
Understanding Eventual Consistency

March 25, 2013

Technical Report
MSR-TR-2013-39

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Important

This document is work in progress. Feel free to cite, but note that we will update the
contents without warning (the first page contains a timestamp), and that we are likely going
to publish the content in some future venue, at which point we will update this paragraph.

Understanding Eventual Consistency

Sebastian Burckhardt
Microsoft Research

Alexey Gotsman
IMDEA Software Institute

Hongseok Yang
University of Oxford

Abstract. Modern geo-replicated databases underlying large-scale In-
ternet services guarantee immediate availability and tolerate network
partitions at the expense of providing only weak forms of consistency,
commonly dubbed eventual consistency. At the moment there is a lot
of confusion about the semantics of eventual consistency, as different
systems implement it with different sets of features and in subtly dif-
ferent forms, stated either informally or using disparate and low-level
formalisms.

We address this problem by proposing a framework for formal and
declarative specification of the semantics of eventually consistent sys-
tems using axioms. Our framework is fully customisable: by varying
the set of axioms, we can rigorously define the semantics of systems
that combine any subset of typical guarantees or features, including
conflict resolution policies, session guarantees, causality guarantees,
multiple consistency levels and transactions. We prove that our speci-
fications are validated by an example abstract implementation, based
on algorithms used in real-world systems. These results demonstrate
that our framework provides system architects with a tool for explor-
ing the design space, and lays the foundation for formal reasoning
about eventually consistent systems.

1. Introduction
Modern large-scale Internet services rely on distributed
database systems that maintain multiple replicas of data. Often
such systems are geo-replicated, meaning that the replicas are
located in geographically distinct locations. Geo-replication re-
quires the systems to tolerate network partitions, yet end-user
applications also require them to provide immediate availabil-
ity. Ideally, we would like to achieve these two requirements
while also providing strong consistency, which roughly guar-
antees that the outcome of a set of concurrent requests to the
database is the same as what one can obtain by executing these
requests atomically in some sequence. Unfortunately, the fa-
mous CAP theorem [18] shows that this is impossible. For this
reason, modern geo-replicated systems provide weaker forms
of consistency, commonly dubbed eventual consistency [32].
Here the word ‘eventual’ refers to the guarantee that

if update requests stop arriving to the database,
then it will eventually reach a consistent state. (1)

Geo-replication is a hot research area, and new architectures
for eventually consistent systems appear every year [5, 14, 15,
17, 21, 24, 29, 30]. Unfortunately, whereas consistency models
of classical relational databases have been well-studied [9, 26],
those of geo-replicated systems are poorly understood. The
very term eventual consistency is a catch-all buzzword, and
different systems claiming to be eventually consistent actually
provide subtly different guarantees and features. Commonly
used ways of their specification are inadequate for several
reasons:

• Disparate and low-level formalisms. Specifications of
consistency models proposed for various systems are stated
informally or using disparate formalisms, often tied to sys-
tem implementations. This makes it hard to compare guar-
antees provided by different systems or apply ideas from one
of them in another.
• Weak guarantees. More declarative attempts to formalise

eventual consistency [29] have identified it with prop-
erty (1), which actually corresponds to a form of quiescent
consistency from distributed computing [19]. However, such
reading of eventual consistency does not allow making con-
clusions about the behaviour of the database in realistic sce-
narios, when updates never stop arriving.
• Conflict resolution policies. To satisfy the requirement of

availability, geo-replicated systems have to allow making
updates to the same object on different, potentially dis-
connected replicas. The systems then have to resolve con-
flicts, arising when replicas exchange the updates, accord-
ing to certain policies, often encapsulated in replicated data
types [27, 29]. The use of such policies complicates the
semantics provided by eventually consistent systems and
makes its formal specification challenging.
• Combinations of different consistency levels. Even in ap-

plications where basic eventual consistency is sufficient
most of the time, stronger consistency may be needed oc-
casionally. This has given rise to a wide variety of features
for strengthening consistency on demand. Thus, some sys-
tems now provide a mixture of eventual and strong consis-
tency [1, 13, 21], and researchers have argued for doing the
same with different forms of eventual consistency [5]. Other
systems have allowed strengthening consistency by imple-
menting transactions, usually not provided by geo-replicated
systems [14, 24, 30]. Understanding the semantics of such
features and their combinations is very difficult.

The absence of a uniform and widely applicable specifica-
tion formalism complicates the development and use of even-
tually consistent systems. Currently, there is no easy way for
developers of such systems to answer basic questions when
designing their programming interfaces: Are the requirements
of my application okay with a given form of eventual consis-
tency? Can I use a replicated data type implemented in a system
X in a different system Y? What is the semantics of combining
two given forms of eventual consistency?

We address this problem by proposing a formal and declara-
tive framework for specifying the semantics of eventually con-
sistent systems. In our proposal, the specification of a consis-
tency model consists of the following components:

• Replicated data type specifications define the basic data
types supported by the database and determine the conflict
resolution policies at the level of individual objects (§2).
We show how to specify abstractly a variety of data types,
including registers, counters, multi-value registers [17] and
observed-remove sets [28].
• Consistency specification extends the semantics of individ-

ual objects to that of the entire database (§3). It is defined
by a set of axioms, constraining requests submitted to the
database by its clients and relations on these requests that
abstract the way the database processes them. We show how
to specify consistency guarantees implemented by a range of
existing eventually consistent systems, including weak forms
of eventual consistency [2, 17], session guarantees [31] and
different kinds of causal consistency [14, 24, 29, 30].
• Interfaces for strengthening consistency can include con-

sistency annotations, which allow users to specify the con-
sistency level of a single operation (§4.1), fences, which af-
fect the consistency level of multiple operations (§4.2), and
transactions, which ensure that a group of operations exe-
cutes atomically (§5). We provide the analysis of the trade-
offs between some of these features (§4.3).

The main technical challenge we have to deal with is that
the above aspects of the system behaviour interact in subtle
ways, making it difficult to specify each of them separately.
We resolve this problem by representing the information about
the database execution that all of the specification components
rely on abstractly, in a way not tied to the database imple-
mentation (visibility and arbitration relations in §2). This inter-
face between different specification components yields a fully
customisable framework, which can define the semantics of
any combination of typical guarantees or features of eventu-
ally consistent systems. Our technique is a generalisation of
approaches used in the context of weak shared-memory consis-
tency models [3, 8], which have been extensively studied by the
programming languages and verification communities1. Over-
all, we make the following contributions:

• We systematise the knowledge about the existing forms
of eventual consistency and provide a single specification
framework that can express many guarantees and features of
existing systems [2, 13, 14, 17, 21, 24, 29–31]. While some
of the concepts that we specify have been formally defined
before individually, to our best knowledge, our framework is
the first to allow handling all of them uniformly and draw-
ing conclusions about their interactions. This provides the
developers of eventually consistent systems with a tool for
exploring the design space.
• We justify the correspondence of our specifications to real-

world systems by proving that the specifications are validated
by an example abstract implementation, based on algorithms
used in such systems.

1 Although our axioms may appear different on the surface, we discover that,
when specialised to the integer register data type, common forms of even-
tual consistency correspond almost exactly to fragments of the memory model
adopted in the 2011 C and C++ standards [8] (§3.4). This suggests that exist-
ing techniques for testing and verifying programs running on weak memory
models [6, 12, 23] may prove beneficial for eventually consistent systems.

• We prove that our specifications are more powerful than qui-
escent consistency, allowing us to make conclusions about
the database behaviour even in the presence of a continuous
stream of updates arriving from its clients(§3.4).
• We prove several results demonstrating how our framework

supports rigorous comparisons between various features and
guarantees (Theorem 6, Theorem 8, Proposition 9). In partic-
ular, we establish that fences are sufficient to recover sequen-
tial consistency and serializable transactions in an eventually
consistent system. An analogous result for modern shared-
memory models was proved only recently [7].

Due to the volume of our technical development, we have
relegated all proofs to §A. The definition of the abstract imple-
mentation and the proof of its correspondence with our specifi-
cations are deferred to §B; however, we present the algorithms
used in the implementation informally throughout the paper.

2. Replicated Data Types
In this paper we consider a replicated database storing ob-
jects Obj = {x, y, . . . } that have values from a set Val. For
simplicity, we assume that the set of objects in the database
is fixed. Every object x ∈ Obj has a type type(x) ∈ Type
that determines the set Optype(x) of operations that clients of
the database can perform on it. For example, the data types
can include a counter ctr and an integer register intreg with
operations for reading, incrementing or writing an integer k:
Opctr = {rd, inc} and Opintreg = {rd} ∪ {wr(k) | k ∈ Z}.

Even though the database may store the same object on mul-
tiple replicas, its interface is agnostic to this: a client just re-
quests an operation on an object, without specifying a replica
it is stored on. We now present a way of defining the semantics
of common replicated data types that matches this level of ab-
straction by hiding implementation aspects, such as the replica-
tion strategy, network topology or transport layer. This allows
us to understand how the same data type can be implemented
on different system architectures. Our discussion focuses on
the behaviour of individual operations on a single object.

In strongly consistent systems, the outcome of a set of con-
current operations on an object can be obtained by executing
them atomically in some sequence. In this setting, the seman-
tics of a data type τ can be completely specified by a function
Sτ : Op+τ → Val, which, given a nonempty sequence of op-
erations performed on an object, specifies the return value of
the last operation (we assume that ⊥ ∈ Val is used for opera-
tions that return no value). For a counter, read operations return
the number of preceding increment operations. For an integer
register, read operations return the value of the last preceding
write, or zero if there was no prior write. We can thus define
Sctr and Sintreg as follows: for any sequence of operations σ,

Sctr(σ rd) = (the number of inc operations in σ);
Sintreg(σ rd) = k, if wr(0)σ = σ1 wr(k)σ2 and

σ2 does not contain wr operations;
Sctr(σwr(k)) = Sintreg(σ inc) = ⊥.

In an eventually consistent system, data type semantics is
more complicated. In such a system, operations on the same

object can be issued concurrently at multiple replicas. To
achieve availability and partition tolerance, the system per-
forms operations at each replica immediately, and communi-
cates this to other replicas only after the fact. The following
diagram illustrates an execution of a system with integer regis-
ters by arranging labelled operations on several vertical time-
lines corresponding to replicas, with the delivery of updates to
other replicas shown as diagonal arrows:

A: wr(1)

B: wr(2)
C: wr(3)

D: rd()

E: rd()

F: rd()

Previous work has described a variety of implementations of
replicated data types that operate in this manner (see [28] for a
survey). Since replicas in these implementations cannot be im-
mediately aware of all operations, they may at times be incon-
sistent. The key challenge is to ensure that, once all updates are
delivered to all replicas, they resolve conflicts between them
uniformly and converge to the same state. Exactly how this is
achieved varies greatly; we identify the following strategies:

1. Make concurrent operations commutative. We require
that all operations be commutative, so that we can apply
them in any order using the standard sequential semantics.
This strategy works for counters, but not integer registers.

2. Order concurrent operations. The system totally orders all
concurrent operations in some disciplined way, e.g., using
timestamps. This allows applying the sequential semantics.

3. Flag conflicts. The system detects the presence of a conflict
and lets the user deal with it. For example, the multi-value
register used in Amazon’s Dynamo key-value store [17]
defines the return value of the read D in the above example
as the set {2, 3} of conflicting values.

4. Resolve conflicts semantically. The system detects a con-
flict and takes some data-type-dependent action to resolve
it [27, 29]. For example, a replicated data type of observed-
remove set [10] resolves conflicting operations trying to add
and remove the same element so that an add always wins.

We now present a single formalization that is sufficiently
general to represent all the four strategies and give an example
of a replicated data type for each of them. We specify a data
type τ by a function Fτ , generalizing Sτ . Just like with Sτ , we
want Fτ to determine the return value of an operation based on
prior operations performed on the object. However, there are
some important differences:

1. In the sequential setting, an operation takes into account
the effect of all operations preceding it in the sequence. In
the concurrent setting, the result depends on what subset of
operations is visible in a given context. For example, in the
diagram above, C is visible to D, but not to E.

2. In the concurrent setting, the result may also depend on
additional information used to order events. For example,
the relative order of the concurrent writes B and C in the
diagram above may be determined using a timestamp, thus
guaranteeing that reads D and F return the same result, even
though they receive B and C in different orders.

The main insight of our formalisation is that we can spec-
ify the information about such relationships between events
declaratively, without referring to implementation-level con-
cepts, such as replicas or messages. Namely, Fτ takes as a
parameter not a sequence, but an operation context, which en-
capsulates “all we need to know” about a system execution to
determine the return value of a given operation.

DEFINITION 1. An operation context for a data type τ is a
tuple C = (f, V, ar, vis), where

• f ∈ Opτ is the operation about to be performed.
• V is a set of operation events of the form (e, g), where e is a

unique event identifier and g ∈ Opτ . The set V includes all
operations that are visible to f and can thus affect its result.
• vis ⊆ V × V is a visibility relation, recording the relation-

ships between operations in V motivated by point 1 above.
• ar ⊆ V × V is a total and irreflexive arbitration relation,

recording the relationships motivated by point 2 above.

For a relation r we write (u, v) ∈ r and u r−→ v interchange-
ably. The vis relation describes the relative visibility of events
in V : u vis−→ v means that the effect of u is visible to v. As we
show below, it is needed to define certain data types. In imple-
mentation terms, an event u might be considered visible to an
event v if the update performed by u has been delivered to the
replica performing v before v is issued. The ar relation repre-
sents the ordering information provided by the system; u ar−→ v
means that u is ordered before v. In an implementation it can
be constructed using timestamps or tie-breaking mechanisms.

DEFINITION 2. A replicated data type specification for a type
τ is a function Fτ that, given an operation context C for τ ,
specifies a return valueFτ (C) ∈ Val, and that does not depend
on the operation identifiers in C.

Note that Fτ (f, ∅, ∅, ∅) returns the value resulting from per-
forming f on the default state for the data type (e.g., zero
for an integer register). Also, Fτ is deterministic: all the non-
determinism present in the distributed system is resolved by
the operation context. We emphasise that our specifications do
not prescribe a particular way in which the visibility and arbi-
tration relations are actually represented in an implementation:
the above references to implementations are only illustrative.
Thus, the specifications can be viewed as generalising the con-
cept of an abstract data type [22] to the replicated case. We
now give several examples of data type specifications, corre-
sponding to the four implementation strategies mentioned ear-
lier.

Example 1: Counter (ctr) is defined by

Fctr(inc, V, vis, ar) = ⊥;
Fctr(rd, V, vis, ar) = (the number of inc operations in V).

Note that the result does not depend on ar or vis, but only on
V . Hence, this example is representative of strategy 1.

Example 2: Integer register (intreg) is defined by
Fintreg(f, V, vis, ar) = Sintreg(V

arf), where V ar denotes the
sequence obtained by ordering the operations in the set V of
events visible to f according to the arbitration relation ar. This
represents strategy 2: the return value is determined by estab-
lishing a total order of the visible operations and applying the
regular sequential semantics. Note that the relative visibility
between events in V , given by vis, is not used. We can simi-
larly obtain a concurrent semanticsFτ of any data type τ based
on its sequential semantics Sτ . For example, Fctr as defined in
Example 1 is equivalent to what we obtain using this generic
construction. The next two examples go beyond this.

Example 3: Multi-value register (mvr). A multi-value reg-
ister has the same operations as the integer register, but its reads
return a set of values, rather than a single one:

Fmvr(rd, V, vis, ar) = {k | ∃e. (e,wr(k)) is maximal in V },

where an element v ∈ V is maximal in V if there exists no
v′ ∈ V such that v vis−→ v′. Here a read returns all versions of
the object that are not superseded by later writes, as determined
by vis; the ar relation is not used. A multi-value register thus
detects conflicting writes, as in strategy 3. For example, a rd
operation would return {2, 3} in the following context:

wr(0)

vis��
wr(1)

vis

((
vis

vv
wr(2) wr(3)

Example 4: Observed-remove set (orset). Assume we want
to implement a set of integers. Consider the operation context

(rd, {(A, add(42)), (B, remove(42))}, vis, ar).

If we use the generic construction from Example 2, the result
of rd will depend on the arbitration relation: ∅ if A

ar−→ B,
and {42} otherwise. In some cases, the application semantics
may require a different outcome, e.g., that an add operation
always win against concurrent remove operations. Bieniusa et
al. [10] propose the observed-remove set orset that achieves
this semantics by mandating that remove operations cancel out
only the add operations that are visible to them:

Forset(rd, V, vis, ar) = {k | ∃ live v = (e, add(k)) ∈ V },

where v = (e, add(k)) ∈ V is live if there does not exist v′ =
(e′, remove(k)) ∈ V such that v vis−→ v′. In the above operation
context rd will return ∅ if A vis−→ B, and {42} otherwise.

Although replicated data types can simplify the program-
ming of eventually consistent systems, they are not by them-
selves sufficient for general systems that contain more than one
object. For example, consider a client program that updates a
set object friends and then a list object wall:

friends.remove(boss); wall.append(photo);

In this case, we may want the database to ensure that the order
of the updates is preserved. In terms of our framework, such
guarantees depend on properties of vis and ar relations that
are not defined by data type specifications. In the following
sections we provide means of their specification.

3. Axiomatic Specification Framework
We extend our framework for specifying replicated data types
(§2) to defining the semantics of the entire database. Our spec-
ifications can capture a range of forms of eventual consistency:

• Basic eventual consistency, which only guarantees that the
effect of every operation will eventually become visible to all
participants (§3.2).
• Ordering guarantees, which ensure that the system pre-

serves the order in which operations are performed (§3.3) .
• Interfaces for on-demand consistency strengthening,

which include consistency annotations and fences (§4), as
well as transactions (§5).

We start by formalising client-database interactions (§3.1). We
describe a run of the database by a history, which records all
(possibly infinitely many) such interactions. We then specify
its consistency model by a number of axioms (see Figure 1),
which define the set of all histories it can produce.

3.1 Client Interaction Model
Clients often wish to perform multiple operations within some
context, and to capture this, we introduce the notion of a ses-
sion, identified by session identifiers SId = {1, 2, 3, . . . }. Ses-
sions are different from transactions (introduced in §5): rather
than providing advanced guarantees, such as atomicity or isola-
tion, they are a means of tracking client identity across multiple
requests. The purpose of sessions is to satisfy basic ordering
expectations [31], such as whether a read following a write is
guaranteed to see the effects of that write. In some systems, this
is ensured by permanently binding a session to a single replica.

Each client operation is described in a history by an action,
which enriches operation events (Definition 1) with session
identifiers and return values.

DEFINITION 3. An action is a tuple (e, s, [x.f : k]), where e
is a unique action identifier, s ∈ SId is the identifier of the
session the action takes place in, f ∈ Optype(x) is an operation
performed on an object x ∈ Obj, and k ∈ Val is its return
value. We denote the set of actions by Act.

We omit return values equal to ⊥. For a = (e, s, [x.f : k]),
we let ses(a) = s, obj(a) = x, op(a) = f , rval(a) = k,
type(a) = type(x) and event(a) = (e, f). We also use the
event projection on sets of actions and relations over them.

A history consists of a set of actions, together with a session
order, relating actions within a session according to the order
in which they were issued by the client.

DEFINITION 4. A history is a pair (A, so), where A ⊆ Act, A
has no duplicate action identifiers, so ⊆ A×A, and so satisfies
the axiom SOWF in Figure 1.

Histories abstract from internal database execution com-
pletely. However, in order to define concepts arising in differ-

ent forms of eventual consistency, we need to know more about
how operations relate to each other. To this end, we enrich his-
tories with additional information about the internal database
execution. As in §2, we record this information in an abstract
form using the visibility and arbitration relations.

DEFINITION 5. An execution is a tuple X = (A, so, vis, ar),
where (A, so) is a history, and vis, ar ⊆ A × A are such that
the axioms VISWF and ARWF from Figure 1 hold.

