
Parameterised Linearisability

Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1 IMDEA Software Institute
2 University of Oxford

Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction

Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [6,7,13] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [8], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised

linearisability, appropriate for different situations: a general one, which does not make
any assumptions about the client or the parameter library, a notion appropriate for the
case when the parameter library is encapsulated, and up-to linearisability, which allows
making assumptions about the parameter library. These notions differ in subtle ways:
we find that there is a trade-off between the assumptions that parameterised libraries
make about their environment and the conditions that a notion of linearisability has to
impose on different types of interactions with it.

We prove that the proposed notions of parameterised linearisability are contextual
(§5), i.e., closed under parameter instantiation. This includes the case when the para-
meter library is itself parameterised. On the other hand, when the parameter is an or-
dinary ground library, this result allows us to derive the classical linearisability of the
instantiated library from our notion for the parameterised one. We also prove that para-
meterised linearisability is compositional (§5): if several non-interacting libraries are
linearisable, so is their composition. Finally, we show that parameterised linearisability
implies observational refinement (§6): the behaviours of any complete program using a
concrete parameterised library can be reproduced if the program uses a corresponding
abstract one instead. All these results allow modularising the reasoning about concur-
rent programs using parameterised libraries: contextuality and compositionality break
the reasoning about complex parameterised libraries into that about individual libraries
from which they are constructed; observational refinement then lifts this to complete
programs, including clients. The properties of parameterised linearisability we estab-
lish also serve to confirm the appropriateness of the proposed definitions.

We illustrate the applicability of our results by proving the up-to linearisability of
flat combining [6] (§4), a generic algorithm for converting hard-to-parallelise sequential
data structures into concurrent ones.

Due to space constraints, we defer the proofs of most theorems to [1, §B].

2 Parameterised Libraries

We consider parameterised libraries (or simply libraries) L, which provide some pub-
lic methods to their clients. The latter are multi-threaded programs that can call the
methods in parallel. In §4 and §6 we introduce a particular syntax for libraries and cli-
ents; for now it suffices to treat them abstractly. Our libraries are called parameterised
because we allow their method implementations to call abstract methods, whose imple-
mentation is left unspecified. Abstract methods are meant to be implemented by another
library provided by L’s client, which we call the parameter library of L.

We identify methods by names from a set M, ranged over by m, and threads by
identifiers from a set T , ranged over by t. For the sake of simplicity, we assume that
methods take a single integer as a parameter and always return an integer. We annotate
libraries with types as in L : M → M ′, where M,M ′ ⊆ M give the sets of abstract
and public methods of L, respectively. If M = ∅ we call L a ground library. The sets
M and M ′ do not have to be disjoint: methods in M ∩M ′ may be called by L’s clients,
but their implementation is inherited from the one given by the parameter library.

Example: Flat Combining. Flat combining [6] is a recent synchronisation paradigm,
which can be viewed [14] as a parameterised library FC : {mi}ni=1 → {do mi}ni=1 for a
given set of methods {mi}ni=1. In Figure 1 we show a pseudocode of its implementation,
which simplifies the original one in ways orthogonal to our goals. FC takes a library,

whose methods mi are meant to be executed sequentially, and efficiently turns it into a
library with methods do mi that can be called concurrently.

LOCK lock;
struct{op,param,retval} requests[NThread];

do mi(int z):
requests[mytid()].op = i;
requests[mytid()].param = z;
requests[mytid()].retval = nil;
do:

if (lock.tryacquire()):
for (t = 0; t < NThread; t++):

if (requests[t].retval == nil):
int j = requests[t].op;
int w = requests[t].param;
requests[t].retval = mj(w);

lock.release();
while (requests[mytid()].retval == nil);
return requests[mytid()].retval;

Figure 1. Flat combining: implementation FC.

As usual, this is achieved by means
of mutual exclusion, implemented using a
lock, but in a way that is more sophistic-
ated than just acquiring it before calling
a method mi. A thread executing do mi

first publishes the operation it would like
to execute and its parameter in its entry
of the requests array. It then spins, try-
ing to acquire the global lock. Having ac-
quired a lock, the thread becomes a com-
biner: it performs the operations reques-
ted by all threads, stored in requests, by
calling methods mi of the parameter lib-
rary and writing the values returned into
the retval field of the corresponding entries
in requests. Each spinning thread period-
ically checks this field and stops if some
other thread has performed the operation it
requested (for simplicity, we assume that
nil is a special value that is never returned by any method). This algorithm benefits
from cache locality when the combiner executes several operations in sequence, and
thus yields good performance even for hard-to-parallelise data structures, such as stacks
and queues.

