
Sound, modular and compositional verification
of the input/output behavior of programs

Willem Penninckx, Bart Jacobs, Frank Piessens

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

Abstract. We present a sound verification approach for verifying in-
put/output properties of programs. Our approach supports defining high-
level I/O actions on top of low-level ones (compositionality), defining
input/output actions without taking into account which other actions
exist (modularity), and other features. As the key ingredient, we devel-
oped a separation logic over Petri nets. We also show how with the same
specification style we can elegantly modularly verify “I/O-like” code that
uses the Template Pattern. We have implemented our approach in the
VeriFast verifier and applied it to a number of challenging examples.

1 Introduction

Many software verification approaches are based on Hoare logic. A Hoare triple [6]
consists of a precondition, a program, and a postcondition. If a Hoare triple is
true, then every execution of the program starting from any state satisfying the
precondition results (if it terminates) in a state satisfying the postcondition.
Hoare logic has been extended to support various features, e.g. aliasing and con-
currency. But a certain limitation is often left untackled. Indeed, the pre- and
postcondition of a Hoare triple typically constrain the behavior of a program
by only looking at the initial and final state of memory. This makes it possible
to prove e.g. that a quicksort implementation sorts properly, but it does not
prevent that e.g. an incorrect result is printed on the screen. For the user of a
program, the proofs about the state of memory of a program are useless if the
result visible on the screen is incorrect. In the end, the performed input/output
must be correct, a problem typically left untouched.

There are some conceptual differences between verifying memory state and
verifying I/O behavior. One difference is that, when verifying memory state,
we only care about the final state. Indeed, if the function that sorts has an
intermediate state that looks like garbage, but then cleans up and still gives a
correctly sorted output, we are happy. In contrast, when verifying input/output
we do care about the intermediary state. If e.g. the calculator displays the wrong
output on the screen and then the right output, this is a bad calculator, even
though the final image displayed on the screen is correct.

Another difference is that termination is usually a desired property of pro-
grams not performing I/O, but often undesired for programs performing I/O.
For example, a quicksort implementation should always terminate, but a text
editor should not.



However, just verifying I/O properties is not the interesting challenge itself.
The interesting challenges are the side constraints such as compositionality and
modularity:

Modularity A programmer of a library typically does not consider all possible
other libraries that might exist. Still, a programmer of an application can use
multiple libraries in his program, even though these libraries do not know of each
other’s existence. Similarly, we want to write specifications of a library without
keeping in mind existence of other libraries.

Compositionality In regular software development, a programmer typically does
not call the low-level system calls. Instead, he calls high-level libraries, which
might be implemented in terms of other libraries, themselves implemented on
top of yet other libraries, and so on. This is the concept of compositionality. The
verification approach for I/O should support programs written in a compositional
manner. Furthermore, it should be possible to write the formal I/O specifications
themselves in a compositional manner, i.e. in terms of other libraries’ I/O actions
instead of in terms of the low-level system calls.

Other Besides compositionality and modularity, the I/O verification should also

– be static, i.e. detecting errors at compile time, not at run time.

– be sound, i.e. not searching for most bugs, but proving absence of bugs.

– blend in well with existing verification techniques that solve other problems
like aliasing

– support non-deterministic behavior (e.g. operations can fail, or return un-
specified values, like reading user input)

– support impricise specifications (e.g. the specifications describe two possi-
bilities and the implementor can choose freely). The number of possibilities
can be large, e.g. “print a number less than 0”.

– support arguments for operations (e.g. when writing to a file, the content
and the filename are arguments that should be part of the specifications)

– support unspecified ordering of operations. If the order is unimportant, the
specification should not fix them such that the implementor can choose freely.

– support specifying ordering of operations, also if the operations are specified
and implemented by independent teams. For example, it might be necessary
that the put-shield-on operation happens before the start-explosion opera-
tion.

– support both non-terminating and terminating programs: a non-terminating
program can still only do the allowed I/O operations in the allowed order, and
a terminating program is only allowed to terminate after it has performed
all desired I/O operations.

– support operations that depend on the outcome of the previous operation,
e.g. a specification like “read a number, and then print a number that is one
higher than the read number”.

2



This paper proposes an elegant way to perform input/output verification
based on separation logic. It supports all the requirements explained above.
We consider soundness, compositionality, and modularity the more interesting
properties.

This paper does not include an approach to prove liveness properties. For
both non-terminating and terminating programs, the approach presented in this
paper allows to prove that all performed I/O is correct and in the correct order,
but for non-terminating programs it does not provide a way to prove that any
I/O happens. For terminating programs, the approach allows to prove that the
intended I/O has happened upon termination.

The remainder of this paper is organized as follows. Section 2 defines a basic
programming language supporting I/O. Section 3 uses this language to explain
the verification approach. Section 4 proves soundness of this approach. Section 5
gives some examples. Section 6 provides a quick look at what is different and
common in verifying I/O behavior and memory state. Section 8 concludes and
points out future work.

2 The programming language

We define a simple programming language that supports performing I/O.
v ∈ VarNames, n, r ∈ Z, bio ∈ BioNames, f ∈ FuncNames

e ::= n | v | e+ e | e− e | head(e) | nil | e :: e | e++ e | tail(e) | true | ¬ e | e = e
| e ∧ e | e < e

c ::= skip | v := e | c; c | if e then c else c | while e do c | v := bio(e) |
v := f(e)

For lists, we use the infix functions ++ for concatenation and :: for cons.
We write the empty list as nil. We frequently notate lists with overline, e.g. e
denotes a list of expressions. We leave the technical parts implicit, e.g. when two
lists are expected to have the same length. Sometimes we use such a list as a
set. We use simple mathematical functions for lists with their expected meaning,
e.g. tail and distinct.

The language is standard except that it supports doing Basic Input Output
actions (BIOs). A BIO can be thought of as a system call, but for readability
we use names (bio ∈ BioNames) as their identifiers instead of numbers. The
arguments of a BIO can be considered as data that is output to the outside
world, while the return-value can be considered as data that is input from the
outside world. This way, a BIO allows doing both input and output.

We define Commands as the set of commands creatable by the grammar
symbol “c” and quantify over it with c. Stores = VarNames ⇀ (Z ∪ Z∗),
quantified over by s. Here, Z∗ denotes the set of lists of integers. The partial
function Stores maps the program variables to their current value.

We assume a set FuncDefs ⊂ {(f, v, c) | f ∈ FuncNames ∧ v ∈ VarNames∗ ∧
c ∈ Commands ∧ mod(c) ∩ v = ∅ ∧ distinct(v)}. Here, mod(c) returns the set
of variables that command c writes to. FuncDefs represents the functions of the

3



Assign

s, v := e ⇓ s[v := JeKs],nil,done

IfThen
JeKs = true s, cthen ⇓ s′, τ, κ

s, if e then cthen else celse ⇓ s′, τ, κ

IfElse
JeKs 6= true s, celse ⇓ s′, τ, κ

s, if e then cthen else celse ⇓ s′, τ, κ

WhileIn
JeKs = true s, c ; while e do c ⇓ s′, τ, κ

s,while e do c ⇓ s′, τ, κ

WhileOut
JeKs 6= true

s, while e do c ⇓ s, nil,done

Skip

s, skip ⇓ s,nil,done

Seq
s1, c1 ⇓ s2, τ2,partial

s1, c1; c2 ⇓ s2, τ2,partial

Seq2
s1, c1 ⇓ s2, τ1,done s2, c2 ⇓ s3, τ2, κ

s1, c1; c2 ⇓ s3, τ1 ++ τ2, κ

Empty

s, c ⇓ s, nil,partial

Bio
i ∈ Z

s, v := bio(e) ⇓ s[v := i], bio(JeKs, i) :: nil,done

FuncCall
∅[v := JeKs], c ⇓ sf , τ, κ (f, v, c) ∈ FuncDefs

s, v := f(e) ⇓ s[v := JresultKsf ], τ, κ

Fig. 1: Step semantics

program under consideration. Note that we disallow functions for which the body
assigns to a parameter of the function. We also disallow overlap in parameter
names. For simplicity, we only consider functions and programs without (mutual)
recursion.