The vis and ar relations have the same intuitive meaning as
those in §2. The difference is that, previously, we only consid-
ered these relations on a set of events needed to determine the
outcome of a particular operation. In contrast, here the relations
are defined on the set of all operations on all objects accessed
in a run of a database. Given X = (A, so, vis, ar) and a ∈ A,
we can easily extract the operation context of a by selecting all
actions visible to it according to vis:

ctxt(a) = (op(a), event(B), event(vis|B), event(ar|B)),

where B = vis−1(a). ARWF implies that the arbitration rela-
tion is sufficient to fully order all operations in vis−1(a), and,
thus, ctxt(a) is indeed an operation context.

Figure 2(a) shows an example of an execution, correspond-
ing to the scenario of posting a photo from §2, but expressed
using integer registers. In diagrams throughout this paper, we
omit action and session identifiers. In the execution, a session
first writes to a register x, setting the access permission to all.
Some time later, it changes the permission to noboss and then
writes to a register y to post a photo. The arbitration relation
ar states that any session that sees both writes to x should as-
sume that noboss overwrites all. However, as shown by the
vis edges, in this example another session sees the photo, but
not the updated access permission. In an implementation this
anomaly can happen when the replica that session is connected
to receives the updates corresponding to the writes of noboss
and photo out of the order they were issued in [2, 17].

Our notion of an execution is similar to structures used for
defining memory consistency models of hardware [3] and pro-
gramming languages [8]. In particular, the visibility relation is
similar to the “reads-from” relation used in such models. Un-
like “reads-from”, our visibility relation captures all delivered
updates, so as to handle replicated data types.

3.2 Axiomatic System Specifications
The notion of a history corresponds straightforwardly to runs
of a real-world database. Thus, we consider a system specifica-
tion to be simply a set of histories. We can check if a particular
database correctly implements the specification by determining
whether, for all its runs, the corresponding history is in the set.
In our specification framework, we obtain a system specifica-
tion by choosing a set of axioms A from Figure 1 that constrain
executions. The corresponding specification includes all histo-
ries that can be extended to an execution satisfying A:

(A, so) ∈ JAK ⇐⇒ ∃vis, ar. (A, so, vis, ar) satisfies A.

The fewer axioms are chosen, the weaker the consistency
model is. The weakest sensible specification in our framework

is JSOWF,VISWF,ARWF,RVAL, EVENTUAL, THINAIRK.
We call it basic eventual consistency, and executions sat-
isfying its axioms, eventually consistent. The specification
includes no ordering guarantees, but satisfies basic expecta-
tions, and is implemented, e.g., by Dynamo [17]. Its axioms
have the following purpose:

• The well-formedness axioms SOWF, VISWF, ARWF state
basic properties of the relations that we are working with.
• RVAL ensures that data types behave according to their spec-

ifications, i.e., the return value of every action a is com-
puted on its operation context using the specificationFtype(a)

for the type of the object accessed in a (§2). For example,
in the execution in Figure 2(a) the operation context of the
read from x includes only the write of all, so by RVAL and
Fintreg, the read returns all. If the execution contained a vis
edge from the write of noboss to the read from x, then the
context would include both writes to x, with noboss taking
precedence over all according to ar. By RVAL and Fintreg,
the read would then have to return noboss.
• EVENTUAL ensures that an action cannot be invisible to

infinitely many other actions on the same object and thus
formalises (1) from §1.
• THINAIR rules out counterintuitive behaviours that are not

produced by most real-world eventually consistent systems.
For example, the execution in Figure 2(b) is allowed by RVAL
and EVENTUAL, but not by THINAIR. Here the value 42
appears “out-of-thin-air”, due to a cycle in so∪vis (recall that
registers are initialised to 0). Such cycles usually arise from
effects of speculative computations, which are done by some
older eventually consistent systems [32], but not by modern
ones. In this paper, we restrict ourselves to forms of eventual
consistency implemented by the latter [29].

Our framework allows checking easily whether a given out-
come is allowed by the consistency model without considering
the system implementation: one just needs to ensure that all the
axioms are satisfied. For example, the execution in Figure 2(a)
is allowed by the axioms of basic eventual consistency.

Like in §2, our formalisation does not prescribe a particular
way of representing visibility and arbitration in an implementa-
tion. Hence, these relations form an abstract interface between
replicated data types used for conflict resolution and the under-
lying consistency model of the database. This makes our speci-
fication framework fully customisable and allows exploring the
design space of consistency models easily: each of these two
aspects can be varied separately, and the framework will de-
fine the semantics of any possible combination. We achieve this
level of modularity even though, in real-world systems, imple-
mentations of the two aspects are often tightly interlinked [28].

Abstract implementation. We justify the soundness of our
axioms by proving that they are validated by an abstract
implementation based on algorithms used in existing sys-
tems [2, 14, 17, 24, 30, 31]: the set of histories it produces
is included into the corresponding system specification (The-
orem 11, §B). Our implementation of basic eventual consis-
tency corresponds straightforwardly to the operational expla-
nations we have given so far. The database consists of an arbi-

Figure 1. Axioms of eventual consistency. Here r|B denotes the pro-
jection of a relation r to B: r|B = (r ∩ (B ×B)).

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWF: ∀a, b. a vis−→ b =⇒ obj(a) = obj(b)

ARWF: ∀a, b. a ar−→ b =⇒ obj(a) = obj(b),
ar is transitive and irreflexive, and
ar|vis−1(a) is a total order for all a ∈ A

DATA TYPE AXIOM

RVAL: ∀a ∈ A. rval(a) = Ftype(a)(ctxt(a))

BASIC EVENTUAL CONSISTENCY AXIOMS

EVENTUAL:
∀a ∈ A.¬(∃ infinitely many b ∈ A. sameobj(a, b) ∧ ¬(a vis−→ b))

THINAIR: so ∪ vis is acyclic

AUXILIARY RELATIONS

Per-object session order: soo = (so ∩ sameobj)

Per-object causality order: hbo = (soo ∪ vis)+

Causality order: hb = (so ∪ vis)+

SESSION GUARANTEES

RYW (Read Your Writes). An operation sees all previous operations
by the same session: soo ⊆ vis

MR (Monotonic Reads). An operation sees all operations previously
seen by the same session: (vis; soo) ⊆ vis

WFRV (Writes Follow Reads in Visibility). Operations are made
visible at other replicas after operations on the same object that were
previously seen by the same session: (vis; soo∗; vis) ⊆ vis

WFRA (Writes Follow Reads in Arbitration). Arbitration orders an
operation after other operations previously seen by the same session:
(vis; soo∗) ⊆ ar

MWV (Monotonic Writes in Visibility). Operations are made visible
at other replicas after all previous operations on the same object by
the same session: (soo; vis) ⊆ vis

MWA (Monotonic Writes in Arbitration). Arbitration orders an oper-
ation after all previous operations by the same session: soo ⊆ ar

CAUSALITY AXIOMS

POCV (Per-Object Causal Visibility): hbo ⊆ vis

POCA (Per-Object Causal Arbitration): hbo ⊆ ar

COCV (Cross-Object Causal Visibility): (hb ∩ sameobj) ⊆ vis

COCA (Cross-Object Causal Arbitration): hb ∪ ar is acyclic

trary number of replicas, each storing a log of actions. Every
client session is connected to some replica, although a session
can switch to another one at any time. When a session issues
an operation, its return value is computed immediately on the
basis of the state of the replica the session is connected to, and
the corresponding action is appended to its log. From time to
time, each replica broadcasts updates to the others, subject to
a fairness constraint that every update will eventually get de-
livered to every replica (needed to validate EVENTUAL). Then
a

vis−→ b if a has been delivered to the replica performing b be-
fore b is issued. Thus, so and vis edges go forwards in time, so
that THINAIR is validated. The arbitration relation is computed
using Lamport timestamps [20].

Figure 2. Anomalies allowed or disallowed by different axioms from
Figure 1. In some cases, we show the code of client sessions that could
produce the execution (where i and j are client-local variables).
(a) Disallowed by COCV:

x, y: intreg
x.wr(all) i=y.rd

x.wr(noboss) j=x.rd

y.wr(photo)

x.wr(all)

x.wr(noboss)

y.wr(photo)

so

so

y.rd: photo

x.rd: all

soar

vis

vis

(b) Disallowed by THINAIR:
x, y: intreg

i=x.rd j=y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)
so sovis vis

(c) Disallowed by RYW: (d) Disallowed by MWV:

x.wr(1)

x.rd: 0
so

x: intreg y.add(1)

y.add(2)

so

y.rd: {2}vis

y: orset

(e) Disallowed by POCV:
x: orset

x.add(1) i=x.rd j=x.rd

x.add(2) x.add(3)

x.add(1)

x.add(2)

so

x.rd: {2}

x.add(3)

so x.rd: {3}
vis

vis

(f) Allowed by all axioms in Figure 1:

x, y: intreg
x.wr(1) y.wr(1)

i=y.rd j=x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0
so so

3.3 Classification of Ordering Guarantees
Basic eventual consistency provides very few guarantees to
clients, allowing the anomaly in Figure 2(a) and, in fact,
even more straightforward anomalies shown in Figures 2(c)
and 2(d). In Figure 2(c), a session does not see a write it made
(as signified by the absence of a vis edge) and thus reads the
initial value of the register x. In an implementation this can
happen when the read connects to another replica, which has
not yet received the update corresponding to the write opera-
tion. In Figure 2(d), a session inserts 1 and then 2 into a set y;
another session sees the first insertion, but not the second. In
an implementation this can happen when the two insertions are
propagated to other replicas out of order.

Many systems achieve availability and partition tolerance
while providing stronger guarantees on the ordering of opera-
tions. In this paper we formalise the following ones:

Form of eventual consistency Implementations
Basic eventual consistency [2, 17]
Session guarantees [31]
Per-object causal consistency [29]
(Cross-object) causal consistency [14, 21, 24, 30]

The differences can be subtle; it is one of our contributions
to provide a means for precise comparisons. The cornerstones
of our discussion are the axioms shown in Figure 1 and the
anomalies shown in Figure 2.

Session guarantees. Let r∗ denote the reflexive and transitive
closure of a relation r, r1; r2 the composition of binary relations
r1 and r2, and let sameobj(a, b) ⇔ obj(a) = obj(b). For

an execution X = (A, so, vis, ar), we define the per-object
session order as follows: soo = (so ∩ sameobj).

The axioms RYW–MWA in Figure 1 formalise session
guarantees, ensuring that operations within a session observe
a view of the database that is consistent with their own actions,
even if, in an implementation, they can access various, poten-
tially inconsistent replicas. The guarantees are due to Terry et
al. [31], who defined them in a low-level operational frame-
work. Here we recast them into axioms appropriate for arbi-
trary replicated data types. However, we have preserved the
original terminology, and thus refer to reads and writes in the
names of the axioms. As an illustration, RYW and MWV
disallow the executions in Figures 2(c) and 2(d), respectively.
Note also that WFRV implies that vis is transitive, and WFRA
implies that vis ⊆ ar. In our abstract implementation, we im-
plement session guarantees as proposed by Terry et al. [31]. For
example, to ensure RYW, each session maintains the “write
set” of actions it has issued; the session can then only connect
to replicas that contain all of its write set.

The axioms for session guarantees highlight the general
principle of formalising stronger consistency models: mandat-
ing that certain edges be included into vis and ar, so that clients
have more up-to-date information. We now use the same ap-
proach to formalise other models.

Per-object causal consistency. Let hbo = (soo ∪ vis)+ be
the per-object causality order, which orders every action after
those that can affect it via a chain of computation involving
the same object; in other contexts, the name happens-before is
used instead of causality. For example, in Figure 2(e), add(1)
in the first session and rd in the third are related by hbo.

An execution is per-object causally consistent, if it is even-
tually consistent and satisfies the axioms POCV and POCA in
Figure 1. POCV guarantees that an operation sees all opera-
tions on the same object that causally affect it, and POCA cor-
respondingly restricts the arbitration relation. POCV disallows
the executions in Figures 2(c), 2(d) and 2(e). In fact, using our
formalisation we can show that per-object causal consistency
is equivalent to all of Terry et al.’s session guarantees.

THEOREM 6. POCV is equivalent to the conjunction of
RYW, MR, WFRV and MWV. POCA is equivalent to the
conjunction of WFRA and MWA.

(Cross-object) causal consistency. We define a consistency
model that preserves a stronger notion of causality than per-
object one, and is implemented, e.g., by COPS [24], Wal-
ter [30] and Concurrent Revisions [14]. Let the causality or-
der hb = (so ∪ vis)+ be the transitive closure of the session
and visibility relations. Unlike hbo, this relation considers any
chain of computation, possibly involving multiple objects, to
be a causal dependency. For example, in Figure 2(a) the write
of noboss to x in the first session hb-precedes the read from x

in the second; these actions are not related by hbo.
An execution is (cross-object) causally consistent, if it

is eventually consistent and satisfies the axioms COCV and
COCA in Figure 1. These axioms are similar to those for per-
object causal consistency, but without restrictions to causal de-
pendencies via the same object (the use of acyclicity in COCA
is explained below). For example, the execution in Figure 2(a),

is allowed by per-object causal consistency, but not by cross-
object causal consistency. Causal consistency is weaker than
strong consistency, as it allows reading stale data—it is this fea-
ture that allows implementing it while guaranteeing availability
and partition tolerance. For example, it allows the execution in
Figure 2(f), where both reads fetch the initial value of the reg-
ister, despite writes to it by the other session. It is easy to check
that this outcome cannot be produced by any interleaving of the
sessions’ actions, and is thus not strongly consistent.

Abstract implementation of causal consistency. Our ab-
stract implementation of per-object and cross-object causal
consistency is based on the algorithm used in the COPS sys-
tem [24]. When propagating actions between replicas, the al-
gorithm tags every one of them with a list of other actions it
causally depends on: those preceding it in hbo for per-object
causal consistency, and in hb for cross-object one. A replica
receiving an update performed by an action must wait until it
receives all of the action’s dependencies before making it avail-
able to clients. For the case of cross-object causal consistency,
in Figure 2(a) the write of the photo by the first session will
depend on the write of noboss. Hence, when the replica the
second session is connected to receives the photo, it will have
to wait until it receives the write of noboss before making the
photo available to the client. The arbitration relation is com-
puted using a system-wide Lamport clock [20]. This guaran-
tees the acyclicity of hb∪ ar and is the reason for not formulat-
ing COCA in the same way as POCA, i.e., hb∩sameobj ⊆ ar.

3.4 Comparison to Other Definitions
Quiescent consistency. We now show that our specifications
of eventual consistency describe the semantics of the system
more precisely than quiescent consistency, as stated by (1). To
formalise the latter, assume that all operations are divided into
queries (Query) and updates (Update), and that return values
computed by Fτ are insensitive to queries: Fτ (f, V, vis, ar) =
Fτ (f, Vu, visu, aru) where Vu, visu and aru are the restrictions
of V , vis and ar to update operations. The following straightfor-
ward proposition shows that even the basic notion of eventual
consistency in Figure 1 implies quiescent consistency.

PROPOSITION 7. Consider an eventually consistent execution
(A, so, vis, ar) with finitely many update actions. Then there are
only finitely many query actions a ∈ A that do not see all
updates on the object they are accessing:

¬(∀b ∈ A. op(b) ∈ Update ∧ sameobj(a, b) =⇒ b
vis−→ a).

Furthermore, all other query actions return the same value.

The converse is not true. Consider a program with a counter
object x (initially zero), where the first session adds 1 to x, and
the second continuously adds 2 to x until it is odd:

x.add(1) do { x.add(2) } while(x.read() % 2 == 0)

Under basic eventual consistency as defined above, termination
is guaranteed: the axiom EVENTUAL guarantees that all but
finitely many reads of x must see the x.add(1) operation, and
thus the loop cannot repeat forever. However, under quiescent
consistency termination is not guaranteed: since x is updated
continuously, the system is not quiescent, and all bets are off.

Shared-memory consistency models. Interestingly, the spe-
cialisations of the consistency levels defined by the axioms in
Figure 1 to the type intreg from §2 correspond almost exactly
to those adopted by the memory model in the 2011 C and C++
standards [8]. Thus, POCA and POCV define the semantics
of so-called relaxed operations in C/C++, which provide the
weakest consistency. COCV and COCA are close to the se-
mantics of release-acquire operations, providing consistency
in between relaxed and strong. However, C/C++ does not vali-
date THINAIR, since it makes the effects of processor or com-
piler speculation visible to the programmer. We formalise the
correspondence to the C/C++ memory model in §C.

The similarity to C/C++ might come as a surprise. It stems
from the fact that modern multiprocessors have a complicated
microarchitecture, including a hierarchy of caches with coher-
ence maintained via message passing—under the hood, a pro-
cessor is really a distributed system. Optimisations that proces-
sors perform produce the same effects as delays and reorder-
ings of messages occurring in a distributed system.

4. Combining Different Consistency Levels
Even though a given flavour of eventual consistency may be
sufficient for many applications, stronger consistency levels are
needed from time to time. For example, consider a shopping
cart in an e-commerce application: while a user is shopping,
it is acceptable for the information about the items in the
shopping cart to be temporarily inconsistent; however, during a
check-out, we need to be sure the user is paying only for what
has actually been ordered. Therefore, Amazon’s Dynamo [1]
allows requesting strong consistency for some operations.

In a similar vein, causal consistency is desirable for many
applications, but algorithms used to implement it (§3.3) in-
crease the latency of propagating operations through the sys-
tem. Bailis et al. [5] have argued that, given the huge size of
causality graphs in real-world applications, this makes it prob-
lematic to provide causal consistency throughout the system
and suggested letting the programmer request it on demand.

Due to the complexity of eventually consistent models, for-
mulating their combinations precisely and choosing the pro-
gramming interfaces for requesting stronger consistency are
delicate. These issues have not been addressed by existing
proposals for combining different models of eventual consis-
tency [5]. Our contribution in this section is to show how, us-
ing our specification framework, we can define the semantics
of such combinations and assess the trade-offs between differ-
ent design choices. In particular, we present two mechanisms
for requesting stronger consistency, widely used in shared-
memory models [3, 8], and discuss their trade-offs in the con-
text of eventually consistent systems. We first illustrate the
techniques for combining consistency levels using the exam-
ple of requesting cross-object causal consistency on demand
in a system providing per-object causal consistency (§4.1). We
then add on-demand strong consistency (§4.2). Combinations
with weaker consistency levels could be handled similarly.

4.1 Consistency Annotations
Consider a system providing per-object causal consistency, i.e.,
satisfying the axioms SOWF–POCA in Figure 1. We wish to

give the programmer the ability to request cross-object causal
consistency on demand, as defined by COCV and COCA. One
way to achieve this is to annotate every operation accepted
by the database by a consistency annotation, which classifies
the operation as ordinary or causal. Accordingly, we change
the form of actions from §3 to a = (e, s, [x.fµ : k]), where
µ ∈ {ORD,CSL}. We let level(a) = µ, and let the event
selector ignore µ. The intention is that, when an action a
annotated by CSL is visible to another action b, this establishes
a causal relationship between a and b. Formally, consider an
execution X = (A, so, vis, ar). We define a causal visibility
relation as follows:

∀a, b. a cvis−−→ b ⇐⇒ a
vis−→ b ∧ level(a) = CSL.

We then redefine the causality order as the transitive closure of
the session and causal visibility relations: hb = (so ∪ cvis)+.
Consistency annotations thus allow the programmer to specify
which visibility relationships represent causal dependencies
that the system has to preserve (we could similarly let the
programmer treat only a subset of so as causal dependencies).

The combined model is given by all of the axioms in Fig-
ure 1, but with hb defined as above. Note that, since hbo is still
defined as in Figure 1, per-object causal consistency is always
guaranteed. Also, if every access is annotated as causal, then
cvis = vis and hb becomes defined as in Figure 1, so we come
back to the causal consistency model from §3.3.

To illustrate the combined model, consider the execution
in Figure 2(a), previously discussed in §3. To rule out this
execution and make sure that a session that sees the photo
will also see the updated access permission, we do not need to
require all accesses to be causally consistent: only posting the
photo has to be a causal operation. Indeed, in this case, the vis
edge from the write to y in the first session to the read from it
in the second will be included into cvis. Since the so ⊆ hb, the
write of noboss to x in the first session will causally precede
the read from x in the second. Then, by COCV, the read from x

in the second session will see the write of noboss and fetch the
correct permission. This is ensured even though the write to x

is annotated as ordinary. Note that, if we performed additional
ordinary operations in between the writes to x and y in the first
session and then read them in the second, we would get the
same guarantees.

