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ABSTRACT
Irregular applications often exhibit data-dependent paral-
lelism: Different inputs, and sometimes also different exe-
cution phases, enable different levels of parallelism. These
changes in available parallelism have motivated work on
adaptive concurrency control mechanisms. Existing adap-
tation techniques mostly learn about available parallelism
indirectly, through runtime monitors that detect pathologies
(e.g. excessive retries in speculation or high lock contention
in mutual exclusion).

We present a novel approach to adaptive parallelization,
whereby the effective level of parallelism is predicted directly
based on input features, rather than through circumstan-
tial indicators over the execution environment (such as retry
rate). This enables adaptation with foresight, based on the
input data and not the run prefix. For this, the user spec-
ifies input features, which our system then correlates with
the amount of available parallelism through offline learning.
The resulting prediction rule serves in deployment runs to
foresee the available parallelism for a given workload and
tune the parallelization system accordingly.

We have implemented our approach in Tightfit, a gen-
eral framework for input-centric offline adaptation. Our ex-
perimental evaluation of Tightfit over two adaptive run-
time systems and eight benchmarks provides positive evi-
dence regarding Tightfit’s efficacy and accuracy.
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1. INTRODUCTION
This paper addresses the problem of parallelizing irregular

applications, whose available parallelism is data dependent.
Contrary to regular applications (e.g. scientific programs
that manipulate dense arrays), where dependencies between
computations are identical for all inputs, an irregular ap-
plication has a different dependence structure per different
data inputs, which leads to fluctuating parallelism across
inputs, and sometimes also execution phases. As an illus-
trative example, minimum spanning tree (MST) algorithms
typically have more parallelism over dense graphs, where it
is less likely for tasks to work on common nodes or edges.

Irregular applications are widespread [12]. Common
examples include graph algorithms, such as Boruvka’s
and Kruskal’s MST algorithms and Dijkstra’s single-source
shortest path algorithm; scientific applications like the
Barnes-Hut and Discrete Event Simulation algorithms;
machine-learning and data-mining algorithms, such as Ag-
glomerative Clustering and Survey Propagation; and appli-
cations in the area of computational geometry, including De-
launay’s mesh-refinement and triangulation algorithms.

Effective parallelization of irregular applications is chal-
lenging because the available parallelism is input sensitive.
Fixing a single synchronization scheme, treating all inputs
uniformly, might either (i) exploit the available parallelism
poorly for high-parallelism inputs if synchronization is con-
servative (e.g. coarse-grained locking), or (ii) yield high
overheads for low-parallelism inputs if synchronization is
permissive (e.g. many retries in speculative execution of
conflicting transactions).
Adaptive concurrency control. A natural means of ad-
dressing data-dependent parallelism is adaptation, whereby
the parallelization system changes its behavior in response
to changes in available parallelism. Recent studies have pro-
posed a variety of techniques for identifying such changes,
and more specifically, estimating available parallelism on
the fly. Examples include monitoring abort/commit ratio
in software transactional memory (STM) [5, 34], or track-
ing access patterns to shared data structures at the early
stages of execution [7]. (See Section 7 for a comprehensive
discussion.)

These as well as other existing techniques estimate the
parallelism enabled by the input workload indirectly, based
on properties of the execution environment rather than prop-



erties of the input. The motivation is clear: Deriving useful
input characteristics require semantics understanding of the
application at hand, whereas profiling system behaviors (like
abort/commit ratio or lock contention) provides a general
and tractable basis for automatic adaptation. The disad-
vantage, however, is that adaptation is guided by hindsight
judgments over the behavior of the execution environment
during the run prefix. This can potentially lead to poor per-
formance at the beginning of the run, as well as misguided
adaptation if parallelism changes across phases (i.e. when
the future is not predictable from the past).

Ideally, the runtime system would make adaptation de-
cisions directly, with foresight : Given an input workload,
the system would know in advance, based on inspection of
the input itself, how much parallelism that workload per-
mits, and tune its behavior accordingly [14, 11]. Design-
ing foresight-guided adaptation mechanisms is challenging:
It requires uncovering the relationship between inputs and
available parallelism at runtime, and with low overhead [27].
Our approach. We present a novel approach for enabling
foresight-based adaptation. The main idea is to utilize of-
fline analysis—and more specifically, a heavyweight learning
algorithm—to characterize the parallelism permitted by dif-
ferent inputs. The runtime system then makes use of the
artifacts from offline analysis to derive adaptation decisions
from the current state of the workload at hand.

What complicates learning is that the input data is of-
ten a complex data structure, like a graph. To address this
challenge, we ask the user to provide a feature extraction
function, mapping the concrete input to a set of features
that are amenable to learning (e.g. the number of nodes in
the graph, the number of edges, the graph’s density, etc).
We require this specification because feature extraction is
a challenging problem for an automated algorithm. It is
our impression and experience that providing the specifica-
tion places low burden on a user intimate with the target
application, as the entailed reasoning is relatively simple.
Furthermore, the specification is concise and, most impor-
tantly, the offline learning system is robust to user errors.
(See Section 2 for further discussion.)

Based on the specification of input features, our approach
decomposes into the following three phases:

1. Per-system learning. For the given adaptive paral-
lelization system, converge (once per all applications)
on the most favorable execution mode of the system
per different profiles of available parallelism.

2. Offline learning. For every application, build a pre-
diction function from input features to available paral-
lelism using offline learning over representative work-
loads.

3. Runtime parallelization. At runtime, the system
periodically calls the user-provided feature extraction
function to obtain the features of the current data set.
It then performs a lookup to find which mode of the
parallelization system best matches these features, and
sets the system to that mode.

For the second phase of estimating available parallelism,
which is the main focus of this paper, we analyze data depen-
dencies. A data dependency arises between two statements
during (sequential) execution if both access a common mem-
ory location, and at least one of them writes it. Intuitively,
this is an indication that the two statements might interfere
with each other during concurrent execution.

