s update via r2. State-based implementa-
tions are also resilient against transport failures like message loss,
reordering, or duplication. Op-based implementations require the
replicated store using them to mask such failures (e.g., using mes-
sage sequence numbers, retransmission buffers, or reorder buffers).

The potential weakness of state-based implementations is the
size of states and messages, which motivates our examination of
space optimality in §6. For example, we show that the counter
in Fig. 2(b) is optimal, meaning that no counter implementation
satisfying the same requirements (transitive delivery and resilience
against message loss, reordering, and duplication) can do better.

3. Specifying Replicated Data Types and Stores
Consider the concrete execution in Fig. 1(a). What are valid return
values for the read in event 7? Intuitively, 1 or 2 can be justifiable,
but not 100. We now present a framework for specifying the ex-
pected outcome declaratively, without referring to implementation
details. For example, we give a specification of a replicated counter
that is satisfied by both implementations in Fig. 2(a, b).

In presenting the framework, we rely on the intuitive under-
standing of the way a replicated store executes given in §2. Later we
define the store semantics formally (§4), which lets us state what it
means for a store to satisfy our specifications (§4 and §7).

3.1 Abstract Executions and Specification Structure
We define our specifications on abstract executions, which in-
clude only user-visible events (corresponding to do calls) and
describe the other information about the store processing in an
implementation-independent form. Informally, we consider a con-
crete execution correct if it can be justified by an abstract execution
satisfying the specifications that is “similar” to it and, in particular,
has the same operations and return values.

Abstract executions are inspired by axiomatic definitions of
weak shared-memory models [2]. In particular, we use their pre-
viously proposed reformulation with visibility and arbitration rela-
tions [13], which are similar to the reads-from and coherence rela-
tions from weak shared-memory models. We provide a comparison
with shared-memory models in §7 and with [13] in §8.
DEFINITION 2. An abstract execution is a tuple
A = (E, repl, obj, oper, rval, ro, vis, ar), where
• E ⊆ Event is a set of events from a countable universe Event;
• each event e ∈ E describes a replica repl(e) ∈ ReplicaID

performing an operation oper(e) ∈ Optype(obj(e)) on an object
obj(e) ∈ Obj, which returns the value rval(e) ∈ Valtype(obj(e));
• ro ⊆ E × E is a replica order, which is a union of transitive,

irreflexive and total orders on events at each replica;
• vis ⊆ E × E is an acyclic visibility relation such that
∀e, f ∈ E. e vis−→ f =⇒ obj(e) = obj(f);
• ar ⊆ E × E is an arbitration relation, which is a union of

transitive, irreflexive and total orders on events on each object.
We also require that ro, vis and ar be well-founded.
In the following, we denote components ofA and similar structures
as in A.repl. We also use (e, f) ∈ r and e r−→ f interchangeably.

Informally, e vis−→ f means that f is aware of e and thus e’s
effect can influence f ’s return value. In implementation terms, this
may be the case if the update performed by e has been delivered to
the replica performing f before f is issued. The exact meaning of
“delivered”, however, depends on how much information messages
carry in the implementation. For example, as we explain in §3.2,
the return value of a read from a counter is equal to the number
of inc operations visible to it. Then, as we formalize in §4, the
abstract execution illustrated in Fig. 1(b) justifies the op-based
implementation in Fig. 2(a) reading 1 in the concrete execution in
Fig. 1(a). The abstract execution in Fig. 1(c) justifies the state-based
implementation in Fig. 2(b) reading 2 due to transitive delivery
(§2). There is no abstract execution that would justify reading 100.

x.wr(empty)

x.wr(post)

y.wr(comment)

ro

ro

y.rd: comment

x.rd: empty

roar

vis

vis
The ar relation represents the

ordering information provided by
the store, e.g., via timestamps.
On the right we show an ab-
stract execution corresponding to
a variant of the anomaly (2). The
ar edge means that any replica
that sees both writes to x should assume that post overwrites empty.

We give a store specification by two components, constraining
abstract executions:
1. Replicated data type specifications determine return values of

operations in an abstract execution in terms of its vis and ar rela-
tions, and thus define conflict-resolution policies for individual
objects in the store. The specifications are the key novel compo-
nent of our framework, and we discuss them next.

2. Consistency axioms constrain vis and ar and thereby disallow
anomalies and extend the semantics of individual objects to that
of the entire store. We defer their discussion to §7. See Fig. 13 for
their flavor; in particular, COCV prohibits the anomaly above.

Each of these components can be varied separately, and our spec-
ifications will define the semantics of any possible combination.
Given a specification of a store, we can determine whether a set
of events can be observed by its users by checking if there is an
abstract execution with this set of events satisfying the data type
specifications and consistency axioms.

3.2 Replicated Data Type Specifications
In a sequential setting, the semantics of a data type τ can be
specified by a function Sτ : Op+

τ → Valτ , which, given a non-
empty sequence of operations performed on an object, specifies the
return value of the last operation. For a register, read operations
return the value of the last preceding write, or zero if there is no
prior write. For a counter, read operations return the number of
preceding increments. Thus, for any sequence of operations ξ:

Sintreg(ξ rd) = a, if wr(0) ξ = ξ1 wr(a) ξ2 and
ξ2 does not contain wr operations;

Sctr(ξ rd) = (the number of inc operations in ξ);
Sintreg(ξ inc) = Sctr(ξ wr(a)) = ⊥.

In a replicated store, the story is more interesting. We specify
a data type τ by a function Fτ , generalizing Sτ . Just like Sτ , this
determines the return value of an operation based on prior opera-
tions performed on the object. However, Fτ takes as a parameter
not a sequence, but an operation context, which includes all we
need to know about a store execution to determine the return value
of a given operation o—the set E of all events that are visible to o,
together with the operations performed by the events and visibility
and arbitration relations on them.
DEFINITION 3. An operation context for a data type τ is a tuple
L = (o,E, oper, vis, ar), where o ∈ Opτ , E is a finite subset of
Event, oper : E → Opτ , vis ⊆ E ×E is acyclic and ar ⊆ E ×E
is transitive, irreflexive and total.

We can extract the context of an event e ∈ A.E in an abstract
execution A by selecting all events visible to it according to A.vis:

ctxt(A, e) = (A.oper(e), G, (A.oper)|G, (A.vis)|G, (A.ar)|G),

where G = (A.vis)−1(e) and ·|G is the restriction to events in G.
Thus, in the abstract execution in Fig. 1(b), the operation context of
the read from x includes only one increment event; in the execution
in Fig. 1(c) it includes two.
DEFINITION 4. A replicated data type specification for a type τ is
a function Fτ that, given an operation context L for τ , specifies a
return value Fτ (L) ∈ Valτ .

Note that Fτ (o, ∅, . . .) returns the value resulting from performing
o on the initial state for the data type (e.g., 0 for the LWW-register).

We specify multiple data types used in a replicated store by a
partial function F mapping them to data type specifications.
DEFINITION 5. An abstract execution A satisfies F, written A |=
F, if the return value of every event in A is computed on its context
by the specification for the type of the object the event accesses:

∀e ∈ A.E. (A.rval(e) = F(type(A.obj(e)))(ctxt(A, e))).

We specify a whole store by F and a set of consistency axioms (§7).
This lets us determine if its users can observe a given set of events
by checking if there is an abstract execution with these events that
satisfies F according to the above definition, as well as the axioms.

Note that Fτ is deterministic. This does not mean that so is
an outcome of an operation on a store; rather, that all the non-
determinism arising due to its distributed nature is resolved by vis
and ar in the context passed to Fτ . These relations are chosen
arbitrarily subject to consistency axioms. Due to the determinacy
property, two events that perform the same operation and see the
same set of events produce the same return values. As we show
in §7, this property ensures that our specifications can formalize
eventual consistency in the sense of (1).

We now give four examples of data type specifications, corre-
sponding to the four conflict-resolution strategies mentioned in §1
and §2: (1) operations commute, so no conflicts arise; (2) last writer
wins; (3) all conflicting values are returned; and (4) conflicts are
resolved in an application-specific way. We start by specifying the
data types whose implementations we presented in §2.

1. Counter (ctr) is defined by

Fctr(inc, E, oper, vis, ar) = ⊥;

Fctr(rd, E, oper, vis, ar) =
∣∣{e ∈ E | oper(e) = inc}

∣∣. (3)

Thus, according to Def. 5 the executions in Fig. 1(b) and 1(c) satisfy
the counter specification: both 1 and 2 are valid return values for the
read from x when there are two concurrent increments.

2. LWW-register (intreg) is defined by

Fintreg(o,E, oper, vis, ar) = Sintreg(Earo), (4)

where Ear denotes the sequence obtained by ordering the opera-
tions performed by the events inE according to ar. Thus, the return
value is determined by establishing a total order of the visible oper-
ations and applying the regular sequential semantics. For example,
by Def. 5 in the example execution from §3.1 the read from x has
to return empty; if we had a vis edge from the write of post to the
read from x, then the read would have to return post. As we show in
§7, weak shared-memory models are obtained by specializing our
framework to stores with only LWW-registers.