Abstract implementation. To provide the combined consis-
tency model in our abstract implementation, we modify the
COPS algorithm (§3.3) to tag actions with their (hb ∪ hbo)-
predecessors. Because of the tigher definition of hb, this de-
creases the number of dependencies in comparison to provid-
ing causal consistency throughout the system.

4.2 Fences
We now extend the the consistency model from §4.1 to allow
the programmer to request strong consistency as well. Here we
illustrate a different approach: instead of consistency annota-
tions, we use fences, which affect multiple actions instead of a
single one. We extend the set of actions with a = (e, s, fence),
for which we let op(a) = fence.

In our abstract implementation, we treat a fence as a two-
phase commit across all replicas, whereby the replica that ex-

ecutes it propagates all the updates it knows about to the other
replicas, and does not proceed further until they acknowledge
the receipt. Note that, as expected, this violates the availability
requirement: if some replica becomes disconnected, the execu-
tion of a fence will have to wait until it reconnects.

We show the axioms for the consistency model with fences
in Figure 3, where we also integrated the new axioms from
§4.1. To define the semantics of fences, we adjust the notion
of an execution to contain an additional relation sc satisfy-
ing the SCWF axiom: X = (A, so, vis, ar, sc). In implemen-
tation terms, sc can be viewed as the total order in which the
two-phase commits initiated by fences take place. We modify
VISWF and ARWF so that vis and ar relations did not relate
fence actions, as they do not make sense for fences; we also
assume that the sameobj relation from Figure 1 does not relate
fence actions. We adjust THINAIR to take sc into account.

The role of fences is to provide additional guarantees about
the visibility of certain actions, which we capture in our axioms
two ways. First, we redefine the hb relation to include sc. It
is then used by COCV and COCA, which allows taking sc
into account when determining visibility and arbitration. To
illustrate this, consider the execution in Figure 2(f), which is
causally consistent, but not strongly consistent. If each session
executes a fence after its write, then the outcome shown will be
disallowed. This is because, by SCWF, the total order sc has to
order the two fences one way or another; then by COCV, the
write of the session whose fence comes first in sc is guaranteed
to be seen by the read in the other session. Fences can thus
be used to avoid anomalies where sessions read stale values.
In implementation terms, we can justify including sc into hb
as follows: if fences are implemented by two-phase commits,
then a replica R1 that executed a fence after a replica R2 did is
guaranteed to see all the updates that were visible to R2 at the
time it issued the fence.

Another way in which fences strengthen consistency is cap-
tured by a new clause into the definition of cvis: if an operation
b hbo-follows an operation c in another session following a
fence, then it causally depends on the fence. In implementation
terms, this is justified as follows: a so−→ c

hbo−−→ b guarantees that
b executes after the two-phase commit triggered by the fence a
has been completed. This two-phase commit propagates all up-
dates known to the replica on which a was issued to all others,
including the replica of b, which lets us include (a, b) into hb.

To illustrate this guarantee provided by fences, consider the
execution in Figure 2(a) and assume that all writes are anno-
tated as ordinary, but the first session issues a fence in between
writing noboss and photo. In this case, by the definition of
cvis and COCV, the second session will be guaranteed to see
the correct access permissions. Thus, a fence subsumes the ef-
fect of annotating the write of the photo as causal. In fact, a
fence has a much stronger effect. For example, if the first ses-
sion posts several photos using ordinary write operations, then
the fence would ensure that a session reading any of these pho-
tos will see the updated permissions. To achieve the same effect
using consistency annotations, we would have to annotate all
the writes of the photos as causal. This is the fundamental dif-
ference between fences and consistency annotations: the latter
affect only a single operation, whereas the former affect many.

Figure 3. Axioms for a combination of per-object causal, cross-object
causal and strong consistency. The definition of hbo and the axioms
SOWF, RVAL, EVENTUAL, POCV, POCA, COCV, COCA are the
same as in Figure 1, but with hb defined here.

VISWF: ∀a, b. a vis−→ b =⇒ obj(a) = obj(b) and
vis does not have edges involving fence actions

ARWF: ∀a, b. a ar−→ b =⇒ obj(a) = obj(b),
ar is transitive and irreflexive, does not have edges involving
fence actions, and ar|vis−1(a) is a total order for all a ∈ A

SCWF: sc is a total, transitive and irreflexive relation on fence actions

THINAIR: so ∪ vis ∪ sc is acyclic

Causal visibility relation:
∀a, b. a cvis−−→ b ⇐⇒ (a

vis−→ b ∧ level(a) = CSL) ∨
(∃c. op(a) = fence ∧ a

so−→ c
hbo−−→ b)

Causality order: hb = (so ∪ cvis ∪ sc)+

As we show in §4.3, choosing one over the other to request
stronger consistency impacts the implementation.

We now justify that fences enforce strong consistency: in a
system with integer registers, putting a fence in between every
pair of operations in a session guarantees strong consistency.

THEOREM 8. Assume an execution (A, so, vis, ar, sc) with only
intreg objects such that it satisfies the axioms in Figure 3 and
∀a, b ∈ A. op(a) 6= fence ∧ op(b) 6= fence ∧ a so−→ b =⇒
∃c. op(c) = fence ∧ a so−→ c

so−→ b. Then there exists a total,
transitive and irreflexive order r on all actions in A such that
every read r from a register x fetches the value written by the
last write to x preceding r in r, or 0 if there is no such write.

4.3 Consistency Annotations vs Fences
In §4.1 and §4.2, we illustrated different mechanisms for re-
questing a stronger level of consistency: consistency annota-
tions for causal consistency and fences for strong consistency.
We now argue that the choice of the mechanisms impacts the
implementation significantly.

Consider a per-object causally consistent system. Instead of
using consistency annotations to request cross-object causal
consistency, we could introduce a special kind of a fence,
fenceCSL, and define cvis similarly to how it was done in §4.2:

∀a, b. a cvis−−→ b ⇐⇒ ∃c. op(a) = fenceCSL ∧ a
so−→ c

vis−→ b.

Then a session that sees any operation c following a fence a is
guaranteed to see all operations preceding the fence. To achieve
this effect using consistency annotations, we would have to
annotate every such operation c as causal. Hence, requesting
causal consistency using fences makes it easier for the pro-
grammer to mark a series of operations as enforcing causal re-
lationships. However, this can potentially affect the efficiency
of the implementation. For the COPS algorithm (§3.3) to val-
idate the above axiom, we would have to tag every action fol-
lowing a fence in a session with the list of actions visible to it at
the time the fence was issued. A replica receiving such an ac-
tion would then have to wait until all its dependencies are satis-
fied before making it available to clients. Unlike a consistency
annotation, a fence thus increases the number of dependencies
for all actions following it, with a potential impact on latency.

Such considerations need to be taken into account when
designing programming interfaces for combined consistency
models. A system may also provide both consistency anno-
tations and fences (as done, e.g., in C/C++ [8]), to give the
programmer maximal control at the expense of complicating
the programming model. In all cases, our framework helps in
exploring this design space by allowing a system developer to
quickly establish the semantic consequences of various deci-
sions and their impact on programmability.

5. Transactions
The semantics of transactions has been extensively studied
in the context of databases, and various consistency models
have been proposed for them, including ANSI SQL isolation
levels, snapshot isolation [9] and serializability [26]. However,
classical consistency models, such as the latter two, cannot be
implemented while satisfying the requirements of availability
and partition tolerance. For this reason, eventually consistent
systems implement transactions with weaker guarantees [24,
30] that do not contradict these requirements. In this section,
we show how they can be specified in our framework.

We illustrate our approach by extending the combined con-
sistency model from §4 to accommodate transactions. The re-
sulting semantics is similar to snapshot isolation [9], but with-
out write-write conflict detection. Since we focus on the use of
replicated data types in this paper, we do not need to disallow
write-write conflicts: when an appropriate data type is used,
its semantics automatically resolves conflicts, merging the two
conflicting versions if needed, and the “lost update” anomaly
does not occur. Hence, we do not have to consider the conse-
quences of transactions aborting due to conflicts with others.

When a fence is used inside every transaction, our seman-
tics coincides with serializability (Proposition 9 below). When
specialised to causal consistency, it coincides with a variant of
parallel snapshot isolation, implemented in Walter [30] and,
for read-only transactions, in COPS [24]. We have not yet in-
corporated transactions into the single abstract implementation
we use for the other features (§2–4). Hence, we justify the cor-
respondence of our definitions to existing systems by a separate
proof that their specialisation to causal consistency is equiva-
lent to the abstract implementation of parallel snapshot isola-
tion given by Sovran et al. [30]. The main idea of this imple-
mentation is to append writes performed by a transaction to the
state of the replica it executes on atomically, and to propagate
these writes to other replicas together. This ensures that trans-
actions take effect atomically, but possibly with a delay. We
formalise and prove the correspondence in §D.

To define the semantics of transactions, we assume that
every action in an execution belongs to a transaction. Let us
again extend the set of actions with one that separates different
transactions: a = (e, s, commit), for which we let op(a) =
commit. We do not consider explicit abort operations. The
changes to the axioms from Figure 3 needed to accommodate
transactions are shown in Figure 4. We assume that vis, ar and
sameobj relations do not relate commit actions.

Intuitively, if several actions are executed within a trans-
action, then the system should treat them as a single atomic
action. Our key insight is that this can be captured by factor-

ing the relations in an execution over an equivalence relation
∼, grouping actions in the same transaction. For a relation r,
its factoring r/∼ includes the edges from r and those obtained
from such edges by relating any other actions coming from the
same transactions as their endpoints. The latter excludes the
case when the endpoints themselves are from the same trans-
action. For vis, ar and sc we require that they be preserved un-
der factoring (TRANSACT). We also include factoring explic-
itly into the definition of hb and COCA. Finally, ISOLATION
ensures that uncommitted transactions are invisible to other
sessions. In the following, we explain the semantics of transac-
tions and justify the particular ways in which we use factoring
over ∼ to define it by examples, summarised in Figure 5.

We start by showing that our notion of transactions provides
basic isolation properties, ensured by factoring vis over ∼.
Consider the execution in Figure 5(a), similar to the one in
Figure 2(a), but where the user posts a photo and changes
the access permission in a different order and within the same
transaction. This execution is disallowed by the clause for vis
in TRANSACT: even though both writes are ordinary, a session
that sees the photo is guaranteed to see the updated permission.
Thus, every session sees a transaction as happening either
completely, or not at all. Furthermore, if the first transaction in
the execution in Figure 5(a) also read the permission it wrote, it
would be guaranteed to see its own write, since we assume per-
object causality by default. If the second transaction read the
photo twice, it would be guaranteed to see the same result due
to the clause for vis in TRANSACT. Hence, transactions cannot
read uncommitted data or observe a non-repeatable read.

The execution in Figure 5(b), similar to the one in Fig-
ure 2(f), illustrates the analogy with snapshot isolation by
showing that our transactions allow the write skew anomaly
typical for it. There, each transaction reads the initial value of
a register, despite a write to it by the other transaction. This
outcome would not be allowed if transactions were serializ-
able. The execution in Figure 5(c) shows that, unlike classical
snapshot isolation, our notion allows the lost update anomaly
for integer registers. To eliminate this anomaly while satisfying
the requirements of availability and partition tolerance, we can
use an appropriate data type, as in the execution in Figure 5(d).

Finally, we illustrate how our notion of transactions inter-
acts with different consistency levels in the underlying consis-
tency model. If in the examples in Figures 2(a) and 2(f) ev-
ery write or read were a transaction writing to or reading from
multiple registers, then the anomalies shown in both examples
would still be allowed: transactions enforce atomicity, but do
not strengthen the causality guarantees among different trans-
actions in comparison to that provided by the underlying non-
transactional operations. However, ways of strengthening con-
sistency guarantees presented §4 achieve the same effect with
transactions. For example, if in the above transactional variant
of the execution in Figure 2(a) any write in the photo-writing
transaction were annotated as CSL, then the second session
would be guaranteed to see the updated permissions.

We can also use fences from §4.2 to achieve serializabil-
ity for transactions. Figure 5(e) illustrates this by implement-
ing an operation that atomically tests if a register has reach a
limit and, and if not, increments it, e.g., to make a reservation.

Figure 4. Changes to Figure 3 needed to accommodate transactions
“Same transaction” relation:
a ∼ b ⇐⇒ op(a) 6= commit ∧ op(b) 6= commit ∧

((a
so−→∗ b ∧ ¬∃c. a so−→ c

so−→ b ∧ op(c) = commit) ∨
(b

so−→∗ a ∧ ¬∃c. b so−→ c
so−→ a ∧ op(c) = commit))

Factoring:
r/∼ = r ∪ {(a, b) | a 6∼ b ∧ ∃a′, b′. a∼ a′ ∧ b∼ b′ ∧ (a′, b′) ∈ r}
TRANSACT: (vis/∼) ∩ sameobj = vis, (ar/∼) ∩ sameobj = ar,

(sc/∼) ∩ ({a | op(a) = fence})2 = sc

Causality order: hb = ((so ∪ cvis ∪ sc)/∼)+

COCA. (hb ∪ ar)/∼ is acyclic
ISOLATION: ∀a, b ∈ A. (a

vis−→ b ∧ ¬∃c. a so−→ c ∧ op(c) = commit)
=⇒ ses(a) = ses(b)

Figure 5. Anomalies allowed or disallowed by our transactions. We
have omitted unimportant vis edges.
(a) Disallowed by TRANSACT:

x, y: intreg
y.wrORD(photo) i=y.rdORD

x.wrORD(noboss) j=x.rdORD

commit commit

y.wr(photo)ORD

x.wr(noboss)ORD

commit

so

so

y.rdORD: photo

x.rdORD: default

commit

so
vis

so

(b) Write skew is allowed:

x, y: intreg
x.wrORD(1) y.wrORD(1)

i=y.rdORD j=x.rdORD

commit commit

x.wr(1)ORD

y.rdORD: 0

commit

so

so

y.wr(1)ORD

x.rdORD: 0

commit

so

so

(c) Lost update can happen with integer registers:

x: intreg
i=x.rdORD j=x.rdORD

x.wrORD x.wrORD k=x.

(i+1) (j+1) rdORD

commit commit commit

x.rdORD:0

x.wr(1)ORD

commit

so

so

x.rdORD:0

x.wr(1)ORD

commit

so

so
ar

x.rdORD:1

commit

so
vis

vis

(d) Lost update absent with an appropriate choice of data types:

x: ctr
x.incORD x.incORD i=x.rdORD

commit commit commit

x.incORD

commit

so

x.incORD

commit

so

x.rdORD:2

commit

so
vis

vis

(e) Fences ensure serializability:

x: intreg
i=x.rdORD j=x.rdORD

if(i<LIMIT) if(j<LIMIT)

x.wrORD(i+1) x.wrORD(j+1)

fence fence

commit commit

x.rdORD:0

x.wr(1)ORD

fence

commit

so

so

x.rdORD:1

fence

commit

sovis

so

so
sc

In that execution, which is allowed by our axioms, we assume
LIMIT = 1, and thus only one transaction can succeed in incre-
menting the register. This is ensured by the use of factoring in
the definition of hb: the sc edge between the fences yields an hb
edge from the write to x in the first transaction to the read from
it in the second; by COCV this means that the second transac-
tion is guaranteed to see the increment by the first one and will
thus not perform increment itself. Note that we cannot guar-

antee this result when using the replicated counter data type:
if in Figure 5(d) the first and the second transaction read the
counter before incrementing it, they would both read 0. Mak-
ing sure that only one transaction does an increment requires
the use of fences, and correspondingly, giving up availability
or partition tolerance. We formalise the guarantee provided by
fences for transactions as follows.

PROPOSITION 9. If an execution satisfies the consistency
model in Figure 4, contains only intreg objects and has at least
one fence inside every transaction, then it is serializable.

6. Related Work
There exist several formal definitions of eventually consistent
models, often proposed together with systems implementing
them. In a nutshell, the difference with our work is that such
specifications have so far been tied to particular data types or
consistency levels, and were often very low-level.

For example, Shapiro et al. [10, 28, 29] described algo-
rithms for a number of replicated data types on per-object
causal consistency. As the correctness criterion, they consider
quiescent consistency, which is less expressive than our specifi-
cations (§3.4). Bosneag and Brockmeyer [11] defined the con-
sistency model of Bayou [32], also concentrating on a form
of quiescent consistency. They handle Bayou’s speculative op-
eration execution, which we do not cover (§3.2). Fekete et
al. [16] specified an eventually consistent model in an opera-
tional style, similar to our abstract implementation. Burckhardt
et al. [14] defined the consistency model of the Concurrent
Revisions system. Like us, they use axioms, but handle only
causal consistency and data types with the semantics obtained
from the generic construction using arbitration (§2).

Causal consistency was originally defined by Ahamad et
al. [4]. However, their definition allows different replicas to
have different, though causally consistent, views on the sys-
tem evolution and thus diverge forever. Recently, Mahajan et
al. [25] and Lloyd et al. [24] defined a stronger version of
causal consistency that ensures convergence, which we use in
this paper. Mahajan et al. define convergence in an operational
model, and Lloyd et al. using explicit conflict handling func-
tions. We give a declarative specification, with conflict han-
dling encapsulated in a replicated data type.

Sovran et al. [30] defined a consistency model for trans-
actions called parallel snapshot isolation, which they imple-
mented in the Walter system. Our semantics of transactions for
the case of causal consistency is equivalent to the variant of par-
allel snapshot isolation that Sovran et al. define for a counting
set replicated data type (§5). In contrast to ours, their definition
is given in a low-level operational style.

There exist a number of specifications of shared-memory
models weaker than strong consistency [3], including those
combining several consistency levels (e.g., [8]). All such mod-
els assume read-write memory cells, corresponding to our
intreg data type. We handle arbitrary replicated data types and,
as a consequence, our notion of executions is somewhat differ-
ent from the one used to define shared-memory models (§3.1).

There have been some proposals for combining multi-
ple consistency levels within geo-replicated databases. Li et
al. [21] proposed red-blue consistency, similar to our on-

demand strong consistency (§4.2). In contrast to us, they as-
sume a particular strategy of resolving conflicts using commu-
tativity (§2). Bailis et al. [5] sketched an interface that allows
a programmer to specify causality explicitly. Our formalisation
of on-demand causal consistency in §4.1 and §4.3 complements
their proposal with a formal semantics and a discussion of the
trade-offs between different ways of specifying causality.

7. Conclusion
We have presented a flexible specification framework for even-
tually consistent systems that incorporates and unifies the guar-
antees and features that have appeared in a wide array of pre-
vious work [2, 13, 14, 17, 21, 24, 29–31]. In particular, our
framework supports replicated data types and conflict resolu-
tion, session guarantees, various causality guarantees, consis-
tency annotations, fences, and transactions.

We have illustrated how our specifications allow program-
mers to determine if a certain behavior is possible without con-
sidering the details of a system’s implementation. Moreover,
we have shown how our framework enables precise statements
and proofs about how various features and guarantees are re-
lated, thus providing system architects with a tool for exploring
the design space.

Finally, we hope that our use of shared-memory model tech-
niques will help to bridge research communities and promote
an exchange of ideas and results. For instance, we plan to ap-
ply several techniques developed for shared-memory models
to eventually consistent systems, such as the testing and ver-
ification of programs [12], automatic inference of consistency
annotations and fences [23] and compositional reasoning about
components [6].

References
[1] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.
[2] Basho Riak. http://basho.com/products/riak-overview/.
[3] S. V. Adve and K. Gharachorloo. Shared memory consistency

models: A tutorial. Computer, 29(12), 1996.
[4] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal

memory: definitions, implementation, and programming. Dis-
tributed Computing, 9, 1995.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
The potential dangers of causal consistency and an explicit solu-
tion (vision paper). In SOCC, 20012.

[6] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL, 2013. To appear.

[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: from C++11 to
POWER. In POPL, 2012.

[8] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathe-
matizing C++ concurrency. In POPL, 2011.