Traditionally, compile-time parallelization transforma-
tions have been governed by qualitative analysis of data de-
pendencies, requiring absence of data dependencies between
code blocks as the precondition for their parallel execution.
A fundamental observation of this paper is that dynamic
data dependencies expose fine-grained information about
the available parallelism. This includes not only the volume
of data dependencies between tasks that can potentially run
in parallel (i.e. the density of the dependence graph), but
also the structure of such dependencies, which discloses e.g.
whether two tasks have cyclic dependencies. This provides a
principled basis for offline estimation of available parallelism
that abstracts away low-level deployment details (such as
the size of the cache, the number of cores, the number of
executing threads, etc).

An important emphasis of our approach is on effective user
interaction: The application designer, who is best aware of
pertinent workload features, communicates this information
through a concise and lightweight specification. The adapta-
tion algorithm, in turn, leverages this information to build a
bridge—using statistical analysis—between workload char-
acteristics and available parallelism, which is known as a
challenging task for fully automated systems [27].
Scope and limitations. We expect the application designer
to provide candidate features as well as representative work-
loads for profiling. We assume that the program is already
parallel, or at least contains atomicity annotations, and so
the notion of atomic tasks is specified over the program’s
code. We further assume that the criterion for correct par-
allel execution is serializable execution of atomic blocks (or
transactions), which Tightfit guarantees.

A dependent, and more subtle, assumption is that parallel
tasks communicate only by modifying the shared memory,
as is the case e.g. with applications using STM, and thus
data dependencies are a reliable model of runtime conflicts.

A main source of complexity in Tightfit is the learning
process. This process entails offline analysis, as well as user
involvement, but in return it enables low-overhead input-
centric adaptation. At present, our prototype has limited
inference capabilities, and so the user has to choose which
statistical learning algorithm to apply (though this, again,
is a question of performance/accuracy and not correctness).
We intend to reduce this configuration burden in the future
by introducing inference capabilities into Tightfit.
Contributions. The principal contributions of this paper
are the following:
• Adaptation with foresight. We present a novel solu-

tion for the problem of adaptive parallelization, focus-
ing on the direct connection between input features
and parallelism. This is achieved via expensive of-
fline analysis of training runs (backed by user-provided
input features), alongside low-overhead, input-centric
runtime adaptation.
• Adaptation based on input features. We make the

relationship between the input data and available par-
allelism amenable to learning by abstracting the data
as a set of features according to a user-provided speci-
fication. (We believe that this novel idea can be reused
in other contexts.)
• Parallelism characterization via analysis of de-

pendencies. We derive quantitative as well as struc-
tural characteristics of data dependencies to estimate
the available parallelism, thereby abstracting away



Graph g = /* read input graph */;

Graph mst = g.getNodes();

List worklist = g.getNodes();

@atomic foreach (Node nd in worklist) {

−Node nbr = minWeight(nd, g.getAdjacent(nd));

−Node nnd = edgeContract(nd, nbr);

−mst.addEdge(nbr, nnd);

−worklist.add(nnd); }

Figure 2: The Boruvka MST algorithm
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Figure 3: Different revisions of an input graph under
the Boruvka MST algorithm

implementation-specific details. This goes beyond the
standard approach of treating data dependencies qual-
itatively as a clear-cutting criterion for disjoint paral-
lelism.
• Implementation and evaluation. We have imple-

mented our approach in Tightfit. We describe our
experiments with Tightfit over two different adap-
tive parallelization systems and a suite of eight bench-
marks. The results provide solid evidence in support
of our approach. (Tightfit is available online at [3].)

2. OVERVIEW
In this section, we motivate our approach with reference

to Boruvka’s MST algorithm. We then walk the reader
through Figure 1, which summarizes the entire flow of the
Tightfit system.

2.1 Boruvka’s algorithm
Figure 2 shows Boruvka’s algorithm. The algorithm com-

putes a minimum spanning tree by reducing the input graph
to a single node through successive application of edge con-
traction. In each iteration, a graph node nd is selected non-
deterministically, a minimum-weight neighbor nnd of nd is
obtained, and the edge between nd and nnd undergoes con-
traction (becoming part of the MST).

For a sparse input graph, this permits a high level of par-
allel work at the beginning, where different contractions are
applied to disjoint regions of the graph, but ultimately, as
the graph grows smaller, the available parallelism gradually
decays [17]. These two cases are illustrated in Figure 3: The
transition from state (a) of the graph to state (b) is via two
parallel, non-overlapping edge contractions: (n1, n5) → c1
and (n4, n7) → c2. However, the application of contraction
(c2, n3)→ c3, shown as state (c), cannot run in parallel with
its succeeding contraction, (n2, c3) → c4, which appears in
(d). Both access a common region in the graph.

features Graph:g {

−"nnodes": { g.nnodes(); }

−"density": { (2.0 * g.nedges()) /

−−−−−−−−−−−−−−−g.nnodes() * (g.nedges()-1); }

−"avgdeg": { (2.0 * g.nedges()) / g.nnodes(); } .... }

Figure 4: Fragment of the Tightfit specification for
the Graph type (cf. Figure 2)

2.2 Flow
The Tightfit system breaks the parallelization process

into several phases, which we discuss in turn.
Parallelization modes. For a given adaptive paralleliza-
tion system, Tightfit needs to establish a mapping from
parallelism levels to effective execution modes of the adap-
tive system. This is done once per each system. The
parallelism-to-mode mapping, shown as the “Sys.-level para.
7→ mode” box in Figure 1, can either be specified by the user
or it can be learned automatically.