For better readability, we use abbreviations with the expected meaning,
e.g. e1 6= e2 means ¬(e1 = e2) and f(e) means v := f(e) for a fresh v.

Evaluation of the expression e using store s is written as JeKs. We write JeK as
JeK. Evaluation of the expressions consisting of a variable is defined as JvKs = s(v)
(if v defined in s, otherwise unspecified). Evaluation of the other expressions is
defined as Jop(e)Ks = op(JeKs) where op is an operator with zero arguments
(for constants, e.g. true, 2, or nil) or more. For example, Jtail(e)Ks = tail(JeKs),
Je1 + e2Ks = Je1Ks + Je2Ks and J2Ks = 2. Expressions that are not well-typed
evaluate to an unspecified value, e.g. head(0) can evaluate to nil and to true.

Step semantics We define Traces as the set of lists over the set {bio(n, r) | bio ∈
BioNames ∧ n ∈ Z∗ ∧ r ∈ Z}. An element of the list, bio(n, r), expresses the
BIO bio has happened with arguments n and return value r. The order of the
items in the list expresses the order in time in which they happened. We quantify
over Traces with τ .

4



Continuations = {partial,done}, quantified over by κ.
Figure 1 shows the step semantics, relating a store and a command to a new

store, a trace and a continuation. In Figure 1, f [a := b] denotes the (partial)
function obtained by updating the (partial) function f :

f [a := b] = { (x, y) | (x 6= a ∧ x ∈ dom(f) ∧ y = f(x))
∨ (x = a ∧ y = b) }

Note that the step semantics do not only support terminating runs, but also
partial runs. This allows us to verify the input/output behavior of programs that
do not always terminate, e.g. a server.

3 Verification approach

We present an approach to verify input/output-related properties of programs.
The first subsection gives an informal intuition of how the approach works.
Subsection 3.2 defines the approach formally.

3.1 Informal introduction

This subsection describes an intuitive understanding of the I/O verification ap-
proach using simple examples.

t1

beep(0)

t2

beep(0)

t3

laser on(0)

t4

(a)

t2

beep(0)

t3

laser on(0)

t4

(b)

Fig. 2: Visual representation of a heap and one execution step thereof

Figure 2a shows a Petri net. The circles are called places, the black bars
actions1, and the dots in a circle are called tokens. This figure expresses that the
program can beep twice, and afterwards (not earlier) turn on a laser beam. In-
stead of a graphical notation, we can describe the same as a multiset: {[token(t1),
beep(t1, 0, t2), beep(t2, 0, t3), laser on(t3, 0, t4)]}. We call such a multiset a heap.
The Petri nets in this subsection are graphical representation of heaps. You can
ignore the zeroes for now.

In general, an assertion describes constraints. The assertion x > 10 constrains
the program variable x to be greater than 10. Therefore, it constrains the store
which maps program variables to values. Besides the store, an assertion also
constrains the heap.

1 In Petri net terminology actions are called transitions.

5



token(T1) ∗ beep(T1, , T2) ∗ beep(T2, , T3) ∗ laser on(T3, , T4) is
an assertion satisfied by the heap given earlier (together with a store and an
interpretation mapping the logical variable T1 to the place t1, T2 to t2 and so
on). You can ignore the underscore arguments for now.

Let’s look at how we use an assertion. We write it in a Hoare triple as follows:{
token(T1) ∗ beep(T1, , T2) ∗ beep(T2, , T3) ∗ laser on(T3, , T4)

}
beep();
beep();
laser on(){
token(T4)

}
One might be surprised that the intended I/O behavior is written in the

precondition, while in the mindset of verifying memory state we have the habit
of writing what the program does in the postcondition. Programs performing
I/O are relatively often not intended to always terminate, and thus do not
always reach the postcondition. You can consider the subassertions such as
beep(T2, , T3) as permissions: a permission to execute an action under certain
constraints.

You could associate with each point during execution of a program a heap, a
store and an interpretation that describe the state of the program: e.g. if before
the instruction x := x + 1, the store is {(x, 0)}, then after that instruction the
store is {(x, 1)}. We do not use a heap during concrete execution of a program,
but you can apply the same reasoning for the heap: after executing an I/O
action, the permission to do so disappears from the heap2, the token disappears,
and a new token appears; see Figure 2b. After completely executing the example
program starting from the example heap, the heap is thus {[token(t4)]}. Now look
at the postcondition: it exactly constrains this to be the heap. In other words,
the program is only allowed to terminate after having performed the actions.

Consider a program that reads one byte, and then outputs the same byte.
Two of the many possible heaps that describe this behavior are {[token(t1),
read(t1, ‘x’, t2),write(t2, ‘x’, 0, t3)]} and {[token(t1), read(t1, ‘y’, t2),write(t2, ‘y’, 0,
t3)]}. Since the world or environment can “return” different bytes when reading
a byte, multiple heaps are required to describe all possible behaviors of the
program.

The precondition token(T1) ∗ read(T1, ‘x’, T2) ∗ write(T2, ‘x’, , T3) con-
strains the byte read to be ‘x’, and the byte written to be ‘x’. Of the heaps given
in the previous paragraph, only the first one models this precondition. Asser-
tions can constrain the environment or the program, or both. read(T1, ‘x’, T2)
constrains the value read from the world will be ‘x’. This constrains the world or
the environment. write(T2, ‘x’, , T3) states that the program must write value
‘x’. This constrains the program. In both heaps and assertions, the last argument
(that is not a place) of an action constrains the environment (input argument)

2 This differs from the standard way of executing Petri nets where one usually does
not remove parts of the Petri net during execution.

6



and the others constrain the program (output arguments). In the previous ex-
amples, the arguments with value zero in heaps and the arguments written as
underscores in assertions were input arguments we were not interested in.

While constraining the environment can be useful, it is undesired in this ex-
ample. A precondition that describes the intended behavior of the program that
reads one byte and then prints that byte is: token(T1) ∗ read(T1, X, T2) ∗
write(T2, X, , T3). In assertions, arguments of I/O actions can be any expres-

sion, and expressions in assertions can refer to program variables and logical
variables such as X.

Quite often, the behavior of programs depends on the behavior of the environ-
ment. It is possible to write preconditions that take this into account, for exam-
ple: token(T1) ∗ read(T1, X, T2) ∗ if X > 10 then write(T2, X+1, , T3) else
T3 = T2. This assertion specifies the behavior of a program that reads a number
and outputs one number higher if the number read is greater than ten. Note that
writing this assertion is more convenient than writing or drawing all intended
heaps.

For most nontrivial preconditions, a large (possibly infinite) number of heaps
satisfy the precondition. This is necessary, because when thinking of the heaps as
something executable, we will not know which of these heaps we will execute: it
depends on the behavior of the environment, which we do not know in advance.

Let us try to write a contract for a program that reads a whole file. It
needs read-permissions until end of file (EOF) has been read. Reading a negative
number indicates reading EOF. We do not want the program to read past EOF,
so we should not give more read-permissions than necessary. How many read-
permissions we should write in the precondition thus depends on the behavior
of the environment. We can write such a contract by defining a high-level I/O
action as follows:

predicate reads(T1,Text, T3) = ∃R.∃T2.
read(T1, R, T2) ∗
if R < 0 then Text = nil ∗ T3 = T2

else (reads(T2,Sub, T3) ∗ Text = R :: Sub)

Note that this definition uses recursion. As we will see in the formal expla-
nation, we allow infinite recursion (contrary to [10]), which is useful for e.g. a
program that reads temperature sensor values forever.