[9] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD,
1995.

[10] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Ba-
quero, V. Balegas, and S. Duarte. Brief announcement: Seman-
tics of eventually consistent replicated sets. In DISC, 2012.

[11] A.-M. Bosneag and M. Brockmeyer. A formal model for even-
tual consistency semantics. In IASTED PDCS, 2002.

[12] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:
checking consistency of concurrent data types on relaxed mem-

ory models. In PLDI, 2007.
[13] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud

types for eventual consistency. In ECOOP, 2012.
[14] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventu-

ally consistent transactions. In ESOP, 2012.
[15] N. Conway, R. Marczak, P. Alvaro, J. M. Hellerstein, and

D. Maier. Logic and lattices for distributed programming. In
SOCC, 2012.

[16] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvarts-
man. Eventually-serializable data services. In PODC, 1996.

[17] G. DeCandia et al. Dynamo: Amazon’s highly available key-
value store. In SOSP, 2007.

[18] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News, 33(2), 2002.

[19] M. Herlihy and N. Shavit. The art of multiprocessor program-
ming. 2008.

[20] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7), 1978.

[21] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and
J. Gehrke. Making geo-replicated systems fast if possible, con-
sistent when necessary. In OSDI, 2012.

[22] B. Liskov and S. Zilles. Programming with abstract data types.
In ACM Symposium on Very High Level Languages, 1974.

[23] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav.
Dynamic synthesis for relaxed memory models. In PLDI, 2012.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In SOSP, 2011.

[25] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability,
and convergence. Technical Report TR-11-22, UT Austin, 2011.

[26] C. Papadimitriou. The theory of database concurrency control.
1986.

[27] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract
data types: Building blocks for collaborative applications. J.
Parallel Distrib. Comput., 71(3), 2011.

[28] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A com-
prehensive study of Convergent and Commutative Replicated
Data Types. Technical Report 7506, INRIA, 2011.

[29] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In SSS, 2011.

[30] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, 2011.

[31] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. W. Welch. Session guarantees for weakly consistent
replicated data. In PDIS, 1994.

[32] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In SOSP, 1995.

A. Proofs
A.1 Proof of Theorem 6
POCV is equivalent to the conjunction of RYW, MR, WFRV and
MWV. Pick an excution X = (A, so, vis, ar). Let soo and hbo
be, respectively, the per-object session order and the per-object
causality order, both induced by X . Consider binary relations
r on actions in A that access the same object, i.e.,

r ⊆ {(a, b) ∈ A×A | sameobj(a, b)}. (2)

We define two operators H,G on such relations as follows:

H(r) = soo ∪ (r; soo) ∪ (r; soo∗; r) ∪ (soo; r);

G(r) = (r ∪ soo)+.

We will prove that for every r satisfying (2) we have

H(r) ⊆ r ⇐⇒ G(r) ⊆ r.

This gives us the required, because POCV is equivalent to
G(vis) ⊆ vis, and the conjunction of RYW, MR, WFRV and
MWV to H(vis) ⊆ vis.

Since H(r) ⊆ G(r) for every r satisfying (2), we have that
G(r) ⊆ r =⇒ H(r) ⊆ r. For the other direction, assume that
H(r) ⊆ r. We will now show that G(r) ⊆ r. Pick a, a′ ∈ A
such that (a, a′) ∈ G(r). We have to prove that (a, a′) ∈ r. By
the definition of G and the transitivity of r and soo, we have
the following cases of (a, a′), which we handle separately in
this proof.

If (a, a′) ∈ soo, then (a, a′) ∈ H(r), because soo ⊆ H(r).
But H(r) ⊆ r by our choice of r. Hence, (a, a′) ∈ r, as
desired.

If (a, a′) 6∈ soo, then there exist a1, b1, . . . , an, bn with
n ≥ 1 such that

(a, a1) ∈ soo∗ ∧ (bn, a
′) ∈ soo∗

∧ (∀i ∈ {1, . . . , n}. (ai, bi) ∈ r)
∧ (∀i ∈ {1, . . . , n− 1}. (bi, ai+1) ∈ soo).

Using our assumption that H(r) ⊆ r, we can prove the desired
(a, a′) ∈ r as follows:

(a, a1) ∈ soo∗ ∧ (a1, b1) ∈ r ∧ (b1, a2) ∈ soo ∧ . . .
(an, bn) ∈ r ∧ (bn, a

′) ∈ soo∗

=⇒ (a, a1) ∈ soo∗ ∧ (a1, bn) ∈ r ∧ (bn, a
′) ∈ soo∗

=⇒ (a, a1) ∈ soo∗ ∧ (a1, a
′) ∈ r

=⇒ (a, a′) ∈ r.

The first implication comes from the fact that (r; soo∗; r) ⊆
H(r), the second from (r; soo) ⊆ H(r), and the third from
(soo; r) ⊆ H(r).

POCA is equivalent to the conjunction of WFRA and MWA.
Pick an execution X = (A, so, vis, ar). Let soo and hbo be,
respectively, the per-object session order and the per-object
causality order, both induced by X . Then,

hbo = (soo ∪ vis)+ = (soo ∪ (vis; soo∗))+.

Thus, the lower bound on ar set by WFRA and MWA is in-
cluded in that given by POCA. This means that POCA implies
WFRA and MWA. It remains to prove that WFRA and MWA
together imply POCA. Consider (a, b) ∈ hbo. By the definition
of hbo, there exist a1, . . . , an with n ≥ 2 such that

a1 = a ∧ an = b ∧
∀i ∈ {1, . . . , n− 1}. (ai, ai+1) ∈ (soo ∪ vis).

Since WFRA and MWA hold, the third conjunct above implies
that

∀i ∈ {1, . . . , n− 1}. (ai, ai+1) ∈ ar.

Furthermore, ar is transitive. Hence, we have (a, b) ∈ ar, as
desired. ut

A.2 Proof of Theorem 8
In the following r ranges over read actions, w over write
actions and f over fence actions. Consider an execution X =
(A, so, vis, ar, sc) satisfying the assumptions of the theorem.
For simplicity, we consider only the case when every read in
the execution reads a non-default value. Let

vis′ = {(w, r) ∈ vis | op(w) = wr ∧ op(r) = rd};
ar′ = {(w1, w2) ∈ ar | op(w1) = wr ∧ op(w2) = wr}.

Let us show that ar′ ∪ vis′ ∪ so∪ sc is acyclic. Assume there
is a cycle in this relation. By the assumptions of the theorem,
we can assume that any so edge on the cycle has a fence as
one of its endpoints. Then there is at least one fence on the
cycle, since ar′ and vis′ cannot form one due to the types of
their endpoints. Consider any segment of the cycle starting an
ending with a fence that has no fences in the middle. If this
segment has edges other than so and sc, then it has to have one
of the following forms:

• f1
so−→ w1

ar′−→ w2
vis′−−→ r

so−→ f2;

• f1
so−→ w1

ar′−→ w2
so−→ f2;

• f1
so−→ w1

so−→ f2.

Assume (f2, f1) ∈ sc. Then the second configuration contra-
dicts COCA, and the last one THINAIR. By POCV and the
transitivity of vis, the first configuration yields (w2, w1) ∈ vis,
which contradicts POCA. Hence (f1, f2) ∈ sc. We can thus
convert the cycle into one in so ∪ sc, contradicting THINAIR.

Let ar′′ be any relation that is total on write actions to the
same object and contains ar′ ∪ vis′ ∪ so∪ sc. Then ar′′ ∪ vis′ ∪
so ∪ sc is acyclic. Let

fr = {(r, w) | ∃w′. (w′, r) ∈ vis ∧ (w′, w) ∈ ar ∧
¬∃w′′. (w′′, r) ∈ vis ∧ (w′, w′′) ∈ ar}.

We now show that

ar′′ ∪ vis′ ∪ so ∪ sc ∪ fr (3)

is acyclic. Assume the contrary. Then the cycle contains at least
one fr edge.

Consider first the case when the cycle does not contain so
or sc edges. We can assume that the cycle does not have any ar

edges, as they can only follow fr edges and can be merged with
them.

Let us show that fr; vis′; fr ⊆ fr. Take (r1, w4) ∈ fr; vis′; fr,
then for some w1, w2, r2, w3 we have

r1
vis′←−− w1

ar′′−−→ w2
vis′−−→ r2

vis′←−− w3
ar′′−−→ w4

and (w2, w3) ∈ ar, ¬∃w′. (w′, r1) ∈ vis′∧(w1, w
′) ∈ ar. Then

(w1, w4) ∈ ar and hence, (r1, w4) ∈ fr.
Thus, we can assume that the cycle has only a single fr edge.

Then it also has a single vis′ edge. Hence, for some r, w we
have (r, w) ∈ fr and (w, r) ∈ vis′. But the former implies
that for some w′ we have (w′, r) ∈ vis′, (w′, w) ∈ ar and
¬∃w′′. (w′′, r) ∈ vis′∧(w′, w′′) ∈ ar, which is a contradiction.

Assume now that the cycle in (3) has at least one so or sc
edge. Consider any segment of the cycle starting and ending
by a fence that does not contain fences in the middle. Then the
segment does not contain any so or sc edges, except the first
and the last one. Any ar edges except possibly the second one
on the segment can only follow fr edges and can be merged
with them. Since fr; vis′; fr ⊆ fr, we can thus assume that the
segment has a single fr edge. Hence, the segment can only be
of one of the following forms:

1. f1
so−→ w1

(ar′′)∗−−−−→ w2
vis′−−→ r1

fr−→ w3
vis′−−→ r2

so−→ f2;

2. f1
so−→ w1

(ar′′)∗−−−−→ w2
vis′−−→ r1

fr−→ w3
so−→ f2;

3. f1
so−→ r1

fr−→ w3
vis′−−→ r2

so−→ f2;

4. f1
so−→ r1

fr−→ w3
so−→ f2;

5. f1
so−→ f2;

6. f1
sc−→ f2;

7. f1
so−→ w1

(ar′′)∗−−−−→ w2
so−→ f2;

8. f1
so−→ w1

(ar′′)∗−−−−→ w2
vis′−−→ r1

so−→ f2.

We now show that in all cases we must have (f1, f2) ∈ sc. Note
that this means that we can convert the cycle into one in so∪sc,
contradicting THINAIR and thus implying the acyclicity of (3).

Assume the contrary, i.e., (f2, f1) ∈ sc. Then cases 5 and 6
contradict THINAIR, and case 7 contradicts COCA. By POCV
and the transitivity of vis, case 8 contradict POCA. By the
definition of hbo, in cases 1 and 2 the segment has the form

f1
so−→ w1

(ar′′)∗−−−−→ w2
vis′−−→ r1

vis′←−− w4
ar′′−−→ w3

(vis′;so)∪so−−−−−−−→ f2

and (w2, w4) ∈ ar′′. Hence,

f1
so−→ w1

ar′′−−→ w3
(vis′;so)∪so−−−−−−−→ f2

By POCV, COCV and the transitivity of vis, (f2, f1) ∈ sc
entails (w3, w1) ∈ vis ⊆ hbo, which contradicts POCA.

In cases 3 and 4 the segment has the form

f1
so−→ r1

vis′←−− w4
ar′′−−→ w3

(vis′;so)∪so−−−−−−−→ f2

and ¬∃w′. (r1, w′) ∈ vis′∧(w4, w
′) ∈ ar′′. By POCV, COCV

and the transitivity of vis, (f2, f1) ∈ sc entails (w3, r1) ∈ vis′,
which yields a contradiction.

Hence, (3) is acyclic. Let us take any total relation includ-
ing (3) as the desired r. Assume that for some r, w,w′ ∈ A such
that obj(w) = obj(w′) we have (w, r) ∈ vis and (w,w′) ∈ r.
Then (w, r) ∈ r, (w,w′) ∈ ar, and hence, (r, w′) ∈ fr. From
this it follows that (r, w′) ∈ r. Thus, every read reads the most
recent value according to r. ut

A.3 Proof of Proposition 9
Consider an execution X = (A, so, vis, ar, sc). Due to the use
of factoring in the definition of hb, from the assumption of the
theorem we have

∀a, b ∈ A. a 6∼ b =⇒
((∀a′, b′ ∈ A. a ∼ a′ ∧ b ∼ b′ =⇒ (a′, b′) ∈ hb) ∨

(∀a′, b′ ∈ A. a ∼ a′ ∧ b ∼ b′ =⇒ (b′, a′) ∈ hb)).

Hence, hb is total on A and every transaction is contiguous in
it, which for the case of integer registers implies serializability.

B. Abstract Implementation and
Correspondence Theorem

THEOREM 10. Our abstract implementation generates execu-
tions satisfying axioms in the main text of the paper, when
its parameters satisfy appropriate conditions. These conditions
are described in Propositions 21, 22, 23, 24, 25, 26, 27 and 28.

In this section, we describe an abstract implementation of an
eventually-consistent database system, and show that it corre-
sponds to the axiomatic specification given in the main text of
the paper. Our implementation is highly parameterised. When
instantiated with appropriate parameters, it meets different lev-
els of eventual consistency, which we have described axiomat-
ically in the paper. The implementation is defined in terms
of rules for transforming sessions and replicas. One of such
rules is concerned with the interaction between a session and a
replica, and it supports the availability of a replica to a session
in the sense that the rule does not involve any communication
among replicas.

Throughout this section, we assume a finite totally-ordered
set of replica ids:

(DId, <), ranged over by d.

Also, we call a relation r is functional if

∀x, y1, . . . , yn, y′1, . . . , y′n.
(x, y1, . . . , yn) ∈ r ∧ (x, y′1, . . . , y

′
n) ∈ r

=⇒ y1 = y′1 ∧ . . . ∧ yn = y′n.

Finally, for any set X , we let Pfin(X) be the collection of all
finite subsets of X .

B.1 Three Main Components
We start with three main components of our implementation:
distributed time, message and data type implementation.

A distributed time is a totally-ordered set of the form

LTime× DId.

Here LTime is a countably-infinite totally-ordered set with a
function next : LTime→ LTime satisfying

∀t, t′ ∈ LTime. next(t) = t′ =⇒ t < t′

and (LTime × DId) is ordered lexicographically. We call ele-
ments in (LTime× DId) distributed timestamps.

Our abstract implementation assumes that the set of action
ids is defined by a distributed time:

AId = LTime× DId.

A message is a tuple m = (x, e, f,W,E) in the following
set:

Obj× AId× (
⋃
τ

Opτ)× Pfin(AId)× Pfin(AId).

In our intended usage, a message (x, e, f,W,E) represents
an operation f performed on the object x at the timestamp
e. When this operation was originally issued in a replica, the
message says, the actions with ids in W were visible in the
replica. When the operation is later propagated to another re-
mote replica, it will stay in the target replica without being ex-
ecuted until all the actions with ids in E are performed on the
replica. We will write Msg for the set of messages.

A data type implementation is a family of tuples

(Stτ , initτ : Stτ ,

evalτ : AId× Opτ × Pfin(AId)× Stτ → Val× Stτ ,

idτ : Stτ → Pfin(AId))

indexed by each data type τ , such that for every τ ,

(idτ (initτ) = ∅) ∧
(∀e, f,W.∀σ, σ′ ∈ Stτ .

evalτ (e, f,W, σ) = (, σ′) =⇒ idτ (σ
′) = idτ (σ) ∪ {e}).

The initτ is the initial state of a data type τ , the next
evalτ (e, f,W, σ) describes the outcome of running the oper-
ation f on the state σ, where the id of the associated action is
e and this action is issued when actions in W are visible from
the replica. The last idτ (σ) returns the ids of all the actions that
have influenced on the computation leading to σ.

B.2 Database Implementation
Our implementation of a distributed database assumes the three
components that we have just described. It defines the informa-
tion stored in sessions and replicas, and specifies a protocol that
these replicas and sessions need to follow in order to guaran-
tee a desired level of eventual consistency. In the following, we
describe the implementation step-by-step:

1. Firstly, we assume a distributed time, a next operator and a
data type implementation:

LTime× DId, next : LTime→ LTime,

{(Stτ , initτ , evalτ , idτ)}τ .

2. Secondly, we define configurations for replicas, sessions and
entire systems.

• The set of replica configurations, DB, is given by

Table = Obj→
⋃
τ

Stτ ,

DB = DId× LTime× Table× Pfin(Msg)× Pfin(Msg).

A tuple (d, t, ρ,M,N) ∈ DB represents a status of a
replica. The first component d is the id of the replica, and
(t, d) is the timestamp that the replica maintains for itself.
The next ρ is a table for storing objects. The following M
consists of messages about actions that were performed
on the replica and need to be propagated to other remote
replicas. The last component N contains the other kind
of messages, those that describe operations performed in
other remote replicas and are propagated from them to the
current replica.
• The set of session configurations, Session, is defined as

follows:

Session = SId× SCtx, ranged over by θ or (s, κ),

Here SCtx is an unspecified set and it contains session
contexts, which store session-specific information. We do
not fix what goes into a session context. Various choices
of SCtx will emerge as we later consider axioms of even-
tual consistency.
• A system configuration is a pair

S | D

where S is a subset of Session and D is a subset of DB.
We require that both S andD be functional, and they meet
the following condition:

∀e ∈ id(S|D).∃t. ∃(d, t′, , ,) ∈ D.
e = (t, d) ∧ e < (t′, d),

where the set id(S|D) consists of all action ids appearing
in S|D and is formally defined by:

id(S|D) =
{e | ∃(, , ρ,M,N) ∈ D.

(∃x ∈ Obj. e ∈ idtype(x)(ρ(x)))

∨ ∃(, e′, ,W,E) ∈M ∪N. e ∈W ∪ E ∪ {e′}}.

This condition means that according to the distributed
time, every action in D are performed in the past, if we
use timestamps of replicas as our baseline.
We use comma to mean the disjoint union, and represent
a singleton set {x} simply by its element x. For instance,
(S, θ) means the union of S and the singleton set {θ}
where θ does not belong to S. Also, we use the following
operation on system configurations:

time(S|D) = {(t, d) | (d, t, , ,) ∈ D}.

3. Thirdly, we assume the presence of the following operations

for all data types τ :

instr : Session→ Obj× Op

updateτ : Objτ × AId× Opτ × Stτ × Table× SCtx→ SCtx

dependτ : AId× Opτ × Stτ × Table× SCtx→ Pfin(AId)

enable : Obj× Session× DB→ {true, false}

where Objτ = {x ∈ Obj | type(x) = τ} and the depend
operator is required to satisfy the condition below:

dependτ (e, f, σ, ρ, κ) ⊆ (idτ (σ) ∪
⋃
x∈Obj

idtype(x)(ρ(x))).

The first operation selects the next instruction to be executed
by a session, and the second describes how running this
instruction changes the session’s status. The third operation
takes the id of an action, and computes the ids of other
actions that should be performed on a replica before the
given action. The last is a predicate that checks whether a
session can access a replica without violating a desired level
of eventual consistency.
The last three operations are the knobs on our abstract imple-
mentation, which can be adjusted to achieve a different level
of eventual consistency. The details will be given in the rest
of this section.

4. Finally, we define our implementation in terms of rules for
transforming system configurations:

δi = (di, ti, ρi,Mi, Ni) m = (x, e, f,W,E) ∈M1

e 6∈ idtype(x)(ρ2(x))
δ′2 = (d2,max(next(t1), t2), ρ2,M2, N2 ∪ {m})

S | D, δ1, δ2
m−→ S | D, δ1, δ′2

PROP

δ = (d, t, ρ,M,N) (x, e, f,W,E) ∈ N
τ = type(x) E ⊆

⋃
y∈Obj idtype(y)(ρ(y))

e 6∈ idτ (ρ(x)) (, σ′) = evalτ (e, f,W, ρ(x))
δ′ = (d, t, ρ[x 7→ σ′],M,N)

S | D, δ ()−→ S | D, δ′
OPD

θ = (s, κ) δ = (d, t, ρ,M,N) e = (t, d)
instr(θ) = (x, f) τ = type(x) enable(x, θ, δ)
κ′ = updateτ (x, e, f, ρ(x), ρ, κ) θ′ = (s, κ′)
W ′ = idτ (ρ(x)) E′ = dependτ (e, f, ρ(x), ρ, κ)
evalτ (e, f,W

′, ρ(x)) = (w, σ′) a = (e, s, [x.f :w])
δ′ = (d, next(t), ρ[x 7→ σ′],M ∪ {(x, e, f,W ′, E′)}, N)

S, θ | D, δ (W ′,a)−−−−→ S, θ′ | D, δ′
OPS

The first rule describes the communication between two
replicas, which propagates a message from one replica to
another. When such a message arrives, the receiving replica
waits until an associated causality condition for the message
is met. Once this waiting condition is met, the replica up-
dates its local object table according to the second rule. The
last rule describes the access to a replica by a session. This
generates a new action, which is later propagated to other
replicas in the form of a message. Also, it changes the con-
figurations of session and replica that interact, as described
by the rule.