We can obtain a concurrent semantics Fτ of any data type τ
based on its sequential semantics Sτ similarly to (4). For example,
Fctr defined above is equivalent to what we obtain using this
generic construction. The next two examples go beyond this.

3. Multi-value register (mvr). This register [1, 18] has the same
operations as the LWW-register, but its reads return a set of values:

Fmvr(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = wr(a)

∧ ¬∃f ∈ E. oper(f) = wr() ∧ e vis−→ f}.

wr(0)

wr(2)

vis

wr(3)

wr(1)
visvis

(We write for an expression whose value
is irrelevant.) A read returns the values writ-
ten by currently conflicting writes, defined as
those that are not superseded in vis by later
writes; ar is not used. For example, a rd would
return {2, 3} in the context on the right.

Figure 3. The set of configurations Config and the transition relation
−→D: Config × Event × Config for a data type library D. We use
e : {h1 = u1, h2 = u2} to abbreviate h1(e) = u1 and h2(e) = u2. We
uncurry R ∈ RState where convenient.

Objτ = {x ∈ Obj | type(x) = τ}
RState =

⋃
X⊆Obj

∏
x∈X(ReplicaID→ D(type(x)).Σ)

TState = MessageID ⇀
⋃
τ∈Type(ReplicaID× Objτ × D(τ).M)

Config = RState× TState

D(type(x)).do(o, σ, t) = (σ′, a)

e : {act = do, obj = x, repl = r, oper = o, time = t, rval = a}

(R[(x, r) 7→ σ], T)
e−→D (R[(x, r) 7→ σ′], T)

D(type(x)).send(σ) = (σ′,m) mid /∈ dom(T)

e : {act = send, obj = x, repl = r, msg = mid}

(R[(x, r) 7→ σ], T)
e−→D (R[(x, r) 7→ σ′], T [mid 7→ (r, x,m)])

D(type(x)).receive(σ,m) = σ′ r 6= r′

e : {act = receive, obj = x, repl = r, srepl = r′, msg = mid}

(R[(x, r) 7→ σ], T [mid 7→ (r′, x,m)])
e−→D

(R[(x, r) 7→ σ′], T [mid 7→ (r′, x,m)])

4. Observed-remove set (orset). How do we specify a repli-
cated set of integers? The operations of adding and removing differ-
ent elements commute and thus do not conflict. Conflicts arise from
concurrently adding and removing the same element. For example,
we need to decide what rd will return as the contents of the set in
the context (rd, {e, f}, oper, vis, ar), where oper(e) = add(42)
and oper(f) = remove(42). If we use the generic construction
from the LWW-register, the result will depend on the arbitration
relation: ∅ if e ar−→ f , and {42} otherwise. An application may re-
quire a more consistent behavior, e.g., that an add operation always
win against concurrent remove operations. Observed-remove (OR)
set [7, 32] achieves this by mandating that remove operations can-
cel only the add operations that are visible to them:

Forset(rd, E, oper, vis, ar) = {a | ∃e ∈ E. oper(e) = add(a)

∧ ¬∃f ∈ E. oper(f) = remove(a) ∧ e vis−→ f}, (5)

In the above operation context rd will return ∅ if e vis−→ f , and {42}
otherwise. The rationale is that, in the former case, add(42) and
remove(42) are not concurrent: the user who issued the remove
knew that 42 was in the set and thus meant to remove it. In the
latter case, the two operations are concurrent and thus add wins.

As the above examples illustrate, our specifications can describe
the semantics of data types and their conflict-resolution policies
declaratively, without referring to the internals of their implemen-
tations. In this sense the specifications generalize the concept of an
abstract data type [25] to the replicated setting.

4. Store Semantics and Data Type Correctness
A data type library D is a partial mapping from types τ to data type
implementations D(τ) from Def. 1. We now define the semantics of
a replicated store with a data type library D as a set of its concrete
executions, previously introduced informally by Fig. 1(a). We then
state what it means for data type implementations of §2 to satisfy
their specifications of §3.2 by requiring their concrete executions
to be justified by abstract ones. In §7 we generalize this to the
correctness of the whole store with multiple object with respect to
both data type specifications and consistency axioms.

Semantics. We define the semantics using the relation −→D:
Config × Event × Config in Fig. 3, which describes a single

step of the store execution. The relation transforms configurations
(R, T) ∈ Config describing the store state:R gives the object state
at each replica, and T the set of messages in transit between them,
each identified by a message identifier mid ∈ MessageID. A mes-
sage is annotated by the origin replica and the object to which it
pertains. We allow the store to contain only some objects from Obj
and thus allow R to be partial on them. We use a number of func-
tions on events, such as act, obj, etc., to record the information
about the corresponding transitions, so that −→D is implicitly pa-
rameterized by them; we give their full list in Def. 6 below.

The first rule in Fig. 3 describes a replica r performing an opera-
tion o on an object x using the do method of the corresponding data
type implementation. We record the return value using the function
rval. To communicate the change to other replicas, we can at any
time perform a transition defined by the second rule, which puts a
new message m created by a call to send into the set of messages
in transit. The third rule describes the delivery of such a message to
a replica r other than the origin replica r′, which triggers a call to
receive. Note that the relation−→D does not make any assumptions
about message delivery: messages can be delivered in any order,
multiple times, or not at all. These assumptions can be introduced
separately, as we show later in this section. A concrete execution
can be thought of as a finite or infinite sequence of transitions:

(R0, T0)
e1−→ (R1, T1)

e2−→ . . .
en−→ (Rn, Tn) . . . ,

where all events ei are distinct. To ease mapping between concrete
and abstract executions in the future, we formalize it as a structure
on events, similarly to Def. 2.
DEFINITION 6. A concrete execution of a store with a data type
library D is a tuple

C = (E, eo, pre, post, act, obj, repl, oper, time, rval,msg, srepl).

Here E ⊆ Event, the execution order eo is a well-founded,
transitive, irreflexive and total order on E, relating the events
according to the order of the transitions they describe, time is
injective and pre, post : E → Config form a valid sequence of
transitions:

(∀e ∈ E. pre(e)
e−→D post(e)) ∧

(∀e, f ∈E. e eo−→ f ∧ ¬∃g. e eo−→ g
eo−→ f =⇒ post(e) = pre(f)).

We have omitted the types of functions on events, which are
easily inferred from Fig. 3: e.g., act : E → {do, send, receive}
and time : E ⇀ Timestamp, defined only on e with act(e) = do.

We denote the initial configuration of C by init(C) =
C.pre(e0), where e0 is the minimal event in C.eo. If C.E is finite,
we denote the final configuration of C by final(C) = C.post(ef),
where ef is the maximal event in C.eo. The semantics JDK of D is
the set of all its concrete executions C that start in a configuration
with an empty set of messages and all objects in initial states, i.e.,

∃X ⊆ Obj. init(C) = ((λx ∈ X.D(type(x)).~σ0), []),

where [] is the everywhere-undefined function.

Transport layer specifications. Data type implementations such
as the op-based counter in Fig. 2(a) can rely on some guarantees
concerning the delivery of messages ensured by the rest of the store
implementation. They may similarly assume certain properties of
timestamps other than uniqueness (guaranteed by the injectivity of
time in Def. 6). We take such assumptions into account by admit-
ting only a subset of executions from JDK that satisfy a transport
layer specification T , which is a predicate on concrete executions.
Thus, we consider a replicated store to be defined by a pair (D, T)
and the set of its executions be JDK ∩ T .

Even though our definition of T lets it potentially restrict data
type implementation internals, the particular instantiations we use

only restrict message delivery and timestamps. For technical rea-
sons, we assume that T always satisfies certain closure properties:
for every C ∈ T , the projection of C onto events on a given object
or a subset of events forming a prefix in the eo order is also in T .

As an example, we define a transport layer specification ensur-
ing that a message is delivered to any single replica at most once,
as required by the implementation in Fig. 2(a). Let the delivery re-
lation del(C) ∈ C.E ×C.E pair events sending and receiving the
same message:

e
del(C)−−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.act(e) = send ∧
C.act(f) = receive ∧ C.msg(e) = C.msg(f).

Then the desired condition on concrete executions C is

∀e, f, g ∈ C.E. e del(C)−−−−→ f ∧ e del(C)−−−−→ g ∧
C.repl(f) = C.repl(g) =⇒ f = g. (T-Unique)

Data type implementation correctness. We now state what it
means for an implementation Dτ of type τ from Def. 1 to satisfy a
specification Fτ from Def. 4. To this end, we consider the behavior
ofDτ under the “most general” client and transport layer, perform-
ing all possible operations and message deliveries. Formally, let
JDτ K be the set of executions C ∈ J[τ 7→ Dτ]K of a store contain-
ing a single object x of a type τ with the implementation Dτ , i.e.,
init(C) = (R, []) for some R such that dom(R) = {x}.