Low-level actions that are not defined on top of other actions are called
BIO actions. When verifying a program that uses an unverified library, the BIO
actions can be actions provided by that library. If all libraries are verified but
the kernel is not, BIO actions are system calls to the kernel.

In a contract both can be used, so{
token(T1) ∗ reads(T1,Text, T2)

}
c
{

token(T2)
}

is a valid contract. In heaps only BIO actions are present. So {[token(t1), read(t1,
‘x’, t2), read(t2,−1, t3)]} is a valid heap for the precondition of this contract (to-
gether with an interpretation mapping T1 to t1, T2 to t3 and Text to the list
‘x’ :: −1 :: nil).

7



t1

split

ta1 beep(0) ta2 write(‘a’, 0) ta3

tb1 write(‘b’, 0) tb2 write(‘c’, 0) tb3

join

t2

Fig. 3: Interleaving of actions

t1

write(‘a’, 0)

write(‘b’, 0)

t2

Fig. 4: Underspecifica-
tion for actions

Figure 4 allows underspecification of actions: it
allows to write ‘a’ and ‘b’ (but not both). A pre-
condition of which this is a heap is token(T1) ∗
write(T1, ‘a’, , T2) ∗ write(T1, ‘b’, , T2). It simply

contains both permissions.
Instead of two write permissions, we can also

write a contract with a write permission and
a “dummy” I/O permission no op, like this:
token(T 1) ∗ no op(T 1, T 2) ∗ write(T 1, ‘a’, , T 2).
This precondition expresses the program is allowed
to write ‘x’ or terminate without performing any I/O.

Figure 3 allows arbitrary interleavings of beeping
and writing ‘a’, and, writing ‘b’ and ‘c’. The transition labeled split does not
perform I/O. When executing this heap, the split transition splits the token of
place t1 into two tokens: one for ta1 and one for tb1. Both tokens can then be
used to execute a transition. This allows interleaving of actions3. The transition
labeled join does the inverse of split: it merges two tokens into one. It only does
this when both ta3 and tb3 have a token.

A Hoare triple with a precondition of which Figure 3 is a model is:
token(T1) ∗ split(T1, Ta1, Tb1)
∗ beep(Ta1, , Ta2) ∗ write(Ta2, ‘a’, , Ta3)
∗ write(Tb1, ‘b’, , Tb2) ∗ write(Tb2, ‘c’, , Tb3)
∗ join(Ta3, Tb3, T2)


write(‘b’);
beep();
write(‘c’);
write(‘a’){
token(T2)

}
The following is an incorrect program for the contract of the Hoare triple:

write(‘b’);write(‘a’);write(‘c’); beep().
You might have noticed the precondition of the above contract can also be

written without split and join by writing all possible interleavings by hand.

3 It is also worth mentioning that split and join allow one to write contracts for
multi-threaded programs.

8



However, split and join are very useful in combination with high-level I/O
actions. Suppose we want to write a contract for Unix’s cat, a program that
reads a file and writes what it reads. We do not want to force cat to read the
whole file before it starts writing, and we also do not want to enforce a fixed buffer
size. If we define a high-level I/O action writes, similar to reads, we can write the
precondition of cat as token(T1) ∗ split(T1, Tr1, Tw1) ∗ reads(Tr1, Xs, Tr2) ∗
writes(Tw1, Xs, Tr2) ∗ join(Tr1, Tw1, T2).

3.2 The verification approach from a formal point of view

Heaps We use countably infinite multisets where an element can have a count-
ably infinite number of occurrences. We define NatInf = N∪ {∞}. We represent
a multiset of a set X as X → NatInf. This allows infinitely many occurrences of
items in the multiset. We define addition of any elements a and b in NatInf as
follows (+N denotes addition of natural numbers):

a+ b =

{
a+N b if a 6=∞∧ b 6=∞
∞ otherwise

For multisets A and B, A + B yields the multiset such that (A + B)(x) =
A(x) +B(x). Example: {[1, 1, 2]}+ {[1, 2, 3]} = {[1, 1, 1, 2, 2, 3]}

Let X be a multiset of multisets. We define the union of X, written ΣX, as
follows.

(ΣX)(y) =

{∑
u∈X u(y) if |{u ∈ X|u(y) > 0}| ∈ N ∧ ∀u ∈ X.u(y) ∈ N

∞ otherwise

We associate with each point during the execution of the program a multiset
of permissions which we call the program’s heap at that point. Such a permission
is e.g. a permission to write to a file. For simplicity, the programming language
used in this paper does not support dynamic memory allocation, so we do not
use the heap for memory footprint or for the state of memory and the concrete
execution does not use a heap. If desired, support for dynamic memory allocation
with classic separation logic can easily be integrated.

We consider a set Places containing an infinite number of places.
We define Chunks as {token(t) | t ∈ Places} ∪ {join(t1, t2, t3) | t1, t2, t3 ∈

Places} ∪ {split(t1, t2, t3) | t1, t2, t3 ∈ Places} ∪ {bio(t1, n, r, t2) | bio ∈
BioNames ∧ n ∈ Z∗ ∧ r ∈ Z ∧ t1, t2 ∈ Places} and Heaps as Chunks→ NatInf.

The intuitive meaning of a heap is given in Sec. 3.1.

Assertions Assertions, P , and assertion expressions, E, are written in the fol-
lowing grammar:

V ∈ LogicalVarNames, p ∈ PredNames.

E ::= n | v | V | E + E | E − E | head(E) | E++E | E :: E | tail(E) | true |
nil | E = E | ¬E | E < E

9



P,Q,R ::= E | emp | P ∗ P | bio(E,E,E,E) | split(E,E,E) | join(E,E,E) |
no op(E,E) | token(E) | p(E) | P ∨ P | ∃V. P | ~V ∈ZP | ~V ∈Z∗P

Assertions can refer to both program variables and logical variables. Logical
variables do not appear in programs and remain constant. An interpretation
maps logical variables to their value, similar to a store for program variables,
but a value can also be a place in Places.

Interpretations = LogicalVarNames ⇀ (Z ∪ Places ∪ Z∗). We quantify over
interpretations with i. We start logical variable names with a capital.

JvKs,i = s(v) and JV Ks,i = i(V ) (unspecified if s and i does not contain v
and V respectively). Evaluation of the other assertion expressions is defined as
Jop(e)Ks,i = op(JeKs,i) where op is an operator with zero or more arguments.

For a formula P , P [e/v] is the formula obtained by replacing all free oc-
currences of the variable v with the expression e. We write P [e/v] for multiple
simultaneous replacements. We also use this notation for replacing logical vari-
ables with logical expressions.

We use underscore, , for assertion expressions we are not interested in; the
meaning of P [ /V ] is ∃V.P .

We write assertions of the form if E then P else Q ∗ R; this is shorthand
notation for ((E ∗ P ) ∨ (¬E ∗Q)) ∗R. We abbreviate multiple existential quan-
tifications, e.g. ∃A,B is shorthand for ∃A.∃B. We use standard abbreviations
for boolean expressions with their expected meaning, e.g. E1 > E2 ∨E1 = E2 is
abbreviated as E1 ≥ E2, and ¬(E1 = E2) as E1 6= E2.

Assertions constrain the store, the heap and the interpretation. Figure 5 for-
mally defines the semantics of assertions. It uses addition and union of multisets
as defined in Sec. 3.2 (p. 9).

emp asserts that the heap is empty and ∗ is the separating conjunction [12].
The meaning of token, BIO, no op, split and join assertions is explained

in Sec. 3.1.