LOCK lock;
do mi(int z):

lock.acquire();
int retval = mi(z);
lock.release();
return retval;

Figure 2. Flat combin-
ing: specification FC].

In this paper, we develop a framework for specifying and
verifying parameterised concurrent libraries. For flat combin-
ing, our framework suggests using an abstract library FC] :
{mi}ni=1 → {do mi}ni=1 in Figure 2 as a specification for the
concrete library in Figure 1. FC] specifies the expected beha-
viour of flat combining by using the naive mutual exclusion.
Showing that the implementation satisfies this specification in
our framework amounts to proving that it is related to FC] by
parameterised linearisability, which we present next.

3 Histories and Parameterised Linearisability

Histories. Informally, for a concrete library (such as the one in Figure 1) to be correct
with respect to an abstract one (such as the one in Figure 2), the two should interact with
their environment—the client and the parameter library—in similar ways. In this paper,
we assume that different libraries and their clients access disjoint portions of memory,
and thus interactions between them are limited to passing parameters and return values
at method calls and returns. This is a standard assumption [8], which we believe can be
relaxed using existing techniques [5]; see §7 for discussion. We record interactions of a
parameterised library L : M → M ′ with its environment using histories (Definition 1
below), which are certain sequences of actions of the form

Act ::= (t, call?m′(z)) | (t, ret!m′(z)) | (t, call!m(z)) | (t, ret?m(z)),

h1:

call?m1(z1) call!ma(za) ret?ma(z
′
a) ret!m1(z

′
1)

call?m2(z2) call!mb(zb) ret?mb(z
′
b) ret!m2(z

′
2)

call?m3(z3) ret!m3(z
′
3) call?m4(z4) ret!m4(z

′
4)

t1

t2

t3

h2:

call?m1(z1) call!ma(za) ret?ma(z
′
a) ret!m1(z

′
1)

call?m2(z2) call!mb(zb) ret?mb(z
′
b) ret!m2(z

′
2)

call?m3(z3) ret!m3(z
′
3) call?m4(z4) ret!m4(z

′
4)

t1

t2

t3

Figure 4. Illustration of histories and parameterised linearisability. A solid line represents a thread
executing the code of the parameterised library, and a dashed one, the parameter library.

where t ∈ T is the thread performing the action, m′ ∈ M ′ or m ∈ M is the method
involved, and z ∈ Z is the method parameter or a return value.

L′

L

client
call?m′(z) ret!m′(z)

call!m(z) ret?m(z)

callm′′(z) retm′′(z)

Figure 3. Interactions of a library
L with its client and parameter
library L′.

We illustrate the meaning of the actions in Fig-
ure 3: call? and ret! describe the client invoking public
methods m′ of the parameterised library L, and call!
and ret? the library L invoking implementations of ab-
stract methods m provided by a parameter library L′.
We denote the sets of actions corresponding to inter-
actions with these two entities by ClAct and AbsAct,
respectively. In the spirit of the opponent-proponent
distinction in game semantics [9,11], we annotate ac-
tions by ! or ? depending on whether the action was
initiated by L or by an external entity, and we denote
the corresponding sets of actions by Act! and Act?. We
also use sets ActCall?, ActRet!, ActCall! and ActRet?
with the expected meaning. Clients can also call meth-
ods m′′ ∈ M ∩ M ′ directly, as represented by the
dashed lines in the figure. Since such interactions do

not involve the library L, we do not include them into Act. Histories are finite sequences
of actions with invocations of abstract methods properly nested inside those of public
ones.