In this paper, we place more emphasis on the problem of
estimating application-specific per-input parallelism, and so
to compute the parallelism-to-mode mapping, we resorted
to the standard solution of running the system on a syn-
thetic benchmark whose available parallelism is parametric
to find effective threshold values for switching between par-
allelization modes [33]. (The underlying assumption is that
different modes correspond to different parallelism levels.)
We expand on this step in Section 4.
Offline adaptation. The main focus of this paper is
on learning an input-centric application-specific adaptation
rule. To make the learning setting induced by offline adap-
tation feasible (especially in the case of complex inputs, like
a graph), we ask the user to “simplify” the input description
by providing a feature extraction function that reduces the
input to a vector of simple features. This is summarized as
the double-framed “Input 7→ features” box in Figure 1. Fig-
ure 4 illustrates the specification format for the example of
a Graph data structure.
Offline learning of adaptation rules. (Input 7→ fea-
tures) For every application, we learn an input-centric
adaptation rule. To make the learning procedure feasible,
especially in the case of complex inputs, like a graph, we
ask the user to “simplify” the input description by provid-
ing a feature extraction function that reduces the input to a
vector of simple features. This is summarized as the double-
framed “Input 7→ features” box in Figure 1. Figure 4 illus-
trates the specification format for the example of a Graph

data structure.
The required specification puts little responsibility on the

user’s shoulders, in that even if the specification is incom-
plete or simply irrelevant, correctness (i.e. serializability) of
parallel execution is guaranteed. The user can only affect the
efficacy of adaptation decisions, at most degrading perfor-
mance if providing a bad specification. Moreover, the speci-
fication is not application specific. All graph algorithms, for
example, can share the specification in Figure 4.

Tightfit favors a comprehensive specification, including
features that may prove useless or irrelevant rather than
excluding them. This is because Tightfit’s learning algo-
rithm applies regression, seeking correlations between input
features and (estimated) parallelism levels, which automat-
ically prunes irrelevant (i.e. weakly correlated) features, as-



Input 7→ features //
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Features 7→ prof. 11Feature sampling // Mode selection Sys.-level prof. 7→ modeoo

Offline (per app.) Sensor Runtime◦ ◦Actor Offline (per sys.)

Figure 1: Outline of the complete Tightfit flow

signing them low weight in the adaptation rule. This makes
such features harmless, and thus the more exhaustive the
specification is, the better the adaptation rule becomes.

Since feature extraction is done not only offline, but also
online, during parallel runs, features should be efficiently
computable. If at runtime feature computation requires too
many cycles (e.g. counting how many cycles or simple paths
a graph contains), then the performance benefits of adapta-
tion are obviated. As an example, the cost of methods nnodes

and nedges in Figure 4 should be low.
In addition, to ensure the statistical significance of the

regression algorithm correlating input features with paral-
lelism, we ask the user to characterize the application’s in-
put space by providing legal ranges for input parameters.
Tightfit features a built-in harness for sampling inputs at
random based on the user’s characterization of parameter
ranges.
(Features 7→ parallelism profile) The next step in offline
adaptation, given the availability of input features, is to esti-
mate available parallelism over the training runs. Our main
observation here is that profile-guided analysis of data de-
pendencies between tasks designated for concurrent execu-
tion permits effective measurement of available parallelism.
This is because at runtime, data dependencies translate into
conflicting accesses to shared memory, which mandate syn-
chronization, thereby limiting parallelism. Moreover, com-
pared to more concrete measures of available parallelism
(like direct measurement of running time over different in-
puts), data dependencies are less coupled with low-level de-
ployment details (like the hardware architecture, number of
threads, caching, etc), which makes the learned input-to-
parallelism correlations more significant as well as robust
to changes in the parallelization system and/or deployment
configuration.

For the example of Boruvka, there are indeed no data de-
pendencies between the first two loop iterations, but the
next two iterations, performing overlapping contractions,
generate data dependencies over c3. That is, there is an
increase in the number of data dependencies as the com-
putation evolves, which is compatible with the observation
that the available parallelism in Boruvka gradually decays.

Quantitative abstraction of data dependencies enables of-
fline generation of input-centric parallelism profiles: The
target application is run on different inputs, a dependence
graph is computed for each trace, and the density and shape
of the graph are analyzed to derive a general (rather than
deployment-sensitive) measure of available parallelism. This
exposes the relationship between input properties and paral-
lelism level, allowing prediction of the available parallelism
for new inputs, as summarized in the “Features 7→ prof.”
box in Figure 1. This analysis is the subject of Sections 3
and 4.1.
(Parallelism profile 7→ mode) The remaining task is to
correlate between parallelism profiles with different execu-

tion modes of a particular adaptive parallelization system.
This correlation is achieved via a synthetic benchmark suite
that enables parametric control over the amount of paral-
lelism in a run. This task is summarized in the “Sys.-level
prof. 7→ mode” box in Figure 1, and is the subject of Sec-
tion 4.2.
Runtime parallelization. The final stage in the Tight-
fit flow is online parallelization. Here the offline adapta-
tion stragey is utilized by sampling—at the beginning of the
run, and possibly also throughout the run (when starting
an atomic block) if there are phase transitions—the feature
values for the input at hand. This is done, based on the
same feature extraction function serving for offline analy-
sis, by the “Sensor” module, which flows this information to
the “Actor” component. The “Actor” module then makes a
mode recommendation (the “Mode selection” box) based on
the composition of the “Features 7→ prof.” and “Sys.-level
prof. 7→ mode” functions computed offline. In Section 5, we
discuss two adaptive parallelization systems with which we
evaluated Tightfit.

3. PREDICTING AVAILABLE PARAL-
LELISM FROM DATA DEPENDENCIES

In this section, we explain how the available parallelism in
a given (sequential) execution trace is estimated by analysis
of data dependencies.

3.1 Atomicity-aware dependence graphs
A sequential trace is a sequence [. . . (σ, s, σ′) . . .] of tran-

sitions, where s is a primitive statement and σ and σ′ are
the prestate and poststate, respectively. Abstracting a trace
as a dependence graph is standard [31]. For the purpose of
this paper, we define a slight variant, which we refer to as
an atomicity-aware dependence graph (AADG). We assume
that the program is annotated with atomic {. . .} sections,
and that the semantics records entry and exit events corre-
sponding to entering and leaving atomic sections.

This yields, for a given sequential run of the program, a
partitioning of the transitions coming from atomic sections
into distinct atomic blocks. (Note that different executions,
or instances, of the same atomic section correspond to dif-
ferent atomic blocks.)

