
Library Abstraction for C/C++ Concurrency

Mark Batty

University of Cambridge

Mike Dodds

University of York

Alexey Gotsman

IMDEA Software Institute

Abstract

When constructing complex concurrent systems, abstraction is vi-
tal: programmers should be able to reason about concurrent li-
braries in terms of abstract specifications that hide the implementa-
tion details. Relaxed memory models present substantial challenges
in this respect, as libraries need not provide sequentially consistent
abstractions: to avoid unnecessary synchronisation, they may allow
clients to observe relaxed memory effects, and library specifica-
tions must capture these.

In this paper, we propose a criterion for sound library abstrac-
tion in the new C11 and C++11 memory model, generalising the
standard sequentially consistent notion of linearizability. We prove
that our criterion soundly captures all client-library interactions,
both through call and return values, and through the subtle syn-
chronisation effects arising from the memory model. To illustrate
our approach, we verify implementations against specifications for
the lock-free Treiber stack and a producer-consumer queue. Ours
is the first approach to compositional reasoning for concurrent
C11/C++11 programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Verification, Concurrency, Modularity, C, C++

1. Introduction

Software developers often encapsulate functionality in libraries,
and construct complex libraries from simpler ones. The advantage
of this is information hiding: the developer need not understand
each library’s implementation, but only its more abstract specifica-
tion. On a sequential system, a library’s internal actions cannot be
observed by its client, so its specification can simply be a relation
from initial to final states of every library invocation. This does not
suffice on a concurrent system, where the invocations can overlap
and interact with each other. Hence, a concurrent library’s speci-
fication is often given as just another library, but with a simpler
(e.g., atomic) implementation; the two libraries are called concrete
and abstract, respectively. Validating a specification means show-
ing that the simpler implementation abstracts the more complex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’13, January 23–25, 2012, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

one, i.e., reproduces all its client-observable behaviours. Library
abstraction has to take into account a variety of ways in which a
client and library can interact, including values passed at library
calls and returns, the contents of shared data structures and, in this
paper, the memory model.

The memory model of a concurrent system governs what values
can be returned when the system reads from shared memory. In a
traditional sequentially consistent (SC) system, the memory model
is straightforward: there is a total order over reads and writes,
and each read returns the value of the most recent write to the
location being accessed [15]. However, modern processors and
programming languages provide relaxed memory models, where
there is no total order of memory actions, and the order of actions
observed by a thread may not agree with program order, or with
that observed by other threads.

In this paper, we propose a criterion for library abstraction on
the relaxed memory model defined by the new ISO C11 [12] and
C++11 [13] standards (henceforth, the ‘C11 model’). We handle
the core of the C11 memory model, leaving more esoteric features,
such release-consume atomics and fences, as future work (see §9).
The C11 model is designed to support common compiler optimisa-
tions and efficient compilation to architectures such as x86, Power,
ARM and Itanium, which themselves do not guarantee SC. It gives
the programmer fine-grained control of relaxed behaviour for indi-
vidual reads and writes, and is defined by a set of axiomatic con-
straints, rather than operationally. Both of these properties produce
subtle interactions between the client and the library that must be
accounted for in abstraction.

Our criterion is an evolution of linearizability [5, 7, 10, 11],
a widely-used abstraction criterion for non-relaxed systems. Like
linearizability, our approach satisfies the Abstraction Theorem: if
one library (a specification) abstracts another (an implementation),
then the behaviours of any client using the implementation are
contained in the behaviours of the client using the specification.
This result allows complex library code to be replaced by sim-
pler specifications, for verification or informal reasoning. Hence,
it can be viewed as giving a proof technique for contextual refine-
ment that avoids considering all possible clients. Our criterion is
compositional, meaning that a library consisting of several smaller
non-interacting libraries can be abstracted by considering each sub-
library separately. When restricted to the SC fragment of C11, our
criterion implies classical linearizability (but not vice versa).

The proposed criterion for library abstraction gives the first
sound technique for specifying C11 and C++11 concurrent li-
braries. To justify its practicality, we have applied it two typical
concurrent algorithms: a non-blocking stack and an array-based
queue. To do this, we have adapted the standard linearization point
technique to the axiomatic structure of the C11 model. These case
studies represent the first step towards verified concurrent libraries
for C11 and C++11.

Technical challenges. Apart from managing the mere complex-
ity of the C11 model, defining a criterion for library abstraction

requires us to deal with several challenges that have not been con-
sidered in prior work.

First, the C11 memory model is defined axiomatically, whereas
existing techniques for library abstraction, such as linearizability,
have focused on operational trace-based models. To deal with this,
we propose a novel notion of a history, which records all interac-
tions between a client and a library. Histories in our work consist of
several partial orders on call and return actions. This is in contrast to
variants of linearizability, where histories are linear sequences (for
this reason, in the following we avoid the term ‘linearizability’).
We define an abstraction relation on histories as inclusion over par-
tial orders, and lift this relation to give our abstraction criterion for
libraries: one library abstracts another if any history of the former
can be reproduced in abstracted form by the latter.

Second, C11 offers the programmer a range of options for con-
currently accessing memory, each with different trade-offs between
consistency and performance. These choices can subtly affect other
memory accesses across the client-library boundary—a particular
choice of consistency level inside the library might force or for-
bid reading certain values in the client, and vice versa. This is
an intended feature: it allows C11 libraries to define synchronisa-
tion constructs that offer different levels of consistency to clients.
We propose a method for constructing histories that captures such
client-library interactions uniformly. The Abstraction Theorem cer-
tifies that our histories indeed soundly represent all possible inter-
actions.

Finally, some aspects of the C11 model conflict with abstrac-
tion. Most problematically, the model permits satisfaction cycles.
In satisfaction cycles, the effect of actions executed down a con-
ditional branch is what causes the branch to be taken in the first
place. This breaks the straightforward assumption that faults are
confined to either client or library code: a misbehaving client can
cause misbehaviour in a library, which can in turn cause the original
client misbehaviour! For these reasons, we actually define two dis-
tinct library abstraction criteria: one for general C11, and one for a
language without the feature leading to satisfaction cycles. The for-
mer requires an a priori check that the client and the library do not
access each others’ internal memory locations, which hinders com-
positionality. The latter lifts this restriction (albeit for a C11 model
modified to admit incomplete program runs) and thus provides ev-
idence that satisfaction cycles are to blame for non-compositional
behaviour. Our results thus illuminate corner cases in C11 that un-
dermine abstraction, and may inform future revisions of the model.

As we argue in §9, many of the techniques we developed to
address the above challenges should be applicable to other models
similar to C11.

Structure. In the first part of the paper, we describe informally
how algorithms can be expressed and specified in the C11 memory
model (§2), and our abstraction criteria (§3). We then present the
model formally (§4 and §5), followed by the criteria (§6) and a
method for establishing their requirements (§7). Proofs are given in
an extended version of the paper [1, §C].

2. C11 Concurrency and Library Specification

In this section we explain the form of our specifications for C11
concurrent libraries, together with a brief introduction to program-
ming in the C11 concurrency model itself. As a running example,
we use a version of the non-blocking Treiber stack algorithm [22]
implemented using the concurrency primitives in the subset of C11
that we consider. Figure 1a shows its specification, and Figure 1b
its implementation, which we have proved to correspond (§7 and
[1, §E]). For readability, we present examples in a pseudocode in-
stead of the actual C/C++ syntax. Several important features are
highlighted in red—these are explained below.

SPECIFICATION: IMPLEMENTATION:

atomic Seq S;

void init() {
storeREL(&S,empty);

}

void push(int v) {
Seq s, s2;
if (nondet()) while(1);
atom sec {
s = loadRLX(&S);
s2 = append(s,v);
CASRLX,REL(&S,s,s2);

}
}

int pop() {
Seq s;
if (nondet()) while(1);
atom_sec {
s = loadACQ(&S);
if (s == empty)
return EMPTY;

CASRLX,RLX(&S,s,tail(s));
return head(s);

}
}

(a)

struct Node {
int data;
Node *next;

};
atomic Node *T;

void init() {
storeREL(&T,NULL);

}

void push(int v) {
Node *x, *t;
x = new Node();
x->data = v;
do {
t = loadRLX(&T);
x->next = t;

} while
(!CASRLX,REL(&T,t,x));

}

int pop() {
Node *t, *x;
do {
t = loadACQ(&T);
if (t == NULL)
return EMPTY;

x = t->next;
} while
(!CASRLX,RLX(&T,t,x));

return t->data;
}

(b)

Figure 1. The Treiber stack. For simplicity, we let pop leak mem-
ory. The CASes in the specification always succeed.

Stack specification. As noted in §1, specifications are just al-
ternative library implementations that have the advantage of sim-
plicity, in exchange for inefficiency or nondeterminism. The spec-
ification in Figure 1a represents the stack as a sequence abstract
data type and provides the three expected methods: init, push
and pop. A correct stack implementation should provide the illu-
sion of atomicity of operations to concurrent threads. We specify
this by wrapping the bodies of push and pop in atomic sections,
denoted by atom_sec. Atomic sections are not part of the stan-
dard C11 model—for specification purposes, we have extended the
language with a prototype semantics for atomic section (§5). Both
push and pop may non-deterministically diverge, as common stack
implementations allow some operations to starve (in concurrency
parlance, they are lock-free, but not wait-free). All these are the ex-
pected features of a specification on an SC memory model. We now
explain the features specific to C11.

The sequence S holding the abstract state is declared atomic.
In C11, programs must not have data races on normal variables;
any location where races can occur must be explicitly identified as
atomic and accessed using the special commands load, store,
and CAS (compare-and-swap). The latter combines a load and a
store into a single operation executed atomically. A CAS takes
three arguments: a memory address, an expected value and a new
value. The command atomically reads the memory address and, if
it contains the expected value, updates it with the new one. Due to
our use of atomic sections, the CASes in the specification always
succeed. We use CASes here instead of just stores, because, for
subtle technical reasons, the latter have a stronger semantics in C11
than our atomic sections (see release sequences in §A).

The load and store commands are annotated with a memory
order that determines the trade-off between consistency and per-
formance for the memory access; CASes are annotated with two
memory orders, as they perform both a load and a store. The choice
of memory orders inside a library method can indirectly affect its
clients, and thus, a library specification must include them. In the
stack specification, several memory operations have the release-
acquire memory orders, denoted by the subscripts REL (for stores)
and ACQ (for loads). To explain its effect, consider the following
client using the stack according to a typical message-passing idiom:

int a, b, x=0;

x=1;
push(&x);

do {
a = pop();

} while (a==EMPTY);
b=*a;

The first thread writes 1 into x and calls push(&x); the second
thread pops the address of x from the stack and then reads its con-
tents. In general, a relaxed memory model may allow the second
thread to read 0 instead of 1, e.g., because the compiler reorders
x=1 and push(&x). The release-acquire annotations guarantee that
this is not the case: when the ACQ load of S in pop reads the value
written by the REL store to S in push, the two commands synchro-
nise. We define this notion more precisely later, but informally, it
means that the ordering between the REL store and ACQ load con-
strains the values fetched by reads from other locations, such as the
read *a in the client.