DEFINITION 1 (Histories) A history h : M → M ′ is a finite sequence of actions such
that for every t, the projection of h to t’s actions is a prefix of a sequence generated by
the grammar SHist below, where m ∈M and m′ ∈M ′:

SHist ::= ε | (t, call?m′(z)) IntSHist (t, ret!m′(z′)) | SHist SHist
IntSHist ::= ε | (t, call!m(z)) (t, ret?m(z′)) | IntSHist IntSHist

We denote the set of histories by Hist. See Figure 4 for examples. In this paper, we
focus on safety properties of libraries and thus let histories be finite. This assumption is
also taken by the classical notion of linearisability [8] and can be relaxed as described
in [4] (§7). For a history h and A ⊆ Act, we let h|A be the projection of h onto actions
in A and we denote the i-th action in h by h(i).

Parameterised Linearisability. We would like the notion of correctness of a concrete
library L : M → M ′ with respect to an abstract one L] : M → M ′ to imply obser-
vational refinement. Informally, this property means that L] can be used to replace L
in any program (consisting of a client, the library and an instantiation of the parameter
library) while keeping its observable behaviours reproducible; a formal definition is
given in §6. While this notion is intuitive, establishing it between two libraries directly
is challenging because of the quantification over all possible programs they can be used
by. We therefore set out to find a correctness criterion that compares the concrete and
abstract libraries in isolation and thus avoids this quantification. For ground libraries,
linearisability [8] formulates such a criterion by matching a history h1 of L with a his-
tory h2 of L] that yields the same client-observable behaviour. The following definition
generalises it to parameterised libraries.

DEFINITION 2 (Parameterised linearisability: general case) A history h1 :M →M ′ is
linearised by another one h2 :M →M ′, written h1 v h2, if there exists a permutation
π : N→ N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i) ∈ Act! ∧ h1(j) ∈ Act?)) =⇒ π(i) < π(j)).

For sets of histories H1, H2 we let H1 v H2 ⇐⇒ ∀h1 ∈ H1.∃h2 ∈ H2. h1 v h2.

In §4 we show how to generate all histories of a library in a particular language
and define linearisability on libraries by the v relation on their sets of histories. For
now we explain the above abstract definition. According to it, a history h1 is linearised
by a history h2 when the latter is a permutation of the former preserving the order of
actions within threads and the precedence relation between the actions initiated by the
library and those initiated by its environment. As we explain below, we have h1 v
h2 for the histories h1, h2 in Figure 4. Hence, parameterised linearisability is able to
match a history of a concurrent library with a simpler one where every contiguous block
of library execution (e.g., the one between (t1, call?m1(z1)) and (t1, call!ma(za))) is
executed without interleaving with other such blocks. On the other hand, h2 6v h1, since
(t1, call!ma(za)) precedes (t3, call?m3(z3)) in h2, but not in h1.

When h1, h2 : ∅ → M ′, i.e., these are histories of a ground library and thus con-
tain only call? and ret! actions, Definition 2 coincides with a variant of the classical
linearisability [8], which requires preserving the order between ret! and call? actions.
For example, Definition 2 requires preserving the order between (t2, ret!m2(z

′
2)) and

(t3, call?m4(z4)) in h1 from Figure 4 (shown by a diagonal arrow). This requirement
is needed for linearisability to imply observational refinement: informally, during the
interval of time between (t2, ret!m2(z

′
2)) and (t3, call?m4(z4)) in an execution of a

program producing h1, both threads t2 and t3 execute pieces of client code, which can
communicate via the client memory. To preserve the behaviour of the client when repla-
cing the concrete library in the program by an abstract one in observational refinement,
this communication must not be affected, and, for this, the abstract library has to admit
a history in which the order between the above actions is preserved.

When h1, h2 : M → M ′ correspond to a non-ground parameterised library, i.e.,
M 6= ∅, a similar situation arises with communication between the methods of the
parameter library executing in different threads. For this reason, our generalisation
of linearisability requires preserving the order between call! and ret? actions, such as

(t2, call!mb(zb)) and (t1, ret?ma(z
′
a)) in Figure 4; this requirement is dual to the one

considered in classical linearisability. It is not enough, however. Definition 2 also re-
quires preserving the order between call! and call?, as well as ret! and ret? actions, e.g.,
(t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)) in Figure 4. In the case when M ∩M ′ 6= ∅, this

is also required to validate observational refinement. For example, during the interval of
time between (t3, ret!m3(z

′
3) and (t2, ret?mb(z

′
b)) in an execution producing h1, the

client code in thread t3 can call a methodm′b ∈M∩M ′ of the parameter library (cf. the
dashed arrows in Figure 3). The code of the methodm′b executed by t3 can then commu-
nicate with that of the method mb executed by t2, and to preserve this communication,
we need to preserve the order between (t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)).

