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Abstract
Writing concurrent Java programs that provably terminate, i.e. that
terminate in all executions allowed by the language specifica-
tion, is difficult, because of the combination of two language
“features”: firstly, the virtual machine is allowed to throw a
VirtualMachineError exception at any point in the execution of
the program; secondly, if a thread terminates because of an excep-
tion, a stack trace is printed to the console, but other threads con-
tinue to execute normally. As a result, no program where threads
wait for other threads is provably live.

Furthermore, even if we ignore the VirtualMachineError is-
sue, dealing with exceptions in a way that preserves liveness and
compositionality is nontrivial. For example, in the .NET Frame-
work, if a thread terminates because of an exception, the program
is terminated. This preserves liveness, but it is not compositional.

At ECOOP 2009, we proposed the failboxes language exten-
sion. We showed how it facilitates writing programs that deal with
exceptions in a way that preserves safety, liveness, and composi-
tionality. We proposed proof rules for proving safety, but not for
proving liveness. In this paper, we present our ongoing research on
writing and verifying provably live programs. In particular, build-
ing on Chalice’s approach for proving deadlock-freedom in the ab-
sence of exceptions of programs that use channels, we propose pre-
liminary proof rules for proving deadlock-freedom in the presence
of synchronous and asynchronous exceptions of programs that use
semaphores and failboxes.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Specification techniques

General Terms Verification

Keywords exception handling, separation logic, concurrency

1. Introduction
Consider the following Scala program:

val queue = new LinkedBlockingQueue[String]()
fork { queue.put(”Hello,world”) }
queue.take()

where fork is defined in the obvious way. This program is not prov-
ably live. Indeed, it is entirely conceivable that the call of put en-
counters a resource limitation (such as when trying to allocate a
new linked list node) and throws an exception instead of complet-
ing the operation and unblocking the main thread. Furthermore, per
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[1, §11.1.3], the Java virtual machine may throw a so-called asyn-
chronous exception “at any point in the execution of a program”,
either as a result of an invocation of the deprecated Thread.stop
method, or as a result of “An internal error or resource limitation
in the Java Virtual Machine that prevents it from implementing the
semantics of the Java programming language.”1 Furthermore, any
such exception in the forked thread would cause the forked thread
to terminate, but it would not prevent the main thread from blocking
forever on the take call.

Perhaps the most straightforward approach to fix this would be
to catch the exception and terminate the program:

val queue = new LinkedBlockingQueue[String]()
fork {

try {
queue.put(”Hello,world”)
} catch {

case ⇒ System.exit(1)
}
}
queue.take()

Note, firstly, that this approach achieves liveness in the pres-
ence of exceptions thrown by the put call, but it is not clear that
it is fully hardened against asynchronous exceptions: can an asyn-
chronous exception happen before the try block is entered, or after
the catch block is entered? Secondly, this approach is not compo-
sitional: if this code block is part of a larger system, failure of this
code block should not necessarily terminate the entire application.
For example, if the code block is part of the request handling code
of a server, a command shell, or some other command handling ap-
plication, it might be more appropriate to inform the client of the
failure and then continue processing other requests.

Here is another attempt:

new Failbox().enter {
val queue = new LinkedBlockingQueue[String]()
Failbox.fork { queue.put(”Hello,world”) }
queue.take()
}

where class Failbox and its companion object are defined in
Fig. 1. The basic idea of this approach is that when an exception
occurs in the forked thread, instead of terminating the application,
we interrupt the waiting thread, provided it is still waiting for us.
Specifically, when an exception occurs inside an fb.enter block,
for some failbox fb, all other threads currently executing inside an
fb.enter block are interrupted. Method Failbox.fork runs the new
thread inside the current failbox.