To enable this message-passing idiom, the specification only
needs to synchronise from pushes to pops; it need not synchro-
nise from pops to pushes, or from pops to pops. To avoid unnec-
essary synchronisation, the specification uses the relaxed memory
order (RLX). This order is weaker than release-acquire, meaning
that the set of values a relaxed load can read from memory is less
constrained; additionally, relaxed loads and stores do not synchro-
nise with each other. However, relaxed operations are very cheap,
since they compile to basic loads and stores without any additional
hardware barrier instructions. Hence, the specification allows im-
plementations that are efficient, yet support the intended use of the
stack for message passing. On the other hand, as we show below, it
intentionally allows non-SC stack behaviours.

Stack implementation. Figure 1b gives our implementation of
the Treiber stack. The stack is represented by a heap-allocated
linked list of nodes, accessed through a top-of-stack pointer T. Only
the latter needs to be atomic, as it is the only point of contention
among threads. The push function repeatedly reads from the top
pointer T, initialises a newly created node x to point to the value
read, and tries to swing T to point to x using a CAS; pop is
implemented similarly. For simplicity, we let pop leak memory.

Like the specification, the implementation avoids unnecessary
hardware synchronisation by using the relaxed memory order RLX.
However, the load of T in pop is annotated ACQ, since the com-
mand x = t->next accesses memory based on the value read, and
hence, requires it to be up to date.

What does it mean for the implementation in Figure 1b to meet
the specification in Figure 1a? As well as returning the right values,
it must also faithfully implement the correct synchronisation. To
understand how this can be formalised, we must therefore explain
how synchronisation works in C11’s semantics.

C11 model structure. The C11 memory model is defined ax-
iomatically. An execution of a program consists of a set of actions
and several partial orders on it. An action describes a memory op-
eration, including the information about the thread that performed
it, the address accessed and the values written and/or read. The se-
mantics of a program is given by the set of executions consistent
with the program code and satisfying the axioms of the memory

model (see Figure 4 for a flavour of these). Here is a program with
one of its executions, whose outcome we explain below:

STORE BUFFERING (SB):

storeRLX(&x,0); storeRLX(&y,0)

storeRLX(&x,1) storeRLX(&y,1)

loadRLX(&y) loadRLX(&x)

store
RLX

(&x,0) store
RLX

(&y,0)

load
RLX

(&y,0) load
RLX

(&x,0)

store
RLX

(&x,1) store
RLX

(&y,1)

sb sbrfrf

Note that, in diagrams representing executions, we omit thread
identifiers from actions. Several of the most important relations in
an execution are:

• sequenced-before (sb), a transitive and irreflexive relation order-
ing actions by the same thread according to their program order.

• initialised-before (ib), ordering initial writes to memory loca-
tions before all other actions in the execution1. Above we have
shown ib by a dotted line dividing the two kinds of actions.

• reads-from (rf), relating reads r to the writes w from which they

take their values: w
rf
−→ r.

• happens-before (hb), showing the precedence of actions in the
execution. In the fragment of C11 that we consider, it is transitive
and irreflexive.

Happens-before is the key relation, and is the closest the C11 model
has to the notion of a global time in an SC model: a read must not
read any write to the same location related to it in hb other than its
immediate predecessor. Thus, for writes w1 and w2 and a read r
accessing the same location, the following shapes are forbidden:

w1
hb //

rf

33w2
hb // r r

hb))
w1

rf

hh (RD)

However, in contrast to an SC model, hb is partial in C11, and some

reads can read from hb-unrelated writes: we might have w
rf
−→ r,

but not w
hb
−→ r.

Memory orders. By default, memory reads and writes in C11
are non-atomic (NA). The memory model guarantees that data-
race free programs with only non-atomic memory accesses have
SC behaviour. A data race occurs when two actions on the same
memory location, at least one of which is a write, and at least one
of which is a non-atomic access, are unrelated in happens-before,
and thus, intuitively, can take place ‘at the same time’. Hence, non-
expert programmers who write code that is free from both data
races and atomic accesses need not understand the details of the
relaxed memory model. Data races are considered faults, resulting
in undefined behaviour for the whole program.

The three main atomic memory orders, from least to most re-
strictive, are relaxed, release-acquire and sequentially consistent2.
We have already seen the first two in the stack example above.
The third, sequentially consistent (SC), does not allow relaxed
behaviour: if all actions in a race-free program are either non-
atomic or SC, the program exhibits only sequentially-consistent be-
haviour [2, 4]. However, the SC memory order is more expensive.

The weakest memory order, relaxed, exhibits a number of relax-
ations, as the C11 model places very few restrictions on which write
a relaxed read might read from. For example, consider the (SB)

1 This is a specialisation of the additional-synchronises-with relation from
the C11 model [2] to programs without dynamic thread creation, to which
we restrict ourselves in this paper (see §4).
2 Release-consume atomics and fences [2] are left for future work (see §9).
We also omit some C11 subtleties that are orthogonal to abstraction (see §4).

example above. The outcome shown there is allowed by C11, but
cannot be produced by any interleaving of the threads’ actions. C11
disallows it if all memory accesses are annotated as SC.

The release-acquire memory orders allow more relaxed be-
haviour than SC, while still providing some guarantees. Consider
the following execution of the client of the stack in Figure 1a or 1b
we have seen above:

MESSAGE PASSING (MP):

int a, b, x=0;

x=1; do {a=pop();}

push(&x); while

(a==EMPTY);

b=*a;

store
NA

(&x,0)

store
NA

(&x,1)

ib

load
NA

(&x,1)

rf,hbcall push(&x)

sb

ret pop(&x)

sb

rmw
RLX,REL

(&S,i,j)

load
ACQ

(&S,j)

sb sb

rf

Here rmw (read-modify-write) is a combined load-store action
produced by a CAS. In this case, the ACQ load in pop synchronises
with the REL store part of the CAS in push that it reads from.
This informal notion of synchronisation we mentioned above is
formalised in the memory model by including the corresponding
rf edge into hb. Then, since sb ∪ ib ⊆ hb and hb is transitive, both
writes to x happen before the read. Hence, by (RD), the read from
x by the second thread is forced to read from the most recent write,
i.e., 1.

If all the memory order annotations in the Treiber stack were re-
laxed, the second thread could read 0 from x instead. Furthermore,
without release-acquire synchronisation, there would be a data race
between the non-atomic write of x in the first thread and the non-
atomic read of x in the second.

The release-acquire memory orders only synchronise between
pairs of reads and writes, but do not impose a total order over mem-
ory accesses, and therefore allow non-SC behaviour. For example,
if we annotate writes in (SB) with REL, and reads with ACQ, then
the outcome shown there will still be allowed: each load can read
from the initialisation without generating a cycle in hb or violat-
ing (RD). We can also get this outcome if we use push and pop
operations on two instances of the stack from Figure 1a or 1b in-
stead of load and store. Thus, both the implementation and the
specification of the stack allow it to have non-SC behaviour.

To summarise, very roughly, release-acquire allows writes to
be delayed but not reordered, while relaxed allows both. Relaxed
actions produce even stranger behaviour, including what we call
satisfaction cycles:

SATISFACTION CYCLE (SCL):

a=loadRLX(&x) b=loadRLX(&y)

if (a==8) if (b==8)

storeRLX(&y,a) storeRLX(&x,8)

load
RLX

(&x,8)

store
RLX

(&y,8)

sb

load
RLX

(&y,8)

store
RLX

(&x,8)

sb
rf rf

Here, each conditional satisfies its guard from a later write in the
other thread. This is possible because relaxed reads and writes
do not create any happens-before ordering, and thus neither read
is constrained by (RD). Unlike relaxed, release-acquire does not
allow satisfaction cycles. If the loads and stores in the example
were annotated release-acquire, then both rf edges would also be hb
edges. This would produce an hb cycle, which is prohibited by the
memory model. Satisfaction cycles are known to be a problematic
aspect of the C11 model; as we show in this paper, they also create
difficulties for library abstraction.

3. Library Abstraction Informally

Histories. Our approach to abstraction is based on the notion of a
history, which concisely records all interactions between the client

and the library in a given execution. Clients and libraries can affect
one another in several ways in C11. Most straightforwardly, the
library can observe the parameters passed by the client at calls,
and the client can observe the library’s return values. Therefore,
a history includes the set of all call and return actions in the
execution. However, clients can also observe synchronisation and
other memory-model effects inside a method. These more subtle
interactions are recorded by two kinds of partial order: guarantees
and denies.

Synchronisation internal to the library can affect the client by
forcing reads to read from particular writes. For example, in (MP)
from §2, the client is forced to read 1 from x because the push and
pop methods synchronise internally in a way that generates an hb
ordering between the call to push and the return from pop. If the
methods did not hb-synchronise, the client could read from either
of the writes to x. The client can thus observe the difference be-
tween two library implementations with different internal synchro-
nisation, even if all call and return values are identical. To account
for this, the guarantee relation in a history of an execution records
hb edges between library call and return actions.

Even non-synchronising behaviour inside the library can some-
times be observed by the client. For example, the C11 model re-
quires the existence of a total order mo over all atomic writes to a
given location. This order cannot go against hb, but is not included
into it, as this would make the model much stronger, and would
hinder efficient compilation onto very weak architectures, such as
Power and ARM [21]. Now, consider the following:

DENY (DN):

storeREL(&x,1);

loadACQ(&x);

lib();

lib();

storeREL(&x,0);

load
ACQ

(&x,0)

library library

store
REL

(&x,0)

mo

rf,hb (forbidden!)

call lib()

sb

ret lib()
sb

In this execution, a write internal to the invocation of lib in the
second thread is mo-ordered after a write internal to the invocation
of lib in the first thread. This forbids the client from reading 0
from x. To see this, suppose the contrary holds. Then the ACQ
load synchronises with the REL store of 0, yielding an hb edge.
By transitivity with the client sb edges, which are included in hb,
we get an hb edge from ret lib in the second thread to call lib
in the first. Together with the library’s sb edges, this yields an hb
edge going against the library-internal mo one, which is prohibited
by the memory model. To account for such interactions, the deny
relations in a history of an execution record hb or other kinds of
edges between return and call actions that the client cannot enforce
due to the structure of the library, e.g., the hb-edge from ret lib to
call lib above.

Abstraction in the presence of relaxed atomics. As we noted in
§1, we actually propose two library abstraction criteria: one for the
full memory model described in §2, and one for programs without
relaxed atomics. We discuss the former first.

Two library executions with the same history are observation-
ally equivalent to clients, even if the executions are produced by
different library implementations. By defining a sound abstraction
relation over histories, we can therefore establish abstraction be-
tween libraries. To this end, we need to compare the histories of
libraries under every client context. Fortunately, we need not ex-
amine every possible client: it suffices to consider behaviour un-
der a most general client, whose threads repeatedly invoke library
methods in any order and with any parameters. Executions under
this client generate all possible histories of the library, and thus

represent all client-library interactions (with an important caveat,
discussed below). We write JLKI for the set of executions of the
library L under the most general client starting from an initial state
I . Initial states are defined formally in §4, but, informally, record
initialisation actions such as the ones shown in (SB). The set JLKI
gives the denotation of the library considered in isolation from its
clients, and in this sense, defines a library-local semantics of L.

This library-local semantics allows us to define library abstrac-
tion. We now quote its definition and formulate the correspond-
ing Abstraction Theorem, introducing some of the concepts used
in them only informally. This lets us highlight their most important
features that can be discussed independently of the formalities. We
fill in the missing details in §6.1, after we have presented the C11
model more fully.