Then Dτ should satisfy Fτ under a transport specification T if
for every concrete execution C ∈ JDτ K ∩ T we can find a “simi-
lar” abstract execution satisfying Fτ and, in particular, having the
same operations and return values. As it happens, all components
of the abstract execution except visibility are straightforwardly de-
termined by C; as explained in §3.1, we have some freedom in
choosing visibility. We define the choice using a visibility witness
V , which maps a concrete execution C ∈ JDτ K to an acyclic re-
lation on (C.E)|do defining visibility (here ·|do is the restriction to
events e with C.act(e) = do). Let

e
ro(C)−−−→ f ⇐⇒ e

C.eo−−−→ f ∧ C.repl(e) = C.repl(f);

e
ar(C)−−−→ f ⇐⇒ e, f ∈ (C.E)|do ∧

C.obj(e) = C.obj(f) ∧ C.time(e) < C.time(f).

Then the abstract execution justifying C ∈ JDτ K is defined by

abs(C,V) = (C.E|do, E.repl|do, E.obj|do, E.oper|do, E.rval|do,

ro(C)|do,V(C), ar(C)).

DEFINITION 7. A data type implementation Dτ satisfies a speci-
fication Fτ with respect to V and T , written Dτ sat[V, T] Fτ , if
∀C ∈ JDτ K ∩ T . (abs(C,V) |= [τ 7→ Fτ]), where |= is defined
in Def. 5.

As we explained informally in §3.1, the visibility witness de-
pends on how much information the implementation puts into
messages. Since state-based implementations, such as the ones in
Fig. 2(b, c), are transitively delivering (§2), for them we use the
witness V state(C) = (ro(C) ∪ del(C))+|do. By the definition of
ro(C) and del(C), (ro(C) ∪ del(C)) is acyclic, so V state is well-
defined. State-based implementations do not make any assumptions
about the transport layer: in this case we write T = T-Any. In
contrast, op-based implementations, such as the one in Fig. 2(a),
require T = T-Unique. Since such implementations are not tran-
sitively delivering, the witness V state is not appropriate for them.
We could attempt to define a witness for them by straightforwardly
lifting the delivery relation:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do ∧

∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f}.

However, we need to be more careful, since for op-based imple-

mentations e
ro(C)−−−→ e′

del(C)−−−−→ f ′
ro(C)−−−→ f does not ensure that the

update of e is taken into account by f : if there is another send event
e′′ in between e and e′, then e′′ will capture the update of e and e′

will not. Hence, we define the witness as:

Vop(C) = ro(C)|do ∪ {(e, f) | e, f ∈ (C.E)|do

∧ ∃e′, f ′. e ro(C)−−−→ e′
del(C)−−−−→ f ′

ro(C)−−−→ f

∧ ¬∃e′′. e ro(C)−−−→ e′′
ro(C)−−−→ e′ ∧ C.act(e′′) = send}.

We next present a method for proving data type implementation
correctness in the sense of Def. 7. In §7 we lift this to stores with
multiple objects and take into account consistency axioms.

5. Proving Data Type Implementations Correct
The straightforward approach to proving correctness in the sense
of Def. 7 would require us to consider global store configurations
in executions C, including object states at all replicas and all mes-
sages in transit, making the reasoning non-modular and unintuitive.
To deal with this challenge, we focus on a single component of
a store configuration using replication-aware simulation relations
Rr andM, analogous to simulation (aka coupling) relations used
in data refinement [21]. TheRr relation associates the object state
at a replica r with an abstract execution that describes only those
events that led to this state;M does the same for a message. For
example, when provingDctr in Fig. 2(b) with respect toFctr in (3),
M associates a message carrying a vector v with executions in
which each replica s makes v(s) increments. As part of a proof
of Dτ , we require checking that the effect of its methods, such as
Dτ .do, can be simulated by appropriately transforming related ab-
stract executions while preserving the relations. We define these
transformations using abstract methods do], send] and receive] as
illustrated in Fig. 4(a, b). For example, if a replica r executesDτ .do
from a state σ related byRr to an abstract execution I (we explain
the use of I instead of A later), we need to find an I ′ related by
Rr to the resulting state σ′. We also need to check that the value
returned by Dτ .do on σ is equal to that returned by Fτ on I .

These conditions consider the behavior of an implementation
method on a single state and/or message and its effect on only
the relevant part of the abstract execution. However, by localizing
the reasoning in this way, we lose some global information that is
actually required to verify realistic implementations. In particular,
this occurs when discharging the obligation for receive in Fig. 4(b).
Taking a global view, σ and m there are meant to come from the
same configuration in a concrete execution C; correspondingly, I
and J are meant to be fragments of the same abstract execution
abs(C,V). In this context we may know certain agreement prop-
erties correlating I and J , e.g., that the union of their visibility re-
lations is itself a well-formed visibility relation and is thus acyclic.
Establishing them requires global reasoning about whole execu-
tions C and abs(C,V). Fortunately, we find that this can be done
knowing only the abstract methods, not the implementation Dτ .
Furthermore, these methods state basic facts about the messaging
behavior of implementations and are thus common to broad classes
of them, such as state-based or op-based. This allows us to estab-
lish agreement properties using global reasoning once for a given
class of implementations; at this stage we can also benefit from the
transport layer specification T and check that the abstract methods
construct visibility according to the given witness V . Then a par-
ticular implementation within the class can be verified by discharg-
ing local obligations, such as those in Fig. 4(a, b), while assuming
agreement properties. This yields easy and intuitive proofs.

To summarize, we deal with the challenge posed by a distributed
data type implementation by decomposing reasoning about it into

Figure 4. Diagrams illustrating replication-aware simulations

(a) (b) (c)

I
do] // I′OO

Rr��
σ
Dτ .do

//��
Rr

OO

σ′

(I, J)
receive] // I′OO

Rr��
(σ,m)

Dτ .receive
//

��
Rr×M
OO

σ′

D
step(C′,e,D)// D′OO

G��
C

e
//

��
G

OO

C′

global reasoning done once for a broad class of implementations
and local implementation-specific reasoning. We start by present-
ing the general form of obligations to be discharged for a single
implementation within a certain class (§5.1) and the particular form
they take for the class of state-based implementations (§5.2), to-
gether with some examples (§5.3). We then formulate the obliga-
tions to be discharged for a class of implementations (§5.4), which
in particular, establish the agreement properties assumed in the per-
implementation obligations. In [12, §B], we give the obligations for
op-based implementations, together with a proof of the counter in
Fig. 2(a). An impatient reader can move on to §6 after finishing
§5.3, and come back to §5.4 later.

Since Def. 7 considers only single-object executions, we fix
an object x of type τ and consider only concrete and abstract
executions over x, whose sets we denote by CEx[x] and AEx[x].

5.1 Replication-Aware Simulations
As is typical for simulation-based proofs, we need to use auxiliary
state to record information about the computation history. For this
reason, actually our simulation relations associate a state or a mes-
sage with an instrumented execution—a pair (A, info) ∈ IEx of
an abstract execution A ∈ AEx[x] and a function info : A.E →
AInfo, tagging events with auxiliary information from a set AInfo.
As we show below, AInfo can be chosen once for a class of data
type implementations: e.g., AInfo = Timestamp for state-based
ones (§5.2). We use I and J to range over instrumented executions
and shorten, e.g., I.A.E to I.E. For a partial function h we write
h(x)↓ for x ∈ dom(h), and adopt the convention that h(x) = y
implies h(x)↓.
DEFINITION 8. A replication-aware simulation between Dτ and
Fτ with respect to info and abstract methods do], send] and
receive] is a collection of relations {Rr,M | r ∈ ReplicaID}
satisfying the conditions in Fig. 5.

Here info and abstract methods are meant to be fixed for a given
class of implementations, such as state or op-based. To prove a par-
ticular implementation within this class, one needs to find simula-
tion relations satisfying the conditions in Fig. 5. For example, as we
show in §5.3, the following relation lets us prove the correctness of
the counter in Fig. 2(b) with respect to info and abstract methods
appropriate for state-based implementations:

〈s, v〉 [Rr] I ⇐⇒ (r = s) ∧ (v [M] I);
v [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
∀s. v(s) =

∣∣{e ∈ E | oper(e) = inc ∧ repl(e) = s}
∣∣. (6)

INIT in Fig. 5 associates the initial state at a replica r with the
execution having an empty set of events. DO, SEND and RECEIVE
formalize the obligations illustrated in Fig. 4(a, b). Note that do] is
parameterized by an event e (required to be fresh in instantiations)
and the information about the operation performed.

The abstract methods are partial and the obligations in Fig. 5
assume that their applications are defined. When instantiating
receive] for a given class of implementations, we let it be defined
only when its arguments satisfy the agreement property for this
class, which we establish separately (§5.4). While doing this, we
can also establish some execution invariants, holding of single ex-

Figure 5. Definition of a replication-aware simulation {Rr,M} between
Dτ and Fτ . All free variables in each condition are implicitly universally
quantified and have the following types: σ, σ′ ∈ Σ, m ∈ M , I, I′, J ∈
IEx, e ∈ Event, r ∈ ReplicaID, o ∈ Opτ , a ∈ Valτ , t ∈ Timestamp.