Trace τ is abstracted as an AADG as shown in Figure 5:
1. Every transition t = (σ, s, σ′) occurring within an

atomic block b is mapped to a node (t, b).
2. For each memory location l read by t, we draw edges to

all nodes (t′, b′), such that block b′ differs from b and l
is written by t′ (i.e. there is flow dependence between
t and t′, and these transitions occur in different atomic
blocks).

3. For each location l written by t, we draw edges to all
nodes (t′, b′), such that block b′ differs from b and l is
either read or written by t′ (i.e. there is either anti
dependence or output dependence between t and t′,



Offline Estimation of Parallelism by Analysis of Dependencies

Input:
−τ : execution trace with atomicity annotations

OfflineEstimate: [returns estimated contention, cyclic dep.s]
−let G = ∅ [initialize empty dependence graph]
−for each transition t occurring in atomic block b in τ :
−−insert node (t, b) into G
−−for each mem. loc. l ∈ r(t): [r(.) denotes readset]
−−−for each node (t′, b′) ∈ G s.t. l ∈ w(t′), b 6= b′:
−−−−insert edge (t′, b′)← (t, b) into G
−−for each mem. loc. l ∈ w(t): [w(.) denotes writeset]
−−−for each node (t′, b′) ∈ G s.t. l ∈ r(t′) ∪ w(t′), b 6= b′:
−−−−insert edge (t′, b′)← (t, b) into G
−return (density G, cdep G)

Figure 5: Offline alg. for parallelism estimation

which occur in different atomic blocks).
Note that the algorithm is parametric in the specification of
readsets and writesets (r and w), as well as in the grain of
trace transitions [31]. (We explain the algorithm’s output
soon.)

The above steps yield a standard dependence graph mod-
ulo two adjustments: First, nodes point to their enclosing
atomic block, and second, there are no intra-block depen-
dence edges. Intuitively, this enables qualitative checking, as
well as quantitative measurement, of dependencies between
statements belonging in distinct atomic blocks designated
for parallel execution.

Note, importantly, that Tightfit computes AADGs
solely over sequential traces (and not parallel ones). How-
ever, assuming the parallelization system guarantees serial-
izability, there is no loss of generality here. This is because
a parallel trace can be serialized, and thus its AADG is the
same as that of its corresponding sequential run, allowing
offline analysis to consider only sequential executions.

3.2 Quantifying dependencies
Given an AADG G, we measure two aspects of the paral-

lelism it permits:
Contention. Contention is interpreted as the level of (po-
tential) interference between tasks designated for parallel
execution. This corresponds naturally to the density of the
AADG (when viewed as an undirected graph):

density G = 2 · |G.E| /(|G.V | · (|G.V | − 1)).

We obtain a normalized measure of the intensity (or pro-
portion) of dependencies between atomic blocks. (Data de-
pendencies between transitions in the same atomic block are
suppressed to concentrate on inter-task dependencies.)
Cyclic dependence. Another measure of parallelism is the
level to which tasks exhibit cyclic dependencies. This sit-
uation, illustrated in Figure 6, arises when distinct atomic
blocks access two or more memory locations in opposing or-
ders. In Figure 6, this is shown for four transitions from two
atomic blocks. The upper-left and bottom-right transitions
are dependent due to memory location l1 (output depen-
dence), whereas the other two transitions are dependent due
to l2 (flow dependence). Measuring cyclic dependencies—
beyond contention—is useful for synchronization, because
some protocols work well under high contention, but cope
poorly with cyclic dependencies [20, 21].

((σ1, x := 10, σ′1), b1) ((σ3, y := 2, σ′3), b2)

((σ2, y := 5, σ′2), b1)

55

((σ4, z := x, σ′4), b2)

ll

Figure 6: Illustration of a sitaution where two
atomic blocks, b1 and b2, are cyclically dependent

To define this measure, we need an auxiliary definition:
We say that atomic blocks b and b′ are cyclically depen-

dent in AADG G over trace τ , denoted by b
G

 b′, if there

are two memory locations l and l′, and four transitions
(t1, b) ≺ (t2, b) ≺ (t3, b

′) ≺ (t4, b
′) (where ≺ is the order

of appearance of transitions in τ), such that
• t1 and t4 are the first transitions in b and b′, respec-

tively, to access l;
• t2 and t3 are the first transitions in b and b′, respec-

tively, to access l′; and
• (t1, b)← (t4, b

′) and (t2, b)← (t3, b
′) ∈ G.E.

At runtime, this translates into a cyclic conflict if the exe-
cutions of b and b′ are interleaved (i.e. t1 and t3 are first
executed, which forces cyclic dependence between b and b′).

Based on the above definition, we quantify cyclic depen-
dence as the following normalized measure:

cdep G = 2 ·
∣∣∣∣{b G


 b′}
∣∣∣∣ /(nblks G · (nblks G− 1)),

where nblks G is the number of distinct atomic blocks in G.
The algorithm in Figure 5 outputs a pair of real numbers

in the range [0, 1], which denote estimates of contention and
cyclic dependencies. Together, these estimates provide a
characterization of the available parallelism in trace τ , which
we refer to as the parallelism profile of τ .

4. ADAPTATION VIA OFFLINE
LEARNING

Given the mechanisms of Section 3 to estimate parallelism
for an execution trace, we now describe an offline learning
system that synthesizes—based on a finite number of “rep-
resentative” traces for an application—a specialized adapta-
tion strategy for that application. The learning process is
independent of the parallelization system.

4.1 Learning per-input parallelism
A high-level view of the input-to-parallelism learning algo-

rithm is given in Figure 7. This algorithm accepts as input
a collection of sequential execution traces (τ1 . . . τm), along
with their respective input workloads (i1 . . . im). Tightfit
derives a parallelism profile p̂j from τ j using quantitative
analysis (by applying the oτ algorithm explained in Section 3
to τ j), and records the relationship between the features of
input ij and p̂j . (Recall that p̂j estimates the available par-
allelism in τ j .)