LEMMA 11. If S|D ι−→ S ′|D′ and S|D is well-formed, so is
S ′|D′.

Proof: Assume that S|D is well-formed and S|D ι−→ S ′|D′.
We should show that S ′|D′ is also well-formed. This means
two properties of S ′|D′. First, both S ′ and D′ are functional.
Second,

∀e ∈ id(S ′|D′).∃t.∃(d, t′, , ,) ∈ D′.
e = (t, d) ∧ e < (t′, d).

The first property follows from the well-formedness of S|D
and the fact that all three rules in our abstract implementation
do not create any session configurations nor replica configura-
tions. For the second property, we show it by case analysis on
the rule used to obtain S ′|D′.
• If the rule is PROP, we have

id(S|D) = id(S ′|D′)
∧ (∀(t, d) ∈ time(S|D).∃t′.

(t′, d) ∈ time(S ′|D′) ∧ (t, d) ≤ (t′, d′)).

The desired property of S ′|D′ follows from these two con-
juncts and the well-formedness of S|D.
• If the rule is OPD, we have

id(S|D) = id(S ′|D′) ∧ time(S|D) = time(S ′|D′). (4)

Here the second conjunct holds because the rule does not
change the timestamps of any replicas. The first conjunct
holds because the OPD rule changes only one replica by
running eval, but

(, σ′) = evalτ (e, f,W, ρ(x))

=⇒ idτ (σ
′) = idτ (ρ(x)) ∪ {e}.

The second property of S ′|D′ follows from (4) and the well-
formedness of S|D.
• The remaining case is that the rule is OPS. By the definition

of OPS, we have

∀(t, d) ∈ time(S|D).∃t′.
(t′, d) ∈ time(S ′|D′) ∧ (t, d) ≤ (t′, d′).

(5)

Pick e′ ∈ id(S ′|D′). Let (x, e, f,W ′, E′) be a message
generated by the rule. If e′ does not belong to {e}∪W ′∪E′,
it should be in id(S|D), and the desired property of S ′|D′
follows from (5) and the well-formedness of S|D. If e′ = e,
by the definition of the rule, we have

∃d, t. (t, d) = e′ ∧ (d, next(t), , ,) ∈ D′,

from which follows the desired property of S ′|D′. Finally, if
e′ ∈ (W ′ ∪ E′) \ {e}, we use the condition on the depend
operator and the definition of W ′, and derive that

e′ ∈ ((W ′ ∪ E′) \ {e}) ⊆
⋃
y∈Obj

idtype(y)(ρ(y))

⊆ id(S|D),

where ρ is the fourth argument used for computing E′ in the
OPS rule. Now the well-formedness of S|D and the formula
in (5) give the desired property of S ′|D′.

�

Let id(ι) = {id(a) | (, a) = ι}. We show that the rules of
our implementation increase the set of action ids occurring in
a system configuration.

LEMMA 12. If S|D ι−→ S ′|D′, then

id(S|D) ⊆ id(S ′|D′) ∧ id(S|D) ∪ id(ι) = id(S ′|D′).

Proof: We do the case analysis on the rule used in the transi-
tion:

S|D ι−→ S ′|D′.

The first case is that the rule is PROP. The rule PROP only
delivers an existing message to a new target replica, and does
not change the object table of any replica. Furthermore, id(ι) =
∅. The lemma follows from these properties of PROP.

The next case is OPS. As in the previous case, OPS only
adds a new message (x, e, f,W ′, E′) to some replica, where
all action ids in W ′ ∪ E′ already appear in the same replica
before the rule. Also, although OPS changes the object table of
a replica, this change happens only via the execution of eval,
which satisfies the following property:

(, σ′) = evalτ (e, f,W, σ) =⇒ idτ (σ) ∪ {e} = idτ (σ
′).

Since id(ι) = {e}, the claim of this lemma follows from what
we have just described.

The final case is OPD. In this case, no message is removed
from or added to a replica. The object table of some replica is
changing by OPD, but this is done via the execution of eval.
Hence, as explained in the previous case, this change only in-
creases the set of action ids in the object table of a replica, and
this increment is the action id e of the message (x, e, f,W,E)
that is selected by the rule. Note that this message already ex-
ists in the replica before the application of the rule, so e is not
a new action id. From the observations that we have just made
follows that id(S|D) ⊆ id(S ′|D′). Since id(ι) = ∅, the claim
of this lemma holds. �

A message (x, e, f,W,E) respects time if

∀e′ ∈ E ∪W. e′ < e.

A system configuration S|D respects time if all messages in
the configuration respect time and the following condition is
met for every replica (d, t, ρ,M,N) ∈ D:

(∀x ∈ Obj.∀e ∈ idtype(x)(ρ(x)). e < (t, d)) ∧
(∀(, e, ,W,E) ∈M ∪N. ∀e′ ∈ {e} ∪W ∪ E. e′ < (t, d)).

LEMMA 13. If S|D ι−→ S ′|D′ and S|D respects time, then
S ′|D′ also respects time.

Proof: We do the case analysis on the rule used in the transi-
tion:

S|D ι−→ S ′|D′.

The first case is PROP. The rule delivers a message
(x, e, f,W,E) from one replica to another, but it does not cre-
ate any new messages. Thus, all the messages in S ′|D′ are also

in S|D, so they should respect time. It remains to prove that
the condition on a replica’s timestamp holds for all replicas
in D′. If a replica in D′ is not modified by the application of
PROP, this condition follows from our assumption on S|D. Let
δ = (d, t, ρ,M,N) ∈ D′ be the replica modified by PROP, and
let m = (x, e, f,W,E) be the message delivered by PROP.
Pick an action id e0 such that

(∃(, e′, ,W ′, E′) ∈M ∪N. e0 ∈ {e′} ∪W ′ ∪ E′)
∨ (∃x ∈ Obj. e0 ∈ idtype(x)(ρ(x))).

If the second disjunct holds or the first disjunct is true with a
witness different from m, the condition on the timestamp of δ
follows from our assumption on S|D. Otherwise,

e0 ∈ {e} ∪W ∪ E.

Let (d′, t′) be the timestamp of a replica that sent the message
m in our application of PROP. By our assumption on S|D,

e0 < (t′, d′).

But by the definition of PROP, (t′, d′) < (t, d). Hence, e0 <
(t, d) as desired.

The second case is OPD. This rule does not create any new
messages. Since every message in S|D respects time, so do
the ones in S ′|D′. We can thus complete the proof of this case
if we show that the condition on the timestamp of a replica
holds for every replica in D′. Note that the OPD rule changes
only one replica. For all the other unchanged replicas in D′,
the condition on their timestamps holds, because these replicas
are already present in S|D and every replica in S|D satisfies
the condition on its timestamp. Let δ, δ′ be replicas in D and
D′, respectively, such that the OPD rule changes δ to δ′. Then,
there are d, t, ρ,M,N, x, e, f,W,E, σ′ such that

δ = (d, t, ρ,M,N)

∧ δ′ = (d, t, ρ[x 7→ σ′],M,N)

∧ (x, e, f,W,E) ∈ N ∧ (, σ′) = evaltype(x)(e, f,W, ρ(x)).

By the condition imposed on eval, the above formula implies
that every action id e′ appearing in δ′ also occurs in δ. By the
assumption on S|D, this implies that

e′ < (t, d)

which is precisely what we have to prove.
The final case is OPS. Let δ, δ′ be replicas in D and D′

such that the OPS rule transforms δ to δ′. Then, there exist
d, t, ρ,M,N, x, σ′, f,W ′, E′ satisfying the following proper-
ties:

(δ = (d, t, ρ,M,N)) ∧
((, σ′) = evaltype(x)(, , , ρ(x))) ∧
(W ′ = idtype(x)(ρ(x))) ∧
(E′ = dependtype(x)(, , ρ(x), ρ,)) ∧
(δ′ = (d, next(t), ρ[x 7→ σ′],M ∪ {(x, (t, d), f,W ′, E′)}, N))

Every message in D′ other than m = (x, (t, d), f,W ′, E′)
exists in D, so it reflects time. By the condition imposed on
depend and the definition of W ′,

(E′ ∪W ′) ⊆
⋃
y∈Obj

idtype(y)(ρ(y))

Hence, by our assumption on S|D,

∀e′ ∈ E′ ∪W ′. e′ < (t, d).

Hence, m also respects time. It remains to show the condition
on the timestamp of each replica in D′. This condition is met
for all replicas in D′ other than δ′, because they are already
present inD and every replica inD satisfies the same condition
on its timestamp. Pick an action id e′ in δ′. Then, e′ already
appears in δ, or

e′ ∈ idtype(x)(σ
′) ∪ {(t, d)} ∪ E′ ∪W ′

= {(t, d)} ∪
⋃
y∈Obj

idtype(y)(ρ(y))

where the equality above uses the conditions on id and depend.
If e′ = (t, d), then

e′ = (t, d) < (next(t), d).

Otherwise, e′ appears in δ already. So in this case, by our
assumption on S|D, we have

e′ < (t, d) < (next(t), d).

In both cases, we proved that the condition on the timestamp
of δ′ holds, as desired. �

A configuration S|D is empty if for all (, , ρ,M,N) ∈ D,

(M = N = ∅) ∧ (∀x ∈ Obj. ρ(x) = inittype(x)).

COROLLARY 14. If S0|D0 is empty and

S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

then Sn|Dn respects time.

Proof: This corollary follows from Lemma 13 and the fact that
all empty system configurations respect time. �

B.3 Fair Trace
We represent a computation of our implementation in terms of
a trace:

DEFINITION 15. A trace is a tuple

(S0,D0, {(ιk,Sk,Dk)}1≤k≤n)

for n ∈ N ∪ {ω}, such that S0|D0 is empty and

∀k. (1 ≤ k ≤ n) =⇒ (Sk−1|Dk−1
ιk−→ Sk|Dk).

We will often present traces in the following more readable
form:

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

LEMMA 16. Every trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn,

satisfies the following properties:

1. For every i,

id(Si|Di) = {id(a) | ∃k. (, a) = ιk ∧ k ≤ i}.

This implies that id(Si|Di) ⊆ id(Sj |Dj) for all i, j with
i < j.

2. For all i ∈ {1, . . . , n} and a ∈ Act, if (, a) = ιi, then

id(a) 6∈ id(Si−1|Di−1) ∧ id(a) ∈ id(Si|Di).

3. For all i, j ∈ {1, . . . , n} and a, b ∈ Act, if

(, a) = ιi ∧ (, b) = ιj ∧ i 6= j

then id(a) 6= id(b).

Proof: The first property follows from Lemma 12 and the fact
that id(S0|D0) = ∅. To prove the second, consider i, a such that
(, a) = ιi. By the definition of our rules, id(a) should come
from the timestamp and the id of a replica in the configuration
Si−1|Di−1. By the well-formedness of Si−1|Di−1, this means
that id(a) is not in id(Si−1|Di−1). Also, by the definition of
our rules, id(a) should be in id(Si|Di). We have just shown
that the second property holds. The last property in the lemma
is a consequence of the other two properties. �

LEMMA 17. Consider a trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

For all i, (, , ,M,N) ∈ Di and (, e, ,W,) ∈M∪N , there
exist a, j such that

j ≤ i ∧ (W,a) = ιj ∧ id(a) = e.

Proof: By our condition on the trace, there are no messages in
the initial configuration S0|D0. Hence, all messages in some
Di are generated by the application of the OPS rule. So, for
every replica (, , ,M,N) ∈ Di and every message m =
(, e, ,W,) ∈M ∪N in this replica, there is an index k such
that the message is generated by OPS in the k-th step. This k
and the action generated at this step are the desired j and a in
this lemma. �

LEMMA 18. Consider a trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

For all i, e ∈ id(Si|Di), (, , ρ,M,N) ∈ Di and x ∈ Obj, if

e ∈ idtype(x)(ρ(x)) ∨ (∃W. (x, , ,W,) ∈M ∪N ∧ e ∈W)

then

∃k ≤ i.∃a. (, a) = ιk ∧ id(a) = e ∧ obj(a) = x.

Proof: Pick i, ρ,M,N, e, x such that

((, , ρ,M,N) ∈ Di) ∧
(e ∈ idtype(x)(ρ(x)) ∨ ∃W. (x, , ,W,) ∈M ∪N ∧ e ∈W).

By definition, the initial configuration of the trace τ should be
empty. This implies that id(S0|D0) = ∅. Hence, by Lemma 12,
there exist k, a such that

k ≤ i ∧ (, a) = ιk ∧ id(a) = e.

It remains to show that obj(a) = x. We show this by induction
on i − k. Suppose that i = k. Then, by the well-formedness
of Si−1|Di−1, e is not in id(Si−1|Di−1). This means that the
state ρ(x) or the message (x, , ,W,) is produced by the rule
at the k-th step. This can happen only when x = obj(a).
Now suppose that i > k. If e appears in a message, this
message must already exist in Si−1|Di−1. In this case, by
induction hypothesis, we get x = obj(a). Otherwise, e is in
idtype(x)(ρ(x)). Let ρ′ be the object table of the same replica
in Si−1|Di−1. If e is already in idtype(x)(ρ

′(x)), we can use
induction hypothesis and deduce that x = obj(a) as desired. If
not, this means that the OPD rule was applied at the i-th step to
ρ′(x) and some message (x, e, f ′,W ′, E′), and produced ρ(x).
Now we can apply the induction hypothesis on the message
(x, e, f ′,W ′, E′), and obtain the desired conclusion that x =
obj(a). �

LEMMA 19. Consider a trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Every configuration Si|Di respects time.

Proof: Every empty configuration respects time. Furthermore,
by Lemma 13, all the rules in our abstract implementation
transforms time-respecting configurations to time-respecting
ones. This lemma follows from these two observations. �

DEFINITION 20. A trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

is fair if for every action a such that (, a) = ιk for some
k, there is a threshold 1 ≤ k0 ≤ n satisfying the following
condition:

∀i ≥ k0.∀(, , ρ, ,) ∈ Di.
∃x ∈ Obj. x = obj(a) ∧ id(a) ∈ idtype(x)(ρ(x)).

B.4 Correspondence: Basic Axioms
We now relate the abstract implementation with the axiomatic
description given in the main part of this paper. Our plan is
to show that every fair trace generates an execution in our ax-
iomatic semantics that satisfies all the well-formedness axioms,
the data type axiom and the basic eventual consistency axioms
in Figure 1. Once this basic correspondence is established, we
describe further conditions on the parameters of our implemen-
tation, and show that they validate axioms for session guaran-
tees and causality.

Consider a fair trace

τ = (S0,D0, {(ιk,Sk,Dk)}k).

We generate an execution (A, so, vis, ar) from this trace τ as
follows:

A = {a | ∃k. (, a) = ιk},
vis = {(a, b) ∈ A×A | ∃k,W. (W, b) = ιk ∧ id(a) ∈W},
so = {(a, b) ∈ A×A | ∃k, l. k < l ∧ (, a) = ιk

∧ (, b) = ιl ∧ ses(a) = ses(b)},
ar = {(a, b) ∈ A×A | id(a) < id(b) ∧ obj(a) = obj(b)}.

This execution assumes a replicated data type specification F
that is compatible with a data type implementation

{(Stτ , initτ , evalτ , idτ)}τ

in the following sense: for every type τ , there exists a relation
Rτ between the last three components of contexts for the type
τ and data type states in Stτ such that

1. ((∅, ∅, ∅), initτ) ∈ Rτ ;
2. if

((V, r0, r1), σ) ∈ Rτ
∧ evalτ (e, f,W, σ) = (w, σ′) ∧ (∀g ∈ Opτ . (e, g) 6∈ V)

∧ r′0 ⊇ (r0 ∪ {((e′, g), (e, f)) | e′ ∈W ∧ (e′, g) ∈ V })
∧ r′1 = r1 ∪ {((e′, g), (e, f)) | e′ < e ∧ (e′, g) ∈ V }

∪ {((e, f), (e′, g)) | e < e′ ∧ (e′, g) ∈ V }

then

((V ∪ {(e, f)}, r′0, r′1), σ′) ∈ Rτ ∧ Fτ (f, V, r0, r1) = w;

PROPOSITION 21. All the fair traces generate executions sat-
isfying SOWF, VISWF, ARWF, EVENTUAL and THINAIR.

Proof: Pick a fair trace τ :

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

where n ∈ N ∪ {ω}. Let (A, vis, so, ar) be an execution
constructed from this trace according to our recipe described
above. We will show that this execution satisfies all the axioms
mentioned in the proposition.

Firstly, we show that SOWF holds. By the definition of so, if
a

so−→ b, then ses(a) = ses(b). Furthermore, in this case, a 6= b
because of Lemma 16. Hence, so is irreflexive. Furthermore,
for every a, b ∈ A, if a 6= b but ses(a) = ses(b), we have that

(a
so−→ b) ∨ (a

so−→ b)

by the definition of so. It remains to show that so is transitive.
Consider a, b, c ∈ A such that a so−→ b and b so−→ c. By the
definition of so, there are i, j, k, l such that

i < j ∧ k < l ∧ ιi = (, a) ∧ ιj = (, b)

∧ ιk = (, b) ∧ ιl = (, c).

But j = k because of Lemma 16. Hence, a so−→ c by the
definition of so.

Secondly, we consider the VISWF axiom. This follows from
Lemma 18 and the definition of the OPS rule.

Thirdly, we prove the ARWF axiom. Suppose that a ar−→ b.
By the definition of ar, obj(a) = obj(b). The irreflexivity and
the transitivity of ar follow from the same properties of < on
action ids. Since < is total and the ids of different actions
in A are different (Lemma 16), ar relates any two actions
in A that work on the same object. Furthermore, for every
a ∈ A, vis−1(a) contains only those actions working on obj(a),
because of the VISWF axiom that we just proved above. Hence,
ar|vis−1(a) is a total order for every a ∈ A, as required in the
last part of the ARWF axiom.

Fourthly, we show the EVENTUAL axiom. If A is finite, the
axiom becomes vacuous and it holds. Suppose thatA is infinite.
Note that this supposition implies n = ω. Pick an action a ∈ A.
Let x = obj(a). Then, there exists k such that

(, a) = ιk.

Since the trace is fair, there exists k0 such that

∀i ≥ k0.∀(, , ρ, ,) ∈ Di. id(a) ∈ idtype(x)(ρ(x)).

To show the axiom holds for a, we should prove that there are
at most finitely many b ∈ A satisfying the condition below:

obj(b) = x ∧ ¬(a vis−→ b).

Notice that if an action b ∈ A satisfies the condition above,

∃k1. k1 ≤ k0 ∧ (, b) = ιk1 .

But the number of possible witnesses k1 in the above formula
is at most k0. So only finitely many b’s can satisfy the condition
above.

Fifthly, we prove that the THINAIR axiom is satisfied. We
define a total order <τ on A by

a <τ b ⇐⇒ ∃i, j. i < j ∧ ιi = (, a) ∧ ιj = (, b).

By Lemma 16, <τ is an irreflexive and transitive total order on
A. We will prove that

∀a, b ∈ A. (a vis−→ b ∨ a so−→ b) =⇒ a <τ b. (6)

To see why the THINAIR axiom follows from this formula,
note that the formula implies

(vis ∪ so)+ ⊆ (<τ)
+

but the RHS of this subset relationship is included in <τ be-
cause <τ is transitive. Now the irreflexivity of <τ implies that
(vis ∪ so)+ is irreflexive as well, as required by the THINAIR
axiom. Let us go back to the proof of the formula in (6). Pick
a, b ∈ A. If a so−→ b, then a <τ b by the definition of so. Now
suppose that a vis−→ b. This means that there exists i such that

a ∈ id(Si|Di) ∧ (, b) = ιi+1.