For the memory model with relaxed atomics, a history contains
one guarantee and one deny relation.

DEFINITION 1. A history is a triple H = (A,G,D), where A is a
set of call and return actions, and G,D ⊆ A×A.

Library abstraction is defined on pairs of libraries L and sets of
their initial states I. It relies on a function history(·) extracting the
history from a given execution of a library, which we lift to sets of
executions pointwise. The notation JL, RK and the notion of safety
are explained below.

DEFINITION 2. For histories (A1, G1, D1) and (A2, G2, D2), we
let (A1, G1, D1) ⊑ (A2, G2, D2) if A1 = A2, G1 = G2 and
D2 ⊆ D1.

For safe (L1, I1) and (L2, I2), (L1, I1) is abstracted by
(L2, I2), written (L1, I1) ⊑ (L2, I2), if for any relation R con-
taining only edges from return actions to call actions, we have

∀I1 ∈ I1, H1 ∈ history(JL1, RKI1).

∃I2 ∈ I2, H2 ∈ history(JL2, RKI2). H1 ⊑ H2.

The overall shape of the definition is similar to that of linearizabil-
ity on SC memory models [11]: any behaviour of the concrete li-
brary L1 relevant to the client has to be reproducible by the abstract
library L2. However, there are several things to note.

First, we allow the execution of the abstract library to deny less
than the concrete one, but require it to provide the same guarantee.
Intuitively, we can strengthen the deny, because this only allows
more client behaviours.

Second, we do not consider raw executions of the most general
client of L1 and L2, but those whose happens-before relation can
be extended with an arbitrary set R of edges between return and
call actions without contradicting the axioms of the memory model;
JL1, RKI1 and JL2, RKI2 denote the sets of all such extensions.
The set R represents the happens-before edges that can be enforced
by the client: such happens-before edges are not generated by the
most general client and, in the presence of relaxed atomics, have to
be considered explicitly (this is the caveat to its generality referred
to above). We consider only return-to-call edges, as these are the
ones that represent synchronisation inside the client (similarly to
how call-to-return edges in the guarantee represent synchronisation
inside the library; cf. (MP)). The definition requires that, if an
extension of the concrete library is consistent with R, then so must
be the matching execution of the abstract one.

Finally, the abstraction relation is defined only between safe
libraries that do not access locations internal to the client and do
not have faults, such as data races.

As we show in §7, the specification of the Treiber stack in
Figure 1a abstracts its implementation in Figure 1b.

Abstraction theorem. We now formulate a theorem that states
the correctness of our library abstraction criterion. We consider
programs C(L) with a single client C and a library L (the case of

multiple libraries is considered in §6.1). The Abstraction Theorem
states that, if we replace the (implementation) library L1 in a
program C(L1) with another (specification) library L2 abstracting
L1, then the set of client behaviours can only increase. Hence,
when reasoning about C(L1), we can soundly replace L1 with L2

to simplify reasoning.
In the theorem, JC(L)KI gives the set of executions of C(L)

from initial states in a set I, ⊎ combines the initial states of a client
and a library, and client(·) selects the parts of executions generated
by client commands. We call (C(L), I) non-interfering, if C and L
do not access each others’ internal memory locations in executions
of C(L) from initial states in I. The notion of safety for C(L) is
analogous to the one for libraries.

THEOREM 3 (Abstraction). Assume that (L1, I1), (L2, I2),
(C(L2), I ⊎ I2) are safe, (C(L1), I ⊎ I1) is non-interfering and
(L1, I1) ⊑ (L2, I2). Then (C(L1), I ⊎ I1) is safe and

client(JC(L1)K(I ⊎ I1)) ⊆ client(JC(L2)K(I ⊎ I2)).

The requirement of non-interference is crucial, because it en-
sures that clients can only observe library behaviour through return
values and memory-model effects, rather than by ‘opening the box’
and observing internal states. The drawback of Theorem 3 is that
it requires us to establish the non-interference between the client C
and the concrete library L1, e.g., via a type system or a program
logic proof. As we show below, we cannot weaken this condition
to allow checking non-interference on the client C using the ab-
stract library L2, as is standard in data refinement on SC mem-
ory models [8]. This makes the reasoning principle given by the
theorem less compositional, since establishing non-interference re-
quires considering the composed behaviour of the client and the
concrete library—precisely what library abstraction is intended to
avoid! However, this does not kill compositional reasoning com-
pletely, as non-interference is often simple to check even globally.
We can also soundly check other aspects of safety, such as data-race
freedom, on C(L2). Furthermore, as we show in §6.1, the notion of
library abstraction given by Definition 2 is compositional for non-
interfering libraries. As we now explain, we can get the desired
theorem allowing us to check non-interference on C(L2) for the
fragment of the language excluding relaxed atomics.

Abstraction without relaxed atomics. Restricting ourselves to
programs without the relaxed memory order (and augmenting the
axiomatic memory model to allow incomplete program runs, as
described in §4) allows strengthening our result in three ways:

1. We no longer need to quantify over client happens-before edges
R, like in Definition 2. Instead, we enrich histories with an addi-
tional deny relation, which is easier to deal with in practice than
the quantification. Hence, without relaxed atomics, the caveat to
the generality of the most general client does not apply.

2. Abstraction on histories can be defined by inclusion on guaran-
tees, rather than by equality.

3. We no longer need to show that the unabstracted program C(L1)
is non-interfering. Rather, non-interference is a consequence of
the safety of the abstracted program C(L2).

The first two differences make proofs of library abstraction
slightly easier, but are largely incidental otherwise. In particular,
quantification over client happens-before edges in Definition 2, al-
though unpleasant, does not make library abstraction proofs dras-
tically more complicated. Requiring the guarantees of the concrete
and abstract executions to be equal in this definition just results in
more verbose specifications in certain cases. In contrast, the last
difference is substantial.

The price of satisfaction cycles. For each of the three above dif-
ferences we have a counterexample showing that Theorem 3 will

not hold if we change the corresponding condition to the one re-
quired in the case without relaxed atomics. All of these counterex-
amples involve satisfaction cycles, which can only be produced by
relaxed atomics. Our results show that this language feature makes
the reasoning principles for C11 programs less compositional. Due
to space constraints, here we present only the counterexample for
point 3 above; the others are given in [1, §D]. In §6.3, we identify
the corresponding place in the proof of the Abstraction Theorem for
the language without relaxed atomics where we rely on the absence
of satisfaction cycles.

Consider the following pair of libraries L1 and L2:

L1: atomic int x;
int m() {
storeRLX(&x,42);
return loadRLX(&x);

}

L2: atomic int x;
int m() {
return 42;

}

Here x is a library-internal location. We have L1 ⊑ L2, since both
method implementations behave exactly the same, assuming that
the internal location x is not modified outside the library. Unsafe
clients can distinguish between L1 and L2. For example, the client

print m(); ‖ storeRLX(&x,0);

can print 0 when using L1, but not L2. However, any non-trivial
library behaves erratically when clients corrupt its private data
structures, and thus, it is reasonable for abstraction to take into
account only well-behaved clients that do not do this. We therefore
contend that L1 should be abstracted by L2 according to any
sensible abstraction criterion.

The above misbehaved client violates non-interference when
using either L1 or L2. However, we can define a more complicated
client C such that C(L2) is non-interfering, but C(L1) is not:

a=m()
if (a==0)
storeRLX(&y,0)

b=loadRLX(&y)
if (b==0)
storeRLX(&x,0)

store
RLX

(&x,42)

load
RLX

(&x,0)

sb

store
RLX

(&x,0)

rf

call m()

sb

sb

store
RLX

(&y,0)

load
RLX

(&y,0)

sb

rfret m(0)

sb

The execution of C(L1) given on the right violates non-interference
due to a satisfaction cycle: a fault in the client causes the library to
misbehave by returning 0 instead of 42, and the effect of this mis-
behaviour is what causes the client fault in the first place! Since the
abstract library L2 is completely resilient to client interference, its
method will always return 42, and thus, the satisfaction cycle will
not appear and the client will not access the variable x. Note that
this counterexample is not specific to our notion of library abstrac-
tion: any such notion for C11 considering L2 to be a specification
for L1 cannot allow checking non-interference using L2.

For expository reasons, we have given a very simple counterex-
ample. This program would be easy to detect and eliminate, e.g.,
using a simple type system: one syntactic path in the client is guar-
anteed to result in the forbidden access to the library’s internal state.
However, the same kind of behaviour can occur with dynamically-
computed addresses: the client stepping out of bounds of an array
overwrites the library state, causing it to misbehave, which in turn
causes the original client misbehaviour. For this kind of example,
proving non-interference becomes non-trivial.

It is unclear to us whether satisfaction cycles are observable in
practice. They are disallowed by even the weakest C11 target ar-
chitectures, such as Power and ARM [21], because these architec-
tures respect read-to-write dependencies created by control-flow.
It is also clear that the C11 language designers would like to for-

bid satisfaction cycles: the C++11 standard [12, Section 29.3, Para-
graph 11] states that, although (SCL) from §2 is permitted, “imple-
mentations should not allow such behaviour”. This apparent contra-
diction is because certain compiler optimisations, such as common
subexpression elimination and hoisting from loops, can potentially
create satisfaction cycles (see [16] for discussion). Since avoiding
them would require compilers to perform additional analysis and/or
limit optimisations, the standard does not disallow satisfaction cy-
cles outright. Our results provide an extra argument that allowing
satisfaction cycles is undesirable.

4. C11: Language and Thread-Local Semantics

To define the C11 model, we use a lightly modified version of
its formalisation proposed by Batty et al. [2]. In the interests of
simplicity, we consider a simple core language, instead of the full
C/C++, and omit some of the features of the memory model. We do
not handle two categories of features: those that are orthogonal to
abstraction, and more esoteric features that would complicate our
results. In the first category we have dynamic memory allocation,
dynamic thread creation, blocked CASes and non-atomic initial-
isation of atomic locations (we also do not present the treatment
of locks here, although we handle a bounded number of them in
our formal development; see §A). In the second category we have
memory fences and release-consume atomics, discussed in §9.

The semantics of a C11 program is given by a set of executions,
generated in two stages. The first stage, described in this section,
generates a set of action structures using a sequential thread-local
semantics which takes into account only the structure of every
thread’s statements, not the semantics of memory operations. In
particular, the values of reads are chosen arbitrarily, without regard
for writes that have taken place. The second stage, described in §5,
filters out the action structures that are inconsistent with the C11
memory model. It does this by constructing additional relations and
checking the resulting executions against the axioms of the model.

Programming language. We assume that the memory consists
of locations from Loc containing values in Val. We assume a
function sort : Loc → {ATOM,NA}, showing whether memory
accesses to a given location must be atomic (ATOM) or non-atomic
(NA); see §2. The program syntax is as follows:

C ::= skip | c | m | C;C | if(x) {C} else {C} |

while(x) {C} | atom sec {c}

L ::= {m = Cm | m ∈ M}

C(L) ::= let L in C1 ‖ . . . ‖ Cn

A program consists of a library L implementing methods m ∈
Method and its client C, given by a parallel composition of threads
C1, . . . , Cn. The commands include skip, an arbitrary set of base
commands c ∈ BComm (e.g., atomic and non-atomic loads and
stores, and CASes), method calls m ∈ Method, sequential compo-
sition, branching on the value of a location x ∈ Loc and loops. Our
language also includes atomic sections, ensuring that a base com-
mand executes atomically. Atomic sections are not part of C/C++,
but are used here to express library specifications. We assume that
every method called by the client is defined in the library, and we
disallow nested method calls.