The connection between inputs and their respective par-
allelism profile is lifted—via regression analysis—into a pre-
dictor, of , from input features to an estimated parallelism
profile, as shown in Figure 7: The free variables are the fea-
ture values, and the dependent variables are the estimates
of contention and cyclic dependencies. By default, Tight-
fit applies linear regression analysis, though the choice of
regression model is parametric and configurable (e.g. cubic
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of // p̂∗

Figure 7: Abstract view of the offline input-to-
parallelism learning alg.

or quartic regression). To make the mapping from inputs to
parallelism profile amenable to learning, inputs are modeled
according to the user-provided features.

Regression analysis makes statistical assumptions over its
inputs. Specifically, the training set’s size should be propor-
tional to the number of independent variables, and the in-
puts should be sampled independently at random. To meet
these requirements, Tightfit provides a learning harness to
the user. The user is asked to specify an admissible range
of values for each application parameter. The harness then
picks parameter values at random to craft training inputs.

By default, Tightfit samples max{150, 50m} inputs,
where m is the number of features. This is a conserva-
tive approximation of several popular guidelines, including
N ≥ 104 + m, N ≥ 40m and N ≥ 50 + 8m [8]. The user
can set other bounds if desirable. Our experiments confirm
these bounds as effective (cf. Section 6).

4.2 Threshold values for mode transitions
A remaining task after learning the predictor, of , is to

correlate between parallelism estimates and modes of given
adaptive parallelization systems. Building this additional
bridge yields a direct relationship between input features
and parallelization modes, which concludes the offline adap-
tation process with an adaptation strategy that chooses be-
tween system behaviors according to input features. We
assume that the runtime adaptation system has several dis-
tinct modes, totally ordered according to parallelism level.
Thus, correlating between parallelism profiles and paral-
lelization modes is essentially the problem of setting thresh-
olds for transitioning between modes.

Tightfit computes the thresholds for every paralleliza-
tion system, irrespectively of the particular application at
hand. Similarly to other adaptive systems [33], this is
achieved via a synthetic benchmark suite that enables para-
metric control over the amount of parallelism in a run. The
benchmarks manipulate a shared ConcurrentMap object using
a random client loop, where each iteration is an atomic task.
The proportion of read/write operations, range of keys and
number of operations are all parametric.

Within this setting, Tightfit induces (a large number
of) different parallelism profiles, checking for each which
mode works best (i.e. results in shortest execution time).
This yields empirical cutoff values for transitioning between
modes as a function of the parallelism profile (Tightfit’s
contention and cyclicity estimates).

Offline Learning of Adaptation Strategy

Inputs:
−{τi}mi=1: execution traces with atomicity annotations
−features: feature extraction function

Parameters:
−π: adaptive para. system with modes m1 ≺ . . . ≺ mk
−mode: mapping from para. estimate ((D,C)) to mode (mi)
−regress: regression algorithm

OfflineAdapt: [returns actor function: {f 7→ {mi}ki=1}]
−let π = ∅ [mapping from feature val.s to para. profiles]
−for each trace τi:
−−let f i = features σ0 [σ0 is the initial state in τi]
−−let (Di, Ci) = OfflineEstimate(τi)

−−insert f i 7→ (Di, Ci) into π

−let of = {f 7→ (D̃, C̃)} = regress π [avail. para. predictor]

−return {f 7→ (mode · of ) f} [actor: feature val.s to mode]

Figure 8: Offline alg. for synthesizing the “Actor”
module for an adaptation scheme

4.3 Putting it all together
The complete learning system is shown in pseudocode

in Figure 8, where mode is the thresholding algorithm. Note
that in Figure 8, the offline learning algorithm is param-
eterized by the (system-specific) mapping from parallelism
profiles to modes of the parallelization system π. The Offli-
neEstimate algorithm developed in Section 3 is a subrou-
tine of OfflineAdapt. The output is the “Actor” module
for parallelization system π, formed as the composition of
mode and the parallelism predictor of .

This enables the runtime system outlined in Figure 1. The
“Sensor” module realizes the reading of feature values off the
application’s state (initial state in general, and intermedi-
ate states to account for phase transitions), and the “Actor”
module issues (if needed) a mode selection request based
on the feature values sampled by the “Sensor”: First, the
“Actor” applies of to obtain a parallelism profile, thus es-
timating the available parallelism, and then it invokes the
mode function to obtain the recommended mode.

5. ADAPTIVE RUNTIME SYSTEMS
Research on data-dependent parallelism has resulted in a

wide range of adaptive concurrency control mechanisms. We
have realized two such mechanisms to evaluate the efficacy of
Tightfit, which we describe in this section. In both cases,
the initial adaptation decision is made at the beginning of
a run. The user can configure Tightfit to perform addi-
tional adaptation steps during the run to account for phase
transitions. The user then also configures the frequency of
adaptation decisions. A value n means that once every n
transaction starts an adaptation decision will be taken.

5.1 Switching between STM protocols
Different STM protocols have different strengths and

weaknesses. Some protocols work better under high con-
tention, whereas others are specialized for high-parallelism
workloads [19]. This leads to an adaptation method,
whereby the runtime system switches between protocols ac-
cording to the (estimated) available parallelism. We have
designed such a system with three underlying protocols:
• The retry protocol (Retry) applies eager specula-



tion [25], aborting a transaction immediately as it
attempts conflicting access to a memory location
“owned” by another live transaction (i.e. at least one
of the transactions needs write access to the location).
This works well for low-contention profiles.
• Dependence-aware transactional memory (DATM-

FG) [20, 21] is effective for high-contention profiles
with scarce cyclic dependencies between transactions.
DATM-FG lets a transaction depend on another
transaction “owning” a needed memory location, in-
stead of aborting and retrying, effectively stalling the
dependent transaction as long as no cyclic dependen-
cies arise. This reduces concurrency, as well as retries,
which is desirable for high-contention profiles.
• Finally, for high-contention profiles with a high pro-

portion of cyclic dependencies, a coarse-grained variant
of DATM-FG, dubbed DATM-CG, is reserved. This
variant effectively simulates a global lock by viewing
all memory locations as one and the same, which obvi-
ates the threat of rollbacks due to cyclic dependencies.