By Lemma 12, there should be k such that

a 6∈ id(Sk|Dk) ∧ (, a) = ιk+1.

By Lemma 16,
k + 1 < i+ 1.

Hence, a <τ b, as desired. �

PROPOSITION 22. All the fair traces generate executions sat-
isfying RVAL.

Proof: Pick a trace τ :

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

where n ∈ N ∪ {ω}. Let (A, vis, so, ar) be an execution
constructed from this trace according to our recipe described
above.

We will first show that

∀i.∀(, , ρ, ,) ∈ Di.∀x ∈ Obj.

∃τ, σ,B. τ = type(x) ∧ σ = ρ(x)

∧B = {a ∈ A | id(a) ∈ idτ (σ)}
∧ ((event(B), event(vis|B), event(ar|B)), σ) ∈ Rτ .

(7)

Our proof is by induction on i. Pick ρ and x as described in
the formula above, and define τ, σ,B again as described in the
formula. We need to show that the last conjunct in the formula
holds. When i = 0,

σ = initτ ∧B = ∅.

Hence, the claimed relationship byRτ in the formula becomes

((∅, ∅, ∅), initτ) ∈ Rτ ,

which holds because it is precisely one of the conditions as-
sumed on Rτ . Now assume that i > 0, and that the formula
in (7) holds for all 0 ≤ j < i. We do the case analysis on the
rule used at the i-th step. If the rule is PROP, no object tables
of replicas change during the i-th step. The last conjunct in
(7) follows from induction hypothesis. The other cases are that
OPS and OPD are used. In these cases, the induction hypothe-
sis gives the desired conclusion except when ρ is the table of a
replica changed by the rule and x is the object affected by the
rule. To take care of this exception, assume that ρ and x are the
table and the object updated by the rule. Then, there exist e, f ,
W0, σ0, B0 and a0 ∈ A such that

(evalτ (e, f,W0, σ0) = (, σ))

∧B0 = {a ∈ A | id(a) ∈ idτ (σ0)}
∧ (∀g. (e, g) 6∈ event(B0))

∧ ((event(B0), event(vis|B0
), event(ar|B0

)), σ0) ∈ Rτ
∧ event(a0) = (e, f)

∧ (B0 ∪ {a0} = B)

∧ {b ∈ B0 | id(b) ∈W0} ⊆ vis−1(a0).

(8)

The third conjunct comes from the well-formedness of config-
urations (OPS) or the conditions in the rule (OPD). The fourth

conjunct holds because of induction hypothesis. The fifth con-
junct is true since for every action id such as e in a fair trace,
there are a, k with ιk = (, a) ∧ id(a) = e (Lemma 12). The
sixth conjunct follows from our assumption on evalτ , the fact
that σ is obtained from σ′ and the following properties of B
and B0:

(B = {a ∈ A | id(a) ∈ idτ (σ)})
∧ (B0 = {a ∈ A | id(a) ∈ idτ (σ0)}).

The seventh conjunct holds because of Lemma 17 (OPD) or
the definition of the rule (OPS). We note two consequences of
the formula in (8):

event(vis|B0
) ∪ {((e′, f ′), (e, f)) | (e′, f ′) ∈ event(B0)

∧ e′ ∈W0}
= event(vis|B0)∪ event({(b, a0) | b∈B0 ∧ id(b)∈W0})
⊆ event(vis|B0∪{a0})

= event(vis|B).

And

event(ar|B0
)

∪ {((e′, f ′), (e, f)) | (e′, f ′) ∈ event(B0) ∧ e′ < e}
∪ {((e, f), (e′, f ′)) | (e′, f ′) ∈ event(B0) ∧ e < e′}

= event(ar|B0
)

∪ event({(b, a0) | b ∈ B0 ∧ id(b) < id(a0)})
∪ event({(a0, b) | b ∈ B0 ∧ id(a0) < id(b)})

= event(ar|B0∪{a0}) = event(ar|B).

By the second condition on Rτ , what we have shown so far
imply that

((event(B), event(vis|B), event(ar|B)), σ0) ∈ Rτ ,

as desired.
Next we use the formula in (7) and prove that this execution

satisfies the RVAL axiom. Pick a ∈ A. By the definition of A,
there exists a unique k such that

ιk = (, a).

Let ρ and x be the table and the object that the OPS rule has
used for creating the action a in the k-th step. Define τ, σ,B as
follows:

τ = type(x) ∧ σ = ρ(x) ∧B = {b ∈ A | id(b) ∈ idτ (σ)}.

Then, by (7),

((event(B), event(vis|B), event(ar|B)), σ) ∈ Rτ . (9)

Meanwhile, B = vis−1(a) by the definition of vis, so that

ctxt(a) = (op(a), event(B), event(vis|B), event(ar|B)).

Furthermore, id(a) 6∈ {id(b) | b ∈ B} by the well-formedness
of the configuration at the (k−1)-th step and the definition of
the OPS rule. Hence, the relationship in (9) implies

(Fτ (ctxt(a)),) = evalτ (id(a), op(a), idτ (σ), σ)).

Since rval(a) is defined to be the value computed by the RHS
function above in the definition of OPS, this in turn gives
rval(a) = Fτ (ctxt(a)), as desired. �

B.5 Correspondence: Axioms for Session Guarantees
Next, we consider axioms about session guarantees. To do so,
we make a few assumptions:

1. We assume that SCtx has the following form:

SCtx = (Obj→ Pfin(AId))× (Obj→ Pfin(AId))× Code

A session context is a tuple of two tables and code,
(R,U,K), where R records all the actions read for each ob-
ject, U does the same for actions performed by the session
and K is the piece of the remaining code to be executed by
the session.

2. We require the following condition on update:

updateτ (x, e, f, σ, ρ, (R,U,K)) w
(R[x 7→ R(x) ∪ idτ (σ)], U [x 7→ U(x) ∪ {e}],K).

where (R′, U ′,K ′) w (R′′, U ′′,K ′′) means that

∀x ∈ Obj. R′(x) ⊇ R′′(x) ∧ U ′(x) ⊇ U ′′(x).

PROPOSITION 23. The following conditions on the enable
predicate imply corresponding session-guarantee axioms as
described:

1. For every fair trace τ , the RYW axiom holds for the execu-
tion generated from τ if

∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x)).

2. For every fair trace τ , the MR axiom holds for the execution
generated from τ if

∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x)).

3. For every fair trace τ , the WFRA axiom holds for the
execution generated from τ if

∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x)).

4. For every fair trace τ , the MWA axiom holds for the execu-
tion generated from τ if

∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x)).

Proof: Consider a fair trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Let (A, so, vis, ar) be the execution constructed from this trace
τ according to our recipe. We go through each item of the list
in the proposition, and show that if the condition in the item
holds, this execution satisfies the axiom mentioned in the item.

Let us start with the first item. Suppose that

∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x)).

Pick a, b ∈ A such that

a
soo−−→ b.

By the definition of soo,

(a
so−→ b) ∧ (obj(a) = obj(b)).

We unpack the definition of so in the first conjunct:

∃k, l. k < l ∧ (, a) = ιk ∧ (, b) = ιl ∧ ses(a) = ses(b).

Then, there are

θ ∈ Sl−1 and δ ∈ Dl−1

such that the OpS rule is applied for θ and δ at the l step in the
trace τ . We note one simple consequence:

(ses(a),) = (ses(b),) = θ.

Let U and ρ be the write table and the object table of θ and δ,
respectively:

(, (, U,)) = θ ∧ (, , ρ, ,) = δ.

The rules in our abstract implementation only increase sets
stored in the U tables of all sessions. Furthermore, the U table
of a session contains the ids of all the operations performed in
the session. These two facts imply that

id(a) ∈ U(obj(a)) = U(obj(b)).

Since the OpS rule is applied at the l step, the following check
by the enable predicate should hold:

enable(obj(b), θ, δ).

Hence, by our supposition on the predicate,

id(a) ∈ U(obj(b)) ⊆ idtype(obj(b))(ρ(obj(b))).

Recall that the definition of the vis relation says that

∀a′ ∈ A. (id(a′) ∈ idtype(obj(b))(ρ(obj(b)))) =⇒ (a′
vis−→ b).

Since id(a) ∈ idtype(obj(b))(ρ(obj(b))), we have (a
vis−→ b), as

desired.
Next, we prove the item about the MR axiom. Suppose that

∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x)).

Consider actions a, b, c ∈ A such that

a
vis−→ b

soo−−→ c.

By the definition of the soo relation, there are k, l such that

k < l ∧ (, b) = ιk ∧ (, c) = ιl

∧ ses(b) = ses(c) ∧ obj(b) = obj(c).

Let θk and δk be the session in Sk−1 and the replica in Dk−1
used in the k-th step of our trace. Similarly, let θl and δl be the
session in Sl−1 and the replica inDl−1 engaged in the l-th step
of our trace. Let Rk, Rl and ρk, ρl be tables such that

(, (Rk, ,)) = θk ∧ (, , ρk, ,) = δk

∧ (, (Rl, ,)) = θl ∧ (, , ρl, ,) = δl.

By our supposition on the enable predicate,

Rl(obj(c)) ⊆ idtype(obj(c))(ρl(obj(c))).

Hence, to complete this case, we only need to show that

id(a) ∈ Rl(obj(c)),

because every action with its id in ρl(obj(c)) becomes related
to c by the vis relation. Since a vis−→ b, by the definition of the
OPS rule,

id(a) ∈ idtype(obj(b))(ρk(obj(b))).

This means that a gets included in the obj(b) entry of the R
table of the session ses(b) after the k-th step. But ses(b) =
ses(c) and the R table of each session only grows by the rules
of our abstract implementation. Hence, id(a) ∈ Rl(obj(b)).
Since obj(b) = obj(c), we get the desired membership of a.

We move on to the WFRA axiom. Suppose that

∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x)).

Consider actions a, b, c ∈ A such that

a
vis−→ b(

soo−−→)∗c.

We should show that a ar−→ c. That is,

id(a) < id(c) ∧ obj(a) = obj(c).

By the definition of vis and Lemma 18,

obj(a) = obj(b).

Also, by the definition of soo,

obj(b) = obj(c).

Hence, obj(a) = obj(c). It remains to show that

id(a) < id(c).

Let k, l be indices of the trace τ such that

k ≤ l ∧ (, b) = ιk ∧ (, c) = ιl.

Also, let

(, (R, ,)) = θl ∈ Sl−1 and (, , ρ, ,) = δl ∈ Dl−1

be the session and the replica that get transformed by the l-th
step of the trace τ . Since the OPS rule is applied on these θl
and δl with respect to the object obj(c), we should have

enable(obj(c), θl, δl).

Because of our supposition on the enable predicate, this im-
plies that

R(obj(c)) ⊆ idtype(obj(c))(ρl(obj(c))).

Note that since all configurations in τ respect time (Lemma 19)
and id(c) is the timestamp of δl, the above subset relationship
entails that

∀a′ ∈ R(obj(c)). id(a′) < id(c). (10)

Since b and c are related by soo, they should have the same
session id. This means that R(obj(c)) includes the ids of all
actions read in the k-th step, which has produced the action b.
Since a vis−→ b, the action a is one of those read actions, so its
id should be in R(obj(c)). Now from (10), we can infer that
id(a) < id(c), as desired.

Finally, we prove the item on the MWA axiom. Suppose
that

∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x)).

Consider a, b ∈ A such that

a
soo−−→ b.

By the definition of soo, there exist indices k, l of the trace τ
such that

k < l ∧ (, a) = ιk ∧ (, b) = ιl

∧ ses(a) = ses(b) ∧ obj(a) = obj(b).

Let

(, (, U,)) = θl ∈ Sl−1 and (, , ρ, ,) = δl ∈ Dl−1

be the session and the replica that are transformed by the l-th
step of the trace τ . Since the OPS rule applies to these session
and replica, we should have that

enable(obj(b), θl, δl).

By the supposition on the enable predicate, this implies that

U(obj(b)) ⊆ ρ(obj(b)).

Furthermore, since all configurations in the trace τ respect time
(Lemma 19) and the timestamp of δl is id(b), we have that

∀a′ ∈ U(obj(b)). id(a′) < id(b).

Recall that all the rules in our implementation only increase
the sets stored in the U part of each session, and they store all
actions performed by the session in its U component. These
properties and the fact that ses(a) = ses(b) imply that

a ∈ U(obj(a)).

Since obj(a) = obj(b), this in turn entails a ∈ U(obj(b)).
Hence,

id(a) < id(b),

from which follows the desired a ar−→ b. �

PROPOSITION 24. The following conditions on the enable
predicate imply corresponding session-guarantee axioms as
described:

1. For every fair trace τ , the WFRV axiom holds for the
execution generated from τ if

(∀x, e, f, σ, ρ, κ. idtype(x)(σ) ⊆ dependtype(x)(e, f, σ, ρ, κ))

∧ (∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x))).

2. For every fair trace τ , the MWV axiom holds for the execu-
tion generated from τ if

(∀x, e, f, σ, ρ, κ. idtype(x)(σ) ⊆ dependtype(x)(e, f, σ, ρ, κ))

∧ (∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x))).

Proof: Consider a fair trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace τ .
We go through both items in the proposition, and show that
if the condition in the item holds, this generated execution
satisfies the axiom mentioned in the item.

First, we prove the case of the WFRV axiom. Suppose that

(∀x, e, f, σ, ρ, κ. idτ (σ) ⊆ dependtype(x)(e, f, σ, ρ, κ))

∧ (∀x,R, ρ. enable(x, (, (R, ,)), (, , ρ, ,))

=⇒ R(x) ⊆ idtype(x)(ρ(x))).

Consider actions a, b, c, d ∈ A such that

a
vis−→ b(

soo−−→)∗c
vis−→ d

Let i, j, k, l be indices of τ andWi,Wj ,Wk,Wl sets of actions
such that

(Wi, a) = ιi ∧ (Wj , b) = ιj ∧ (Wk, c) = ιk ∧ (Wl, d) = ιl.

We should show a
vis−→ d, equivalently,

id(a) ∈Wl.

Since a vis−→ b and c vis−→ d,

(id(a) ∈Wj) ∧ (id(c) ∈Wl).

Hence, it suffices to show that

Wj ⊆Wk ∧Wk ⊆Wl. (11)

Let

(, (Rk, ,)) = θk ∈ Sk−1 and (, , ρk, ,) = δk ∈ Dk−1

be the session and the replica that are updated by the OPS rule
at the k-th step of τ . By the definition of the rule, we should
have

enable(obj(c), θk, δk)

which by our supposition implies that

Rk(obj(c)) ⊆ idtype(obj(c))(ρk(obj(c))). (12)

The set Rk(obj(c)) includes the ids of all the actions on obj(c)
that have been read up to the (k−1)-th step. Since ses(b) =
ses(c) and obj(b) = obj(c), this implies that

Wj ⊆ Rk(obj(c)).

Furthermore, ρk(obj(c)) =Wk, so we have

Wj ⊆Wk,

which is the first conjunct of our proof obligation (11). It
remains to show the second conjunct in (11). Let

(, , ρl, ,) = δl ∈ Dl−1

be the replica that was used to create the action d in the l-th
step. Then,

Wl = idtype(obj(d))(ρl(obj(d))).

Since c vis−→ d, we have that k < l. Also, by the VISWF axiom
(Proposition 21),

obj(c) = obj(d).

If δl and δk are about the same replica,

Wk = idtype(obj(c))(ρk(obj(c)))

= idtype(obj(d))(ρk(obj(d)))

⊆ idtype(obj(d))(ρl(obj(d))) =Wl,

because the ids associated with object tables only grow by the
rules in our abstract implementation. Suppose that δl and δk
are configurations of different replicas. Recall that id(c) ∈ Wl

because c vis−→ d. In order for this to happen, a message

(x′, id(c), f ′,W ′, E′)

for some x′, f ′,W ′, E′ must have been incorporated into the
replica ρl by the application of the OPD rule before the l-th
step. But the only message with the action id id(c) in the trace
is the one generated by the k-th step in the trace τ . Hence,

E′ = dependtype(obj(c))(id(c), , ρk(obj(c)), ,)

⊇ idtype(obj(c))(ρk(obj(c)))

=Wk.

When the OPD rule was applied, it must have shown that every
action id in Wk was incorporated into the obj(c) entry of the
object table in an updated replica. Since the set of actions
associated with the object table of a replica only grows and
obj(c) = obj(d), we can conclude that

Wk ⊆ idtype(obj(d))(ρl(obj(d))) =Wl,

as desired.

Next, we prove the item on the WMV axiom. Suppose that

(∀x, e, f, σ, ρ, κ. idτ (σ) ⊆ dependtype(x)(e, f, σ, ρ, κ))

∧ (∀x, U, ρ. enable(x, (, (, U,)), (, , ρ, ,))

=⇒ U(x) ⊆ idtype(x)(ρ(x))).

Consider a, b, c ∈ A such that

a
soo−−→ b

vis−→ c.

Then,
ses(a) = ses(b) ∧ obj(a) = obj(b).

Let i, j, k be indices of the trace τ and Wi,Wj ,Wk sets of
action ids such that

(Wi, a) = ιi ∧ (Wj , b) = ιj ∧ (Wk, c) = ιk.

We should show that

id(a) ∈Wk.

Let

(, (, Uj ,)) = θj ∈ Sj−1 and (, , ρj , ,) = δj ∈ Dj−1

be the session and the replica involved in the application of the
OPS rule in the j-th step. By our supposition,

Uj(obj(b)) ⊆ idtype(obj(b))(ρj(obj(b))) =Wj .

Since a soo−−→ b and Uj stores all the updates on the session θj ,

id(a) ∈ Uj(obj(b)) ⊆Wj .

Hence, we can discharge our proof obligation simply by show-
ing that

Wj ⊆Wk.

Let

(, (, Uk,)) = θj ∈ Sk−1 and (, , ρk, ,) = δk ∈ Dk−1

be the session and the replica involved in the application of the
OPS rule in the k-th step. Since b vis−→ c,

(k < l) ∧ (obj(b) = obj(c)).

If δl and δk are configurations of the same replica, we have

Wl = idtype(obj(b))(ρl(obj(b)))

⊆ idtype(obj(c))(ρk(obj(c))) =Wk,

because the set of action ids associated with the object table
of a replica only grows by the rules of our abstract implemen-
tation. Suppose that δl and δk are configurations of different
replicas. In order for id(b) to appear in Wk, a message of the
form

(x′, id(b), f ′,W ′, E′)

for some x′, f ′,W ′, E′ must have been incorporated into the
replica δk before the k-th step. But if a message stores the

action id id(b), it should be the one generated by the l-th step.
Hence,

E′ = dependtype(obj(b))(id(b), , ρl(obj(b)), , κ)

⊇ idtype(obj(b))(ρl(obj(b))).

=Wl.

Recall that whenever a message gets incorporated by our OPD
rule, we check that every action ids in the message’s E part
appear in the corresponding entry of the object table of a replica
updated by the rule. Furthermore, the action ids associated with
any entry in the object table of a replica only increase by the
rules of our abstract implementation. Hence,

Wl ⊆ E′

⊆ idtype(obj(b))(ρk(obj(b)))

= idtype(obj(c))(ρk(obj(c))) =Wk,

which is the conclusion that we are looking for. �

B.6 Correspondence: Causality Axioms
PROPOSITION 25. For every fair trace τ , the COCV and
the COCA axioms hold for the execution generated from the
trace τ if

(∀x, e, f, σ, ρ,R, U,K.

idtype(x)(σ) ∪
⋃
y∈Obj

U(y)

⊆ dependtype(x)(e, f, σ, ρ, (R,U,K))) ∧
(∀U, ρ. enable(, (, (, U,)), (, , ρ, ,))

=⇒ ∀x. U(x) ⊆ idtype(x)(ρ(x)))

Proof: Consider a fair trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace τ .
We need to show that the execution satisfies the COCV and
the COCA axioms.