In §5 and §6 we prove that the above notion of linearisability indeed validates ob-
servational refinement. If the library L : M → M ′ producing the histories h1, h2 in
Definition 2 is such that M ∩M ′ = ∅, then the client cannot directly call methods of
its parameter library, and, as we show, parameterised linearisability can be weakened
without invalidating observational refinement.

DEFINITION 3 (Parameterised linearisability: encapsulated case) For h1, h2 : M →
M ′ with M ∩M ′ = ∅ we let h1ve h2 if there exists a permutation π : N→N such that

∀i. h1(i) = h2(π(i)) ∧ (∀j. i < j ∧ ((∃t. h1(i) = (t,−) ∧ h2(j) = (t,−)) ∨
(h1(i), h1(j)) ∈ (ActRet!× ActCall?) ∪ (ActCall!× ActRet?)) =⇒ π(i) < π(j)).

Since this definition does not take into account the order between (t1, call!ma(za)) and
(t3, call?m3(z3)) in h2 from Figure 4, we have h2 ve h1 even though h2 6v h1.

Definitions 2 and 3 do not make any assumptions about the implementation of the
parameter library. However, sometimes the correctness of a parameterised library can
only be established under certain assumptions about the behaviour of its parameter. In
particular, this is the case for the flat combining library from §2. In its implementation
FC from Figure 1, a request by a thread t to execute a method mi of the parameter lib-
rary can be fulfilled by another thread t′ who happens to act as a combiner; in contrast,
the specification FC] in Figure 2 pretends that mi is executed in the requesting thread.
Thus, FC and FC] will behave differently if we supply as their parameter a library whose
methods depend on the identifiers of executing threads (e.g., with mi implemented as
“return mytid()”). As a consequence, FC does not simulate FC]. On the other hand,
this will be the case if we restrict ourselves to parameter libraries whose behaviour is
independent of thread identifiers. The following version of parameterised linearisabil-
ity allows us to use such assumptions, formulated as closure properties on histories of
interactions between a parameterised library and its parameter. Given a history h, let h
be the history obtained by swapping ! and ? actions in h.

DEFINITION 4 (Up-to linearisability) For h1, h2 : M → M ′ such that M ∩M ′ = ∅
and a binary relationR on histories of type ∅ →M , we say that h1 is linearised by h2
up toR, written h1 vR h2, if (h1|ClAct) v (h2|ClAct) and (h1|AbsAct) R (h2|AbsAct).
For flat combining, a suitable relation Rt relates two histories if one can be obtained
from the other by replacing thread identifiers of some pairs of a call and a corresponding
(if any) return action. There are other useful choices of R, such as equivalence up to
commuting abstract method invocations [7].

So far we have defined our notions of linearisability abstractly, on sets of histories.
We next introduce a language for parameterised libraries and show how to generate sets

of histories of a library in this language. This lets us lift the notion of linearisability to
libraries and prove that FC in Figure 1 is indeed linearised up toRt by FC] in Figure 2.

4 Lifting Linearisability to Libraries
Library Syntax. We use the following language to define libraries:

L ::= 〈public :B; private :B〉 B ::= ε | (m⇐ C);B | (abstractm);B
C ::= c | m() | C;C | if(E) then C else C | while(E) C

A parameterised library L is a collection of methods, some implemented by commands
C and others declared as abstract, meant to be implemented by a parameter library.
Methods can be public or private, with only the former made available to clients. In
§5 and §6 we extend the language to complete programs, consisting of a multithreaded
client using a parameterised library with its parameter instantiated. In particular, we
introduce private methods here to define parameter library instantiation in §5.

In commands, c ranges over primitive commands from a set PComm, and E over
expressions, whose set we leave unspecified. The command m() invokes the method
m; it does not mention its parameter or return value, since, as we explain below, these
are passed via dedicated thread-local memory locations. We consider only well-formed
libraries where a method is declared at most once and every method called is declared.
We identify libraries up to the order of method declarations and α-renaming of private
non-abstract methods. For a library L = 〈public :Bpub; private :Bpvt〉 we have L :
Abs(L)→ Pub(L), where Pub(L) is the set of methods declared in Bpub, and Abs(L)
of those declared as abstract in Bpub or Bpvt.