1 More correct wording would have been “that prevents it from otherwise
implementing the semantics of the Java programming language,” since by
throwing an asynchronous exception, the virtual machine is staying within
the boundaries set by the language specification.



class Failbox {
var failed = false
val threads = new ArrayList[Thread]()
def enter(body:⇒ Unit) {

synchronized {
if (failed) throw new FailboxException()
threads.add(Thread.currentThread())
}
try {

try {
Failbox.current.withValue(this) { body }
} finally {

synchronized {
threads.remove(Thread.currentThread())
}
}
} catch {

case e⇒
synchronized {

failed = true
for (t← threads) t.interrupt()
}
throw e

}
}
}
object Failbox {

val current = new DynamicVariable[Failbox](null)
def fork(body:⇒ Unit) {

ThreadUtils.fork { current.value.enter { body } }
}
}

Figure 1. A minimal failboxes implementation

Assuming no asynchronous exceptions occur inside the code
of Fig. 1, this approach achieves liveness and compositionality.
The assumption can be eliminated by implementing the methods
of Fig. 1 in native code or directly in the virtual machine.

The code of Fig. 1 is a partial implementation of the failboxes
language extension we proposed in earlier work [2] to facilitate
writing programs that are provably safe and live in the presence of
unchecked exceptions. In [2], we proposed proof rules for proving
safety properties of programs using failboxes, but we did not pro-
pose proof rules for proving liveness properties.

In the remainder of this paper, we present some preliminary
results in our ongoing research into writing and verifying provably
live programs. In particular, in Sec. 2, we present preliminary proof
rules for verifying termination of programs using failboxes such as
the one above. We offer a conclusion and discuss future work in
Sec. 3.

2. Proof rules
In this section, we propose an extension of separation logic [5]
for proving deadlock-freedom2 of concurrent programs that use
semaphores for wait-notify synchronization and failboxes for deal-
ing with exceptions. We work up to our final program logic by
first proposing in Sec. 2.1 a program logic for proving deadlock-
freedom of programs with semaphores but without exceptions,
based on the approach used in Chalice [4] for channels, locks, and

2 For a complementary approach for modular verification of absence of
infinite recursion, see [3].

thread joining. To focus on the deadlock-freedom issue, we elide
all features related to safety and data consistency; for those, see [4].
We then extend this program logic in Sec. 2.2 to one that is sound
in the presence of synchronous and asynchronous exceptions.

2.1 Deadlock-freedom of programs with semaphores
We consider the following programming language, where c ranges
over commands and x ranges over variables:

c ::= new sema | fork c | x.V | x.P | let x := c in c

Command new sema creates a new semaphore with initial value
0, x.V releases (i.e. increments) semaphore x and x.P acquires
(i.e. decrements) it, blocking while the value is 0.

The example program translates into this language as follows:

let s := new sema in fork s.V; s.P

(Here, we use c; c′ as a shorthand for let x := c in c′ with x fresh.)
The assertions P of our assertion language are as follows:

P ::= s.sema(w) | s.credit | s.debit | t.obs(W ) | P ∗ P | true

where s ranges over semaphores, t ranges over thread identifiers, w
ranges over wait levels, and W ranges over multisets of wait levels.
We assume a partially ordered set of wait levels; we will use it in
the usual way to prevent wait cycles.

Assertion s.sema(w) asserts that semaphore s has been asso-
ciated with wait level w. s.credit asserts ownership of one credit
(acquire permission) for semaphore s. s.debit asserts ownership of
one debit (release obligation) for semaphore s. t.obs(W ) asserts
that W is the current multiset of obligations (each associated with
a wait level) of thread t.

We have the following laws:

s.sema(w) ⇒ s.sema(w) ∗ s.sema(w)
t.obs(W ) ∗ s.sema(w) ⇔ t.obs(W ] {[w]}) ∗ s.sema(w)

∗ s.debit ∗ s.credit

In words: s.sema(w) assertions are duplicable, and a thread t can
take upon itself an obligation to release a semaphore s, which
produces both a debit and a credit for the semaphore. Conversely,
a thread can cancel an obligation by handing in a corresponding
debit-credit pair. {[w]} denotes the singleton multiset containing
element w once.