The resulting “Actor” module has the following form:

Actor(f) =

 Retry if c̃on(f) ≤ tcon
DATM-FG if c̃on(f) > tcon, c̃yc(f) ≤ tcyc
DATM-CG otherwise

Because Retry and DATM-FG are friendly protocols [20],
switching between these protocols is permitted even when
there are live transactions synchronizing according to the
old protocol. To switch to/from DATM-CG, however, a
barrier is required. Otherwise serializability is not guaran-
teed. Our implementation instead makes an opportunistic
attempt to enforce the selection, but gives up if the attempt
fails due to live transactions. A backoff mechanism improves
the probability that the next attempt will succeed.

5.2 Active threads
Another adaptation strategy is to set concurrency level—

as dictated by the number of active threads—acrroding to
the available parallelism [18, 13]. This is facilitated by par-
allelization systems with a configurable thread pool, whose
size can be adjusted during the run, such as clients of
the Java ThreadPoolExecutor library. The number of active
threads can be adapted at any point in the run, without
any constraints due to live transactions, and without affect-
ing the correctness of the run.

In our implementation, the “Actor” follows the template

Actor(f) = ceil(ncores ·
α · c̃on(f) + β · c̃yc(f)

2
),

which yields an integral value in the range [1, ncores] for real
coefficients α, β ∈ [0, 1]. That is, contention and cyclicity are
given distinct weights in deciding the concurrency level, up
to the number of available cores.

6. IMPLEMENTATION & EVALUATION
In this section, we describe our protoype implementation

of the Tightfit system, and report on experiments mea-
suring the effect of (offline) adaptation according to our ap-
proach in comparison with several other alternatives.

6.1 Prototype implementation
Tightfit is implemented as a Java library. Our prototype

loads user specifications at runtime from a designated loca-
tion. It additionally inserts instrumentation hooks at the

beginning of code blocks designated for atomic execution
(as specified by an annotation) to perform feature sampling
and enforce adaptation requests. For instrumentation, we
use the Javassist bytecode instrumentation library [6].

For offline analysis, our prototype exposes a configurable
policy prescribing which regression algorithm to apply. We
use algorithms from the Weka library [4] for regression anal-
ysis, the default being the LinearRegression class. The user
can also control sampling parameters. For sampling, the
default interval is 50 atomic blocks. We used these default
settings in our experiments.

6.2 Experiments
Benchmarks. Our experimental suite included eight
benchmarks. These are described in Table 1. All
benchmarks, excluding Boruvka and Elevator, were taken
from JSTAMP—the Java port of the STAMP benchmark
suite [15]—which is distributed as part of the Deuce STM
implementation [1]. The Boruvka benchmark is based on
a sequential implementation of Boruvka’s algorithm that
is available as part of the Java version of the LoneStar
suite [12]. Elevator is taken from the pjbench suite of paral-
lel Java benchmarks [2]. Elevator and Bank are lock-based
parallel applications. MatrixMultiply is embarrassingly par-
allel, admitting zero conflicts on any input matrix, but is
included in the evaluation for sanity checking and overhead
assessment. The remaining five benchmarks are irregular,
and thus use STM.

Our specification of workload features over these bench-
marks was straightforward: For all benchmarks except Boru-
vka, we set the command-line arguments as the candidate
features. This is because the benchmarks are all paramet-
ric per command-line values. For Boruvka, we specified the
three features in Figure 4; namely: number of nodes, density
and average node degree.
Experimental setup. We designed two experiments, cor-
responding to the adaptive systems described in Section 5.
In the first experiment, we implemented an adaptive system
that can switch between STM protocols (cf. Section 5.1),
and used the Boruvka algorithm as well as the five JSTAMP
STM applications as benchmarks. In the second experiment,
we investigated adaptation by means of changing concur-
rency levels (cf. Section 5.2). This mechanism works uni-
formly both for STM and for lock-based synchronization,
and thus we considered all eight benchmarks. (The STM
benchmarks used the “DATM-FG” protocol.)

In the first experiment, we compared Tightfit with three
non-adaptive STMs, each using one of the protocols underly-
ing the adaptive system (“Retry”, “DATM-FG”and“DATM-
CG”). In the second experiment, we compared Tightfit
against three fixed concurrency levels (“2 thr.s”, “4 thr.s”
and “8 thr.s”, where “1 thr” serves as a reference), as well
as an online adaptation algorithm (“Online”) that switches
between the protocols by tracking per-thread abort/commit
ratio [5, 34].

In both experiments, we also compared the efficacy of
the two-step offline learning technique featured in Tight-
fit (where the application-specific predictor is computed
separately from the system-specific thresholding function)
with two offline adaptation algorithms (“Off-4” and “Off-8”)
that learn a predictor from input features to system modes
directly. This is achieved by correlating between input fea-
tures and the mode yielding the shortest execution time for



Benchmark Domain/Description Inputs
Boruvka Scientific: Computes MST 5000–10000 nodes, avg. degree between 1–5
Genome Bioinformatics: Performs gene sequencing 256 ≤ −g ≤ 1024, 8 ≤ −s ≤ 64, 32768 ≤ −n ≤ 131072
Intruder Security: Detects network intrusions 1 ≤ −a ≤ 25, 2 ≤ −l ≤ 32, 1024 ≤ −n ≤ 65536, 1 ≤ −s ≤ 256

KMeans Data mining: Implements K-means clustring 5 ≤ −m,−n ≤ 320, 100−1 ≤ −s ≤ 4−1

MatrixMultiply Scientific: Performs matrix multiplication N ×N matrices, where 100 ≤ N ≤ 1000
Vacation Online tx. processing: Emulates a travel reservation sys. 1 ≤ −n ≤ 10, 1 ≤ −q,−u ≤ 100,213 ≤ −r ≤ 215, 210 ≤ −t ≤ 213

Bank Online tx. processing: Emulates a banking sys. 1000 ≤ −n ≤ 10000, 0 ≤ −i ≤ 50000,1000 ≤ −m ≤ 100000
Elevator Discrete event simulator: Simulates a sys. of elevators 10–10000 floors, random bias over from/to floor numbers

Table 1: Benchmarks, including parameter ranges for random workload generation

that input, where “Off-4” utilizes four threads for this task
and “Off-8” trains with eight threads.