We assume that every method accepts a single parameter and
returns a single value. Parameters and return values are passed
by every thread via distinguished locations in memory, denoted
paramt, retvalt ∈ Loc for t = 1..n, such that sort(paramt) =
sort(retvalt) = NA. The rest of memory locations are partitioned
into those owned by the client (CLoc) and the library (LLoc):

Loc = CLoc ⊎ LLoc ⊎ {paramt, retvalt | t = 1..n}.

The property of non-interference introduced in §3 then requires that
a library or a client access only the memory locations belonging

to them (except the ones used for passing parameters and return
values). We provide pointers on how we can relax the requirement
of static address space partitioning in §9.

Actions. Executions are composed of actions, defined as follows:

λ, µ ∈ MemOrd ::= NA | SC | ACQ | REL | RLX

ϕ ∈ Effect ::= storeλ(x, a) | loadλ(x, a)

| rmwλ,µ(x, a, b) | call m(a) | ret m(a)

u, v, w, q, r ∈ Act ::= (e, g, t, ϕ)

Here e ∈ AId is a unique action identifier, and λ, µ are memory
orders (§2) of memory accesses. Every instance of an atomic sec-
tion occurring in an execution has a unique identifier g ∈ SectId.
Atomic sections only have force when multiple actions have the
same section identifier, so actions outside any section are simply
assigned a unique identifier each. The domains of the rest of the
variables are as follows: t ∈ {0, . . . , n}, x ∈ Loc, a, b ∈ Val. We
allow actions by a dummy thread 0 to denote memory initialisation.
We only consider actions whose memory orders respect location
sorts given by sort, and we do not allow rmw actions of sort NA.

Loading or storing a value a at a location x generates the ob-
vious action. A read-modify-write action (e, g, t, rmwλ,µ(x, a, b))
arises from a successful compare-and-swap command. It corre-
sponds to reading the value a from the location x and atomically
overwriting it with the value b; λ and µ give the memory orders of
the read and the write, respectively, and have to be different from
NA. The value a in (e, g, t, callm(a)) or (e, g, t, retm(a)) records
the parameter paramt or the return value retvalt passed between
the library method and its client. We refer to call and return actions
as interface actions.

For an action u we write sec(u) for its atomic section identifier,
and we denote the set of all countable sets of actions by P(Act). We
omit e, g and λ annotations from actions when they are irrelevant.
We also write for an expression whose value is irrelevant. We use
(t, readλ(x, a)) to mean any of the following:

(t, loadλ(x, a)); (t, rmwλ, (x, a,));

(t, call (a)), if x = paramt and λ = NA;

(t, ret (a)), if x = retvalt and λ = NA.

We use (t,writeλ(x, a)) to mean (t, storeλ(x, a)) or
(t, rmw ,λ(x, , a)). We call the two classes of actions read
actions and write actions, respectively.

Thread-local semantics. The thread-local semantics generates a
set of action structures—triples (A, sb, ib), where A ∈ P(Act),
and sb, ib ⊆ A × A are the sequenced-before and initialised-
before relations introduced in §2. We assume that sb is transitive
and irreflexive and relates actions by the same thread; ib relates
initialisation actions with thread identifier 0 to the others. We do
not require sb to be a total order: in C/C++, the order of executing
certain program constructs is unspecified.

For a base command c ∈ BComm, we assume a set 〈c〉t ∈
P(P(A) × P(A × A)) of all pairs of action sets and sb relations
that c produces when executed by a thread t (the ib relations are
missing, as they are relevant only for a whole program). Note that
base commands may include conditionals and loops, and thus can
give rise to an arbitrary number of actions; we give a separate
explicit semantics to conditionals and loops only because they are
used in the most general client in §6.1. Definitions of 〈c〉t for
sample base commands c are given in Figure 2. Note that, in the
thread-local semantics, a read from memory, such as loadµ(y) in
the figure, yields an arbitrary value. A CAS command generates an
rmw action, if successful, and a load, otherwise.

We define an initial state of a program C(L) by a function

I ∈ (LLoc ⊎ CLoc) ⇀fin (Val×MemOrd),

giving the initial values of memory locations, together with the
memory orders of initial writes to them. We define the set of action
structures 〈C(L)〉I of a program C(L) in Figure 3. Note that this
set of action structures corresponds to complete runs of C(L). The
clause for atom sec {c} assigns the same atomic section identifier
to all actions generated by c. The clause for a call to a method m
brackets structures generated by its implementation Cm with call
and return actions. We have omitted the clause for loops [1, §B].
For simplicity, we assume that the variable in the condition of a
branch is always non-atomic.

Assumptions. We make several straightforward assumptions
about the structures in 〈c〉t for c ∈ BComm:

• Structures in 〈c〉t are finite and contain only load, store and read-
modify-write actions by t with unique action identifiers.

• For any (A, sb) ∈ 〈c〉t, sb is transitive and irreflexive.

• Structures in 〈c〉t are insensitive to the choice of action and
atomic section identifiers: applying any bijection to such iden-
tifiers from a structure in 〈c〉t produces another structure in 〈c〉t.

• Atomic sections in every (A, sb) ∈ 〈c〉t are contiguous in sb:

∀u, v, q. sec(u)= sec(v) ∧ u
sb
−→ q

sb
−→ v =⇒ sec(q)= sec(u).

So as not to obfuscate presentation, we only consider programs
C(L) that use paramt and retvalt correctly. We assume that in any
action structure of a program, only library actions by t read paramt

and write to retvalt, and only client actions by t read retvalt
and write to paramt. We also require that paramt and retvalt be
initialised before an access: in any structure (A, sb, ib) of C(L),

(∀u = (t, call) ∈ A. ∃w = (t,write(paramt,)). w
sb
−→ u) ∧

(∀u = (t, ret) ∈ A.∃w = (t,write(retvalt,)). w
sb
−→ u).

Additional assumptions without relaxed atomics. For our re-
sult without relaxed atomics (§6.2), we currently require the fol-
lowing additional assumptions:

• The structure set 〈c〉t accounts for c fetching any values from the
memory locations it reads (see [1, §B] for formalisation).

• Any structure of a base command c inside an atomic section
accesses at most one atomic location. This is sufficient for our
purposes, since a library specification usually accesses a single
such location containing the abstract state of the library.

• We modify the standard C11 model by requiring that a program’s
semantics include structures corresponding to execution prefixes.
In the standard C11 model, all executions are complete (although
possibly infinite). We define 〈Ci〉

p

t
for a thread Ci by

〈Ci〉
p

t
= {(Ap, sbp) | ∃(A, sb) ∈ 〈Ci〉t.

Ap ⊆ A ∧ ∀u ∈ A, v ∈ Ap. u
sb
−→ v =⇒ u ∈ Ap}.

This is necessary due to the interaction between our prototype
atomic section semantics and the C11 model. It weakens the no-
tion of atomicity: atomic sections at the end of a prefix may be
partially executed, and therefore more weakly ordered than their
completed counterparts. Eliminating it will require a deeper un-
derstanding of the relationship between atomicity and the notion
of incomplete program runs. See §6.3 for its use in the proof.

5. C11: Axiomatic Memory Model

The axiomatic portion of the C11 model takes a set of action struc-
tures of the program, generated by the thread-local semantics in §4,
and filters out those which are inconsistent with the memory model.
To formulate it, we enrich action structures with extra relations.

Executions. The semantics of a program consists of a set of ex-
ecutions, X = (A, sb, ib, rf, sc,mo, sw, hb), where A ∈ P(Act)
and the rest are relations on A:

• sb, ib, rf and hb introduced in §4; rf is such that its reverse is a
partial function from read to write actions on the same location
and with the same value.

• sequentially consistent order (sc), ordering SC reads from and
writes to the same location. The projection of sc to each atomic
location is a transitive, irreflexive total order, while writes to
distinct locations are unrelated3.

• modification order (mo), ordering writes (but not reads!) to the
same atomic (i.e., of the sort ATOM) location. The projection of
mo to each atomic location is a transitive, irreflexive total order.

• synchronises-with (sw), defining synchronisation.

We write r(X) for the component r of the execution X .
We can now define the denotation JC(L)K of a program and

the notion of safety and non-interference introduced informally
in §3. An execution X is valid, if it satisfies the validity axioms
shown in Figure 4; it is safe, if it satisfies the safety axioms in
Figure 5, and it is non-interfering if it satisfies the NONINTERF

axiom from Figure 5. We explain the axioms shown in the rest of
this section. Intuitively, validity axioms correspond to properties
that are enforced by the runtime, while safety axioms correspond
to properties that the programmer must ensure to avoid faults. To
simplify the following explanations, Figures 4 and 5 do not show
axioms dealing with CASes and locks. To keep the presentation
tractable, we have also omitted some corner cases from SWDEF

and SCREADS in Figure 4. The missing axioms and cases are
given in §A, and our results are established for the memory model
including these (the correctness of the stack in Figure 1 actually
relies on a corner case in SWDEF).

For a program C(L) and an initial state I , we let JC(L)KI
be the set of valid executions X , whether safe or not, such
(A, sb(X), ib(X)) ∈ 〈C(L)〉I . We write JC(L)KI to stand for
its obvious lifting to sets I of initial states. A program C(L) is
safe when run from I if every one of its valid executions is (and
similarly for non-interference and sets of initial states). An unsafe
program has undefined behaviour.

The validity axioms define sw and hb directly in terms of the
other relations (SWDEF and HBDEF). The hb relation is con-
structed from the sb, ib and sw, and as follows from ACYCLIC-
ITY, has to be irreflexive. The /∼ operator in the definition of hb is
needed to handle atomic sections; for now the reader should ignore
it. The sw relation is derived from sc and rf. The rf, sc and mo re-
lations are only constrained by the axioms, not defined directly. We
explain the validity axioms by first considering a language frag-
ment with non-atomic memory accesses only and then gradually
expanding it to include the other memory orders.

Non-atomic memory accesses. The values read by non-
atomic reads are constrained by DETREAD and RFNONATOMIC.
DETREAD requires every read to have an associated rf edge when
the location read was previously initialised, i.e., when there is a
write to it that happened before the read. Executions with reads
from uninitialised locations are valid, but, as we explain below, un-
safe. RFNONATOMIC requires that a read only reads from the write
to the same location immediately preceding it in hb; cf. (RD). In
the absence of other synchronisation, this means that a thread can
read only from its own previous writes or initial values, since by
HBDEF, sb ∪ ib ⊆ hb. Threads can establish the necessary syn-

3 In the original C11 model [2], sc is a total order on SC operations over all
locations. The formulation here is is equivalent to the original one [1, §C],
but more convenient for defining library abstraction.

chronisation using atomic operations (which we explain now) or
locks (which we elide here; see §A).