For each binary relation r onA, we say that a setX of action
ids is r-closed if

∀a, b ∈ A. (id(b) ∈ X ∧ (a, b) ∈ r =⇒ id(a) ∈ X).

The key observation behind our proof is that every configura-
tion Si|Di in the trace τ satisfies the following property:

(∀(, , ρ, ,) ∈ Di.
⋃
x∈Obj

idtype(x)(ρ(x)) is hb-closed) ∧

(∀(, , ,M,N)∈Di.∀a, a′ ∈A.∀(, id(a), , , E)∈M ∪N.
(a′, a) ∈ (vis ∪ so) =⇒ id(a′) ∈ E).

This property can be proven by induction on i. When i = 0, the
property holds because S0|D0 is empty. Now consider the case
that i > 0, and suppose that the property holds for all j < i. We
do the case analysis on the rule used in the i-th step. If the rule
is PROP, no new messages are generated, and the object tables
of replicas remain unchanged by the rule. Hence, the property

holds by induction hypothesis. If the rule is OPD, the situation
is similar to the previous case. The only difference lies in one
replica that gets affected by the rule. Let

δ = (, , ρ, ,) and m = (x, e, , , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let σ′ be the new state of a
data type computed by OPD, and a an action in A that has e as
its id. By induction hypothesis, the set⋃

y∈Obj

idtype(y)(ρ(y))

is hb-closed, and

∀a′ ∈ A. (a′, a) ∈ (vis ∪ so) =⇒ id(a′) ∈ E.

Furthermore, by the definition of OPD,

E ⊆
⋃
y∈Obj

idtype(y)(ρ(y)).

By the condition on eval and the definition of OPD,

idtype(x)(σ
′) = idtype(x)(ρ(x)) ∪ {e}.

Recall that hb = (so ∪ vis)+. From what we have proved
follows that the below set is hb-closed as well:⋃

y∈Obj

idtype(y)(ρ[x 7→ σ′](y)).

The remaining case is OPS. Let

θ = (, (, U,)), and δ = (d, t, ρ, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, f,W ′, E′) and a

be the message and the action generated by the rule. Note that
id(a) = e. By the definition of the rule,

∃y. enable(y, θ, δ).

But because of the assumption in the proposition, this implies
that

∀y. U(y) ⊆ idtype(y)(ρ(y)). (13)

Also, because of the assumption on depend in the proposition,

idtype(x)(ρ(x)) ∪
⋃
y∈Obj

U(y) ⊆ E′.

This implies that

∀a′ ∈ A. (a′, a) ∈ (vis ∪ so) =⇒ id(a′) ∈ E′.

Furthermore, from what we have just shown, the condition on
eval and the definition of OPS, it follows that the set of action
ids associated with the updated replica is the following set:

Y = {(t, d)} ∪
⋃
y∈Obj

idtype(y)(ρ(y)).

By the definition of vis, the ids of actions in vis−1(a) are
included in the second argument of the above union. Also,
by (13), those of actions in so−1(a) are also included in the
second argument. These two facts, the definition of hb and the
hb-closedness of the second argument imply that the set Y is
also hb-closed, as desired.

Let us go back to the proof that the execution (A, so, vis, ar)
satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c ∈ A such that

(a
hb−→ c) ∧ obj(a) = obj(c).

By the definition of hb, there exists b ∈ A such that

(a(
hb−→)∗b

so−→ c) ∨ (a(
hb−→)∗b

vis−→ c). (14)

Let i, j, k,Wi,Wj ,Wk be indices and sets of action ids such
that

(Wi, a) = ιi ∧ (Wj , b) = ιj ∧ (Wk, c) = ιk.

Let
θk = (, (, U,)) and δk = (d, t, ρ, ,)

be the configurations of the session and the replica used by the
k-th step of the trace τ . Assume that the first disjunct of (14)
holds. Then,

(j < k) ∧ (id(b) ∈
⋃
x∈Obj

U(x)).

By the assumption in the proposition,⋃
x∈Obj

U(x) ⊆
⋃
x∈Obj

idtype(x)(ρ(x)).

Hence,
id(b) ∈

⋃
x∈Obj

idtype(x)(ρ(x)).

By what we proved about the hb closedness in the first half of
this proof, the set

⋃
x∈Obj idtype(x)(ρ(x)) is hb-closed. Hence,

id(a) ∈
⋃
x∈Obj

idtype(x)(ρ(x)).

By Lemma 18,

id(a) ∈ idtype(obj(a))(ρ(obj(a))) =Wk.

Hence, a vis−→ c as desired. Now assume that the second disjunct
of (14) holds. Then,

id(b) ∈ idtype(obj(c))(ρ(obj(c))) =Wk.

By what we proved about the hb closedness in the first half of
this proof, the set ⋃

x∈Obj

idtype(x)(ρ(x))

is hb-closed. Hence,

id(a) ∈
⋃
x∈Obj

idtype(x)(ρ(x)).

But obj(a) = obj(c), so by Lemma 18,

id(a) ∈ idtype(obj(c))(ρ(obj(c))) =Wk,

from which follows a vis−→ c as desired.
Next, we handle the COCA axiom. Define a total order <τ

on all actions in A as follows:

a <τ b ⇐⇒ id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids
(Lemma 16). We will show that

∀a, b ∈ A. (a ar−→ b ∨ a vis−→ b ∨ a so−→ b) =⇒ a <τ b. (15)

Then, from the transitivity and irreflexivity of <τ follows that

(ar ∪ vis ∪ so)+ = (ar ∪ hb)+

is irreflexive, as desired. Pick a, b ∈ A such that

a
ar−→ b ∨ a vis−→ b ∨ a so−→ b.

Let i, j,Wi,Wj be indices and sets of action ids such that

(Wi, a) = ιi ∧ (Wj , b) = ιj .

If a ar−→ b, then a <τ b by the definition of ar. If a vis−→ b,

id(a) ∈Wj .

Since the configuration Si−1|Di−1 of the trace right before the
i-th step respects time (Lemma 19),

id(a) < id(b).

Hence, a <τ b. The remaining case is that a so−→ b. Let

θj = (, (, U,)) and δj = (d, t, ρ, ,)

be the configurations of the session and the replica used in the
j-th step of the trace τ . Then, since ses(a) = ses(b),

id(a) ∈
⋃
x∈Obj

U(x).

By the assumption of the proposition,⋃
x∈Obj

U(x) ⊆
⋃
x∈Obj

idtype(x)(ρ(x))

Since the configuration Si−1|Di−1 of the trace right before the
i-th step respects time (Lemma 19),

∀a′ ∈
⋃
x∈Obj

idtype(x)(ρ(x)). id(a
′) < (t, d) = id(b).

From what we have proven so far, it follows that

id(a) < id(b),

which gives a <τ b as desired. �

B.7 Correspondence: On-demand Cross Object
Causality

We assume that each operation f is annotated with µ ∈
{ORD,CSL}, as explained in the main text of the paper. Also,
we assume the following two operations for each data type τ :

idcτ : Stτ → Pfin(AId), idoτ : Stτ → Pfin(AId)

such that for every τ and all σ, σ′ ∈ Stτ ,

(idcτ (σ) ∩ idoτ (σ) = ∅ ∧ idcτ (σ) ∪ idoτ (σ) = idτ (σ)) ∧
(∀e, fµ,W. evalτ (e, fµ,W, σ) = (, σ′) =⇒

((µ = ORD =⇒ idoτ (σ
′) = idoτ (σ) ∪ {e}) ∧

(µ = CSL =⇒ idoτ (σ
′) = idoτ (σ) ∪ {e})).

PROPOSITION 26. For every fair trace τ , the on-demand-
causality versions of the COCV and the COCA axioms hold
for the execution generated from the trace τ if

(∀x, e, fµ, σ, ρ,R, U,K.

idctype(x)(σ) ∪
⋃
y∈Obj

U(y)

⊆ dependtype(x)(e, f, σ, ρ, (R,U,K))) ∧
(∀U, ρ. enable(, (, (, U,)), (, , ρ, ,))

=⇒ ∀x. U(x) ⊆ idtype(x)(ρ(x))).

Proof: The proof is almost identical to that of Proposition 25,
except a few changes due to a new definition of hb. We re-
peat the proof of Proposition 25 here but with these required
changes. Consider a fair trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Let (A, so, vis, ar) be an execution generated by this trace τ .
We need to show that the execution satisfies the versions of the
COCV and the COCA axioms for the new definition of hb.

We remind the reader that for each binary relation r on A, a
set X of action ids is said to be r-closed if

∀a, b ∈ A. (id(b) ∈ X ∧ (a, b) ∈ r =⇒ id(a) ∈ X).

The key observation behind our proof is that every configura-
tion Si|Di in the trace τ satisfies the following property:

(∀(, , ρ, ,) ∈ Di.
⋃
x∈Obj

idtype(x)(ρ(x)) is hb-closed) ∧

(∀(, , ,M,N)∈Di.∀a, a′ ∈A.∀(, id(a), fµ, , E)∈M ∪N.
(a′, a) ∈ (so ∪ cvis) =⇒ id(a′) ∈ E)

Note that hb here is (so ∪ cvis)+, not (so ∪ vis)+ in Proposi-
tion 25. This property can be proven by induction on i. When
i = 0, the property holds because S0|D0 is empty. Now con-
sider the case that i > 0, and suppose that the property holds
for all j < i. We do the case analysis on the rule used in the
i-th step. If the rule is PROP, no new messages are generated,
and the object tables of replicas remain unchanged by the rule.
Hence, the property holds by induction hypothesis. If the rule

is OPD, the situation is similar to the previous case. The only
difference lies in one replica that gets affected by the rule. Let

δ = (, , ρ, ,) and m = (x, e, fµ, , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let σ′ be the new state of a
data type computed by OPD, and a an action in A that has e as
its id. By induction hypothesis, the set⋃

y∈Obj

idtype(y)(ρ(y))

is hb-closed, and

∀a′ ∈ A. (a′, a) ∈ (cvis ∪ so) =⇒ id(a′) ∈ E.

Furthermore, by the definition of OPD,

E ⊆
⋃
y∈Obj

idtype(y)(ρ(y)).

By the condition on eval and the definition of OPD,

idtype(x)(σ
′) = idtype(x)(ρ(x)) ∪ {e}.

Recall that hb = (so ∪ cvis)+. From what we have proved
follows that the below set is hb-closed as well:⋃

y∈Obj

idtype(y)(ρ[x 7→ σ′](y)).

The remaining case is OPS. Let

θ = (, (, U,)), and δ = (d, t, ρ, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, fµ,W
′, E′) and a

be the message and the action generated by the rule. Note that
id(a) = e. By the definition of the rule,

∃y. enable(y, θ, δ).

But because of the assumption in the proposition, this implies
that

∀y. U(y) ⊆ idtype(y)(ρ(y)). (16)

Also, because of the assumption on depend in the proposition,(
idctype(x)(ρ(x)) ∪

⋃
y∈Obj

U(y)
)
⊆ E′.

Since idctype(x)(ρ(x)) contains the ids of all actions that are
cvis-related to a, the above subset relationship implies that

∀a′ ∈ A. (a′, a) ∈ (cvis ∪ so) =⇒ id(a′) ∈ E′.

Furthermore, from what we have just shown, the condition on
eval and the definition of OPS, it follows that the set of action
ids associated with the updated replica is the following set:

Y = {(t, d)} ∪
⋃
y∈Obj

idtype(y)(ρ(y)).

By the definition of vis, the ids of actions in vis−1(a) are in-
cluded in the second argument of the above union. This means
that those of actions in cvis−1(a) should also be included, be-
cause cvis−1(a) ⊆ vis−1(a). Also, by (16), the ids of actions in
so−1(a) are also included in the second argument. These two
facts, the definition of hb and the hb-closedness of the second
argument imply that the set Y is also hb-closed, as desired.

Let us go back to the proof that the execution (A, so, vis, ar)
satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c ∈ A such that

(a
hb−→ c) ∧ obj(a) = obj(c).

By the definition of hb, there exists b ∈ A such that

(a(
hb−→)∗b

so−→ c) ∨ (a(
hb−→)∗b

cvis−−→ c). (17)

Let i, j, k,Wi,Wj ,Wk be indices and sets of action ids such
that

(Wi, a) = ιi ∧ (Wj , b) = ιj ∧ (Wk, c) = ιk.

Let
θk = (, (, U,)) and δk = (d, t, ρ, ,)

be the configurations of the session and the replica used by the
k-th step of the trace τ . Assume that the first disjunct of (17)
holds. Then,

(j < k) ∧ (id(b) ∈
⋃
x∈Obj

U(x)).

By the assumption in the proposition,⋃
x∈Obj

U(x) ⊆
⋃
x∈Obj

idtype(x)(ρ(x)).

Hence,
id(b) ∈

⋃
x∈Obj

idtype(x)(ρ(x)).

By what we proved about the hb closedness in the first half of
this proof, the set

⋃
x∈Obj idtype(x)(ρ(x)) is hb-closed. Hence,

id(a) ∈
⋃
x∈Obj

idtype(x)(ρ(x)).

By Lemma 18,

id(a) ∈ idtype(obj(a))(ρ(obj(a))) =Wk.

Hence, a vis−→ c as desired. Now assume that the second disjunct
of (17) holds. Then,

id(b) ∈ idtype(obj(c))(ρ(obj(c))) =Wk.

By what we proved about the hb closedness in the first half of
this proof, the set ⋃

x∈Obj

idtype(x)(ρ(x))

is hb-closed. Hence,

id(a) ∈
⋃
x∈Obj

idtype(x)(ρ(x)).

But obj(a) = obj(c), so by Lemma 18,

id(a) ∈ idtype(obj(c))(ρ(obj(c))) =Wk,

from which follows a vis−→ c as desired.
Next, we handle the COCA axiom. Define a total order <τ

on all actions in A as follows:

a <τ b ⇐⇒ id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids
(Lemma 16). We will show that

∀a, b ∈ A. (a ar−→ b ∨ a cvis−−→ b ∨ a so−→ b) =⇒ a <τ b. (18)

Then, from the transitivity and irreflexivity of <τ follows that

(ar ∪ cvis ∪ so)+ = (ar ∪ hb)+

is irreflexive, as desired. Pick a, b ∈ A such that

a
ar−→ b ∨ a cvis−−→ b ∨ a so−→ b.

Let i, j,Wi,Wj be indices and sets of action ids such that

(Wi, a) = ιi ∧ (Wj , b) = ιj .

If a ar−→ b, then a <τ b by the definition of ar. If a cvis−−→ b,

id(a) ∈Wj .

Since the configuration Si−1|Di−1 of the trace right before the
i-th step respects time (Lemma 19),

id(a) < id(b).

Hence, a <τ b. The remaining case is that a so−→ b. Let

θj = (, (, U,)) and δj = (d, t, ρ, ,)

be the configurations of the session and the replica used in the
j-th step of the trace τ . Then, since ses(a) = ses(b),

id(a) ∈
⋃
x∈Obj

U(x).

By the assumption of the proposition,⋃
x∈Obj

U(x) ⊆
⋃
x∈Obj

idtype(x)(ρ(x))

Since the configuration Si−1|Di−1 of the trace right before the
i-th step respects time (Lemma 19),

∀e′ ∈
⋃
x∈Obj

idtype(x)(ρ(x)). e
′ < (t, d) = id(b).

From what we have proven so far, it follows that

id(a) < id(b),

which gives a <τ b as desired. �

B.8 Correspondence: Fence
To accommodate fences in our abstract implementation, we
need to allow sessions to issue fence instructions. This amounts
to four changes. The first is that the instr function can return not
just operations on objects, but also the fence instruction:

instr : Session→ (Obj× Op) ∪ {fence}.

The second change is the addition of a new function on ses-
sions:

nextCode : Code→ Code.

Given a code part K of a session, this function updates the part
so that it is ready to execute the next command of K. The third
change is the introduction of a new rule for fence:

δ = (d, t, ρ,M,N) δi = (di, ti, ρi,Mi, Ni)
θ = (s, (R,U,K)) instr(θ) = fence
∀y ∈ Obj. U(y) ⊆ idtype(y)ρ(y)
∀i.∀y ∈ Obj. idtype(y)ρ(y) ⊆ idtype(y)ρi(y)
a = ((t, d), s, fence) θ′ = (s, (R,U, nextCode(K)))
δ′ = (d, next(t), ρ,M,N)
δ′i = (di,max(ti, next(t)), ρi,Mi, Ni)

S, θ | δ, δ1, . . . , δn
a−→ S, θ′ | δ′, δ′1, . . . , δ′n

OPF

The fourth change lies in the construction of an execution from
a trace. Consider a fair trace:

τ = (S0,D0, {(ιk,Sk,Dk)}k).

We generate an execution (A, so, vis, ar, sc) from this trace τ
as follows:

A = {a | ∃k. (, a) = ιk ∨ a = ιk},
vis = {(a, b) ∈ A×A | ∃k,W. (W, b) = ιk ∧ id(a) ∈W},
so = {(a, b) ∈ A×A | ∃k, l. k < l ∧ ses(a) = ses(b)

∧ ((, a) = ιk ∨ a = ιk)

∧ ((, b) = ιl ∨ b = ιl)},
ar = {(a, b) ∈ A×A | ∃k, l. (, a) = ιk ∧ (, b) = ιl

∧ id(a) < id(b) ∧ obj(a) = obj(b)},
sc = {(a, b) ∈ A×A | ∃k, l. a = ιk ∧ b = ιl ∧ k < l}.

The soundness of most axioms can be proved by arguments
similar to what we presented so far. Hence, instead of going
through all the axioms, we focus on the four most important
ones: SCWF, THINAIR, COCV and COCA.

PROPOSITION 27. Every fair trace generates executions satis-
fying SCWF and THINAIR.

Proof: Pick a fair trace τ :

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn

where n ∈ N ∪ {ω}. Let (A, vis, so, ar, sc) be an execution
constructed from this trace. We will show that this execution
satisfies SCWF and THINAIR.

Firstly, we prove that the SCWF axiom holds for the execu-
tion. For all k, l, a, b, if

a = ιk ∧ b = ιl ∧ k 6= l

then
op(a) = op(b) = fence ∧ a 6= b,

because of the definition of the rules in our abstract implemen-
tation. This immediately implies that sc is irreflexive. It also
implies the transitivity of sc. To see this, consider a, b, c such
that

a
sc−→ b ∧ b sc−→ c.

By the definition of sc, there exist i, j, k, l such that

i < j ∧ k < l ∧ a = ιi ∧ b = ιj ∧ b = ιk ∧ c = ιl.

By what we have shown above, j = k. Hence, a sc−→ c,
as desired. Now it remains to show that sc is total. Consider
a, b ∈ A such that op(a) = op(b) = fence and a 6= b. By
the definition of the rules in our abstract implementation, there
must exist i, j such that

a = ιi ∧ b = ιj .

Since a 6= b, i must be different from j. Then, i < j or j < i.
Hence,

(a
sc−→ b) ∨ (b

sc−→ a),

as the totality requires.
Secondly, we prove that the execution satisfies the THINAIR

axiom. We note that for every action a ∈ A, there exists a
unique index k such that

(, a) = ιk ∨ a = ιk.

This is because the timestamps of replicas are only increasing
by our rules, and every action in A uses the timestamp of the
accessed replica, which is increased right after the generation
of the action. We write index(a) for the unique index k, and
using this notation, we define a binary relation <τ on A:

a <τ b ⇐⇒ index(a) < index(b).

By definition, <τ is a total order on A. Hence, we can prove
the required acyclicity of so ∪ vis ∪ sc by showing that

∀a, b ∈ A. (a so−→ b ∨ a vis−→ b ∨ a sc−→ b) =⇒ a <τ b.

Consider actions a, b ∈ A. Assume that a so−→ b or a sc−→ b. In
this case, by the definition of so and sc, we have that a <τ b, as
required. The remaining case is that a vis−→ b. By the definition
of vis, there exists a set of actions W such that

((W, b) = ιindex(b)) ∧ (id(a) ∈W). (19)

Recall that the initial configuration S0|D0 has to be empty
by the definition of trace. One consequence of this and the
definition of our rules is that

∀i.∀(, , ρ, ,) ∈ Di.∀x ∈ Obj.∀a ∈ A.
id(a) ∈ idtype(x)(ρ(x)) =⇒ index(a) ≤ i.