Rr ⊆ Σ× IEx, r ∈ ReplicaID; M⊆M × IEx

do] : IEx× Event× ReplicaID× Opτ × Valτ × Timestamp ⇀ IEx

send] : IEx ⇀ IEx× IEx; receive] : IEx× IEx ⇀ IEx

INIT: Dτ .~σ0(r) [Rr] I∅, where I∅.E = ∅

DO: (do](I, e, r, o, a, t) = I′ ∧ Dτ .do(o, σ, t) = (σ′, a) ∧ σ [Rr] I)
=⇒ (σ′ [Rr] I′ ∧ a = Fτ (ctxt(I′.A, e)))

SEND: (send](I) = (I′, J) ∧ Dτ .send(σ) = (σ′,m) ∧ σ [Rr] I)
=⇒ (σ′ [Rr] I′ ∧ m [M] J)

RECEIVE: (receive](I, J)↓ ∧ σ [Rr] I ∧ m [M] J)

=⇒ (Dτ .receive(σ,m) [Rr] receive](I, J))

ecutions supplied as parameters to do] and send]. We similarly as-
sume them in Fig. 5 via the definedness of these abstract methods.

5.2 Instantiation for State-Based Implementations
Fig. 6 defines the domain AInfo and abstract methods appropriate
for state-based implementations. In §5.4 we show that the existence
of a simulation of Def. 8 with respect to these parameters implies
Dτ sat[V state,T-Any] Fτ (Theorems 9 and 10). The do] method
adds a fresh event e with the given attributes to I; its timestamp
t is recorded in info. In the resulting execution I ′, the event e is
the last one by its replica, observes all events in I and occupies the
place in arbitration consistent with t. The send] method just returns
I , which formalizes the intuition that, in state-based implementa-
tions, send returns a message capturing all the information about
the object available at the replica. The receive] method takes the
component-wise union I t J of executions I related to the current
state and J related to the message, applied recursively to the com-
ponents of I.A and J.A. We also assume that I tJ recomputes the
arbitration relation in the resulting execution from the timestamps.
This is the reason for recording them in info: we would not be able
to construct receive](I, J).ar solely from I.ar and J.ar.

The agreement property agree(I, J) guarantees that I t J is
well-formed (e.g., its visibility relation is acyclic) and that, for each
replica, I describes a computation extending J or vice versa. The
latter follows from the observation we made when explaining the
state-based counter in §2: a message or a state in a state-based im-
plementation reflects a prefix of the sequence of events performed
at a given replica. The first conjunct of the execution invariant inv
requires arbitration to be consistent with event timestamps; the sec-
ond conjunct follows from the definition of V state (§4). When dis-
charging the obligations in Fig. 5 with respect to the parameters in
Fig. 6 for a particular implementation, we can rely on the agree-
ment property and the execution invariant.

5.3 Examples
We illustrate the use of the instantiation from §5.2 on the state-
based counter, LWW-register and OR-set. In [12, §A] we also give
proofs of two multi-value register implementations.

Counter: Dctr in Fig. 2(b) and Fctr in (3). Discharging the
obligations in Fig. 5 for the simulation (6) is easy. The key case
is RECEIVE, where the first conjunct of agree in Fig. 6 ensures that
min{v(s), v′(s)} increments by a replica s are taken into account
both in v(s) and in v′(s):

(〈r, v〉 [Rr] I) ∧ (v′ [M] J) =⇒ (∀s. min{v(s), v′(s)} =

|{e ∈ I.E ∩ J.E | I.oper(e) = inc ∧ I.repl(e) = s}|).

Figure 6. Instantiation for state-based data type implementations. In do]

we omit the straightforward definition of ar′ in terms of I.info and t.

AInfo = Timestamp

agree(I, J) ⇐⇒ ∀r. (({e ∈ I.E | I.repl(e) = r}, I.ro) is a prefix of
({e ∈ J.E | J.repl(e) = r}, J.ro) or vice versa) ∧ (I t J ∈ IEx)

inv(I) ⇐⇒ (∀e, f ∈ I.E. (e, f) ∈ I.ar ⇐⇒ I.info(e) < I.info(f))

∧ ((I.vis ∪ I.ro)+ ⊆ I.vis)

do](I, e, r, o, a, t) = I′, if inv(I) ∧ e 6∈ I.E ∧ I′ ∈ IEx

where I′ = ((I.E ∪ {e}, I.repl[e 7→ r], I.obj[e 7→ x], I.oper[e 7→ o],

I.rval[e 7→ a], I.ro ∪ {(f, e) | f ∈ I.E ∧ I.repl(f) = r},
I.vis ∪ {(f, e) | f ∈ I.E}, ar′), I.info[e 7→ t])

send](I) = (I, I), if inv(I)

receive](I, J) = I t J, if inv(I) ∧ inv(J) ∧ agree(I, J)

This allows establishing receive(〈r, v〉, v′) [Rr] (I t J), thus
formalizing the informal justification of correctness we gave in §2.

LWW-register: Dintreg in Fig. 2(c) and Fintreg in (4). We asso-
ciate a state or a message 〈a, t〉 with any execution that contains
a wr(a) event with the timestamp t maximal among all other wr
events (as per info). By inv in Fig. 6, this event is maximal in ar-
bitration, which implies that rd returns the correct value; the other
obligations are also discharged easily. Formally, ∀r.Rr =M and

〈a, t〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
(t = 0 ∧ a = 0 ∧ (¬∃e ∈ E. oper(e) = wr())) ∨
(t > 0 ∧ (∃e ∈ E. oper(e) = wr(a) ∧ info(e) = t)

∧ (∀f ∈ E. oper(f) = wr() =⇒ info(f) ≤ t)).
Optimized OR-set: Dorset in Fig. 7 andForset in (5). A problem
with implementing a replicated set is that we often cannot discard
the information about an element from a replica state after it has
been removed: if another replica unaware of the removal sends
us a snapshot of its state containing this element, the semantics
of the set may require our receive to keep the element out of the
set. As we prove in §6, for the OR-set keeping track of information
about removed elements cannot be fully avoided, which makes its
space-efficient implementation very challenging. Here we consider
a recently-proposed OR-set implementation [6] that, as we show in
§6, has an optimal space complexity. It improves on the original
implementation [32], whose complexity was suboptimal (we have
proved the correctness of the latter as well; see [12, §A]).

An additional challenge posed by the OR-set is that, according
to Forset, a remove operation may behave differently with respect
to different events adding the same element to the set, depending on
whether it sees them or not. This causes the implementation to treat
internally each add operation as generating a unique instance of
the element being added, further increasing the space required. To
combat this, the implementation concisely summarizes information
about instances. An instance is represented by a unique instance
identifier that is generated when a replica performs an add and
consists of the replica identifier and the number of adds (of any
elements) performed at the replica until then. In a state 〈r, V, w〉,
the vector w determines the identifiers of all instances that the
current replica r has ever observed: for any replica s, the replica
r has seen w(s) successive identifiers (s, 1), (s, 2), . . . , (s, w(s))
generated at s. To generate a new identifier in do(add(a′)), the
replica r increments w(r). The connection between the vector
w in a state or a message and add events es,k in corresponding
executions is formalized in lines 1-3 of the simulation relation, also
shown in Fig. 7. In receive we take the pointwise maximum of the
two vectors w and w′. Like for the counter, the first conjunct of
agree implies that this preserves the clauses in lines 1-3.

Figure 7. Optimized OR-set implementation [6] and its simulation

Σ = ReplicaID× ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

~σ0 = λr. 〈r, (λa, s. 0), (λs. 0)〉
M = ((Z× ReplicaID)→ N0)× (ReplicaID→ N0)

do(add(a′), 〈r, V, w〉, t) = (〈r, (λa, s. if a = a′ ∧ s = r

then w(r) + 1 else V (a, s)), w[r 7→ w(r) + 1]〉,⊥)

do(remove(a′), 〈r, V, w〉, t) =
(〈r, (λa, s. if a = a′ then 0 else V (a, s)), w〉,⊥)

do(rd, 〈r, V, w〉, t) = (〈r, V, w〉, {a | ∃s. V (a, s) > 0})
send(〈r, V, w〉) = (〈r, V, w〉, 〈V,w〉)
receive(〈r, V, w〉, 〈V ′, w′〉) =

〈r, (λa, s. if (V (a, s) = 0 ∧ w(s) ≥ V ′(a, s)) ∨
(V ′(a, s) = 0 ∧ w′(s) ≥ V (a, s))

then 0 else max{V (a, s), V ′(a, s)}),
(λs.max{w(s), w′(s)})〉

〈s, V, w〉 [Rr] I ⇐⇒ (r = s) ∧ (〈V,w〉 [M] I)

〈V,w〉 [M] ((E, repl, obj, oper, rval, ro, vis, ar), info) ⇐⇒
1: ∃ distinct es,k. ({es,k | s ∈ ReplicaID ∧ 1 ≤ k ≤ w(s)} =

2: {e ∈ E | oper(e) = add()}) ∧
3: (∀s, k, j. (repl(es,k) = s) ∧ (es,j

ro−→ es,k ⇐⇒ j < k)) ∧
4: (∀a, s. (V (a, s) ≤ w(s)) ∧ (V (a, s) 6= 0 =⇒
5: (oper(es,V (a,s)) = add(a)) ∧
6: (¬∃k. V (a, s) < k ≤ w(s) ∧ oper(es,k) = add(a)) ∧

7: (¬∃f ∈ E. oper(f) = remove(a) ∧ es,V (a,s)
vis−→ f))) ∧

8: (∀a, s, k. es,k ∈ E ∧ oper(es,k) = add(a) =⇒

9: (k ≤ V (a, s) ∨ ∃f ∈ E. oper(f) = remove(a) ∧ es,k
vis−→ f))

The component w in 〈r, V, w〉 records identifiers of both of
those instances that have been removed and those that are still in
the set (are active). The component V serves to distinguish the
latter. As it happens, we do not need to store all active instances
of an element a: for every replica s, it is enough to keep the last
active instance identifier generated by an add(a) at this replica. If
V (a, s) 6= 0, this identifier is (s, V (a, s)); if V (a, s) = 0, all
instances of a generated at s that the current replica knows about
are inactive. The meaning of V is formalized in the simulation:
each instance identifier given by V is covered by w (line 4) and, if
V (a, s) 6= 0, then the event es,V (a,s) performs add(a) (line 5), is
the last add(a) by replica s (line 6) and has not been observed by
a remove(a) (line 7). Finally, the add(a) events that are not seen
by a remove(a) in the execution are either the events es,V (a,s) or
those superseded by them (lines 8-9). This ensures that returning
all elements with an active instance in rd matches Forset.