SC atomics. The strong semantics of SC actions is enforced by
organising all SC reads and writes over a single location into a
total order sc, which cannot form a cycle with hb (ACYCLICITY).
According to SCREADS, an SC read can only read from the closest
sc-preceding write. Thus, if all memory accesses are annotated as
SC in (SB) from §2, the result shown there is forbidden. Indeed,
by SCREADS and ACYCLICITY, the store of 1 to y has to follow
the load of 0 from y in sc, and similarly for x. This yields a
cycle in sb ∪ sc, contradicting ACYCLICITY. Note that the model
requires the existence of sc, but does not include all of it into hb.
As a consequence, one cannot use the ordering of, say, two SC
reads in sc to constrain the values that can be read according to
RFNONATOMIC.

By SWDEF, an rf edge between an SC write and an SC read
generates an sw edge, which is then included into hb by HBDEF.
Release-acquire atomics have the same effect, as we now explain.

Release-acquire atomics. By SWDEF, an ACQ read synchro-
nises with the REL write it reads from. For example, if in (SCL)
we annotated all writes with REL and all reads with ACQ, then
the rf edges would be included into hb and the execution would be
prohibited by ACYCLICITY.

For atomics weaker than SC, there is no total order on all
operations over a given location analogous to sc; this is why (SB) is
allowed. Instead, they satisfy a weaker property of coherence: all
writes (but not reads) to a single atomic location are organised into
a total modification order mo, which has to be consistent with hb
(HBVSMO). SC writes to the location are also included into mo,
and in such cases the latter has to be consistent with sc (MOVSSC).

Since reads are not included into mo, we do not have an ana-
logue of SCREADS, and thus, a read has more freedom to choose
which write it reads from. The only constraints on atomic accesses
weaker than SC are given by coherence axioms—COWR, CORW
and CORR. For example, COWR says that a read r that happened
after a write w2 cannot read from a write w1 earlier in mo.

Relaxed atomics. Like release-acquire atomics, relaxed atomics
respect coherence, given by the mo order and the axioms COWR,
CORW and CORR. However, rf edges involving them do not
generate synchronisation edges sw. The only additional constraint
on relaxed reads is given by RFATOMIC, which prohibits reads
‘from the future’, i.e., from writes later in hb; cf. (RD). This and the
fact that coherence axioms enforce no constraints on actions over
distinct locations allows (SCL). If all the loads and stores in (SCL)
were to the same location, it would be forbidden by CORW.

Safety axioms. The safety axioms in Figure 5 define the con-
ditions under which a program is faulty. DRF constrains pairs of
actions over the same location, with at least one write. It requires
that such pairs on distinct threads, one of which is a non-atomic
access, are related by hb, and on the same thread, by sb (recall that
in C/C++, the order of executing certain program constructs is un-
specified, and thus, sb is partial). SAFEREAD prohibits reads from
uninitialised locations.

The NONINTERF axiom is not part of the C11 memory model,
but formalises the property of non-interference required for our
results to hold (§3); it is technically convenient for us to consider it
together with the other safety axioms. NONINTERF requires that the
library and the client only read from and write to the locations they
own, except paramt and retvalt used for communication (§4). The
axiom classifies an action as performed by the library or the client
depending on its position in sb with respect to calls and returns.

Atomic sections. Atomic sections are a widespread idiom for
defining library specifications. In an SC memory model, we can

〈storeλ(x, loadµ(y))〉t = {({u, v}, {(u, v)}) | ∃a′, e1, e2, g1, g2. e1 6= e2 ∧ g1 6= g2 ∧

u = (e1, g1, t, loadµ(y, a
′)) ∧ v = (e2, g2, t, storeλ(x, a

′))}

〈∗y = CASλ,µ(x, a, b)〉t = {({u, v}, {(u, v)}) | ∃e1, e2, g1, g2, a
′. e1 6= e2 ∧ g1 6= g2 ∧ a′ 6= a ∧

(u = (e1, g1, t, rmwλ,µ(x, a, b)) ∧ v = (e2, g2, t, storeNA(y, 1))) ∨ (u = (e1, g1, t, loadλ(x, a
′)) ∧ v = (e2, g2, t, storeNA(y, 0)))}

Figure 2. Definitions of 〈c〉t for sample base commands. Here x, y ∈ Loc and a, b ∈ Val are constants.

〈skip〉t = {(∅, ∅)}

〈C1;C2〉t = {(A1 ·∪A2, sb1 ∪ sb2 ∪ {(u, v) | u ∈ A1 ∧ v ∈ A2}) | (A1, sb1) ∈ 〈C1〉t ∧ (A2, sb2) ∈ 〈C2〉t}

〈if(x) {C1} else {C2}〉t = {({u} ·∪A, sb ∪ {(u, v) | v ∈ A}) | ∃a. (A, sb) ∈ 〈C1〉t ∧ u = (, , t, loadNA(x, a)) ∧ a 6= 0} ∪

{({u} ·∪A, sb ∪ {(u, v) | v ∈ A}) | (A, sb) ∈ 〈C2〉t ∧ u = (, , t, loadNA(x, 0))}

〈atom sec {C}〉t = {({(e, g, t, ϕ) | (e, , t, ϕ) ∈ A}, {((e1, g, t, ϕ1), (e2, g, t, ϕ2)) |

((e1, , t, ϕ1), (e2, , t, ϕ2)) ∈ sb}) | (A, sb) ∈ 〈C〉t ∧ g ∈ SectId}

〈m〉t = {(A ·∪ {u} ·∪ {v}, sb∪{(u, v)}∪ {(u, q), (q, v) | q ∈ A}) | (A, sb) ∈ 〈Cm〉t ∧u=(, , t, call m())∧ v=(, , t, retm())}

〈let {m = Cm | m ∈ M} in C1 ‖ . . . ‖ Cn〉I =
{

(A0 ·∪ (·
⋃

n
t=1 At),

⋃n

t=1 sbt, (A0 × (·
⋃

n
t=1 At))) | (∀t = 1..n. (At, sbt) ∈ 〈Ct〉t) ∧

(∀t = 1..n. ∀u. ∃ finitely many v. (v, u) ∈ sbt) ∧ (A0 = ·
⋃

{(e, g, 0, storeλ(x, a)) | I(x) = (a, λ) ∧ e ∈ AId ∧ g ∈ SectId})
}

Figure 3. Thread-local semantics. A ·∪B is the union of the sets of actions A and B with disjoint sets of action and atomic section identifiers.

HBDEF. hb = ((sb ∪ ib ∪ sw)/∼)+, where

R/∼ = R ∪ {(u, v) | sec(u) 6= sec(v) ∧ ∃u′, v′. sec(u) = sec(u′) ∧ sec(v) = sec(v′) ∧ u′ R
−→ v′}

SWDEF
≈. ∀w, r. w

sw
−→ r ⇐⇒

(

∃t1, t2, λ, µ, x. t1 6= t2 ∧ λ ∈ {SC,REL} ∧ µ ∈ {SC,ACQ}

∧ w = (t1,writeλ(x,)) ∧ r = (t2, readµ(x,)) ∧ w
rf
−→ r

)

ACYCLICITY. hb ∪ sc is acyclic

DETREAD. ∀r. (∃x,w′. w′ hb
−→ r ∧ w′ = (,write(x,)) ∧ r = (, read(x,))) ⇐⇒ (∃w.w

rf
−→ r) RFATOMIC.

RFNONATOMIC. ∀w, r, x. w
rf
−→ r ∧ w = (,write(x,)) ∧ r = (, read(x,)) ∧ sort(x) = NA

=⇒ w
hb
−→ r ∧ ¬∃w′. w′ = (,write(x,)) ∧ w

hb
−→ w′ hb

−→ r
¬∃r, w. r

hb
((
w

rf

gg

SCREADS
≈. ∀w, r. w

rf
−→ r ∧ r = (, readSC(x,)) ∧ w = (,writeSC(x,)) =⇒ w

sc
−→ r ∧ ¬∃w′. w′ = (,write(x,)) ∧ w

sc
−→ w′ sc

−→ r

HBVSMO.¬∃w1, w2. MOVSSC.¬∃w1, w2. COWR.¬∃w1, w2. CORW.¬∃r, w1, w2. CORR.¬∃r1, r2, w1, w2.

w1

hb))
w2

mo

ii w1

mo))
w2

sc

ii
w1

mo //

rf ''PP
P

P

P

P

P

w2

hb��
r

w2
rf // r

hb��
w1

mo

gg❖
❖

❖

❖

❖

❖

w1
rf // r1

hb��
w2

rf

//
mo

OO

r2

ASMO. ∀u, v. u
mo
−→ v ∧ sec(u) = sec(v) =⇒ ¬∃q. u

mo
−→ q

mo
−→ v ∧ sec(u) 6= sec(q)

ASSC. ∀u, v. u
sc
−→ v ∧ sec(u) = sec(v) =⇒ ¬∃q. u

sc
−→ q

sc
−→ v ∧ sec(u) 6= sec(q)

Figure 4. Selected validity axioms of the C11 memory model. Axioms simplified for the purposes of presentation are marked by ≈.

DRF. ∀u, v, x, t1, t2. (u, v ∈ A ∧ u 6= v ∧ u = (t1, (x,)) ∧ v = (t2, (x,)) ∧ (u = (t1,write(x,)) ∨ v = (t2,write(x,)))) =⇒

((t1 6= t2 =⇒ (u
hb
−→ v ∨ v

hb
−→ u ∨ sort(x) = ATOM)) ∧ (t1 = t2 =⇒ (u

sb
−→ v ∨ v

sb
−→ u)))

SAFEREAD. ∀r. r ∈ A ∧ r = (, read(,)) =⇒ ∃w.w
rf
−→ r

NONINTERF. ∀u, x, t. (u ∈ A ∧ t 6= 0 ∧ u = (t, (x,)) ∧ x 6∈ {paramt, retvalt | t = 1..n}) =⇒

((∃v. v = (, call) ∧ v
sb
−→ u ∧ ¬∃q. q = (, ret) ∧ v

sb
−→ q

sb
−→ u) ⇐⇒ (x ∈ LLoc))

Figure 5. Selected safety axioms of the C11 memory model

DETREADl. ∀r, t. ((∃x. r = (, read(x,)) ∧ x 6= paramt ∧ ∃w.w
hb
−→ r ∧ w = (,write(x,))) ⇐⇒ ∃w′. w′ rf

−→ r) ∧

(∀a, b. r = (t, read(paramt, a)) ∈ A ∧ u = (, call (b)) ∧ u
sb
−→ r ∧ (¬∃v. v = (, ret) ∧ u

sb
−→ v

sb
−→ r) =⇒ a = b)

SAFEREADl. ∀r, x, t. r ∈ A ∧ r = (t, read(x,)) ∧ x 6= paramt =⇒ ∃w.w
rf
−→ r

DETREADc. ∀r, t. ((∃x. r = (, read(x,)) ∧ x 6= retvalt ∧ ∃w.w
hb
−→ r ∧ w = (,write(x,))) ⇐⇒ ∃w′. w′ rf

−→ r) ∧

(∀a, b. r = (t, read(retvalt, a)) ∧ u = (, ret (b)) ∧ u
sb
−→ r ∧ (¬∃v. v = (, call) ∧ u

sb
−→ v

sb
−→ r) =⇒ a = b)

SAFEREADc. ∀r, x, t. (r ∈ A ∧ r = (t, read(x,)) ∧ x 6= retvalt =⇒ ∃w.w
rf
−→ r) ∧

(r ∈ A ∧ r = (t, read(retvalt,)) ∧ r 6= (, ret) =⇒ ∃u. u
hb
−→ r ∧ u = (t, ret))

Figure 6. Axioms for library (§6.1) and client (§6.3) executions

define their semantics by simply requiring that no other events are
interleaved with actions inside an atomic section. Unfortunately,
the relaxed memory model of C11 does not admit such a simple
definition. The straightforward solution of imposing a total order
on all instances of atomic sections would rule out relaxed specifi-
cations that we would like to give, such as the Treiber specification
from §2. Hence, we have extended C11 with a prototype notion of
atomic sections suitable for its relaxed-memory setting (inspired by
the semantics of transactions in [6]). This notion represents only the
first step towards a natural specification language for relaxed C11,
which is an interesting problem in itself.