Predicates We use predicates based on and similar to [10]. A predicate can be
considered as a named parameterized assertion, but the assertion can contain
predicate names, including the name of the predicate itself. They are used for
defining new input/output actions on top of BIO actions, other predicates, and
the predicate itself. As example of a predicate definition that defines the action
of reading repeatedly until an error or end of file is encountered is given in
Section 3.1 (p. 7). Our definition of predicates is nonstandard, as we will see
later, and allows infinite recursion.

We write PredDefs for the set of predicate definitions for the program under
consideration. This is the set of definitions for (the contracts of) a particu-
lar program, not the set of all possible definitions. PredDefs ⊂ PredNames ×
LogicalVarNames∗ × P.

We define J as PredNames × (Z ∪ Z∗ ∪ Places)∗ × Heaps. For predicates,
we define a context Ifix ⊆ J which expresses, for a given predicate name and
argument values, the heap chunks a predicate assertion covers.

Let us define Ifix. Consider the function f :

10



I, s, h, i |= E ⇐⇒ JEKs,i = true ∧ h = {[ ]}

I, s, h, i |= bio(E1, E,Er, E2) ⇐⇒ h = {[bio(JE1, E,Er, E2Ks,i)]}

I, s, h, i |= join(E1, E2, E3) ⇐⇒ h = {[join(JE1, E2, E3Ks,i)]}

I, s, h, i |= split(E1, E2, E3) ⇐⇒ h = {[split(JE1, E2, E3Ks,i)]}

I, s, h, i |= no op(E1, E2) ⇐⇒ h = {[no op(JE1, E2Ks,i)]}

I, s, h, i |= token(E) ⇐⇒ h = {[token(JEKs,i)]}

I, s, h, i |= emp ⇐⇒ h = {[ ]}

I, s, h, i |= P ∗Q ⇐⇒ ∃h1, h2 . h1 + h2 = h ∧ I, s, h1, i |= P ∧
I, s, h2, i |= Q

I, s, h, i |= p(E) ⇐⇒ (p, (JEKs,i), h) ∈ I

I, s, h, i |= P ∨Q ⇐⇒ (I, s, h, i |= P ) ∨ (I, s, h, i |= Q)

I, s, h, i |= ∃V. P ⇐⇒ ∃x ∈ Z ∪ Z∗ ∪ Places. I, s, h, i |= P [x/V ]

I, s, h, i |= ~V ∈ZP ⇐⇒ ∃f : Z → Heaps . h = Σn∈Zf(n) ∧ ∀n ∈
Z . I, s, f(n), i |= P [n/V ]

I, s, h, i |= ~V ∈Z∗P ⇐⇒ ∃f : Z∗ → Heaps . h = Σl∈Z∗f(l) ∧ ∀l ∈
Z∗ . I, s, f(l), i |= P [l/V ]

Fig. 5: Satisfaction relation of assertions

f : P(J)→ P(J) : j 7→ { (p, (x), h) ∈ J | ∃V , P. (p, (V ), P ) ∈ PredDefs ∧
j, ∅, h, ∅ |= P [x/V ] }

We will prove that f has a greatest fixpoint and define Ifix as the greatest
fixpoint of f . The reason we take the greatest fixpoint instead of the least, is
such that we can specify I/O behavior of programs that do not have a condition
(such as: user clicks exit button) to terminate. Consider for example the following
predicate definition: predicate inf print(T 1, X) = ∃T 2 . print(T 1, X, , T 2) ∗
inf print(T 2, X + 1). In case we use the greatest fixpoint, this expresses the
action of printing a sequence of numbers (e.g. 1, 2, 3, . . . ). If we would have
chosen to take the least fixpoint, the predicate inf print would be equivalent to
false, and we would not be able to specify the I/O behavior of this never ending
program.

To prove that the greatest fixpoint of f exist, we will apply Knaster-Tarski’s
theorem which states that any monotone function on a complete lattice has a
greatest and a least fixpoint.

We consider the partial order relation ⊆. Note that J,⊆ is a complete lattice.

We have to show that f is monotone, i.e. that for any j1, j2 ∈ J such that
j1 ⊆ j2, then f(j1) ⊆ f(j2). Take such a j1 and j2. Let y ∈ f(j1) (in case this is
impossible, i.e. f(j1) = ∅, it immediately follows that f(j1) ⊆ f(j2)). Because y ∈
f(j1), y ∈ {(p, (x), h) | ∃V , P. (p, (V ), P ) ∈ PredDefs ∧ j1, ∅, h, ∅ |= P [x/V ]}. It

11



suffices to show that ∀j1, j2, s, h, i, P. j1 ⊆ j2 ⇒ j1, s, h, i |= P ⇒ j2, s, h, i |= P .
This can easily be proven by induction on P . Note that negation of assertions is
syntactically disallowed.

Big star The big star operator, ~, allows to easily express an infinite number
of permissions. If one would accept ‘. . .’ in formulae, we could write ~V ∈ZP as
P [0/V ] ∗ P [1/V ] ∗ P [−1/V ] ∗ P [2/V ] ∗ P [−2/V ] ∗ . . .. The following example
expresses the permission to print any number greater than 20.

token(T 1) ∗ ~V ∈Z (if V > 20 then print(T 1, V, , T 2) else emp)

Besides the big star operator, predicates also allow us to express an infi-
nite number of permissions. The big star operator therefore does not increase
expressiveness, but it increases convenience.

Validity of Hoare triples Intuitively, the Hoare triple {P} c {Q} expresses
that the program c satisfies the contract with precondition P and postcondition
Q. We give a simple example of a Hoare triple:{

token(T 1) ∗ print(T 1, 1, , T 2) ∗ print(T 2, 2, , T 3)
}

print(1); print(2){
token(T 3)

}
The contract of this program states that the program can write the numbers

1 and 2 in this order. If the program terminates, it has performed these actions.
Note that a program that satisfies the contract cannot perform any other

I/O operations, cannot do them in another order, cannot do them more than
once, etc. For more interesting examples, see Section 5.

We define a relation traces ⊂ (Heaps×Traces× (Heaps∪ {⊥})) in Figure 6.{
h
}
τ
{
g
}

denotes (h, τ, g) ∈ traces.
A heap expresses a permission to execute a (potentially infinite) sequence

of BIO actions (with certain arguments). Multiple sequences of actions can be
allowed by a heap. (h, τ, g), where g 6= ⊥, expresses that h allows to perform the
sequence of actions τ followed by a sequence of actions allowed by the heap g.

An element in the heap can make a prediction about the environment, e.g.
bio(t1, n, r, t2) predicts performing the BIO bio with arguments n (starting at
place t1) will have return-value r. If a programs performs a BIO where the
environment violates a prediction, the program can then perform any sequence
of BIOs. In that case, we write (h, τ,⊥). This expresses the sequence of actions
τ is allowed by h: τ will consists of a (potentially empty) list of allowed actions
where the environment did not break a prediction, followed by an action where
the environment broke a prediction, followed by any (finite, infinite or empty)
sequence of actions.

Also note that a heap can contradict itself, e.g. {[token(t1), somebio(t1, 2,
t2), somebio(t1, 3, t2)]}. It contradicts itself because it says performing the BIO
somebio (starting at place t1) will return 2 and will return 3.