We conducted the experiments on a 64-bit Linux machine
with an Intel Core i7-870 processor combining four dual
cores (at 2.93GHz), each multiplexing 2 hardware threads,
for a total of 8 threads. The host VM was Java SE Devel-
opment Kit 6 Update 25 (JDK6u25). The input ranges we
used, both for offline analysis and for the deployment runs,
are listed in column three of Table 1. The number of traces
we considered for training is discussed in Section 4.1. For
the production runs, we selected at random 20 inputs per
benchmark. For each input and concurrency level, ranging
from 1 to 8 threads, we ran the benchmark 4 times and
recorded the average across the last 3 runs, excluding the
first (cold) run. The measurements reported in Section 6.3
represent the average across all 20 of the selected inputs.

6.3 Performance results
Speedup and retry trends for the first experiment (the

system of Section 5.1), going from one to eight threads,
are shown in Figures 9–14 and Figures 15–19, respectively.
We omit retry statistics for MatrixMultiply, which does not
admit any conflicts (cf. Section 6.2). We also omit retry
statistics for the “DATM-CG” protocol, since this protocol
simulates a global lock, and thus prevents retries completely.

Average speedup and retries for eight threads are summa-
rized below:

Speedup Retries
all wo. MMul all wo. MMul

Retry 3.75 3.04 1.53 1.84
DATM-FG 4.38 3.77 0.32 0.38
DATM-CG 3.96 3.28 — —
Tightfit 4.91 4.43 0.21 0.25
Online 4.18 3.54 0.52 0.62
Off-4 4.92 4.44 0.22 0.26
Off-8 5.27 4.83 0.19 0.22

Tightfit achieves better speedup, and less retries, than the
fixed alternatives (i.e. “Retry”, “DATM-FG” and “DATM-
CG”) as well as online adaptation (“Online”). As for direct
offline learning (“Off-4” and “Off-8”), at first glance the re-
sults seem to suggest that these are comparable if not su-
perior to Tightfit: “Off-4” has similar speedup and retry
statistics to Tightfit over eight threads, and “Off-8” is
approximately 8% faster (more accurately: 7% with Ma-
trixMultiply and 9% without MatrixMultiply). However,
more careful analysis of the results—and in particular, the
speedup and retry trends visualized in Figures 9–14 and Fig-
ures 15–19, respectively—reveals that on average, Tightfit
is as effective as “Off-4” and “Off-8” on benchmarks with
high variance in parallelism, such as Genome and KMeans,
across the entire range of concurrency levels. We return to
this point in Section 6.4.

The speedup results we obtained in the second experi-
ment (the system of Section 5.2) are listed in Figure 20.
For some of the benchmarks (including Elevator, KMeans
and Genome), Tightfit is superior to alternatives fixing
the number of active threads throughout all inputs and the
entire duration of the run. Retries and memory usage statis-
tics for the lock-based benchmarks as well as nonzero-retry
STM benchmarks under “DATM-FG” are reported below:

Mode
Retries Memory

Genome Boruvka Vacation Bank Elevator
1 thread 0 0 0 1 1
2 threads 0.18 0.07 0.19 0.98 0.99
4 threads 0.22 0.2 0.48 0.95 0.96
8 threads 0.56 0.46 0.99 0.92 0.94
Tightfit 0.47 0.31 0.76 0.93 0.94

Off-4 0.53 0.36 0.70 0.94 0.95
Off-8 0.51 0.33 0.72 0.96 0.96

Again here, “Off-4” and “Off-8” appear slightly better
than Tightfit on some benchmarks and concurrency levels,
though consistently with the results of the first experiment,
Tightfit achieves comparable speedups across all concur-
rency levels on benchmarks with highly dynamic parallelism
(namely, Boruvka, Genome and KMeans).

6.4 Discussion
Overall, the experimental results provide support for the

main thesis of this paper, which puts forward the direct con-
nection between input features and available parallelism as
the basis for adaptation. For the adaptive STM system (Sec-
tion 5.1), Tightfit’s offline adaptation algorithm is measur-
ably better than its online alternative, also yielding better
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results than the three baseline STM algorithms. A similar
trend is seen with the system of Section 5.2, where adapta-
tion is achieved by controlling concurrency level.

Moreover, our analysis of the offline artifacts confirms that
the learning algorithm is able to converge on the features
that effectively control parallelism. As an example, Tight-
fit was able to converge on -q and -n as the significant
features in Vacation. These two parameters control transac-
tion duration and query range, respectively, and are indeed
the determining factors of available parallelism in Vacation
(where -r and -t are global parameters affecting the overall
duration of the run), as the documentation for this bench-
mark confirms.

The improvement thanks to Tightfit is more noticeable
on benchmarks whose available parallelism is highly dy-
namic, such as KMeans and Genome, and to a lesser extent
also Boruvka. Benchmarks with less variance in parallelism
profiles, such as Vacation, provide less room for optimization
thanks to (offline) adaptation, leaving Tightfit similar to
the “Online” adaptation algorithm in performance.

This observation also connects to the comparison between
Tightfit and the two other offline adaptation techniques:
“Off-4” and “Off-8”. While benchmarks whose available par-
allelism is more stable across different workloads seem to fa-
vor “Off-4” and “Off-8”, Tightfit is competitive with both
of these alternatives on the benchmarks whose parallelism
changes significantly across inputs throughout the entire
spectrum of concurrency levels. In particular, while “Off-
4” is more effective in the neighborhood of four threads,
and“Off-8” performs better when concurrency level is closer
to eight threads, Tightfit is more stable than both of these
alternatives, and thus achieves comparable speedups on av-
erage across all concurrency levels.

The experiments indicate the superiority of the offline
adaptation technique suggested in this paper. However, it
appears that if the deployment setup (i.e. concurrency level,
cache sizes, processor architecture, etc) is known a priori,
then direct learning (in the style of “Off-4” and “Off-8”) is
potentially preferable. If, on the other hand, the deployment
setup is subject to variation (e.g. due to usage of several dif-

ferent hardware configurations), then we expect Tightfit’s
learning algorithm to provide better results as it abstracts
away all deployment details.