Linearisability on Libraries and the Semantics Idea. We now show how to generate
the set of histories JLK ∈ 2Hist of a library L. Then we let a library L1 be linearised by
a library L2, written L1 v L2, if JL1K v JL2K; similarly for ve and vR.

We actually generate all library traces, which, unlike histories, also record its in-
ternal actions. Let us extend the set of actions Act with elements of the forms (t, c)
for c ∈ PComm, (t, callm(z)) and (t, retm(z)), leading to a set TrAct. The latter two
kinds of actions correspond to calls and returns between methods implemented inside
the library. A trace τ is a finite sequence of elements in TrAct; we let Traces = TrAct∗.

The denotation JLK of a library L : M → M ′ includes the histories extracted from
traces that L produces in any possible environment, i.e., assuming that client threads
perform any sequences of calls to methods in M ′ with arbitrary parameter values and
that abstract methods in M return arbitrary values. The definition of JLK follows the
intuitive semantics of our programming language. An impatient reader can skip it on
first reading and jump directly to Theorem 1 at the end of this section.

Heaps and Primitive Command Semantics. Let Locs be the set of memory loca-
tions. As we noted in §3, we impose a standard restriction that different libraries and
their clients access different sets of memory locations, except the ones used for method
parameter passing. Formally, we assume that each library L is associated with a set of
its locations LocsL ⊆ Locs. The state of L is thus given by a heap σ ∈ LocsL → Z.
We assume a special subset of locations {argt}t∈T belonging to every LocsL, which
we use to pass parameters and return values for method invocations in thread t.

We assume that the execution of primitive commands and the evaluation of ex-
pressions are atomic. The semantics of a primitive command c ∈ PComm used by a

Traces of commands LCMt : (M×T → 2Traces)→ 2Traces

LcMtη = {(t, c)} LC1;C2Mtη = {τ1τ2 | τ1 ∈ LC1Mtη ∧ τ2 ∈ LC2Mtη}
Lif(E) then C1 else C2Mtη = (t, assume(E)) (LC1Mtη) ∪ (t, assume(!E))(LC2Mtη)
Lwhile(E) CMtη = ((t, assume(E))(JCKη))∗(t, assume(!E))

Lm()Mtη =

{
{(t, call!m(z)) τ (t, ret?m(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, if m ∈M
{(t, callm(z)) τ (t, retm(z′)) | τ ∈ η(m, t) ∧ z, z′ ∈ Z}, otherwise

Traces of library bodies
F : (M×T → 2Traces)→ (M×T → 2Traces) LBM :M×T → 2Traces

(F(η))(m, t) =

η(m, t) ∪ (LCMtη), if (m⇐ C) appears in L
{ε}, if m ∈M
∅, otherwise

LBpub;BpvtM = lfp(F)

Traces of libraries LL :M →M ′M : 2Traces

LLM = prefix

(⋃
k>0

∥∥k
t=1

(⋃
z,z′∈Z

m∈M′\M
(t, call?m(z)) (LBpub;BpvtM(m, t)) (t, ret!m(z′))

)∗)
Figure 5. Possible traces of a library L = 〈public : Bpub; private : Bpvt〉 : M → M ′. Here∥∥k
t=1

Tt denotes the set of all interleavings of traces from the sets T1, . . . , Tk.

σ L
call m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ L
ret m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ L
call?m(z),t σ

′ iff σ′ = σ[argt 7→ z] σ L
ret!m(z),t σ

′ iff σ′ = σ, σ(argt) = z

σ L
call!m(z),t σ

′ iff σ′ = σ, σ(argt) = z σ L
ret?m(z),t σ

′ iff σ′ = σ[argt 7→ z]

Figure 6. Transformers for calls and returns to, from and inside a library L.

library L is defined by a family of transformers { L
c,t}t∈T , where L

c,t ⊆ (LocsL →
Z) × (LocsL → Z) describes how c affects the state of the library. The fact that the
transformers are defined on locations from LocsL formalises our assumption that L
accesses only these locations. We assume that the transformers satisfy some standard
properties [15], deferred to [1, §A] due to space constraints. To define the semantics of
expressions, we assume that for each E the set PComm contains a special command
assume(E), used only in defining the semantics, that allows the computation to proceed
only if E is non-zero: σ L

assume(E),t σ
′ iff σ′ = σ and E is non-zero in σ.