Since W in (19) comes from ρ in Dindex(b)−1 and it contains
id(a), it follows from the above implication that index(a) <
index(b). This means that a <τ b, as desired. �

PROPOSITION 28. For every fair trace τ , the fence versions
of the COCV and the COCA axioms hold for the execution
generated from the trace τ if

(∀x, e, fµ, σ, ρ,R, U,K.

idctype(x)(σ) ∪
⋃
y∈Obj

U(y)

⊆ dependtype(x)(e, f, σ, ρ, (R,U,K))) ∧
(∀U, ρ. enable(, (, (, U,)), (, , ρ, ,))

=⇒ ∀x. U(x) ⊆ idtype(x)(ρ(x))).

Proof: The proof is similar to that of Proposition 26. Consider
a fair trace

τ = S0|D0
ι1−→ S1|D1

ι2−→ . . .
ιn−→ Sn|Dn.

Let (A, so, vis, ar, sc) be an execution generated by this trace τ .
We need to show that the execution satisfies the fence versions
of the COCV and the COCA axioms, which use the notion
of hb that accommodates both the fence operator and the on-
demand causal operations.

We remind the reader that for each binary relation r on A, a
set X of action ids is said to be r-closed if

∀a, b ∈ A. (id(b) ∈ X ∧ (a, b) ∈ r =⇒ id(a) ∈ X).

For every a ∈ A, we write index(a) for the unique index k such
that

(a = ιk) ∨ ((, a) = ιk).

Also, for each index i of the trace τ , we let

Fi = {id(a) | a ∈ A ∧ op(a) = fence ∧ index(a) ≤ i}.

The key observation behind our proof is that every configu-
ration Si|Di in the trace τ satisfies the following property:

(∀(, , ρ, ,) ∈ Di. Fi ∪
⋃
x∈Obj

idtype(x)(ρ(x)) is hb-closed) ∧

(∀(, , ,M,N)∈Di.∀a, a′ ∈A.∀(, id(a), fµ, , E)∈M ∪N.
(a′, a) ∈ (so ∪ cvis) =⇒ id(a′) ∈ E ∪ Fi).

Note that hb here is (so ∪ cvis ∪ sc)+. This property can be
proven by induction on i. When i = 0, the property holds
because S0|D0 is empty and for every a ∈ A, index(a) ≥ 1.
We move on to the case that i > 0. Suppose that the property
holds for all j < i. We do the case analysis on the rule used in
the i-th step.

If the rule is PROP, no new messages nor fence actions are
generated, and the object tables of replicas remain unchanged
by the rule. Hence, the property holds by induction hypothesis
and the fact that Fk only increases as k gets larger.

If the rule is OPD, the situation is similar to the previous
case. The only difference lies in one replica that gets affected
by the rule. Let

δ = (, , ρ, ,) and m = (x, e, fµ, , E)

be a replica’s configuration and the message that get used by
the OPD rule in the i-th step. Also, let σ′ be the new state

of a data type computed by OPD, and a the action in A with
id(a) = e; such an action exists because all messages in a
trace are generated together with corresponding actions in our
abstract implementation. Since OPD does not generate a fence
action,

Fi−1 = Fi.

By induction hypothesis, the set

Fi−1 ∪
⋃
y∈Obj

idtype(y)(ρ(y))

is hb-closed, and

∀a′ ∈ A. (a′, a) ∈ (cvis ∪ so) =⇒ id(a′) ∈ E ∪ Fi−1

Furthermore, by the definition of OPD,

E ⊆
⋃
y∈Obj

idtype(y)(ρ(y)).

By the condition on eval and the definition of OPD,

idtype(x)(σ
′) = idtype(x)(ρ(x)) ∪ {e}.

Recall that hb = (so ∪ cvis ∪ sc)+, and that op(a) 6= fence
by the definition of the rules in our abstract implementation.
From what we have proved follows that for every b ∈ A, if
(b, a) ∈ (so ∪ cvis ∪ sc), then id(b) belongs to the following
set:

Fi ∪
⋃
y∈Obj

idtype(y)(ρ[x 7→ σ′](y)). (20)

This fact, Fi = Fi−1 and induction hypothesis imply that the
set above is hb-closed.

The next case is OPS. Let

θ = (, (, U,)), and δ = (d, t, ρ, ,)

be the configurations of the session and the replica affected by
the OPS rule. Let

m = (x, e, fµ,W
′, E′) and a

be the message and the action generated by the rule. By the
definition of the rule,

∃y. enable(y, θ, δ).

But because of the assumption in the proposition, this implies
that

∀y. U(y) ⊆ idtype(y)(ρ(y)).

Also, because of the assumption on depend in the proposition,(
idctype(x)(ρ(x)) ∪

⋃
y∈Obj

U(y)
)
⊆ E′

Since idctype(x)(ρ(x)) contains the ids of all actions that are
causal and vis-related to a, the above subset relationship im-
plies that

∀a′ ∈ A.
level(a′) = CSL ∧ (a′, a) ∈ (vis ∪ so) =⇒ id(a′) ∈ E′.

Also, for every a′ ∈ A, if

∃c. op(a′) = fence ∧ a′ so−→ c
hbo−−→ a

then
index(a′) < index(a).

The details of this consequence are given in the second part of
the proof of Proposition 27. Hence, every such a′ should be in
Fi. From this membership and the fact on E′ above follows
that

∀a′ ∈ A. (a′, a) ∈ (so ∪ cvis) =⇒ id(a′) ∈ E′ ∪ Fi.

This means that the generated message by the rule satisfies the
property that we try to show. All the other messages satisfy
the property as well because of induction hypothesis and the
fact that Fi = Fi−1. By a similar reason, the object tables in
Di other than ρ also satisfy the desired property. It remains
to show that the object table ρ satisfies the property. By the
condition on eval and the definition of OPS, the set of action
ids associated with the updated replica is the following set:

{id(a)} ∪
⋃
y∈Obj

idtype(y)(ρ(y)).

Also,
Fi−1 = Fi.

Now consider the set:

Fi ∪ {id(a)} ∪
⋃
y∈Obj

idtype(y)(ρ(y)). (21)

By the definition of vis, the ids of actions in vis−1(a) are
included in the above union. Also, for every a′ ∈ A, if

∃c. op(a′) = fence ∧ a′ so−→ c
hbo−−→ a

then
a′ ∈ Fi−1 = Fi.

From what we just argued follows that the ids of actions in
cvis−1(a) are included in the set in (21). By the assumption of
the proposition, the ids of actions in so−1(a) are also included
in the same set in (21). Furthermore, sc does not relate non-
fence actions and op(a) 6= fence. Hence, the ids of the actions
in (so ∪ cvis ∪ sc)−1(a) are contained in the set in (21). This
membership and the induction hypothesis imply that the set in
(21) is hb-closed, as desired.

The remaining case is OPF. This rule does not generate
any messages, and Fi−1 ⊆ Fi. So, the desired property on
messages follows from the induction hypothesis. Also, the
rule does not alter any object tables. Thus, it suffices to show
that the fence action generated by the rule does not lead to
the violation of the property on object tables. Let a be the
fence action generated by the rule in the i-th step of the trace.
Consider a′ ∈ A such that

(a′, a) ∈ (so ∪ cvis ∪ sc).

This implies that

index(a′) < index(a). (22)

It suffices to show that

∀(, , ρi, ,) ∈ Di. id(a′) ∈ Fi ∪
⋃
y∈Obj

(idtype(y)(ρi(y))).

This follows from (22), the assumption of the proposition on
the enable predicate, and the definitions of so, cvis and sc.

Let us go back to the proof that the execution

(A, so, vis, ar, sc)

satisfies the COCV and the COCA axioms. We consider the
COCV axiom first. Consider a, c ∈ A such that

(a
hb−→ c) ∧ obj(a) = obj(c).

Let i, k,Wi,Wk be indices and sets of action ids such that

(Wi, a) = ιi ∧ (Wk, c) = ιk.

Then,
i < k

because b hb−→ b′ =⇒ index(b) < index(b′); the details of
this implication are given in the second part of the proof of
Proposition 27. Let

θk = (, (, U,)) and δk = (d, t, ρ, ,)

be the configurations of the session and the replica used by
the k-th step of the trace τ . By what we proved about the hb
closedness in the first half of this proof, the set

Fk ∪
⋃
x∈Obj

idtype(x)(ρ(x))

is hb-closed. Furthermore, a is not a fence action, but a hb−→ c.
Hence,

id(a) ∈
⋃
x∈Obj

idtype(x)(ρ(x)).

This implies

id(a) ∈ idtype(obj(a))(ρ(obj(a))) =Wk,

where we used the fact that obj(a) = obj(c). This gives a vis−→
c, as desired.

Next, we handle the COCA axiom. Define a total order <τ
on all actions in A as follows:

a <τ b ⇐⇒ id(a) < id(b).

This is an irreflexive transitive total order because so is < on
action ids and different actions in A have different action ids.
We will show that

∀a, b ∈ A. (a ar−→ b ∨ a cvis−−→ b ∨ a so−→ b ∨ a sc−→ b)

=⇒ a <τ b.
(23)

Then, from the transitivity and irreflexivity of <τ follows that

(ar ∪ cvis ∪ so ∪ sc)+ = (ar ∪ hb)+

is irreflexive, as desired. Pick a, b ∈ A such that

a
ar−→ b ∨ a cvis−−→ b ∨ a so−→ b ∨ a sc−→ b.

If a ar−→ b, then a <τ b by the definition of ar. If a sc−→ b, then a
and b must be fence actions and we should have that

index(a) < index(b).

The OPF rule ensures that the timestamp of the generated fence
action is smaller than the new timestamps of all replicas, and
no rules in our implementation decrease the timestamps of
replicas. Hence, the above relationship on the indices of a and
b implies that

id(a) < id(b),

which gives a <τ b as desired. By similar reasoning and the
assumption of the proposition on the enable predicate, we can
also conclude that if a so−→ b, then a <τ b. The only remaining
case is that

a
cvis−−→ b.

This case gets split into two subcases:

(∃f. a vis−→ b ∧ op(a) = fCSL) ∨

(∃c. op(a) = fence ∧ a so−→ c
hbo−−→ b).

If the second disjunct above holds, we can again use the similar
reasoning on the timestamps of replicas and the OPF rule.
Since index(a) < index(b) in this subcase, this reasoning
shows that id(a) < id(b). Hence, a <τ b. Now let us assume
that the first disjunct holds. Then, neither a nor b is a fence
action. Let i, j,Wi,Wj be indices and sets of action ids such
that

(Wi, a) = ιi ∧ (Wj , b) = ιj .

Since a vis−→ b, the set Wj should contain id(a). The rules of
our implementation ensure that if an action is generated from
a replica in the trace, it gets an id that is larger than the ids of
any actions applied to the replica so far. Hence, id(a) < id(b),
which gives the desired a <τ b. �

C. Comparison with the C/C++ Memory
Model

Our formalisation allows us to compare different forms of
eventual consistency with memory consistency models imple-
mented by common hardware and programming languages. To
this end, we specialise the axioms in Figure 1 to the case when
all objects are of the type intreg (§2), which corresponds to the
setting of the latter models (Figure 6). The notion of an execu-
tion can be simplified in this case: we define a shared-memory
execution as a tuple (A, so, vis, ar), where (A, so) is a history,
and vis and ar satisfy VISWF and ARWF from Figure 6. Now
write actions do not have incoming vis edges, and the ar rela-
tion totally orders writes to the same object. Read actions have
a single incoming vis edge from the write action it fetches its
value from. According to the RVAL axiom in Figure 6, a read
returns the value written by the vis-related write, or the default
value 0 in its absence. The EVENTUAL axiom is adjusted to
account for the changed type of vis: it prohibits infinitely many

reads to read from writes preceding any given one in ar.
The other axioms in Figure 6 are formulated in the ‘nega-

tive’ form, prohibiting certain configurations in an execution,
rather than in the ‘positive’ form, like in Figure 1, since here
this is more concise. For example, RYW says that a read r
that happened after a write w2 in a session cannot read from
a write w1 earlier in ar. This follows from the RYW axiom in
Figure 1: in an execution in the sense of Definition 5 satisfying
that axiom, the read r has to see the writew2; then according to
RVAL in Figure 1 and the definition of Fintreg, r cannot take its
value from w1. Similarly, the COCV axiom says that, if a read
r causally happens after a write w2, then it cannot read from a
write w1 earlier in ar. As before, this follows from COCV in
Figure 1, which in this case guarantees that, r sees both writes.
There are no axioms corresponding to the WFRV and MWV
session guarantees, because for integer registers, the session
guarantee axioms in Figure 6 are enough to imply per-object
causality: the conjunction of the axioms RYW–MWA in Fig-
ure 6 is equivalent to the conjunction of POCV and POCA.

The resulting consistency model maps to that of C/C++ [8]
as explained in §3.3. The only major difference is that C/C++
has the following weaker analogue of COCA:

¬∃w1, w2. w1

hb **
w2

ar
jj

This does not allow ar to contradict hb, but allows ar edges
for different objects to form cycles with it. As we explained in
§3.3, the stronger version of COCA is validated by common
implementations of causal consistency.

PROPOSITION 29. The system specifications for the axioms of
basic eventual consistency, per-object causal consistency and
causal consistency as defined in Figure 6 and Figure 1 for
intreg are identical.

D. Comparison with Parallel Snapshot
Isolation

Figure 7 gives the pseudocode of the abstract implementation
of parallel snapshot isolation for replicated data types, similar
to the one given by Sovran et al. [30]. We have removed write-
write conflict detection and introduced sessions. See [30] for
the explanation of the implementation. We assume that each
session always accesses the same site. To validate EVENTUAL,
we also assume that the upon statement is subject to a fairness
constraint that every update is eventually delivered to every
site.

THEOREM 30. The set of histories produced by the implemen-
tation in Figure 7 is equal to the one produced by the specifi-
cation in Figure 4, assuming that all objects are of type intreg
and all actions are causal.

PROOF SKETCH. We first show that the set of histories pro-
duced by the implementation in Figure 7 is included into that
specified in Figure 4. Consider a run of the implementation in
Figure 7. We now construct a corresponding execution X and
show that it satisfies the axioms in 4. To construct the arbitra-
tion relation ar, we associate every action a with a timestamp

Figure 6. Eventual consistency axioms specialised to read-write reg-
isters. Variables r, r1, r2 and w,w1, w2 range over read and write ac-
tions, respectively; arg selects the argument of a write.

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWF: ∀w, r. w
vis−→ r =⇒

obj(w) = obj(r) ∧ op(w) = wr ∧ op(r) = rd ∧
(∀w1, w2. w1

vis−→ r ∧ w2
vis−→ r =⇒ w1 = w2)

ARWF: ar is the union of transitive, irreflexive and total orders
on writes to each object

DATA TYPE AXIOM

RVAL: ∀r ∈ A. (∃w.w
vis−→ r ∧ rval(r) = arg(w)) ∨

((¬∃w.w
vis−→ r) ∧ rval(r) = 0)

BASIC EVENTUAL CONSISTENCY AXIOMS

THINAIR: so ∪ vis is acyclic

EVENTUAL:
∀w ∈ A.¬(∃ infinitely many r ∈ A.∃w′. w′ vis−→ r ∧ w′

ar−→ w)

SESSION GUARANTEES (A.K.A. COHERENCE AXIOMS)

RYW: ¬∃r, w1, w2. MR: ¬∃r1, r2, w1, w2.

w1
ar //

vis ''

w2

so��
r

w1
vis // r1

so��
w2

vis
//

ar
OO

r2

WFRA: ¬∃r, w1, w2. MWA: ¬∃w1, w2.

w2
vis // r

so��
w1

ar

gg
w1

so))
w2

ar

ii

CAUSALITY AXIOMS

POCV: ¬∃w1, w2, r. POCA: ¬∃w1, w2.

w1
ar //

vis

33w2
hbo // r

w1

hbo))
w2

ar

ii

COCV: ¬∃w1, w2, r. COCA:

w1
ar //

vis

33w2
hb // r hb ∪ ar is acyclic

t(a), which is a pair of the time when its transaction was com-
mited on its original site and the order of the operation in the
transaction. Then ar is constructed by lexicographically order-
ing the resulting timestamps. Then ARWF and VISWF (for any
definition of vis) hold. To construct the visibility relation vis,
we first construct vis′ relation, relating writes to reads that took
them into account when computing their result in read(). We
then let vis = ((so ∪ vis′)/∼)+, so that COCV is satisfied au-
tomatically. Due to the causality clause in the upon statement,
it is easy to check that the projection of vis to pairs of writes
followed by reads is equal to vis′. Hence, RVAL is satisfied.

For all actions a and b, if a so−→ b or a vis−→ b, then
t(a) < t(b), and thus, THINAIR holds as well. EVENTUAL
is satisfied by the fairness condition associated with the upon
statement. Since all actions in a transaction receive the same
timestamp, the clause for ar in TRANSACT holds; since trans-
actions are appended to logs atomically, so does the clause for
vis. ISOLATION holds, since, in the implementation, operations

Figure 7. Abstract implementation of parallel snapshot isola-
tion by Sovran et al. [30]
Sites: 1..N
Log[N]: log of operations per site
Transaction attributes: site, sessionId, startTs, commitTs[N]

operation startTx(x)
x.startTs := new monotomic timestamp

operation write(x, obj, data)
append (obj, data) to x.updates

operation read(x, obj)
return state of obj from x.updates and Log[site(x)]

up to timestamp x.startTs

operation commitTx(x, obj, data)
x.commitTs[site(x)] := new monotonic timestamp
append x.updates to Log[site(x)] with

timestamp x.commitTs[site(x)]

upon [∃x,s: x.commitTs[site(x)] != ⊥ and
x.commitTs[s] = ⊥ and ∀y such that
y.commitTs[site(x)] < x.startTs : y.commitTs[s] != ⊥]

x.commitTs[s] := new monotonic timestamp
append x.updates to Log[s] with timestamp x.commitTs[s]

performed by an uncommitted transactions are only visible to
that transactions.

Assume that COCA does not hold, and thus, there is a
cycle in (so ∪ vis ∪ ar)/∼. The cycle cannot contain actions
from a single transaction only, as this would contradict the
way we assign timestamps t(a) to actions a. Hence, the cycle
contains actions from multiple transactions. Then every time
we move from one transaction to another one on the cycle, the
first component of the timestamp of the corresponding actions
strictly increases, which yields a contradiction. Hence, COCA
holds, which completes the proof.

We now show that the set of histories produced by spec-
ification in Figure 4 is included into that of the implemen-
tation in Figure 7. To this end, consider an execution X =
(A, so, vis, ar) satisfying the axioms in 4. We construct the cor-
responding run of the implementation as follows. Let ar′ be any
total order on all transactions generated by (ar ∪ vis ∪ so)/∼.
Such an order exists due to COCA. We assume that every ses-
sion has its own dedicated site. The action setA and the session
order so determine the sequences of operations performed by
every session. Every transaction executes atomically and com-
mits straight away in the order given by ar′. Then so, vis and
ar edges are consistent with the timestamps assigned to trans-
actions. Propagation in the upon statement is driven by the vis
edges: when an action a reads an object, we propagate all the
writes that it is supposed to see, as well as their causal prede-
cessors determined by the upon statement, to the site the action
executes on (except the writes that have already been propa-
gated to it). Since so, vis and ar edges are consistent with the
timestamps, all such actions have already been executed. Fur-
thermore, it is easy to check that this in fact propagates only the

actions visible to a. It remains to show that the return value of
read() in the implementation is consistent with the one speci-
fied by the reference execution. Suppose this were not the case.
Then at the time of execution of a read a in the implementation,
its site would contain a write b such that ¬(b vis−→ a). The write
b could only be propagated to the site as a consequence of an
hb dependency from b to a. But then COCV implies that b has
to be visible to a, yielding a contradiction. Hence, the run we
have constructed is indeed a run of the implementation. ut