12



TraceBio{
{[token(t1), bio(t1, n, r, t2)]}

}
bio(n, r) :: nil

{
{[token(t2)]}

} TraceNil{
{[ ]}
}

nil
{
{[ ]}
}

TraceFrame{
h
}
τ1
{
h′
}{

h+ hr

}
τ1
{
h′ + hr

} TraceComposition{
h
}
τ1
{
h0

} {
h0

}
τ2
{
h′
}{

h
}
τ1 ++ τ2

{
h′
} TraceLeak{

h
}
τ
{
h′ + hr

}{
h
}
τ
{
h′
}

TraceSplit{
{[token(t1), split(t1, t2, t3)]}

}
nil
{
{[token(t2), token(t3)]}

}
TraceJoin{
{[token(t1), token(t2), join(t1, t2, t3)]}

}
nil
{
{[token(t3)]}

}
TraceContradict
r 6= r′

{
h1

}
τ1 ++ bio(n, r) :: τ2

{
h2

}{
h1

}
τ1 ++ bio(n, r′) :: τ3

{
⊥
}

Fig. 6: Definition of the traces relation. h quantifies over Heaps, not Heaps ∪ ⊥.

We define validity of a Hoare triple. Intuitively, it expresses that any exe-
cution starting from a state (a store s, a heap h and an interpretation i) that
satisfies the precondition, results in a trace that is allowed by the heap h. In
case the execution is a finished one (i.e. the program terminated) and the en-
vironment did not violate a prediction expressed in h, the state at termination
must satisfy the postcondition.

∀P, c,Q. |= {P} c {Q} ⇐⇒
∀s, h, i. Ifix, s, h, i |= P ⇒
∀s′, τ, κ. s, c ⇓ s′, τ, κ⇒
∃g ∈ Heaps ∪ {⊥}.

{
h
}
τ
{
g
}
∧

(κ = done ∧ g 6= ⊥ ⇒ Ifix, s
′, g, i |= Q)

In case you expected a universal quantifier for g, note that the concrete
execution does not use a heap. If it would use a heap, g would be introduced in
the universal quantification together with s′, τ and κ.

Proof rules The proof rules are listed in Figure 7. Here, fpv(E) and fpv(P )
returns the set of free program variables of the expression E and formula P
respectively. The Frame rule is copied from separation logic [12].

Note that the programming language does not support recursive function
calls. The structure of the proof tree is similar to the structure of the call graph.

We say a Hoare triple {P} c {Q} is derivable, written ` {P} c {Q}, if it can
be derived using these proof rules.

13



Assignment

{P [e/v]} v := e {P}

While
{e ∗ P} c {P}

{P}while e do c {¬e ∗ P}

Composition
{P1} c1 {P2} {P2} c2 {P3}

{P1} c1; c2 {P3}

Consequence
P1 ⇒ P2 {P2} c {P3} P3 ⇒ P4

{P1} c {P4}

If
{P ∗ e} cthen {Q} {P ∗ ¬e} celse {Q}
{P} if e then cthen else celse {Q}

Skip

{P} skip {P}

Disjunction
{P1} c {Q} {P2} c {Q}

{P1 ∨ P2} c {Q}

Substitution
{P} c {Q} fpv(E) ∩mod(c) = ∅

{P [E/V ]} c {Q[E/V ]}

NoOp
{P ∗ token(Vt1) ∗ no op(Vt1, Vt2)} c {Q}

{P ∗ token(Vt2)} c {Q}

Leak
{P} c {Q ∗R}
{P} c {Q}

Split
{P ∗ token(Vt2) ∗ token(Vt3)} c {Q}

{P ∗ token(Vt1) ∗ split(Vt1, Vt2, Vt3)} c {Q}

Join
{P ∗ token(Vt3)} c {Q}

{P ∗ token(Vt1) ∗ token(Vt2) ∗ join(Vt1, Vt2, Vt3)} c {Q}

Bio
v /∈ fpv(Er)

{bio(Vt1, e, Er, Vt2) ∗ token(Vt1)} v := bio(e) {v = Er ∗ token(Vt2)}

Frame
{P} c {Q} fpv(R) ∩mod(c) = ∅

{P ∗R} c {Q ∗R}

Exists
{P} c {Q}

{∃V. P} c {∃V. Q}

FuncCall
{P} c {Q} fpv(P ) ⊆ v fpv(Q) ⊆ v ∪ {result}

v /∈ fpv(e) (f, (v), c) ∈ FuncDefs

{P [e/v]} v := f(e) {Q[e, v/v, result]}

Fig. 7: Proof rules

For the Consequence rule, we define implication of assertions as

∀P,Q . P ⇒ Q ⇐⇒ ∀s, h, i . Ifix, s, h, i |= P ⇒ Ifix, s, h, i |= Q

Note that ~V ∈ZP ⇒ P [E/V ]∗~V ∈Z(if V = E then emp else P ) if V /∈ fv(E),
where fv(E) returns the set of free variables of E.

14



4 Soundness

Theorem 1 (Soundness). ∀P, c,Q. ` {P} c {Q} ⇒ |= {P} c {Q}.

Proof. Due to space limits, we only outline some cases of the induction on
` {P} c {Q} which is nested in an induction on s, c ⇓ s′, τ, κ. In these cases
we know Ifix, s, h, i |= P .

– Bio: Because of the Bio proof rule, we know there is some Er, v, bio, Vt1, e,
Er, Vt2 such that P = bio(Vt1, e, Er, Vt2) ∗ token(Vt1), c = v := bio(e), and
Q = (v = Er ∗ token(Vt2)).
We consider the case where the step rule that applies is Bio (the other case,
where the step rule is Empty, is trivial). We know s, c ⇓ s′, τ, κ. Thus there
is some n such that τ = bio(JeKs, n) :: nil.
If n 6= JErKs,i we need to prove that there is some g such that

{
h
}
τ
{
g
}

.
Note that κ = partial. Let g = ⊥. By applying the TraceBio and the
TraceContradict rule, we obtain

{
h
}
τ
{
g
}

.
If n = JErKs,i, we know h = {[bio(JVt1Ks,i, JeKs, n, JVt2Ks,i), token(JVt1Ks,i)]}.
Let g = {[token(JVt2Ks,i)]}. Because of the TraceBio rule, we obtain

{
h
}
τ
{
g
}

,
which we wanted to prove. Because of the Bio step rule we know κ = done.
Ifix, s

′, g, i |= Q follows from the equalities of Q and g given above, and from
s′ = s[v := n], which we know because of the Bio step rule.

– Frame: Because of the Frame proof rule, there is some P0, Q0, R such that
P = P0 ∗ R, Q = Q0 ∗ R and ` {P0} c {Q0}. Because P = P0 ∗ R and
Ifix, s, h, i |= P , there is some h0, hr such that h0 + hr = h ∧ Ifix, s, h0, i |=
P0 ∧ Ifix, s, hr, i |= R.
Because of the induction hypothesis, we know |= {P0} c {Q0}. Thus for some
h′0, it holds that

{
h0

}
τ
{
h′0
}

and κ = done⇒ Ifix, s
′, h′0, i |= Q0.

Let g = h′0 + hr. By applying the TraceFrame rule, we obtain
{
h
}
τ
{
g
}

,
which is what we wanted to prove.
If κ = done, we need to prove that Ifix, s

′, g, i |= Q.
Because fpv(R) ∩ mod(c) = ∅ and s, c ⇓ s′, τ, κ and Ifix, s, hr, i |= R, we
obtain Ifix, s

′, hr, i |= R.
Combined with Ifix, s

′, h′0, i |= Q0 we know Ifix, s
′, g, i |= Q by definition of

∗.
– Split: Because of the Split proof rule, there is some P1, Vt1, Vt2, Vt3 such

that P = P1 ∗ token(Vt1) ∗ split(Vt1, Vt2, Vt3). Let P0 = P1 ∗ token(Vt2) ∗
token(Vt3).
We know h = hp1 + {[token(JVt1Ks,i), split(JVt1, Vt2, Vt3Ks,i)]} for some hp1.
Let h0 = hp1 + {[token(JVt2Ks,i), token(JVt3Ks,i)]}.
Because of the induction hypothesis, |= {P0} c {Q}. Combined with Ifix, s, h0, i |=
P0, we obtain there is some g such that

{
h0

}
τ
{
g
}

.