Library Denotations. The set of traces of a library is generated in two stages. First,
we generate a superset LLM ⊆ 2Traces of traces produced by L, defined in Figure 5. If
we think of commands as control-flow graphs, these traces contain interleavings of all
possible paths through the control-flow graphs of L’s methods, invoked in an arbitrary
sequence. We then select those traces in LLM that correspond to valid executions starting
in a given heap using a predicate JτKL : (LocsL → Z)→ {true, false}. We define J·KL
by generalising to calls and returns as shown in Figure 6 and letting

JεKLσ= true; J(t, a) τKLσ = if (∃σ′. σ L
a,t σ

′ ∧ JτKLσ′= true) then true else false.

Finally, we let the set of histories JLK of a library L consist of those obtained from
traces representing its valid executions from a heap with all locations set to 0:

JLK = history({τ ∈ LLM | JτKL(λx ∈ LocsL. 0) = true}),

where history projects to actions in Act.

THEOREM 1 (Correctness of flat combining) For the libraries FC in Figure 1 and FC]

in Figure 2 and the relationRt from §3 we have FC vRt FC
].

PROOF SKETCH. Consider h ∈ JFCK. In such a history, any invocation of an
abstract method (t, call!mi(zi)) (t, ret?mi(z

′
i)) happens within the execution of

the corresponding wrapper method (t′, call? do mi(zi)) (t
′, ret! do mi(z

′
i)) (or just

(t′, call? do mi(zi)) if the execution of the method is uncompleted in h), though not
necessarily in the same thread. This correspondence is one-to-one, as different invoc-
ations of abstract methods correspond to different requests to perform them. Further-
more, abstract methods in h are executed sequentially. We then construct a history h′

by replacing every abstract method call (t, call!mi(zi)) (t, ret?mi(z
′
i)) in h|AbsAct by

(t′, call? do mi(zi)) (t
′, call!mi(zi)) (t

′, ret?mi(z
′
i)) (t

′, ret! do mi(z
′
i)),

where t′ is the thread identifier of the corresponding wrapper method invocation (sim-
ilarly for uncompleted invocations). It is easy to see that (h|AbsAct) Rt (h′|AbsAct) and
h′ ∈ JFC]K. Since the execution of an abstract method in h happens within the execu-
tion of the corresponding wrapper method, we also have (h|ClAct) v (h′|ClAct). ut

5 Instantiating Library Parameters and Contextuality
We now define how library parameters are instantiated and show that our notions of
linearisability are preserved under such instantiations. To this end, we introduce a partial
operation ◦ on libraries of §4: informally, for L1 : M → M ′ and L2 : M ′ → M ′′ the
library L2 ◦ L1 : M → M ′′ is obtained by instantiating abstract methods in L2 with
their implementations from L1. Note that L1 can itself have abstract methodsM , which
are left unimplemented in L2 ◦ L1. Since we assume that different libraries operate in
disjoint address spaces, for ◦ to be defined we require that the sets of locations ofL1 and
L2 be disjoint, with the exception of those used for method parameter passing. To avoid
name clashes, we also require that public non-abstract methods of L2 not be declared as
abstract in L1 (private non-abstract methods are not an issue, since we identify libraries
up to their α-renaming); this also disallows recursion between L2 and L1.

DEFINITION 5 (Parameter library instantiation) Consider L1 : M → M ′ and L2 :
M ′ → M ′′ such that (M ′′ \ M ′) ∩M = ∅ and LocsL1 ∩ LocsL2 = {argt}t∈T . Then
L2 ◦ L1 : M → M ′′ is the library with LocsL2◦L1

= LocsL1
∪ LocsL2

obtained by
erasing the declarations for methods in M ′ from L2, reclassifying the methods from
M ′ \M ′′ in L1 as private, and concatenating the method declarations of the resulting
two libraries. We write (L2 ◦ L1)↓ when L2 ◦ L1 is defined.