We define the provable correctness judgment t ` {P} c {Q},
where t is the current thread, P is the precondition (an assertion
with no free variables), c is the command, and Q is the postcondi-
tion (an assertion with a single free variable res denoting the result
value of c), inductively as follows:

t ` {true} new sema {res.sema(w)}

∀t′. t′ ` {t′.obs(W ′) ∗ P} c {t′.obs(∅) ∗ true}
t ` {t.obs(W ]W ′) ∗ P} fork c {t.obs(W )}

t ` {true} s.V {s.credit}

t ` {t.obs(W )∗s.sema(w)∗s.credit∧w < W} s.P {t.obs(W )}

t ` {P} c {Q} ∀v. t ` {Q[v/res]} c′[v/x] {R}
t ` {P} let x := c in c′ {R}

t ` {P} c {Q}
t ` {P ∗R} c {Q ∗R}

P ⇒ P ′ t ` {P ′} c {Q} Q⇒ Q′

t ` {P} c {Q′}



In words: when creating a new semaphore, the proof author can as-
sociate an arbitrary wait level with it. When forking a new thread,
the parent thread can delegate some of its obligations to the child
thread. The child thread must discharge (or delegate) all of its
obligations before it terminates. Releasing a semaphore produces
a credit (i.e. an acquire permission). Acquiring a semaphore con-
sumes a credit; furthermore, it requires that the semaphore’s wait
level is below the wait levels of the current thread’s obligations.
The frame, let and consequence rules are as usual.

Theorem 1 (Soundness). If t ` {t.obs(∅)} c {t.obs(∅) ∗ true},
then c is deadlock-free, i.e. it does not reach a non-finished state
where all threads are blocked.

Proof. Observe that we have the following invariants:

• For any semaphore s, the total number of credits for s owned by
all threads equals the value of s plus the total number of debits
for s.

• The multiset union of all threads’ obligation multisets equals
the multiset union of the wait levels of the semaphores associ-
ated with the debits present in the system.

We prove the theorem by contradiction. Consider a non-finished
state where all threads are blocked. We say thread t waits for thread
t′ at level w if t is blocked on a command s.P and thread t′’s
obligation multiset contains the element w, where w is the wait
level associated with semaphore s. Notice that each thread waits
for some thread, and furthermore, if t waits for t′ at some level w,
then t′ waits at some level w′ < w. Since the number of threads is
finite, there is a cycle in the waits-for graph and w < w for some w,
which contradicts the fact that relation < on wait levels is a strict
partial order.

We can prove deadlock-freedom of the example program as
follows:

{t.obs(∅)}
let s := new sema in
{t.obs(∅) ∗ s.sema(0)}
{t.obs({[0]}) ∗ s.sema(0) ∗ s.debit ∗ s.credit}
fork
{t′.obs({[0]}) ∗ s.sema(0) ∗ s.debit}
s.V;
{t′.obs({[0]}) ∗ s.sema(0) ∗ s.debit ∗ s.credit}
{t′.obs(∅) ∗ s.sema(0)}
{t.obs(∅) ∗ s.sema(0) ∗ s.credit}
s.P
{t.obs(∅)}

The main thread, after creating the semaphore at wait level 0,
creates a debit and passes the obligation to send on to the forked
thread, while using the resulting credit to acquire the semaphore.
The forked thread releases the semaphore, and uses the resulting
credit to cancel its obligation before finishing.

2.2 Deadlock-freedom of programs with semaphores and
exceptions

Notice that the program logic presented in the preceding section is
not sound in the presence of exceptions: in the example program,
if an exception occurs in the forked thread before the release op-
eration completes, the main thread remains blocked on the acquire
operation forever.

The core of the problem is that exceptions may cause obliga-
tions to remain unfulfilled, causing threads that wait on those obli-
gations to block forever.