By using the TraceSplit and TraceFrame rule, we know
{
h
}

nil
{
h0

}
. Now we

can apply the TraceComposition rule to obtain
{
h
}
τ
{
g
}

, which we wanted
to prove.
Because |= {P0} c {Q} and Ifix, s, h0, i |= P0, we know κ = done⇒ Ifix, s

′, g, i |=
Q.

15



5 Examples

We give some examples of contracts.

5.1 Tee

predicate tee out(T 1, C, T 2) = ∃T p1, T p2, T r1, T r2.
split(T 1, T p1, T r1)
∗ stdout(T p1, C, , T p2)
∗ stderr(T r1, C, , T r2)
∗ join(T p2, T r2, T 2)

function tee out(c) ={
token(T 1) ∗ tee out(T 1, c, T 2)

}
stdout(c);
stderr(c){
token(T 2)

}
predicate tee outs(T 1,Text, T 2) = ∃T out.

if Text = nil then T 2 = T 1 else (
tee out(T 1,head(Text), T out)
∗ tee outs(T out, tail(Text), T 2) )

predicate tee(T 1,Text, T 2) = ∃T r1, Tw1, T r2, Tw2.
split(T 1, T r1, Tw1)

∗ reads(T r1,Text, T r2)
∗ tee outs(Tw1,Text, Tw2)
∗ join(T r2, Tw2, T 2)

function main() ={
token(T 1) ∗ tee(T 1,Text, T 2)

}
c2 := 0;
while c2 ≥ 0 do (
c1 := read();
if c1 ≥ 0 then
c2 := read();
tee out(c1);
if c2 ≥ 0 then

tee out(c2)
else skip

else
c2 := −1 ){

token(T 2)
}

Fig. 8: Specification and implementation of the Tee program

Figure 8 lists the implementation and specification of a program that reads
from standard input (until end-of-file), and writes what it reads to both standard
output and standard error. The contract is written in a compositional manner: an
action tee out represents the action of writing to both standard output (stdout)
and standard error (stderr). The action that represents the whole program, tee,
is built upon the tee out action. The specifications allow a read-buffer of any
size. The implementation chooses a read-buffer of size 2. The reads predicate
defined in Section 3.1 (p. 7) is used.

Figure 9 gives a proof outline for the tee out function and the main function.

5.2 Read files mentioned in a file

The specification of Figure 10 allows the program to read a file, “f”, which
contains filenames (of length one character). The files mentioned in this file are
read. The program prints to standard output the contents of these files in order.
To make the example more interesting, the specifications allow the program to

16



function tee out(c) ={
token(T 1) ∗ tee out(T 1, c, T 2)

}
token(T p1 ∗ stdout(T p1, c, , T p2)
∗ token(T r1) ∗ stderr(T r1, c, , T r2)
∗ join(T p2, T r2, T 2)


stdout(c);

token(T p2) ∗ token(T r1)
∗ stderr(T r1, c, , T r2)
∗ join(T p2, T r2, T 2)


stderr(c){

token(T p2) ∗ token(T r2)
∗ join(T p2, T r2, T 2)

}
{

token(T 2)
}

predicate invariant(C2, T 2) =
∃T r1, T r2, Tw1, Tw2.

if C2 ≥ 0 then
token(T r1)
∗ reads(T r1,Text, T r2)
∗ token(Tw1)
∗ tee outs(Tw1,Text, Tw2)
∗ join(T r2, Tw2, T 2)

else token(T 2)

function main() ={
token(T 1) ∗ tee(T 1,FullText, T 2)

}
c2 := 0;{

invariant(c2, T 2)
}

while c2 ≥ 0 do ({
invariant(c2, T 2)

}
c1 := read();
if c1 ≥ 0 then (

token(T rb1)
∗ reads(T rb1,Sub, T r2)
∗ token(Tw1)
∗ tee outs(Tw1, c1 :: Sub, Tw2)
∗ join(T r2, Tw2, T 2)



c2 := read();

token(T rb2) ∗ token(Tw1)
∗ if c2 ≥ 0 then

reads(T rb2,SubSub, T r2)
∗ tee outs(Tw1,

c1 :: c2 :: SubSub, Tw2)
else (
T r2 = T rb2

∗ tee outs(Tw1, c1 :: nil, Tw2) )
∗ join(T r2, Tw2, T 2)


tee out(c1);
if c2 ≥ 0 then (

token(T rb2)
∗ reads(T rb2,SubSub, T r2)
∗ token(Twb1)
∗ tee outs(Twb1, c2 :: SubSub, Tw2)
∗ join(T r2, Tw2, T 2)


tee out(c2){

invariant(c2, T 2)
}

) else ({
c2 < 0 ∗ token(T 2)

}
){

invariant(c2, T 2)
}

) else ({
token(T 2)

}
c2 := −1;{

invariant(c2, T 2)
}

){
invariant(c2, T 2)

}
){

token(T 2)
}

Fig. 9: Proof outline of the tee out and main function of the tee program

17



predicate freads(T 1, F,Text, T end) =
∃C,Sub, T 2.

fread(T 1, F, C, T 2)
∗ if C ≥ 0 then

freads(T 2, F,Sub, T end)
∗ Text = C :: Sub

else (
T end = T 2

∗ Text = nil)

predicate get file(T 1,Name,Text,
T end) =
∃Handle, T 2, T 3.

fopen(T 1,Name,Handle, T 2)
∗ freads(T 2,Handle,Text, T 3)
∗ fclose(T 3,Handle, , T end)

predicate prints(T 1,Text, T end) =
∃T 2.

if Text = nil then
T end = T 1

else (
print(T 1,head(Text), , T 2)
∗ prints(T 2, tail(Text), T end))

predicate get files(T 1,FNames,
Text, T end) =
∃Text1,Text2, T 2,Fname,SubNames.

if FNames = nil then
T end = T 1

∗ Text = nil
else (

get file(T 1,Fname :: nil,Text1, T 2)
∗ get files(T 2,SubNames,Text2, T end)
∗ Fnames = Fname :: SubNames
∗ Text = Text1 ++ Text2)

predicate read fname list(T 1,Handle,
FNames, T end) =
∃C, T 2,Sub.

fread(T 1,Handle, C, T 2)
∗ if C ≥ 0 then

read fname list(T 2,Handle,Sub, T end)
∗ if C > 0 ∧ C ≤ 127 then

FNames = C :: Sub
else

FNames = Sub
else (
T end = T 2

∗ FNames = nil)

predicate main(T 1,Fname, T end) =
∃T 2, Tmeta, T rw,FNames, Tmeta2, T r, Tw,
Tmeta3, T r2, Tw2, T rw2,Handle .

fopen(T 1,Fname,Handle, T 2)
∗ split(T 2, Tmeta, T rw)
∗ read fname list(Tmeta,Handle,

FNames, Tmeta2)
∗ fclose(Tmeta2,Handle, Tmeta3)
∗ split(T rw, T r, Tw)
∗ get files(T r,FNames,Text, T r2)
∗ prints(Tw,Text, Tw2)
∗ join(T r2, Tw2, T rw2)
∗ join(Tmeta3, T rw2, T end)

function main() ={
token(T 1) ∗main(T 1, ‘f’ :: nil, T 2)

}
. . .{
token(T 2)

}

Fig. 10: Specification of a program that prints the contents of all files whose
filenames are in a given list. This list is not static, it is read from a file “f”.