The axioms defining the semantics of atomic sections are HB-
DEF, ASMO and ASSC in Figure 4 and ATOMAS in Figure 7 (de-
ferred to §A for brevity). They capture the expected properties of
atomicity. Thus, in HBDEF, we factor sb∪ ib∪ sw over atomic sec-
tions using /∼: e.g., if an action u happens-before another action v,
then u also happens-before any other action from the same atomic
section as v. ASMO and ASSC require that actions from the same
atomic section be contiguous in mo and sc. ATOMAS constrains
relaxed actions, which do not generate hb edges. ASMO, ASSC

and ATOMAS are trivially satisfied when every action has a unique
atomic section identifier. Additionally, in this case HBDEF simpli-
fies to hb = (sb∪ ib∪ sw)+, which is how it is defined in standard
C11 [2]. Thus, if every action executes in a separate atomic section,
our augmented model coincides with standard C11.

6. Library Abstraction in Detail

We first define formally the concepts used in the definition of li-
brary abstraction (Definition 2) and the Abstraction Theorem (The-
orem 3) from §3 for the memory model with relaxed atomics. We
then show how the Abstraction Theorem can be strengthened for a
fragment of the language excluding them (§6.2) and give the proof
outlines for both theorems (§6.3).

6.1 Library Abstraction in the Presence of Relaxed Atomics

History definition. We formally define the history function,
which selects a history in the sense of Definition 2 from a library
execution. For an execution X , we let

history(X) = (interf(X), hbL(X), scL(X))

and lift history to sets of executions pointwise. Here interf(X)
is the projection of A(X) to interface (call and return) actions.
The hbL selector computes the guarantee part of the history. We
let hbL(X) be the projection of hb(X) to pairs of actions of the
form ((, call), (, ret)) and pairs of calls and returns (in any
order) by the same thread. We record only edges of the above
form, since it can be shown that any happens-before edge between
interface actions in a library execution under its most general client
can be obtained as a transitive closure of such edges. Intuitively,
call-to-return edges are the ones that represent the synchronisation
between library method invocations, as illustrated by (MP) in §2.

The scL selector computes the deny part of the history. We let
scL(X) be the projection of ((hb(X)∪ sc(X))+)−1 to pairs of ac-
tions of the form ((, ret), (, call)). This component is needed,
since the ACYCLICITY axiom (Figure 4) mandates that sc cannot
form a cycle with hb, but does not include sc into hb. Thus, when
a library relates a call action u to a return action v with hb and
sc, the client cannot relate v to u with the same relations, as this
would invalidate ACYCLICITY. We add only return-to-call edges
into scL(X), as these are the edges that represent synchronisation
inside the client (similarly to how call-to-return edges represent
synchronisation inside the library in hbL(X)). One might think
that the deny component of the history should have included edges
recording potential violations of other similar axioms, e.g., HB-
VSMO, as suggested by (DN). However, in the case of the model

with relaxed atomics, we are forced to quantify over client happens-
before edges R in Definition 2. As it happens, this makes it unnec-
essary to consider axioms other than ACYCLICITY (see the proof
of the Theorem 3 in [1, §C]). These axioms, however, have to be
taken into account in the case without relaxed atomics (§6.2).

Library-local semantics. We define the most general client as
follows. Take n ≥ 1 and let {m1, . . . ,ml} be the methods imple-
mented by a library L. We let

MGCn(L) = (let L in Cmgc
1 ‖ . . . ‖ Cmgc

n),

where Cmgc
t is

while(nondet()) { if(nondet()) {m1}

else if(nondet()) {m2} . . . else {ml} }

Here we use the obvious generalisation of loops and conditionals
to branch expressions that yield a non-deterministic value. To allow
parameters of methods to be chosen arbitrarily, we replace the
axioms DETREAD from Figure 4 and SAFEREAD from Figure 5
by DETREADl and SAFEREADl from Figure 6, which mandate
that reads from paramt lack associated rf edges, while nonetheless
yielding identical values within a single method call. As part of the
proof of the Theorem 3 (§6.3), we show that this client is indeed
most general in a certain formal sense (with the caveat concerning
the need to extend its executions with client happens-before edges
mentioned in §3).

We note that some libraries require their clients to pass only
certain combinations of parameters or issue only certain sequences
of method calls. Such contracts could be accommodated in our
framework by restricting the most general client appropriately; we
do not handle them here so as not to complicate the presentation.

For an initial library state I ∈ LLoc ⇀fin Val×MemOrd, a li-
brary execution of L from I is an execution from JMGCn(L)KI for
some n ≥ 1. A library execution is valid if it satisfies the validity
axioms with DETREADl instead of DETREAD; it is safe if it sat-
isfies the safety axioms with SAFEREADl instead of SAFEREAD.
We let JLKI be the set of all valid library executions of L from I
and lift JLK to sets of initial states pointwise. We say that a library
L is safe when run from I if so is every execution in JLKI; for a
set I of initial states, (L, I) is safe if L is safe when run from any
I ∈ I. The notion of a non-interfering library is defined similarly.

Extended executions. In Definition 2, we use library executions
whose happens-before relation is extended with extra edges record-
ing constraints enforced by the client. Consider an execution X and
a relation R over interface actions from A(X). The extension of X
with R is an execution that has the same components as X , except
the happens-before relation is replaced by (hb(X) ∪ R)+. An ex-
tension of a library execution with R is admissible when it satisfies
the corresponding validity axioms, but with HBDEF replaced by

EXTHBDEF. hb = ((sb ∪ ib ∪ sw ∪R)/∼)+.

For an initial library state I , we let JL, RKI be the set of admissi-
ble executions of L from I extended with R. This completes the
definition of components used in Definition 2.

Execution projections. Finally, we define the client function
used in Theorem 3. Consider a valid execution X of C(L). An
action u ∈ A is a library action, if it is a call or return action,
an action of the form (0,write(x,)) for x ∈ LLoc, or if

∃v.v = (, call) ∧ v
sb(X)
−−−→ u ∧

¬∃q.q = (, ret) ∧ v
sb(X)
−−−→ q

sb(X)
−−−→ u.

An action u ∈ A is a client action, if it is a call or return action, it
is an action of the form (0,write(x,)) for x ∈ CLoc, or the nega-
tion of the above property holds. We define the execution lib(X) by

restricting the action set to library actions and projecting all the re-
lations in X accordingly. We use a similar projection client(X) to
client actions and lift client and lib to sets of executions pointwise.

Properties of library abstraction. For the fragment of the lan-
guage with an SC semantics—i.e., allowing only non-atomic mem-
ory accesses and SC atomics—Definition 2 implies classical lin-
earizability. This follows from Theorem 3 and the fact that classi-
cal linearizability is equivalent to observational abstraction on the
SC memory model [7]. However, the converse is not true: since
our notion of library abstraction validates Theorem 3 for clients
in the full C11, it distinguishes between SC libraries that classical
linearizability would consider equivalent (see [1, §D]).

Using Theorem 3, we can obtain the expected property that,
like the classical notion of linearizability, our notion of library
abstraction is compositional (with a caveat that non-interference
among libraries has to be checked globally). Formally, consider
libraries L1, . . . ,Lk with disjoint sets of declared methods and
assume the splitting of the library address space into regions be-
longing to each library: LLoc = LLoc1 ⊎ . . . ⊎ LLock. Con-
sider sets of initial states I1, . . . , Ik such that ∀j = 1..k. ∀I ∈
Ij . dom(I) ⊆ LLocj . We adjust the notion of library safety so that
NONINTERF for Lj is checked with respect to locations in LLocj .
Let (L′

1, I
′

1), . . . , (L
′

k, I
′

k) be corresponding library specifications.
We define L, respectively, L′ as the library implementing all meth-
ods of L1, . . . ,Lk, respectively, L′

1, . . . ,L
′

k and having the set of
initial states I1 ⊎ . . .⊎ Ik, respectively, I′

1 ⊎ . . .⊎ I′

k. We assume
that any combination of implementations or specifications of dif-
ferent libraries is non-interfering. The following theorem is shown
by abstracting Lj to L′

j one by one using Theorem 3.

THEOREM 4. If (Lj , Ij) ⊑ (L′

j , I
′

j) for j = 1..k, then L ⊑ L′.

6.2 Library Abstraction without Relaxed Atomics

We call an action with at least one RLX annotation relaxed. In this
section, we restrict ourselves to programs whose action structures
do not have any relaxed actions, and we augment the C11 thread-
local semantics as described in the assumptions of §4. Among other
things, these changes allow us to remove the quantification over
client happens-before edges R from Definition 2, at the expense of
including an additional deny relation into the history.

DEFINITION 5. An extended history is a quadruple (A,G,D,D′),
where A is a set of interface actions, and G,D,D′ ⊆ A×A.

For an execution X = (A, sb, ib, rf, sc,mo, sw, hb), we let

Ehistory(X) = (interf(X), hbL(X), scL(X), denyL(X)),

which we lift to sets of executions pointwise. The selectors interf,
hbL and scL are defined as in §6.1.

The relation denyL(X) is defined similarly to scL, but whereas
the latter records client hb and sc edges that can violate ACYCLIC-
ITY, the former includes the client hb edges that can violate the
axioms HBVSMO, COWR and SCREADS (Figure 4). We do not
have to consider other similar axioms, such as RFATOMIC, CORW
and CORR since in any valid execution X without relaxed actions,
we have rf(X) ⊆ hb(X). Due to this, the hb client edges violating,
HBVSMO and CORW, COWR and CORR can be covered by the
same relations. For the case of HBVSMO and COWR, denyL(X)
includes the dashed edges of all possible instantiations of the fol-
lowing diagrams:

w1
hb // u // v

hb // w2

mo

ll

w1
mo //

rf

��✻
✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

w2

hb��
u

��
v
hb��

r

where u = (, ret) and v = (, call). This records client
hb edges that violate HBVSMO or COWR (cf. (DN) in §3). The
diagrams are thus constructed systematically by ‘breaking’ the
hb edge. For the case of SCREADS, denyL(X) includes edges
corresponding to a corner case in this axiom omitted from Figure 4.
The full version of the axiom and the corresponding deny diagram
are given in §A.

DEFINITION 6. We let (A1, G1, D1, D
′

1) � (A2, G2, D2, D
′

2), if
A1 = A2, G2 ⊆ G1, D2 ⊆ D1 and D′

2 ⊆ D′

1.
For safe (L1, I1) and (L2, I2), (L1, I1) is abstracted by

(L2, I2), written (L1, I1) � (L2, I2), if

∀I1 ∈ I1, H1 ∈ Ehistory(JL1KI1).