The solution we consider in this paper is to use failboxes to
make sure that if an obligation is lost due to an exception, any

thread blocking or attempting to block on that obligation will itself
receive an exception. In particular, we associate a failbox with each
obligation, and furthermore, 1) the thread that holds this obligation
must be inside this failbox, and 2) any thread that blocks on this
obligation must also be inside this failbox.

More specifically, we associate a failbox with each semaphore,
and we associate the semaphore’s failbox with each obligation to
release this semaphore.

We extend the programming language as follows:

c ::= · · · | new failbox | x.enter c

We modify the semantics of the fork c command so that it executes
the forked thread inside the current failbox, if any.

A translation of the hardened example program into the formal
language is as follows:

let fb := new failbox in
fb.enter (

let s := new sema in
fork s.V; s.P

)

The semantics of the language is extended with a step rule
THROW that arbitrarily picks a thread t and throws an exception
in it. In our simple language, this means that:

• All failboxes that t is directly or indirectly running inside, i.e.,
all failboxes f such that an f.enter block is on t’s stack, are
marked as failed.

• All threads directly or indirectly running inside of these fail-
boxes are marked as interrupted. In our simple language, a
thread’s interrupted flag is never reset. An execution state where
a thread is blocked and marked as interrupted is not considered
a deadlocked state, since an InterruptedException will eventu-
ally be thrown in this thread.

• Thread t enters the finished state.

Our assertion language is now as follows:

P ::= s.sema(w, f) | s.credit | s.debit
| t.obs(W, f̃ ,W ) | P ∗ P | true

Here, f ranges over failboxes, and f̃ ranges over the failboxes
plus the special value ⊥ denoting that the thread is currently not
inside a failbox. Assertion s.sema(w, f) asserts that semaphore
s is associated with wait level w and failbox f . t.obs(W, f,W ′)
asserts that thread t is currently directly inside failbox f and holds
obligations W ] W ′ of which W ′ were taken on while inside
the current innermost enclosing enter block, and therefore are
associated with failbox f . (Some of the obligations in W may also
be associated with f , but the simple logic we propose here does
not track that information.) t.obs(W,⊥,W ′) asserts that thread t
is currently not inside a failbox; it follows that W = W ′ = ∅.

We now have the following laws:

s.sema(w, f)⇒ s.sema(w, f) ∗ s.sema(w, f)
t.obs(W, f,W ′) ∗ s.sema(w, f)⇔

t.obs(W, f,W ′ ] {[w]}) ∗ s.sema(w, f) ∗ s.debit ∗ s.credit

Notice that a thread may take on an obligation to release a
semaphore s only if it is currently directly inside the failbox as-
sociated with s.



The proof rules are now:

t ` {true} new sema {res.sema(w, f)}

∀t′. t′ ` {t′.obs(∅, f̃ ,W ′) ∗ P} c {t′.obs(∅, f̃ , ∅) ∗ true}
t ` {t.obs(W0, f̃ ,W ]W ′) ∗ P} fork c {t.obs(W0, f̃ ,W )}

t ` {true} s.V {s.credit}

t `

{
t.obs(W, f,W ′) ∗ s.sema(w, f) ∗ s.credit
∧ w < W ∪W ′

}
s.P
{t.obs(W, f,W ′)}

t ` {true} new failbox {true}

t ` {t.obs(W ]W ′, f ′, ∅) ∗ P} c {t.obs(W ]W ′, f ′, ∅) ∗Q}
t ` {t.obs(W, f̃ ,W ′) ∗ P} f ′.enter c {t.obs(W, f̃ ,W ′) ∗Q}

(The frame, let and consequence proof rules are unchanged and are
not shown again.)