When a replica r performs do(add(a′)), we update V (a′, r)
to correspond to the new instance identifier. Conversely, in
do(remove(a′)), we clear all entries in V (a′), thereby deactivat-
ing all instances of a′. However, after this their identifiers are still
recorded in w, and so we know that they have been previously re-
moved. This allows us to address the problem with implementing
receive we mentioned above: if we receive a message with an active
instance (s, V ′(a, s)) of an element a that is not in the set at our
replica (V (a, s) = 0), but previously existed (w(s) ≥ V ′(a, s)),
this means that the instance has been removed and should not be
active in the resulting state (the entry for (a, s) should be 0). We
also do the same check with the state and the message swapped.

As the above explanation shows, our simulation relations are
useful not only for proving correctness of data type implementa-
tions, but also for explaining their designs. Discharging obligations
in Fig. 5 requires some work for the OR-set; due to space con-
straints, we defer this to [12, §A].

Figure 8. Function step that mirrors the effect of an event e ∈ C′.E from
C′ ∈ CEx[x] in D ∈ DEx, defined when so is the abstract method used

step(C′, e,D) =
D[r 7→ do](D(r), e, r, C′.oper(e), C′.rval(e), C′.time(e))],

if C′.act(e) = do ∧ C′.repl(e) = r

step(C′, e,D) = D[r 7→ I, C′.msg(e) 7→ J],
if C′.act(e) = send ∧ C′.repl(e) = r ∧ C′.msg(e) 6∈ dom(D) ∧

send](D(r)) = (I, J)

step(C′, e,D) = D[r 7→ receive](D(r), D(C′.msg(e)))],
if C′.act(e) = receive ∧ C′.repl(e) = r

5.4 Soundness and Establishing Agreement Properties
We present conditions on AInfo and abstract methods ensuring the
soundness of replication-aware simulations over them and, in par-
ticular, establishing the agreement property and execution invari-
ants assumed via the definedness of abstract operations in Fig. 5.
THEOREM 9 (Soundness). Assume AInfo, do], send], receive], V
and T that satisfy the conditions in Fig. 9 for some G. If there exists
a replication-aware simulation betweenDτ and Fτ with respect to
these parameters, then Dτ sat[V, T] Fτ .
Conditions in Fig. 9 require global reasoning, but can be discharged
once for a class of data types. For example, they hold of the
instantiation for state-based implementations from §5.2, as well as
one for op-based implementations presented in [12, §B].
THEOREM 10. There exists G such that, for allDτ , the parameters
in Fig. 6 satisfy the conditions in Fig. 9 with respect to this G,
V = V state, T = T-Any.

The proofs of Theorems 9 and 10 are given in [12, §B]. To
explain the conditions in Fig. 9, here we consider the proof strategy
for Theorem 9. To establish Dτ sat[V, T] Fτ , for any C ∈
JDτ K∩T we need to show abs(C,V) |= [τ 7→ Fτ]. We prove this
by induction on the length of C. To use the localized conditions in
Fig. 5, we require a relation G associating C with a decomposed
execution—a partial function D : (ReplicaID ∪ MessageID) ⇀
IEx that gives fragments of abs(C,V) corresponding to replica
states and messages in the final configuration of C. We write DEx
for the set of all decomposed executions, so that G ⊆ CEx[x] ×
DEx. The existence of a decomposed execution D such that C [G]
D forms the core of our induction hypothesis. G-CTXT in Fig. 9
checks that the abstract methods construct visibility according to V:
it requires the context of any event e by a replica r to be the same
in D(r) and abs(C,V). Together with DO in Fig. 5, this ensures
abs(C,V) |= [τ 7→ Fτ].

We write C′ ∼ (C
e−→ (R, T)) when C′ is an extension of

C in the following sense: C′.E = C.E] {e}, the other compo-
nents of C are those of C′ restricted to C.E, e is last in C′.eo and
C′.post(e) = (R, T). For the induction step, assume C [G] D and
C′ ∼ (C

e−→ (R, T)); see Fig. 4(c). Then the decomposed execu-
tion D′ corresponding to C′ is given by step(C′, e,D), where the
function step in Fig. 8 mirrors the effect of the event e from C′ in
D using the abstract methods. G-STEP ensures that it preserves the
relation G. Crucially, G-STEP also requires us to establish the de-
finedness of step and thus the corresponding abstract method. This
justifies the agreement property and execution invariants encoded
by the definedness and allows us to use the conditions in Fig. 5 to
complete the induction. We also require G-INIT, which establishes
the base case, and G-VIS, which formulates a technical restriction
on V . Finally, the conditions in Fig. 9 allow us to use the transport
specification T by considering only executions C satisfying it.

6. Space Bounds and Implementation Optimality
Object states in replicated data type implementations include
not only the current client-observable content, but also metadata

Figure 9. Proof obligations for abstract methods. Free variables are implic-
itly universally quantified and have the following types: C,C′ ∈ CEx[x]∩
T , D ∈ DEx, r ∈ ReplicaID, e ∈ Event, (R, T) ∈ Config.

G-CTXT: (C [G] D ∧ e ∈ abs(C,V).E ∧ abs(C,V).repl(e) = r)

=⇒ ctxt(D(r).A, e) = ctxt(abs(C,V), e)

G-STEP: (C′ ∼ (C
e−→ (R, T)) ∧ (C [G] D))

=⇒ (step(C′, e,D)↓ ∧ C′ [G] step(C′, e,D))

G-INIT: (C.E = {e} ∧ C.pre(e) = (, []))

=⇒ (step(C, e,D∅)↓ ∧ C [G] step(C, e,D∅)),

where D∅ is such that dom(D∅) = ReplicaID ∧
∀r ∈ ReplicaID. D∅(r).E = ∅

G-VIS: (e ∈ abs(C,V).E ∧ (C is a prefix of C′ under C′.eo))
=⇒ ctxt(abs(C,V), e) = ctxt(abs(C′,V), e)

needed for conflict resolution or masking network failures. Space
taken by this metadata is a major factor determining their efficiency
and feasibility. As illustrated by the OR-set in §5.3, this is espe-
cially so for state-based implementations, i.e., those that satisfy
their data type specifications with respect to the visibility witness
V state and the transport layer specification T-Any. We now present
a general technique for proving lower bounds on this space over-
head, which we use to prove optimality of four state-based imple-
mentations (we leave other implementation classes for future work;
see §9). As in §5, we only consider executions over a fixed object
x of type τ .

6.1 Metadata Overhead
To measure space, we need to consider how data are represented.
An encoding of a set S is an injective function enc : S → Λ+,
where Λ is some suitably chosen fixed finite set of characters (left
unspecified). Sometimes, we clarify the domain being encoded
using a subscript: e.g., encN0(1). For s ∈ S, we let lenS(s) be
the length of encS(s). The length can vary: e.g., for an integer k,
lenN0(k) ∈ Θ(lg k). We use standard encodings (listed in [12, §C])
for return values encValτ of the data types τ we consider and assume
an arbitrary but fixed encoding of object states encDτ .Σ.

To distinguish metadata from the client-observable content of
the object, we assume that each data type has a special rd operation
that returns the latter, as is the case in the examples considered so
far. For a concrete executionC ∈ JDτ K over the object x and a read
event e ∈ (C.E)|rd, we define state(e) to be the state of the object
accessed at e: state(e) = R(x,C.repl(e)) for (R,) = C.pre(e).

We now define the metadata overhead as a ratio, by dividing the
size of the object state by the size of the observable state. We then
quantify the worst-case overhead by taking the maximum of this
ratio over all read operations in all executions with given numbers
of replicas n and update operations m. To define the latter, we
assume that each data type τ specifies a set Updτ ⊂ Opτ of update
operations; for all examples in this paper Updτ = Opτ \ {rd}.
DEFINITION 11. The maximum metadata overhead of an execu-
tion C ∈ JDτ K of an implementation Dτ is

mmo(Dτ , C) = max

{
lenDτ .Σ(state(e))

lenValτ (C.rval(e))
| e ∈ (C.E)|rd

}
.