We now show that the notions of parameterised linearisability we proposed are con-
textual, i.e., closed under library instantiations. This property is useful in that it allows
us to break the reasoning about a complex library into that about individual libraries
from which it is constructed. As we show in §6, contextuality also helps us establish
observational refinement.

THEOREM 2 (Contextuality of parameterised linearisability: general case) For
L1, L2 :M →M ′ such that L1 v L2:

(i) ∀L :M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L v L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 v L ◦ L2.

THEOREM 3 (Contextuality of parameterised linearisability: encapsulated case) For
L1, L2 :M →M ′ such that M ∩M ′ = ∅ and L1 ve L2:

(i) ∀L :M ′′ →M. (L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L ve L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 ve L ◦ L2.

The restriction on method names in Definition 5 ensures that the library compositions
in Theorem 3 have no public abstract methods and can thus be compared by ve. Note
that if L is ground, then so are L1 ◦ L and L2 ◦ L. In this case, Theorems 2(i) and 3(i)
allow us to establish classical linearisability from parameterised one.

Stating the contextuality of vR is more subtle. The relationship L1 vR L2 allows
the use of abstract methods by L1 and L2 to differ according to R. As a consequence,
for a non-ground parameter library L, their use by L1 ◦ L and L2 ◦ L may also differ
according to another relation G. We now introduce a property of L ensuring that a
change in L’s interactions with its client according to R (the rely) leads to a change in
L’s interactions with its abstract methods according to G (the guarantee).

DEFINITION 6 (Rely-guarantee closure) Let R,G be relations between histories of
type ∅ → M ′ and ∅ → M , respectively. A library L : M → M ′ is

(R
G
)
-closed if

for all h ∈ JLK and h′ : ∅ →M ′ we have

(h|ClAct) R h′ =⇒ ∃h′′ ∈ JLK. (h′′|ClAct = h′) ∧ (h|AbsAct) G (h′′|AbsAct).

Due to space constraints, we state contextuality of vR only for the case in which lib-
rary parameters do not have public abstract methods. A more general statement which
relaxes this assumption is given in [1, §B].

THEOREM 4 (Contextuality of linearisability up toR) For L1, L2 : M → M ′ such
that M ∩M ′ = ∅ and a relationR such that L1 vR L2:

(i) ∀L :M ′′ →M.∀G.M ′′ ∩M = ∅ ∧ (L is
(R
G
)
-closed) ∧

(L1 ◦ L)↓ ∧ (L2 ◦ L)↓ =⇒ L1 ◦ L vG L2 ◦ L.
(ii) ∀L :M ′ →M ′′. (L ◦ L1)↓ ∧ (L ◦ L2)↓ =⇒ L ◦ L1 vR L ◦ L2.

When L in Theorem 4(i) is ground, G becomes irrelevant. In this case we say that
L is R-closed if it is

(R
{(ε,ε)}

)
-closed. Hence, from Theorems 1 and 4(i) we get that for

any Rt-closed (§3) library L we have FC ◦ L v FC] ◦ L: instantiating flat combining
with a library insensitive to thread identifiers, e.g., a sequential stack or a queue, yields
a concurrent library linearisable in the classical sense.

Given two libraries L1 : M1 → M ′1 and L2 : M2 → M ′2 that do not interact, i.e.,
(M1∪M ′1)∩ (M2∪M ′2) = ∅, we may wish to compose them by merging their method
declarations into a library L1] L2 : M1]M2 → M ′1]M ′2, as originally proposed
in [8]. Our notions of linearisability are also closed under this composition.

THEOREM 5 (Compositionality of parameterised linearisability) For L1, L
′
1 : M1 →

M ′1 and L2, L
′
2 :M2 →M ′2 such that (M1 ∪M ′1) ∩ (M2 ∪M ′2) = ∅:

(i) L1 v L′1 ∧ L2 v L′2 =⇒ L1] L2 v L′1] L′2.
(ii) L1 ve L

′
1 ∧ L2 ve L

′
2 =⇒ L1] L2 ve L

′
1] L′2.

(iii) ∀R,G. L1 vR L′1 ∧L2 vG L′2 =⇒ L1]L2 vR⊗G L′1]L′2, whereR⊗G relates
histories if their projections to M1 actions are related byR and the projections to
M2 actions are related by G.