In words: when creating a semaphore, the proof author may
associate an arbitrary wait level and an arbitrary failbox with it.
When forking a new thread, the child thread executes initially
inside the failbox that the parent thread is executing within, if
any. The parent thread may delegate some of the obligations that
it took on during the current innermost enclosing enter block to
the child thread. Acquiring a semaphore requires that the thread
is executing directly inside the associated failbox. Creating a new
failbox yields a failbox value, but no further information about this
value is tracked by our simple logic. Before a thread leaves an
enter block, it must discharge all obligations taken on during the
block.

Theorem 2 (Soundness). If t ` {t.obs(∅,⊥, ∅)} c {t.obs(∅,⊥, ∅)∗
true}, then c is deadlock-free, i.e. it does not reach a non-finished
state where all threads are blocked, even in the presence of syn-
chronous or asynchronous exceptions.

Proof. We instrument the execution semantics as follows: in each
state, we associate with each thread an augmented obligation bag
Ŵ , which is a bag of pairs (w, f). When a debit is created for a
semaphore s associated with wait level w and failbox f , the pair
(w, f) is added to the bag. Analogously, when a debit is destroyed,
the pair is removed.

The invariants identified in Thm. 1 still hold. We have the
following additional invariants:

• Whenever we have t.obs(W, f,W ′), there is an augmented
bag Ŵ such that t’s augmented bag equals Ŵ ] (W ′ × {f})
and W = fst(Ŵ ).

• If a thread is holding an obligation (w, f), it is running inside
f , or else f is marked as failed.

• The bag of all obligations associated with a failbox f equals the
bag of the wait levels of all debits of all semaphores associated
with f .

• If a thread is directly or indirectly running inside a failed fail-
box, then it is marked as interrupted.

• All obligations held by finished threads are associated with
failed failboxes.

Consider a deadlocked state. Consider any thread t blocked on an
s.P operation. t is necessarily running inside a non-failed failbox
f , since otherwise it would be marked as interrupted and the state
would not be deadlocked. Also, s must be associated with f . There-
fore, some thread t′ must be holding an obligation (w, f), where w

is s’s wait level. t′ must be non-finished. The remainder of the proof
is as for Thm 1.

We can prove deadlock-freedom of the example program as
follows:3

{t.obs(∅,⊥, ∅)}
let fb := new failbox in
{t.obs(∅,⊥, ∅)}
fb.enter (
{t.obs(∅, fb, ∅)}
let s := new sema in
{t.obs(∅, fb, ∅) ∗ s.sema(0, fb)}
{t.obs(∅, fb, {[0]}) ∗ s.sema(0, fb) ∗ s.debit ∗ s.credit}
fork
{t′.obs(∅, fb, {[0]}) ∗ s.sema(0, fb) ∗ s.debit}
s.V;
{t′.obs(∅, fb, {[0]}) ∗ s.sema(0, fb) ∗ s.debit ∗ s.credit}
{t′.obs(∅, fb, ∅) ∗ s.sema(0, fb)}
{t.obs(∅, fb, ∅) ∗ s.sema(0, fb) ∗ s.credit}
s.P
{t.obs(∅, fb, ∅)}

)
{t.obs(∅,⊥, ∅)}

3. Conclusion
We presented an intermediate result in our ongoing work on veri-
fication of liveness properties of concurrent programs in the pres-
ence of exceptions. While the proposed program logic leaves much
room for further work, it enables us, for the first time, to verify,
soundly, liveness properties of concurrent Java programs involving
wait-signal-style synchronization.4

We are in the process of implementing these ideas in the context
of our VeriFast modular verification tool for Java programs. We
have translated the simple failboxes API shown in Fig. 1 to Java
and encoded the proposed proof rules into VeriFast annotations for
this API. We were able to verify the example program against this
API.

Future work on the program logic includes integrating support
for locking and thread joining; adding support for catching excep-
tions (and for explicitly throwing exceptions); adding support for
discharging obligations held by the current thread but not taken on
in the innermost enter block; developing a formal soundness proof;
and further experimentation and validation.
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