The worst-case metadata overhead of an implementation Dτ
over all executions with n replicas and m updates (2 ≤ n ≤ m) is

wcmo(Dτ , n,m) = max{mmo(Dτ , C) | C ∈ JDτ K ∧
n = |{C.repl(e) | e ∈ C.E}| ∧
m = |{e ∈ C.E | C.oper(e) ∈ Updτ}|}.

We consider only executions with m ≥ n, since we are inter-
ested in the asymptotic overhead of executions where all replicas
are mutated (i.e., perform at least one update operation).

Figure 10. Summary of bounds on metadata overhead for stated-based
implementations, as functions of the number of replicas n and updates m

Type
Existing implementation Any implementation

algorithm ref. overhead overhead

ctr Fig. 2(b) [32] Θ̂(n) Ω̂(n)

orset
Fig. 7 [6] Θ̂(n lgm)

Ω̂(n lgm)
Fig. 15, [12, §A] [32] Θ̂(m lgm)

intreg Fig. 2(c) [32] Θ̂(lgm)† Ω̂(lgm)

mvr
Fig. 17, [12, §A] new‡ Θ̂(n lgm)

Ω̂(n lgm)
Fig. 16, [12, §A] [32] Θ̂(n2 lgm)

† Assuming timestamp encoding is O(lgm), satisfied by Lamport clocks.
‡ An optimization of [32] discovered during the optimality proof.

DEFINITION 12. Assume Dτ and a positive function f(n,m).
• f is an asymptotic upper bound (Dτ ∈ Ô(f(n,m))) if

supn,m→∞(wcmo(Dτ , n,m)/f(n,m)) <∞, i.e.,

∃K > 0. ∀m ≥ n ≥ 2.wcmo(Dτ , n,m) < Kf(n,m);

• f is an asymptotic lower bound (Dτ ∈ Ω̂(f(n,m))) if
limn,m→∞(wcmo(Dτ , n,m)/f(n,m)) 6= 0, i.e.,

∃K > 0. ∀m0 ≥ n0 ≥ 2. ∃n ≥ n0,m ≥ n0.

wcmo(Dτ , n,m) > Kf(n,m);

• f is an asymptotically tight bound (Dτ ∈ Θ̂(f(n,m))) if it is
both an upper and a lower asymptotic bound.
Fig. 10 summarizes our results; as described in §5, we have

proved all the implementations correct. Matching lower and upper
bounds indicate worst-case optimality of an implementation (note
that this is different from optimality in all cases). The derivation of
upper bounds relies on standard techniques and is deferred to [12,
§C]. We now proceed to the main challenge: how to derive lower
bounds that apply to any implementation of τ . We present proofs
for ctr and orset; intreg and mvr are covered in [12, §C].

6.2 Experiment Families
The goal is to show that for any correct implementation Dτ (i.e.,
such that Dτ sat[V state,T-Any] Fτ), the object state must store
some minimum amount of information. We achieve this by con-
structing an experiment family, which is a collection of executions
Cα, where α ∈ Q for some index set Q. Each experiment contains
a distinguished read event eα. The experiments are designed in
such a way that the object states state(eα) must be distinct, which
then implies a lower bound lg|Λ| |Q| on the size of their encoding.
To prove that they are distinct, we construct black-box tests that
execute the methods of Dτ on the states and show that the tests
must produce different results for each state(eα) provided Dτ is
correct. Formally, the tests induce a read-back function rb that sat-
isfies rb(state(eα)) = α. We encapsulate the core argument in the
following lemma.
DEFINITION 13. An experiment family for an implementation Dτ
is a tuple (Q,n,m,C, e, rb) where Q is a finite set, 2 ≤ n ≤ m,
and for each α ∈ Q, Cα ∈ JDτ K is an execution with n replicas
andm updates, eα ∈ (Cα.E)|rd and rb : Dτ .Σ→ Q is a function
satisfying rb(state(eα)) = α.
LEMMA 14. If (Q,n,m,C, e, rb) is an experiment family, then

wcmo(Dτ , n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα))).

PROOF. Since rb(state(eα)) = α, the states state(eα) are pair-
wise distinct and so are their encodings enc(state(eα)). Since there
are fewer than |Q| strings of length strictly less than blg|Λ| |Q|c, for

some α ∈ Q we have len(enc(state(eα))) ≥ blg|Λ| |Q|c. Then

wcmo(Dτ , n,m) ≥ mmo(Dτ ,Cα) ≥
len(state(eα))

len(Cα.rval(eα))
≥

blg|Λ| |Q|c
maxα′∈Q len(Cα′ .rval(eα′))

. ut

To apply this lemma to the best effect, we need to find experi-
ment families with |Q| as large as possible and len(Cα′ .rval(eα′))
as small as possible. Finding such families is challenging, as there
is no systematic way to derive them. We relied on intuitions about
“which situations force replicas to store a lot of information” when
searching for experiment families.

Driver programs. We define experiment families using driver
programs (e.g., see Fig. 11). These are written in imperative pseu-
docode and use traditional constructs like loops and conditionals.
As they execute, they construct concrete executions of the data type
library [τ 7→ Dτ] by means of the following instructions, each of
which triggers a uniquely-determined transition from Fig. 3:
dor o

t do operation o on x at replica r with timestamp t
u← dor o

t same, but assign the return value to u
sendr(mid) send a message for x with identifier mid at r
receiver(mid) receive the message mid at replica r

Programs explicitly supply timestamps for do and message
identifiers for send and receive. We require that they do this cor-
rectly, e.g., respect uniqueness of timestamps. When a driver pro-
gram terminates, it may produce a return value. For a program
P , an implementation Dτ , and a configuration (R, T), we let
exec(Dτ , (R, T), P) be the concrete execution of the data type li-
brary [τ 7→ Dτ] starting in (R, T) that results from running P ; we
define result(Dτ , (R, T), P) as the return value of P in this run.

6.3 Lower Bound for State-Based Counter (ctr)

THEOREM 15. IfDctr sat[V state,T-Any] Fctr, thenDctr is Ω̂(n).
We start by formulating a suitable experiment family.

LEMMA 16. If Dctr sat[V state,T-Any] Fctr, n ≥ 2 and m ≥ n is
a multiple of (n − 1), then tuple (Q,n,m,C, e, rb) as defined in
the left column of Fig. 11 is an experiment family.

The idea of the experiments is to force replica 1 to remember
one number for each of the other replicas in the system, which then
introduces an overhead proportional to n; cf. the implementation
in Fig. 2(b). We show one experiment in Fig. 12. All experiments
start with a common initialization phase, defined by init , where
each of the replicas 2..n performsm/(n−1) increments and sends
a message after each increment. All messages remain undelivered
until the second phase, defined by exp(α). There replica 1 receives
exactly one message from each replica r = 2..n, selected using
α(r). An experiment concludes with the read eα on the first replica.

The read-back works by performing separate tests for each of
the replicas r = 2..n, defined by test(r). For example, to deter-
mine which message was sent by replica 2 during the experiment
in Fig. 12, the program test(2): reads the counter value at replica 1,
getting 12; delivers the final message by replica 2 to it; and reads
the counter value at replica 1 again, getting 14. By observing the
difference, the program can determine the message sent during the
experiment: α(2) = 5− (14− 12) = 3.

PROOF OF LEMMA 16. The only nontrivial obligation is to prove
rb(state(eα)) = α. Let (Rα, Tα) = final(Cα). Then

α(r)
(i)
= result(Dctr, (R0, T0), (init ; exp(α); test(r)))

= result(Dctr, (Rα, Tα), test(r))
(ii)
= result(Dctr, (Rinit [(x, 1) 7→ Rα(x, 1)], Tinit), test(r))

= rb(Rα(x, 1))(r) = rb(state(eα))(r),

Figure 11. Experiment families (Q,n,m,C, e, rb) used in the proofs of
Theorem 15 (ctr) and Theorem 17 (orset)

ctr orset

Conditions on n,m (number of replicas/updates)
m ≥ n ≥ 2 m ≥ n ≥ 2

m mod (n− 1) = 0 (m− 1) mod (n− 1) = 0

Index set Q
Q = ([2..n]→ [1.. m

n−1
]) Q = ([2..n]→ [1..m−1

n−1
])

Family size |Q|
|Q| = (m

n−1
)n−1 |Q| = (m−1

n−1
)n−1

Driver programs
procedure init

for all r ∈ [2..n]
for all i ∈ [1.. m

n−1
]

dor inc rm+i

sendr(midr,i)

procedure init
for all r ∈ [2..n]

for all i ∈ [1..m−1
n−1

]

dor add(0) rm+i

sendr(midr,i)
procedure exp(α)

for all r ∈ [2..n]
receive1(midr,α(r))

do1 rd (n+2)m // read eα

procedure exp(α)
for all r ∈ [2..n]

receive1(midr,α(r))

do1 remove(0) (n+2)m

do1 rd (n+3)m // read eα
procedure test(r)

u← do1 rd (n+3)m

receive1(midr, m
n−1

)

u′ ← do1 rd (n+4)m

return m
n−1

− (u′ − u)

procedure test(r)

for all i ∈ [1..(m−1
n−1

)]

receive1(midr,i)

u← do1 rd (n+4)m+i

if 0 ∈ u
return i− 1

return m−1
n−1

Definition of executions Cα
Cα = exec(Dτ , (R0, T0), init ; exp(α))

where (R0, T0) = ([x 7→ Dτ .~σ0], ∅)
Definition of read-back function rb : Dτ .Σ→ Q

rb(σ) = λr : [2..n].result(Dτ , (Rinit [(x, 1) 7→ σ], Tinit), test(r))

where (Rinit , Tinit) = post(exec(Dτ , (R0, T0), init))