∃I2 ∈ I2, H2 ∈ Ehistory(JL2KI2). H1 � H2.

Unlike in Definition 2, here an abstracted history can guarantee
fewer happens-before edges to the client: without relaxed atomics,
removing edges from happens-before can only permit more client
behaviours or make the client unsafe. We note that checking the
inclusion between the components of the history given by denyL,
required by Definition 6, is simpler in practice than quantifying
over client happens-before edges R in Definition 2.

For executions X and Y , we write X � Y when all their
components except hb are equal, and hb(Y) ⊆ hb(X).

THEOREM 7 (Abstraction without relaxed atomics). Assume that
(L1, I1), (L2, I2) and (C(L2), I ⊎ I2) are safe and (L1, I1) �
(L2, I2). Then (C(L1), I ⊎ I1) is safe and

∀X ∈ client(JC(L1)K(I ⊎ I1)).

∃Y ∈ client(JC(L2)K(I ⊎ I2)). X � Y.

Unlike Theorem 3, this one allows the programmer to
check non-interference on C(L2)—i.e., with respect to a library
specification—and to conclude that C(L1) is non-interfering. Since
the abstract library can have a smaller guarantee than the con-
crete one, the happens-before of the execution C(L2) may also be
smaller than that of the execution C(L1).

Like the notion of library abstraction from §6.1, the one pro-
posed here implies classical linearizability for the SC fragment
of the language (but not vice versa) and is compositional [1, §C].
However, here the latter property does not require us to check non-
interference globally: a composition of several non-interfering li-
braries is non-interfering.

6.3 Proof Outlines

Client-local semantics. We start by defining the client-local se-
mantics of a client C = C1 ‖ . . . ‖ Cn, which is a counterpart
of the library-local semantics defined in §6.1. Let M be the set of
methods that can be called by C. Consider the program

C(·) = (let {m = skip | m ∈ M} in C1 ‖ . . . ‖ Cn),

where every method is implemented by a stub that returns im-
mediately after having been called. Moreover, we allow meth-
ods to return arbitrary values by replacing the axioms DETREAD

from Figure 4 and SAFEREAD from Figure 5 by DETREADc and
SAFEREADc from Figure 6. We call executions of the above pro-
gram client executions of C. A client execution is valid, if it sat-
isfies the validity axioms with DETREADc instead of DETREAD;
it is safe, if it satisfies the safety axioms with SAFEREADc in-
stead of SAFEREAD. For an initial client state I ∈ CLoc ⇀fin

(Val×MemOrd), let JCKI be the set of all valid client executions
of C from I; for a set I of initial states we define JCKI as expected.
The notion of an extended client execution is similar to the one of
an extended library execution from §6.1. For an extended execution

X we let core(X) be the execution obtained from X by recomput-
ing hb(X) from sb(X), ib(X) and sw(X) according to HBDEF.

Client-side history selectors. Consider a client execution X . We
define hbC(X), scC(X) ⊆ interf(X) × interf(X), which are
analogous to hbL and scL from §6.1, but select the information
about the client part of the execution that is relevant to the library.
We let hbC(X) be the projection of hb(X) to pairs of actions of
the form ((, ret), (, call)) and pairs of calls and returns (in any
order) by the same thread. We select edges of this form as they are
the ones that record synchronisation enforced by the client. We let
scC(X) be the projection of ((hb(X) ∪ sc(X))+)−1 to pairs of
actions of the form ((, call), (, ret)).

Proof outline for Theorem 3. Consider an execution X of C(L1)
from the initial state I ⊎ I1, where I ∈ I and I1 ∈ I1. We start
by decomposing X into a client execution client(X) and a library
execution lib(X) and showing that

client(X) ∈ JC, hbL(core(lib(X)))KI;

lib(X) ∈ JL1, hbC(core(client(X)))KI1.

The second inclusion justifies that the most general client of the
library defined in §6.1 is indeed most general, as it can reproduce
the behaviour of L1 under any client C. This comes with the
caveat that an execution of the most general client of L1 has to be
extended with hbL(core(lib(X))) to obtain lib(X), as the library-
local semantics does not generate happens-before edges enforced
by client synchronisation (and similarly for client(X) in the first
inclusion). The above decomposition step relies on X being non-
interfering. Using the fact that (L1, I1) ⊑ (L2, I2), we prove that
there exist I2 ∈ I2 and Y ∈ JL2, hbC(core(client(X)))KI2 such
that history(lib(X)) ⊑ history(Y). Here we use the quantification
of client happens-before edges R in Definition 2 to handle the
extension of the library execution with hbC(core(client(X))). We
then compose the executions X and Y into the desired execution
of C(L2). This step uses the fact that the deny component of
history(Y) is smaller than that of history(lib(X)). ⊓⊔

Proof outline for Theorem 7. Unlike in Theorem 3, here we
need to consider the case when an execution X of C(L1) has ac-
tions violating non-interference. In this case, we identify an “earli-
est” faulting action u and construct a valid execution that is a prefix
of X ending just before u and is thus non-interfering. This is only
possible because, without relaxed atomics, we do not have satisfac-
tion cycles, and because the theorem is stated over an augmented
thread-local semantics (§4), with prefix executions added to the se-
mantics. We convert the resulting execution into one of C(L2) as
in the proof of Theorem 3 and conjoin the action the action u to it.
This yields an execution of C(L2) violating non-interference and
contradicting the assumption about its safety.

In the case when X is non-interfering, the proof is similar to that
of Theorem 3. Some additional work is needed to deal with the fact
that Definition 6 does not have a quantification over client happens-
before edges and allows the abstract guarantee to be smaller than
the concrete one. ⊓⊔

7. Establishing Library Abstraction

In this section, we discuss the proof process for establishing ab-
straction between libraries in the sense of Definitions 2 and 6. To
reason about programs on the C11 memory model, we use axioma-
tisations of the action structures generated by them, which give a
simple mathematical interface to the program semantics. To prove
library safety, required by Definitions 2 and 6, we consider all
the execution shapes of the most general client, and check these
against the C11 safety axioms. We now explain how we prove the
correspondence between the executions of concrete and abstract li-
braries, using Definition 2 for illustration.

Effect points. Consider an execution X1 ∈ JL1, RKI1. We con-
struct an execution X2 ∈ JL2, RKI2 whose history witnesses the
existential in Definition 2 using an adapted version of the lin-
earization point method for proving linearizability. The method
constructs the abstract execution by calling a method specifica-
tion at a fixed linearization point in every method invocation of the
concrete execution; intuitively, it is at this point that the concrete
method ‘takes effect’. In our adaptation, we construct X2 by sub-
stituting calls to library method implementations in X1 for the cor-
responding calls to specifications, and choosing appropriate values
for reads and different orders between actions. These values and
orders are chosen based on the orders over actions we call effect
points, picked for each concrete method invocation in X1. Thus,
the various partial orders over the effect points in the concrete ex-
ecution dictate the order of precedence for the effects of method
invocations in the abstract execution. In contrast with the original
linearization point method, the latter order does not have to be lin-
ear. We now explain this technique in more detail on an example.

Example: Treiber stack. We have proved the correctness of the
stack in Figure 1b with respect to its specification in Figure 1a ac-
cording to Definition 2 (full details are given in [1, §E]). As ef-
fect points in X1, we pick the rmw actions modifying the stack’s
top pointer T, which correspond to successful CASes (this is the
same choice as the that of linearization points when proving the
linearizability of Treiber’s stack on an SC memory model). The
order mo(X1) over these actions defines a total order over success-
ful push and pop invocations. When substituting invocations of
method implementations for invocations of specifications, we use
mo(X1) to decide rf(X2) and mo(X2) for the abstract location S.
Namely, suppose we have two method invocations U and V in X1,
such that the rmw of U is the immediate predecessor to the rmw
of V in mo(X1). When substituting corresponding invocations of
specification methods U ′ and V ′, we set up rf(X2) and mo(X2) so
that the load from S in V ′ reads from the rmw in U ′, and mo(X2)
orders the rmw on S in U ′ right before rmw on it in V ′. Fixing
rf(X2) and mo(X2) in the abstract execution immediately fixes
the values of reads, which finishes the construction of X2.

Example: producer-consumer queue. We have similarly veri-
fied a non-blocking producer-consumer queue according to Defi-
nition 6 (see [1, §E]). The queue is intended for communication
between a single producer thread and a single consumer thread and
provides three methods: init, enq and deq. The implementation
stores values in a finite cyclic array, while the specification stores
them using the abstract data type of a sequence. To ensure that the
consumer calling deq observes up-to-date values, it must synchro-
nise with the producer calling enq using release-acquire atomics.

8. Related Work

Relaxed-memory behaviour has become widespread in real con-
current systems. As a result, some algorithm designers have be-
gun to publish algorithms with memory-model annotations such as
fences [3, 17, 18]. However, the corresponding formulations of cor-
rectness properties and their proofs are generally informal. While
there has been some work on formally verifying programs on weak
memory models [14, 20, 23], none has proposed a compositional
reasoning method, like we do. Ours is the first approach that for-
mulates the notion of a correct library specification and provides a
method for establishing it on C11, or any similarly relaxed model.

Our work is an evolution of linearizability [11], a correctness
criterion that has been widely adopted in the concurrent algorithms
community. In the SC fragment of C11, our definition of library
abstraction implies classical linearizability. History abstraction in
classical linearizability is defined by linearization of the partial
order over non-overlapping methods invocations, and the guarantee

portion in our histories can be seen as lifting this to the C11 setting.
Classical linearizability has no equivalent to our deny relation; the
conflicts between relations that are captured by deny do not occur
in an SC setting where all events are totally ordered.

Recent work has formalised the intuition that linearizability cor-
responds to observational abstraction [7] and has extended it to han-
dle liveness [9], resource-transferring programs [10] and the x86
memory model [5]. The latter work is the closest to this paper;
in particular, we borrow the decompose-compose approach in the
proof of the Abstraction Theorem (§6.3) from it. However, while its
objective is the same as ours—abstraction for relaxed-memory con-
current libraries—the technical challenges and the machinery de-
veloped to address them are very different. The x86 memory model
can be defined by a small-step operational semantics, which has
an underlying total order on abstract machine memory events [19].
Linearizability for x86 is therefore a relatively mild extension to
classical linearizability, which simply represents some of these
events in (linear) histories. In contrast, C11 constrains relaxed be-
haviour through partial ordering, controlled by an axiomatic se-
mantics. There are no abstract machine events to linearize, which
motivates our novel definition of a history as a set of partial orders
and history abstraction as inclusion over them. Furthermore, x86
is a substantially stronger model than C11, with (SB) from §2 be-
ing the only significant relaxation [19]. Our approach is the first
technique for specifying client-visible effects of relaxations inside
libraries on weaker memory models.

9. Conclusion and Future Work

We have proposed the first sound criterion for library abstraction
suitable for the C11 memory model and demonstrated its practi-
cality on two small, but typical, relaxed libraries. Our criterion is
certainly complex, but much of this complexity arises from the real-
world intricacies of the C11 memory model. In turn, the complex-
ity of the model arises from a multitude of target platforms of C
and C++—two of the world’s most widely-used programming lan-
guages. Despite this complexity, the criterion allows developers to
establish that C11 libraries satisfy simple, reusable specifications
that precisely describe the level of consistency guaranteed. This
is an essential ingredient for supporting modular development of
complex software on relaxed memory models.