18



choose whether to output a read character as soon as possible or postpone it, and
whether to read a file as soon as possible or postpone it after or while reading
“f”. Filenames that consist of the zero character or non 7bit-ASCII are ignored.

The predicates representing actions are written on top of standard library
actions like fopen for opening a file. These could be BIOs, but they can also be
predicates built on top of lower-level actions, e.g. system calls.

The implementation is left out. As mentioned earlier, a verified implementa-
tion is shipped as an example with VeriFast.

5.3 Print any string of the grammar of matching brackets

predicate brackets(T 1, T 2) =
∃T open, T center, T close.

no op(T 1, T 2)
∗ print(T 1, ‘(’, , T open)
∗ brackets(T open, T center)
∗ print(T center, ‘)’, , T close)
∗ brackets(T close, T 2)

function main() ={
token(T 1) ∗ brackets(T 1, T 2)

}
print(‘(’);
print(‘)’){
token(T 2)

}

Fig. 11: Specification of a program that is allowed to output any string of the
matching brackets grammar.

The specification of Figure 11 states that the program is only allowed to
output a string of the grammar of matching brackets. Note that the specifications
do not specify which string: any string of the grammar is allowed. The grammar
under consideration is clearly visible in the specification, and is as follows:

B ::= (B)B | ε

Here, ε denotes the empty string. In the specification, ‘(’ and ‘)’ are shorthand
for 40 and 41 respectively (the ASCII number of these characters).

5.4 Turing machine

This example’s only purpose is to illustrate the expressiveness of the contracts,
i.e. it is not an example of a typical contract. It is possible to define a predicate

predicate tm(T 1,EncodingOfTM, InitialState,TapeLeft,TapeRight, T 2)

that expresses that the allowed I/O actions are the actions a Turing machine,
given as second argument, performs. In other words, the program under con-
sideration is allowed to perform the I/O actions that the Turing machine (TM)
performs. The TM is encoded as a list of integers by serializing the table represen-
tation of the TM’s transition function. The states and symbols are represented
using integers.

19



Normally, the transition function of a TM maps the state and the symbol
read from the tape, to the symbol to write on the tape, a new state, and an
action: whether the TM’s tape should move left, right, or not move. Typically,
a TM accepts an input if the machine ends in an accepting state when launched
from the full input on its tape. To make it more interactive, we add one input and
one output action. The output action prints (i.e. writes to the world) the symbol
on the tape without moving the tape. The tape does not move. The input action
reads a symbol from the world and puts it on the tape at the current position.

A benefit of this approach is that it supports nonterminating programs nat-
urally. The TM does not have to terminate. If the program terminates, it must
have performed all the I/O actions the TM does (otherwise it will not obtain its
postcondition token(T 2)), and the TM must have terminated as well.

Besides interactive and nonterminating I/O we also want underspecified in-
put/output. The specifications should thus allow multiple behaviors. This is easy
to deal with by making the TM non deterministic.

The code of this example is left out to save space, but an annotated C version
is shipped with VeriFast (see next section).

5.5 Mechanical verification of the examples

C versions of all examples in this paper have been mechanically verified using
the VeriFast [7] tool. This increases confidence that the approach is usable in
practice and not only on paper. The input of VeriFast is the C source code of the
program, the contracts of the functions, and extra annotations. With this input,
VeriFast outputs whether it is “convinced” the C implementation conforms to
the contracts. In case VeriFast says yes, we are sure the implementation is free
of bugs violating the contract (and basic properties like memory safety). Note
that this is not just detecting bugs: it proves absence of bugs.

The examples in this paper are included in the directory examples/io in
the VeriFast distribution. VeriFast is available from http://distrinet.cs.

kuleuven.be/software/VeriFast/.
VeriFast only performs very limited automated proof; non-trivial proof steps

must be explicitly specified in annotations. In particular, VeriFast does not en-
code predicates as SMT solver axioms; the user must explicitly fold and unfold
predicates through ‘open’ and ‘close’ annotations. Therefore, VeriFast typically
has a high annotation overhead and a short execution time. This is also the case
with the presented examples:

Example LoC Lines of annotations Time (ms)

Tee 24 54 192

Read files mentioned in a file 20 90 101

Matching brackets 4 20 96

Turing machine 7 58 103

Template method (Sec. 6) 39 77 60

20

http://distrinet.cs.kuleuven.be/software/VeriFast/
http://distrinet.cs.kuleuven.be/software/VeriFast/


The reported timings are using the Redux SMT solver on a Intel Core i5
CPU (max value of 10 runs).

6 Verifying memory state using I/O style verification

One might wonder whether there really is a difference between verifying I/O
behavior and verifying memory-state. For example, we could consider writing
to a file both as I/O and as performing memory operations. If the filesystem is
in memory, and we consider not only the process that writes the file but also
the kernel, then we are only manipulating memory. Therefore, verifying I/O and
verifying memory state can be considered as another point of view, and not
necessarily as technically different.

abstract class A {
void template() {

m1();
m2();
}
abstract void m1();
abstract void m2();

}

Fig. 12: Minimalistic ex-
ample of the Template
Method design pattern
(in Java).

The regular approach for verification using the
memory-state point of view can be insufficient for
verifying applications for which the I/O behavior
point of view is “natural”. For example, the memory-
state point of view usually only cares about the state
when the program has reached the postcondition.
This is insufficient for verifying I/O behavior. First,
for I/O applications, nontermination is common and
often not undesired, hence it is normal that the post-
condition is never reached. Second, by looking only
at (memory) state when the program has reached
the postcondition, we ignore intermediate state. For
I/O applications intermediate state is important: for
a movie player, not only the last frame but all frames
of the movie should be displayed correctly.

While the memory-state point of view can be in-
sufficient from an I/O style point of view, one might
wonder what happens when we try the other way
around: what if we want to verify an application for
which the memory-based point of view is expected at first sight, from an I/O
point of view.

This section will take a quick look at this question, by looking at one example
or use case: the Template Method design pattern.

Template Method [5] is an object-oriented design pattern in which an abstract
class has a method implementing an algorithm of which a number of steps are
delegated to subclasses. This delegation happens by calling abstract methods,
which subclasses can implement.

How can we write the contract of this template method? The method must
perform what the subclass’s hook methods (m1 and m2 in Figure 12) will do,
but we do not know what that will be. Furthermore, we do not want to change
the contract or perform verification again of the template method when new
subclasses are added. In this section, we will write an easy contract for the
template method using the approach of this paper.

21



predicate token(A;T 1) = emp
predicate m1 io(A;T 1, T 2) = true
predicate m2 io(A;T 1, T 2) = true
class A =

method A.template() =
token(this;T 1)
∗ m1 io(this;T 1, T 2)
∗ m2 io(this;T 2, T 3)


m1();
m2(){
token(this;T 3)

}

method A.m1() ={
token(this;T 1)
∗ m1 io(this;T 1, T 2)

}
{

token(this;T 2)
}

method A.m2() ={
token(this;T 1)
∗ m2 io(this;T 1, T 2)

}
{

token(this;T 2)
}

Fig. 13: A template method and its hook methods, with I/O style contracts.
m1 io, m2 io and token are predicate families. For a subclass with implemen-
tation of m1 and m2, see Figure 14.

The language described so far does not support object-oriented program-
ming, so we extend the language in a standard way to support object field access,
method calls, casts, writing to object fields, object allocation and object deallo-
cation. We assume a set Classes quantified over with C, and set MethodNames
quantified over with m.

e ::= . . . | this
c ::= . . . | v := e.v | v := v.m(e) | v := (C)v | e.v := e | v := new(C) |

dispose(v)

We assume a set MethodDefs ⊂ C ×m× v × c and AbstractMethodDecls ⊂
C×m×v that describe the methods and abstract methods of the program under
consideration. We only consider valid sets: there is no overlap in arguments (v),
an (abstract) method cannot appear twice in the same class, and a method
cannot write to its arguments. We assume a partial function from Classes to
Classes expressing inheritance. We only support non-circular single inheritance.