Figure 12. Example experiment (n = 4 and m = 15) and test
for ctr. Gray dashed lines represent the configuration (Rinit [(x, 1) 7→
Rα(x, 1)], Tinit) where the test driver program is applied.

inc
mid2,3: send

e: 12 rd

receive

1 2 3 4

inc
mid2,4: sendinc
mid2,5: send

receive
receive

u 12 rd
receive

u’14 rd

inc
mid2,2: send

inc
mid2,1: send

inc
mid3,3: sendinc
mid3,4: sendinc

inc
mid3,2: send

inc
mid3,1: send

inc
mid4,3: sendinc
mid4,4: sendinc
mid4,5: send

inc
mid4,2: send

inc
mid4,1: send

mid3,5: send

in
it

ex
p

(
)

te
st

(2
)

(2

)=
3

(3

)=
4

(4

)=
5

where:
(i) This is due to Dctr sat[V state,T-Any] Fctr, as we explained

informally above. Let

C′α = exec(Dctr, (R0, T0), (init ; exp(α); test(r))).

Then the operation context in abs(C′α,V state) of the first read
in test(r) contains

∑n
r=2 α(r) increments, while that of the

second read contains (m/(n− 1))− α(r) more increments.
(ii) We have Tα = Tinit because exp(α) does not send any mes-

sages. Also, Rα and Rinit [(x, 1) 7→ Rα(x, 1)] can differ only

in the states of the replicas 2..n. These cannot influence the run
of test(r), since it performs events on replica 1 only. ut

PROOF OF THEOREM 15. Given n0,m0, we pick n = n0

and some m ≥ n0 such that m is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given by
Lemma 16. Then for any α, Cα.rval(eα) is at most the total num-
ber of increments m in Cα. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K3,K independent from n0,m0 we get:

wcmo(Dctr, n,m)≥blg|Λ| |Q|c/(maxα∈Q len(Cα.rval(eα)))≥

K1

lg|Λ|(
m
n−1

)n−1

lenN0(m)
≥ K2

n lg(m/n)

lgm
≥ K3

n lg
√
m

lgm
≥ Kn. ut

6.4 Lower Bound for State-Based OR-Set (orset)
THEOREM 17. If Dorset sat[V state,T-Any] Forset, then Dorset is
Ω̂(n lgm).
LEMMA 18. If Dorset sat[V state,T-Any] Forset, n ≥ 2 and m ≥
n is such that (m − 1) is a multiple of (n − 1), then the tuple
(Q,n,m,C, e, rb) on the right in Fig. 11 is an experiment family.
The proof is the same as that of Lemma 16, except for obligation
(i). We therefore give only informal explanations.

The main idea of the experiments defined in the lemma is to
force replica 1 to remember element instances even after they have
been removed at that replica; cf. our explanation of the challenges
of implementing the OR-set from §5.3. The experiments follow a
similar pattern to those for ctr, but use different operations. In the
common init phase, each replica 2..n performs m−1

n−1
operations

adding a designated element 0, which are interleaved with sending
messages. In the experiment phase exp(α), one message from each
replica r = 2..n, selected by α(r), is delivered to replica 1. At the
end of execution, replica 1 removes 0 from the set and performs the
read eα. The return value of this read is always the empty set.

To perform the read-back of α(r) for r = 2..n, test(r) delivers
all messages by replica r to replica 1 in the order they were sent
and, after each such delivery, checks if replica 1 now reports the
element 0 as part of the set. From Dorset sat[V state,T-Any] Forset

and the definition (5) of Forset, we get that exactly the first α(r)
such deliveries will have no effect on the contents of the set:
the respective add operations have already been observed by the
remove operation that replica 1 performed in the experiment phase.
Thus, if 0 appears in the set right after delivering the i-th message
of replica r, then α(r) = i−1, and if 0 does not appear by the time
the loop is finished, then α(r) = (m− 1)/(n− 1).

PROOF OF THEOREM 17. Given n0,m0, we pick n = n0 and
some m ≥ n0 such that (m − 1) is a multiple of (n − 1) and
m ≥ n2. Take the experiment family (Q,n,m,C, e, rb) given
by Lemma 18. For any α ∈ Q, Cα.rval(eα) = ∅, which can be
encoded with a constant length. Using Lemma 14 and m ≥ n2, for
some constants K1,K2,K we get:

wcmo(Dorset, n,m) ≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))

≥ K1n lg(m/n) ≥ K2n lg
√
m ≥ Kn lgm. ut

7. Store Correctness and Consistency Axioms
Recall that we define a replicated store by a data type library
D and a transport layer specification T (§4), and we specify its
behavior by a function F from types τ ∈ dom(D) to data type
specifications and a set of consistency axioms (§3). The axioms
are just constraints over abstract executions, such as those shown
in Fig. 13; from now on we denote their sets by X. So far we
have concentrated on single data type specifications F(τ) and their
correspondence to implementations D(τ), as stated by Def. 7. In
this section we consider consistency axioms and formulate the

notion of correctness of the whole store (D, T) with respect to its
specification (F,X).

Our first goal is to lift the statement of correctness given by
Def. 7 to a store (D, T) with multiple objects of different data
types. To this end, we assume a function V mapping each type
τ ∈ dom(D) to its visibility witness V. This allows us to construct
the visibility relation for a concrete execution C ∈ JDK ∩ T by
applying V(τ) to its projection onto the events on every object of
type τ :

witness(V) = λC.
⋃
{V(type(x))(C|x) | x ∈ Obj},

where ·|x projects to events over x. Then the correctness of every
separate data type τ in the store with respect to F(τ) according to
Def. 7 automatically ensures that the behavior of the whole store is
consistent with F in the sense of Def. 5.
PROPOSITION 19. (∀τ ∈ dom(D). D(τ) sat[V(τ), T] F(τ)) =⇒

(∀C ∈ JDK ∩ T . abs(C,witness(V)) |= F).
This motivates the following definition of store correctness. Let us
write A |= X when the abstract execution A satisfies the axioms X.
DEFINITION 20. A store (D, T) is correct with respect to a speci-
fication (F,X), if for some V:

(i) ∀τ ∈ dom(D). (D(τ) sat[V(τ), T] F(τ)); and
(ii) ∀C ∈ JDK ∩ T . (abs(C,witness(V)) |= X).
We showed how to discharge (i) in §5. The validity of axioms

X required by (ii) most often depends on the transport layer spec-
ification T : e.g., to disallow the anomaly (2) from §1, T needs to
provide guarantees on how messages pertaining to different objects
are delivered. However, data type implementations can also enforce
axioms by putting enough information into messages: e.g., imple-
mentations correct with respect to V state from §4 ensure that vis
is transitive regardless of the behavior of the transport layer. For-
tunately, to establish (ii) in practice, we do not need to consider
the internals of data type implementations in D—just knowing the
visibility witnesses used in the statements of their correctness is
enough, as formulated in the following definition.
DEFINITION 21. A set W of visibility witnesses and a transport
layer specification T validate axioms X, if

∀C,V. (C ∈ T) ∧ ({V(τ) | τ ∈ dom(V)} ⊆W) =⇒
(abs(C,witness(V)) |= X).

Since visibility witnesses are common to wide classes of data types
(e.g., state- or op-based), our proofs of the validity of axioms will
not have to be redone if we add new data type implementations to
the store from a class already considered.

We next present axioms formalizing several variants of eventual
consistency used in replicated stores (Fig. 13 and 14) and W and
T that validate them. We then use this as a basis for discussing
connections with weak shared-memory models. Due to space con-
straints, we defer technical details and proofs to [12, §D].

Basic eventual consistency. EVENTUAL and THINAIR define a
weak form of eventual consistency. EVENTUAL ensures that an
event cannot be invisible to infinitely many other events on the
same object and thus implies (1) from §1: informally, if updates
stop, then reads at all replicas will eventually see all updates and
will return the same values (§3.2). However, EVENTUAL is stronger
than quiescent consistency: the latter does not provide any guaran-
tees at all for executions with infinitely many updates to the store,
whereas our specification implies that the return values are com-
puted according to F(τ) using increasingly up-to-date view of the
store state. We formalize these relationships in [12, §D].