In addition, our approach is the first compositional reasoning
technique for an axiomatically defined relaxed memory model, and
highlights general principles for abstraction on such models. We
have good reason to believe that our techniques can be reused for
other memory models, as the conditions for library abstraction fall
out naturally from obligations arising when trying to prove the Ab-
straction Theorem according to the approach in §6.3. In particular,
the histories in our approach are constructed uniformly, with deny
relations obtained straightforwardly from axioms by ‘breaking’ hb
edges (§6.2). In particular, our preliminary investigations show that
these techniques can be used to define a notion of library abstrac-
tion for an axiomatic formulation of the x86 memory model [19].

Our specifications describe precisely the level of synchronisa-
tion provided by the library, although in some cases this makes
them more verbose. This is motivated by the fact that libraries on
C11 can offer relaxed interfaces to clients, without either giving up
all synchronisation guarantees or enforcing sequential consistency.
If information about the internal synchronisation used to ensure
library correctness were not described in these interfaces, clients
would have to duplicate it, thereby decreasing performance. On the
other hand, requiring library interfaces to be SC would rule out li-
braries that use weaker memory orders to achieve efficiency while
preserving basic correctness properties, again decreasing perfor-
mance. Our prototype atomic section semantics represents a first
attempt at a syntactic specification idiom for relaxed algorithms,

albeit with limitations as described in §4. We leave a more compre-
hensive treatment of relaxed atomic sections to future work.

Our two formulations of library abstraction (Definitions 2 and 6)
and the Abstraction Theorem (Theorems 3 and 7) identify the
feature of the current C/C++ memory model that does not allow
fully compositional reasoning about libraries. As we argued in §3,
this deficiency is not specific to our definition of library abstraction,
but would be inherent to any sensible one. We hope that these
insights will inform future revisions of the C/C++ memory model.

Our development omits memory fences and release-consume
atomics, which are the more advanced features of the C11 memory
model. A memory fence is a synchronisation construct that affects
many memory actions, rather than just one. Release-consume is
a special-purpose memory order which compiles more efficiently
to Power and ARM processors. We conjecture that our methods
can be used to handle these features. As both of them generate
more possible client-library interactions, this will require adding
additional relations to histories.

To concentrate on the core challenges of library abstraction in
C11, we assumed that the data structures of the client and its li-
braries are completely disjoint (§4). We hope to lift this restriction
by combining our results with a recent generalisation of classical
linearizability allowing transfers of memory ownership [10]. Simi-
larly, a previous generalisation of linearizability to handle liveness
properties [9] could be used to strengthen specifications of the kind
shown in Figure 1a to guarantee properties such as lock-freedom.

Acknowledgements. We would like to thank Hans Boehm,
Richard Bornat, Paul McKenney, Robin Morisset, Madan Musu-
vathi, Peter Sewell, Jaroslav Ševčı́k, Hongseok Yang and John
Wickerson for helpful comments. We acknowledge funding from
EPSRC grants EP/F036345 and EP/H005633.

References

[1] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency (extended version). University of York Technical Report
YCS-2012-479, 2012.

[2] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[3] H.-J. Boehm. Can seqlocks get along with programming language
memory models? In MSPC, 2012.

[4] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In PLDI, 2008.

[5] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent
library correctness on the TSO memory model. In ESOP, 2012.

[6] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[7] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for
concurrent objects. In ESOP, 2009.

[8] I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaiming the
client: On data refinement in the presence of pointers. FAC, 22, 2010.

[9] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction.
In ICALP, 2011.

[10] A. Gotsman and H. Yang. Linearizability with ownership transfer. In
CONCUR, 2012.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. TOPLAS, 12, 1990.

[12] ISO/IEC. Programming Languages – C++, 14882:2011.

[13] ISO/IEC. Programming Languages – C, 9899:2011.

[14] M. Kuperstein, M. T. Vechev, and E. Yahav. Partial-coherence abstrac-
tions for relaxed memory models. In PLDI, 2011.

[15] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comp., 28, 1979.

[16] J. Manson. The Java memory model. PhD Thesis. Department of
Computer Science, University of Maryland, 2004.

Action structures for locks

〈lock(ℓ)〉t = {({(e, g, t, lock(ℓ))}, ∅), ({(e, g, t, block(ℓ))}, ∅) | e ∈ AId ∧ g ∈ SectId}

〈unlock(ℓ)〉t = {({(e, g, t, unlock(ℓ))}, ∅) | e ∈ AId ∧ g ∈ SectId}

〈let {m = Cm | m ∈ M} in C1 ‖ . . . ‖ Cn〉I =
{

(A0 ·∪ (·
⋃

n
t=1 At),

⋃n

t=1 sbt, (A0 × (·
⋃

n
t=1 At))) |

(∀t = 1..n. (At, sbt) ∈ 〈Ct〉t) ∧ (∀t = 1..n. ∀u. ∃ finitely many v. (v, u) ∈ sbt) ∧

(¬∃u, v, t. (u, v) ∈ sbt ∧ u = (, , , block())) ∧ (A0 = ·
⋃

{(e, g, 0, storeλ(x, a)) | I(x) = (a, λ) ∧ e ∈ AId ∧ g ∈ SectId})
}

Additional validity axioms

ATOMRMW. ∀w, u.w
rf
−→ u ∧ u = (, rmw()) =⇒ w

mo
−→ u ∧ ¬∃w′. w

mo
−→ w′ mo

−→ u

ATOMAS. ∀w,w′, r, u, v, x. w
rf
−→ r ∧ sec(u) = sec(r) 6= sec(w) = sec(v) ∧ r = (, read(x,)) ∧ sort(x) = ATOM =⇒ ¬(w

mo
−→ v)

∧ (u = (,write(x,)) =⇒ w
mo
−→ u ∧ ¬∃w′′. sec(w′′) 6= sec(u) ∧ w

mo
−→ w′′ mo

−→ u)

∧ (u = (, read(x,)) ∧ w′ rf
−→ r ∧ sec(w′) 6= sec(r) =⇒ w′′ = w)

LOCKS. ∀u, v. u = (, lock(ℓ)) ∧ v = (, lock(ℓ)) ∧ u
sc
−→ v =⇒ ∃q. q = (, unlock(ℓ)) ∧ u

sc
−→ q

sc
−→ v

SWDEF. ∀w, r. w
sw
−→ r ⇐⇒ (∃ℓ. w

sc
−→ r ∧ w = (, unlock(ℓ)) ∧ r = (, lock(ℓ))) ∨

(∃t1, t2, λ, µ, x, w
′. t1 6= t2 ∧ λ ∈ {SC,REL} ∧ µ ∈ {SC,ACQ} ∧ w = (t1,writeλ(x,)) ∧ r = (t2, readµ(x,)) ∧ w

rs
−→t1 w′ rf

−→ r),

where w
rs
−→t w

′ def
⇐⇒ ∃w1. w

mo
−→∗ w1 ∧ (∀w2. w

mo
−→∗ w2

mo
−→∗ w′ =⇒ (w2 = (t,) ∨ w2 = (, rmw())))

SCREADS.

∀w, r, x. w
rf
−→ r ∧ r = (, readSC(x,)) =⇒

((w = (,writeSC(x,)) ∧ w
sc
−→ r ∧ ¬∃w′. w′ = (,write(x,)) ∧ w

sc
−→ w′ sc

−→ r) ∨

(∃λ.w = (,writeλ(x,)) ∧ λ 6= SC ∧ ∀w1. (w1 = (,write(x,)) ∧ w1
sc
−→ r ∧ ¬∃w2. w2 = (,write(x,)) ∧ w1

sc
−→ w2

sc
−→ r) =⇒

¬(w
hb
−→ w1)))

Additional safety axiom

SAFELOCK. (∀v, t, ℓ. v ∈ A ∧ v = (t, unlock(ℓ)) =⇒ ∃u. u = (t, lock(ℓ)) ∧ u
sb
−→ v ∧ ¬∃q. q = (, (ℓ)) ∧ u

sc
−→ q

sc
−→ v) ∧

(¬∃u, v, t, ℓ. u = (t, lock(ℓ)) ∧ v = (t, block(ℓ)) ∧ u
sb
−→ v ∧ ¬∃q. q = (, (ℓ)) ∧ u

sc
−→ q

sc
−→ v)

Figure 7. Action structures for locks and additional C11 memory model axioms

[17] M. M. Michael. Scalable lock-free dynamic memory allocation. In
PLDI, 2004.

[18] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent work
stealing. In PPOPP, 2009.

[19] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In TPHOLs, 2009.

[20] T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE,
2010.

[21] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In PLDI, 2011.

[22] R. K. Treiber. Systems programming: Coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[23] I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA, 2011.

A. Additional Definitions for the C11 Model

In §4–5, we omitted the treatment of locks and CASes from the
description of the memory model and simplified some of the ax-
ioms, even though the proofs of our theorems do not make such
simplifications. Here we provide the missing definitions.

We handle programs with bounded numbers of locks ℓ ∈ Lock,
acquired and released using commands lock(ℓ) and unlock(ℓ),
respectively. We thus extend the set of actions as follows: ϕ ::=
. . . | lock(ℓ) | unlock(ℓ) | block(ℓ), where ℓ ∈ Lock. An action
(e, g, t, block(ℓ)) represents a deadlocked attempt to acquire a lock
ℓ. We split the set of locks into client and library ones (Lock =
CLock ⊎ LLock) and consider only programs where the client and
the library use locks from CLock and LLock, respectively.

In Figure 7, we give the actions structures for lock operations,
omitted from Figure 3, and the C11 axioms omitted from Figures 4
and 5. Note that the action structures of a whole program do not
include those where a thread executes actions after blocking. To
adjust the axioms to the model with locks, we require that the sc re-
lation totally orders actions of the form (, lock()), (, block()) or
(, unlock()) for each lock, in addition to SC actions. The axioms
ATOMRMW and LOCKS define the behaviour of CAS commands
and locks. ATOMAS is an additional axiom for atomic sections,
in the spirit of ATOMRMW. SWDEF and SCREADS are full ver-
sions of the axioms presented in a simplified form in Figure 4. The
former adds synchronisation via release sequences [2] (defined by
the rs relation), and the latter allows SC reads from non-SC writes.
SAFELOCK is an additional safety axiom, flagging a double unlock
or a double lock in the same thread as a fault.

All the theorems stated in the paper stay valid for this ex-
tension of the model. To account for the full version of the
SCREADS axiom, we add additional edges to denyL(X). For
X = (A, sb, ib, rf, sc,mo, sw, hb), denyL(X) includes the dashed
edges of all possible instantiations of the following diagram:













w = (,writeλ(x,)) ∧ λ 6= SC ∧
r = (, readSC(x,)) ∧
w1 = (,write(x,)) ∧
(¬∃w2. w2 = (,write(x,)) ∧

w1
sc
−→ w2

sc
−→ r)













∧

r w
hb��

rfoo

u

��
v
hb��

w1

sc

ZZ✹
✹

✹

✹

✹

✹

✹

✹

✹

✹

✹

✹

where u is a return, and v is a call. Its counterpart denyC(X)
contains the dashed edges assuming u is a call, and v is a return.