The step semantics is extended as expected. Note that it will need a con-
crete heap, to keep track of (1) the values of object fields to support memory
(de)allocation and field access, and (2) the dynamic type of objects to support
dynamic binding of method calls.

The assertion language needs to be extended to support assertions describing
the fields of objects. We also need predicate families, i.e. predicates indexed by
class. This allows multiple versions of a predicate. For the semantics of predicate
families and proof rules, we refer to [10]. Furthermore, the assertions can describe
that an object is an instance of a class C (not a subclass of C). We drop the
keyword “token”. We drop support for split and join.

E ::= . . . | this
P ::= . . . | E.v 7→ E | p(E;E) | E : C

22



predicate token(B;T 1) = this.x 7→ T 1

predicate m1 io(B;T 1, T 2) = T 2 = T 1 + 1
predicate m2 io(B;T 1, T 2) = T 2 = T 1 + 10
class B extends A =

field B.x

method B.m1() =
token(this, T 1)
∗ this : B
∗ m1 io(this;T 1, T 2)


y := this.x;
this.x := y + 1{
token(this;T 2)

}

method B.m2() =
token(this;T 1)
∗ this : B
∗ m2 io(this;T 1, T 2)


y := this.x;
this.x := y + 10{
token(this;T 2)

}
method B.getValue() ={

token(this;T 1)
}

result := this.x{
token(this;T 1) ∗ result = T 1

}

Fig. 14: A subclass implementing hook methods m1 and m2.

Figure 13 shows how the contract of the template method can then be writ-
ten. Figure 14 shows an example of a subclass.

This section presented an approach for verifying memory, while Sec. 3 pre-
sented an approach for verifying I/O properties. Both are instantiations of the
same specification style. Note that the approach of Sec. 3 supports some more
features: nondeterminism/underspecification and interleaving.

An annotated Java version of the example of this section is shipped with
VeriFast.

7 Related work

Approaches for verifying input/output behavior and case studies doing so have
been developed and performed before.

The Verisoft email client [1] has a verified fullscreen text-based user interface.
The approach identifies points in the main loop of the program, and restricts I/O
to the screen to only these points. This approach is elegant but does not scale.
A program of reasonable size typically uses libraries that also perform I/O.
A contribution of our approach is compositional I/O verification. This allows
verified libraries to perform I/O.

The heaps (not the assertions) of the approach described by this paper can
be represented using Petri nets. The assertions are more expressive by using
features such as using actions composed out of other actions. These features are
also present in coloured Petri nets [8], which is a generalization of Petri nets
where tokens are represented as data values. By modeling the contracts as a
coloured Petri net, one could analyse the contracts using techniques to analyze
coloured Petri nets. Note that the goal of our contribution is not just to model
input/output behavior, but to verify input/output behavior of programs.

23



Nakata and Uustalu [9] define a Hoare logic for a programming language
with tracing semantics. The assertion language is inspired by interval temporal
logic. The programming language is defined using big step semantics, but re-
lates a program and a state to a trace, instead of to a state as is usually done.
An assertion can express properties of this (potentially infinite) trace. The pa-
per rather provides a framework to build upon than proposing a final assertion
language. In every example of the paper, the assertion language is extended to
support the example. Using such an extension it is possible to prove liveness
properties, which our approach does not support. The paper uses Coq and not
a verification tool specialized for software verification. It is unclear how well the
approach blends in with solutions for other problems, e.g. aliasing.

Linear Time Calculus (LTC) provides a methodology for modeling dynamic
systems in general in an extension of first order logic. In LTC, an action has an
argument which represents a point in (linear) time when the action happens.
Such a point in time is a natural number and is clearly before or after another
point in time. This differs from our approach where an action has two argu-
ments, each representing a place. A place is not always clearly before or after
another place. LTC is a generic approach, while our approach focuses on soft-
ware verification. For an explanation of LTC we refer to [2], which also shows
many tool-supported practical applications.

Model checking [3,11,4] allows checking whether properties written in a tem-
poral language such as LTL and CTL hold for a model. Such models can be
created automatically from the software subject to verification. Expressing tem-
poral properties in temporal languages is natural, making it a good candidate for
expressing input/output-related properties. Furthermore, liveness properties can
be expressed. The approach suffers from the state explosion problem, a problem
that remains after major improvements made in the last three decades [4].

Wisnesky, Malecha, and Morrisett [13] verify I/O properties by constraining
the list of performed actions in the postcondition, but this approach does not
seem to prevent nonterminating programs to perform undesired I/O.

8 Conclusions and future work

We identified several requirements for approaches that verify the input/output
behavior of computer programs, including modularity, compositionality, sound-
ness and non-determinism of the environment. We created a verification ap-
proach that meets these requirements.

Because the approach is designed to work compositionally and modularly,
we hope the approach works well for bigger applications, but to confirm this,
a real-world case study of considerable size should be carried out. Such a case
study is future work.

24



Acknowledgements

We would like to thank Amin Timany for many useful discussions. This work
was funded by Research Fund KU Leuven and by EU FP7 FET-Open project
ADVENT under grant number 308830.

References

1. Gerd Beuster, Niklas Henrich, and Markus Wagner. Real world verification – Ex-
periences from the Verisoft email client. In Geoff Sutcliffe, Renate Schmidt, and
Stephan Schulz, editors, Proceedings of the FLoC’06 Workshop on Empirically Suc-
cessful Computerized Reasoning (ESCoR 2006), volume 192 of CEUR Workshop
Proceedings, pages 112–125. CEUR-WS.org, August 2006.

2. Bart Bogaerts, Joachim Jansen, Maurice Bruynooghe, Broes De Cat, Joost Ven-
nekens, and Marc Denecker. Simulating dynamic systems using linear time calculus
theories. Theory and Practice of Logic Programming, 14:477–492, 7 2014.

3. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52–71, London, UK, 1981. Springer-Verlag.

4. Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model
checking and the state explosion problem. In Bertrand Meyer and Martin Nordio,
editors, Tools for Practical Software Verification, volume 7682 of Lecture Notes in
Computer Science, pages 1–30. Springer Berlin Heidelberg, 2012.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580 and 583, 1969.

7. Bart Jacobs, Jan Smans, Pieter Philippaerts, Frederic Vogels, Willem Penninckx,
and Frank Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C
and Java. In NASA Formal Methods 2011, volume 6617 of LNCS, pages 41–55,
Heidelberg, 2011. Springer.

8. Lars M. Kristensen, Søren Christensen, and Kurt Jensen. The practitioner’s guide
to coloured Petri nets. International Journal on Software Tools for Technology
Transfer, 2:98–132, 1998.

9. Keiko Nakata and Tarmo Uustalu. A Hoare logic for the coinductive trace-based
big-step semantics of While. In Proceedings of the 19th European Conference on
Programming Languages and Systems, ESOP’10, pages 488–506, Berlin, Heidel-
berg, 2010. Springer-Verlag.

10. Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In Pro-
ceedings of the 32nd Symposium on Principles of Programming Languages, pages
247–258. ACM, 2005.

11. Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concur-
rent systems in CESAR. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

12. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of the 17th Symposium on Logic in Computer Science, pages 55–74,
Washington, 2002. IEEE.

13. Ryan Wisnesky, Gregory Malecha, and Greg Morrisett. Certified web services in
Ynot. In 5th International Workshop on Automated Specification and Verification
of Web Systems, July 2009.

25


	Sound, modular and compositional verification of the input/output behavior of programs