THINAIR prohibits values from appearing “out-of-thin-
air” [28], like 42 in Fig. 14(a) (recall that registers are initialized
to 0). Cycles in ro ∪ vis that lead to out-of-thin-airs usually arise

Figure 13. A selection of consistency axioms over an execution
(E, repl, obj, oper, rval, ro, vis, ar)

Auxiliary relations
sameobj(e, f) ⇐⇒ obj(e) = obj(f)
Per-object causality (aka happens-before) order:

hbo = ((ro ∩ sameobj) ∪ vis)+

Causality (aka happens-before) order: hb = (ro ∪ vis)+

Axioms
EVENTUAL:
∀e ∈ E.¬(∃ infinitely many f ∈ E. sameobj(e, f) ∧ ¬(e

vis−→ f))

THINAIR: ro ∪ vis is acyclic
POCV (Per-Object Causal Visibility): hbo ⊆ vis

POCA (Per-Object Causal Arbitration): hbo ⊆ ar

COCV (Cross-Object Causal Visibility): (hb ∩ sameobj) ⊆ vis

COCA (Cross-Object Causal Arbitration): hb ∪ ar is acyclic

Figure 14. Anomalies allowed or disallowed by different axioms

(a) Disallowed by THINAIR:
x, y : intreg

i = x.rd j = y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)

ro rovis vis

(b) Disallowed by POCV:
x : orset

x.add(1) i = x.rd j = x.rd
x.add(2) x.add(3)

x.add(1)

x.add(2)

ro

x.rd: {2}

x.add(3)

x.rd: {3}
vis

vis ro

(c) Allowed by COCV and COCA:

x, y : intreg

x.wr(1) y.wr(1)

i = y.rd j = x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0

ro ro

from effects of speculative computations, which are done by some
older replicated stores [36].

THINAIR is validated by {V state,Vop} and T-Any, and EVEN-
TUAL by {V state,Vop} and the following condition on C ensuring
that every message is eventually delivered to all other replicas and
every operation is followed by a message generation:

(∀e ∈ C.E. ∀r, r′. C.act(e) = send ∧ C.repl(e) = r ∧ r 6= r′

=⇒ ∃f. C.repl(f) = r′ ∧ e del(C)−−−−→ f) ∧
(∀e∈C.E.C.act(e) = do =⇒ ∃f. act(f) = send ∧ e roo(C)−−−−→ f),

where roo(C) is ro(C) projected to events on the same object.

Causality guarantees. Many replicated stores achieve availabil-
ity and partition tolerance while providing stronger guarantees,
which we formalize by the other axioms in Fig. 13. We call an ex-
ecution per-object, respectively, cross-object causally consistent,
if it is eventually consistent (as per above) and satisfies the ax-
ioms POCV and POCA, respectively, COCV and COCA. POCV
guarantees that an operation sees all operations connected to it by
a causal chain of events on the same object; COCV also consid-
ers causal chains via different objects. Thus, POCV disallows the
execution in Fig. 14(b), and COCV the one in §3.1, correspond-
ing to (2) from §1. POCA and COCA similarly require arbitration
to be consistent with causality. The axioms highlight the principle
of formalizing stronger consistency models: including more edges
into vis and ar, so that clients have more up-to-date information.

Cross-object causal consistency is implemented by, e.g.,
COPS [27] and Gemini [23]. It is weaker than strong consistency,
as it allows reading stale data. For example, it allows the execution
in Fig. 14(c), where both reads fetch the initial value of the register,
despite writes to it by the other replica. It is easy to check that this

outcome cannot be produced by any interleaving of the events at
the two replicas, and is thus not strongly consistent.

An interesting feature of per-object causal consistency is that
state-based data types ensure most of it just by the definition of
V state: POCV is validated by {V state} and T-Any. If the witness
set is {V state,Vop}, then we need T to guarantee the following: in-
formally, if a send event e and another event f are connected by
a causal chain of events on the same object, then the message cre-
ated by e is delivered to C.repl(f) by the time f is done. POCA
is validated by {V state,Vop} and the transport layer specification
(roo(C) ∪ del(C))+|do ⊆ ar(C). This states that timestamps of
events on every object behave like a Lamport clock [22]. Condi-
tions for COCV and COCA are similar.

There also exist consistency levels in between basic eventual
consistency and per-object causal consistency, defined using so-
called session guarantees [35]. We cover them in [12, §D].

Comparison with shared-memory consistency models. Inter-
estingly, the specializations of the consistency levels defined by the
axioms in Fig. 13 to the type intreg of LWW-registers are very
close to those adopted by the memory model in the 2011 C and
C++ standards [5]. Thus, POCA and POCV define the semantics
of the fragment of C/C++ restricted to so-called relaxed operations;
there this semantics is defined using coherence axioms, which are
analogous to session guarantees [35]. COCV and COCA are close
to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-

shot timestamp objects [20] and counting protocols [15, 30]. These
works have considered either programming models or metrics sig-
nificantly different from ours. An exception is the work of Charron-
Bost [14], who proved that the size of vector clocks [29] is optimal
to represent the happens-before relation of a computation (similar
to the visibility relation in our model). Specifications of mvr and
orset rely on visibility; however, Charron-Bost’s result does not
directly translate into a lower bound on their implementation com-
plexity, since a specification may not require complete knowledge
about the relation and an implementation may represent it in an
arbitrary manner, not necessarily using a vector.

9. Conclusion and Future Work
We have presented a comprehensive theoretical toolkit to advance
the study of replicated eventually consistent stores, by proposing
methods for (1) specifying the semantics of replicated data types
and stores abstractly, (2) verifying implementations of replicated
data types, and (3) proving that such implementations have optimal
metadata overhead. By proving both correctness and optimality of
four nontrivial data type implementations, we have demonstrated
that our methods can indeed be productively applied to the kinds of
patterns used by practitioners and researchers in this area.

Although our work marks a big step forward, it is only a be-
ginning, and creates plenty of opportunities for future research.
We have already made the first steps in extending our specification
framework with more features, such as mixtures of consistency lev-
els [23] and transactions [34, 37]; see [11]. In the future we would
also like to study more data types, such as lists used for collab-
orative editing [32], and to investigate metadata bounds for data
type implementations other than state-based ones, including more
detailed overhead metrics capturing optimizations invisible to the
worst-case overhead analysis. Even though our execution model
for replicated stores follows the one used by replicated data type
designers [33], there are opportunities for bringing it closer to ac-
tual implementations. Thus, we would like to verify the algorithms
used by store implementations [27, 34, 37] that our semantics ab-
stracts from. This includes fail-over and session migration proto-
cols, which permit clients to interact with multiple physical repli-
cas, while being provided the illusion of a single virtual replica.

Finally, by bringing together prior work on shared-memory
models and data replication, we wish to promote an exchange of
ideas and results between the research communities of program-
ming languages and verification on one side and distributed sys-
tems on the other.

Acknowledgements. We thank Hagit Attiya, Anindya Banerjee,
Carlos Baquero, Lindsey Kuper and Marc Shapiro for comments
that helped improve the paper. Gotsman was supported by the EU
FET project ADVENT, and Yang by EPSRC.

References
[1] Riak key-value store. http://basho.com/products/riak-overview/.
[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12), 1996.
[3] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software

verification for weak memory via program transformation. In ESOP,
2013.

[4] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[6] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. An optimized conflict-free replicated set.
Technical Report 8083, INRIA, 2012.

[7] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. Brief announcement: Semantics of eventu-
ally consistent replicated sets. In DISC, 2012.

[8] A.-M. Bosneag and M. Brockmeyer. A formal model for eventual
consistency semantics. In IASTED PDCS, 2002.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
PLDI, 2007.

[10] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types
for eventual consistency. In ECOOP, 2012.

[11] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual con-
sistency. Technical Report MSR-TR-2013-39, Microsoft Research,
2013.

[12] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: specification, verification, optimality (extended version),
2013. http://research.microsoft.com/apps/pubs/?id=201602.

[13] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[14] B. Charron-Bost. Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39(1), 1991.

[15] J.-Y. Chen and G. Pandurangan. Optimal gossip-based aggregate
computation. In SPAA, 2010.

[16] N. Conway, R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. In SOCC, 2012.

[17] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman.
Eventually-serializable data services. In PODC, 1996.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2), 2002.

[20] M. Helmi, L. Higham, E. Pacheco, and P. Woelfel. The space complex-
ity of long-lived and one-shot timestamp implementations. In PODC,
2011.

[21] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf.,
1, 1972.

[22] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

[23] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke.
Making geo-replicated systems fast if possible, consistent when nec-
essary. In OSDI, 2012.

[24] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL, 2012.

[25] B. Liskov and S. Zilles. Programming with abstract data types. In
ACM Symposium on Very High Level Languages, 1974.

[26] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav. Dy-
namic synthesis for relaxed memory models. In PLDI, 2012.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In SOSP, 2011.

[28] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, 2005.

[29] F. Mattern. Virtual time and global states of distributed systems.
Parallel and Distributed Algorithms, 1989.

[30] S. Moran, G. Taubenfeld, and I. Yadin. Concurrent counting. In
PODC, 1992.

[31] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract
data types: Building blocks for collaborative applications. J. Parallel
Distrib. Comput., 71(3), 2011.

[32] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506, INRIA, 2011.

[33] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In SSS, 2011.

[34] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, 2011.

[35] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session guarantees for weakly consistent replicated data.
In PDIS, 1994.

[36] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In SOSP, 1995.

[37] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça. SwiftCloud: Fault-tolerant geo-
replication integrated all the way to the client machine. Technical
Report 8347, INRIA, 2013.