Another advantage of the offline learning algorithm of
Tightfit over direct learning is that it allows for separa-
tion of concerns: The application designer provides useful
input features, and the designer of the adaptive system sep-
arately decides which execution mode best fits every par-
allelism profile. Recall that Tightfit automatically learns
the mapping from parallelism profiles to system modes. We
believe that if this mapping could be specified by an expert,
then Tightfit would achieve even better results. (Asking
for such a specification is reasonable, as it is done once per
system.) We leave research on this topic for future work.

7. RELATED WORK
For space constraints, we restrict our discussion to closely

related research on adaptive parallelization. A more detailed
review of the related work appears in [30]. In the broader
scope of profile-guided specialization, we refer the reader
to [22] for adaptive garbage collection, [28] for profile-guided
compile-time parallelization, and [16] for profile-based spe-
cialization of static heap abstractions.

The transactional concurrency tuning system [5] uses
a control-theoretic model to adapt the number of active
threads to the available parallelism, where the percentage
of committed transactions out of all executed transactions
in a sample period provides a measure of available paral-
lelism. A closely related approach, presented in [34], is to
stall a thread if its abort/commit history indicates low par-
allelism. A similar heuristic is implemented in the Galois
system [13]. The main distinction is that Tightfit esti-
mates available parallelism directly, based on input features,
instead of tracking indirect monitors related to the execution
system’s behavior.

The Shrink system [7] utilizes the run prefix to predict
transactional memory accesses. Prediction is based on the
access patterns of past transactions from the same thread.
The scheduler then tries to prevent transactions whose pre-
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dicted access sets overlap from running in parallel. Tracking
memory acccesses is reminiscent of our analysis of data de-
pendencies, though it is not clear how to cast Shrink into
our setting of offline learning.

Another form of adaptation, proposed in [32], is adap-
tive locking: The parallelization algorithm monitors the
execution, and—based on the collected statistics—decides
whether to execute a critical section (CS) speculatively or
using mutual exclusion. In [23], “hot” variables, which cause
large numbers of transactions to abort, are identified at run-
time; for these variables, the transactional manager selec-
tively switches to pessimistic concurrency control, where
reader/writer locks mediate access to locations. adapt-
STM [19] collects STM-internal statistics, like the number of
collisions in the hashtable mapping memory to locks, to tune
STM-internal data structures. The system of [24] goes be-
yond such fine-grained adaptivity (that optimizes a specific
STM implementation) to also support coarse-grained adap-
tivity, where a system-wide policy specifies when to switch
between STM implementations. The Sambamba system [26]
monitors the application’s behavior and specializes functions
on-the-fly for actual usage profiles. One of the supported
optimizations is automatic parallelization using speculation,
where deciding whether to apply parallelization depends on
the available compute resources.

All of these systems adapt their behavior online, and could
benefit from integration with Tightfit, so that the choice
of parallelization mode (e.g. configuration of internal data
structures in adaptSTM or CS execution mode in adaptive
locking) is made offline based on input characteristics.

A mechanism for dynamic profiling of a running trans-
actional program is presented in [33]. The obtained profile
is then used, in conjunction with a machine-learning (ML)
algorithm, to select an “optimal” STM implementation at
runtime. The ML algorithm is trained offline by measuring
the running time of parameterized microbenchmarks for all
available STM algorithms at multiple thread levels. Then,
during program execution, a fixed number of transactions
is profiled to guide the ML algorithm’s choice of STM algo-
rithm. Offline learning records certain code-level character-

istics of the microbenchmarks, such as whether transactions
contain loops. The online prediction rule is parameterized
by these distinctions. Recall that Tightfit estimates the
available parallelism as a function of user-specified proper-
ties of the data. In contrast, the predictor in [33] relies on
predefined syntactic features.

In [27], the authors utilize offline analysis to discover sem-
inal behaviors. These are behaviors that typically manifest
at an early stage of execution, and are correlated with many
other behaviors of the program, permitting effective predic-
tion of the program’s behavior. Seminal behaviors are ex-
tracted automatically to support proactive optimizations in
the Jikes VM. A similar approach, developed in [10], trades
training for incremental adaptation across production runs.
The authors of [10] apply this idea to predict the likelihood
of successful speculation, where predictions account for in-
put properties indirectly using classification trees. Tight-
fit shares the motivation of these works, but supports di-
rect learning of the relationship between input features and
parallelism, rather than passing through seminal behaviors,
thanks to offline learning.

The Janus algorithm [29], built on top of the Hawkeye
algorithm for abstract-level dependence tracking [31], uses
offline training to improve the precision of conflict detection
during speculative parallelization. The key idea is to enforce
sequence-based detection, where sequences of operations—
rather than individual operations—are tested for commuta-
tivity. The training phase is used to observe which sequences
occur in the client application and check offline whether
they commute, so that the runtime overhead of sequence-
based detection becomes negligible. Tightfit is similar to
Janus in applying offline learning, but the learning process—
including its scope, flow and techniques—is quite different.

8. CONCLUSION AND FUTURE WORK
We have presented a novel approach for foresight-guided

adaptation, which permits low-overhead, input-centric run-
time adaptation by shifting most of the cost of predicting
per-input parallelism to an expensive offline analysis. Two



aspects of our approach are of particular interest: (i) speci-
fication of workloads in terms of useful features, which per-
mits direct learning of the connection between input char-
acteristics and available parallelism, and (ii) quantitative
and structural analysis of data dependencies as a means
of estimating available parallelism while abstracting away
deployment-specific details. Our approach is implemented
in the Tightfit system, which is publicly available [3], and
shows promising results in our experiments.

In the future, we intend to make Tightfit more au-
tomatic by introducing auto-tuning capabilities, similarly
to [9] (e.g. to decide on effective threshold values for mode
transitions). We also plan to develop inference capabilities
to automatically converge on useful workload features.
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