6 Clients and Observational Refinement

A program P has the form let L in C1 ‖ . . . ‖ Cn, where L : ∅ → M is a ground
library and C1 ‖ . . . ‖ Cn is a client such that C1, . . . , Cn call only methods in M ,
written (C1 ‖ . . . ‖ Cn) : M . Using the contextuality results from §5, we now show
that our notions of linearisability imply observational refinement for such programs.

The semantics of a program P is given by the set of its traces JP K ∈ 2Traces, which
include actions (t, c) recording the execution of primitive commands c by client threads
Ct and the library L, as well as (t, callm(z)) and (t, retm(z)) actions corresponding
to the former invoking methods of the latter. The semantics JP K is defined similarly
to that of libraries in §4. In particular, we assume that client threads Ct access only
locations in a set Locsclient such that Locsclient ∩ LocsL = {argt}t∈T for any L. Due to
space constraints, we defer the definition of JP K to [1, §A]. We define the observable
behaviour obs(τ) of a trace τ ∈ JP K as its projection to client actions, i.e., those outside
method invocations, and lift obs to sets of traces as expected.

DEFINITION 7 (Observational refinement) For L1, L2 : M → M ′ we say that L1 ob-
servationally refines L2, written L1 vobs L2, if for any ground library L : ∅ →M and
client (C1 ‖ . . . ‖ Cn) :M

′ we have

obs(Jlet (L1 ◦ L) in C1 ‖ . . . ‖ CnK) ⊆ obs(Jlet (L2 ◦ L) in C1 ‖ . . . ‖ CnK).

For a binary relation R on histories we say that L1 observationally refines L2 up to
R, written L1 vRobs L2, if the above is true under the assumption that L isR-closed.

Thus, L1 vobs L2 means that L1 can be replaced by L2 in any program that uses it
while keeping observable behaviours reproducible. This allows us to check a property
of a program using L1 (e.g., the flat combining implementation in Figure 1) by check-
ing this property on a program with L1 replaced by a possibly simpler L2 (e.g., the
flat combining specification in Figure 2). Using Theorems 2–4, we can show that our
notions of linearisability validate observational refinement.

THEOREM 6 (Observational refinement) For any libraries L1, L2 :M →M ′:

(i) L1 v L2 =⇒ L1 vobs L2.
(ii) M ∩M ′ = ∅ ∧ L1 ve L2 =⇒ L1 vobs L2.

(iii) ∀R.M ∩M ′ = ∅ ∧ L1 vR L2 =⇒ L1 vRobs L2.

7 Related Work

Linearisability has recently been extended to handle liveness properties, ownership
transfer and weak memory models [4,5,10]. Most of these extensions have exploited the
connection between linearisability and observational refinement [2]. The same method-
ology is adopted in the present work, but for studying two previously unexplored topics:
parameterised libraries and the impact that common restrictions on their contexts have
on the definition of linearisability. We believe that our results are compatible with the
existing ones and can thus be extended to cover liveness and ownership transfer [4,5].

Our work shares techniques with game semantics of concurrent programming lan-
guages [12,3] and Jeffrey and Rathke’s semantics of concurrent objects [11] (in particu-
lar, we use the ? and ! notation from the latter). The proofs of our contextuality theorems
rely on the fact that library denotations satisfy certain closure properties related tov,ve

and vR, which are similar to those exploited in these prior works. However, there are
two important differences. First, prior work has not studied common restrictions on lib-
rary contexts (such as the encapsulation and closure conditions in Definitions 3 and 4)
and the induced stronger notions of refinement between libraries, the two key topics of
this paper. Second, prior works have considered all higher-order functions, while our
parameterised libraries are limited to second order. Our motivation for constraining the
setting in this way is to use a simple semantics and study the key issues involved in
linearisability of parameterised libraries without using sophisticated machinery from
game semantics, such as justification pointers and views [9], designed for accurately
modelling higher-order features. However, it is definitely a promising direction to look
for appropriate notions of linearisability for full higher-order concurrent libraries by
combining the ideas from this paper with those from game semantics.

Turon et al. proposed CaReSL [14], a logic that allows proving observational re-
finements between higher-order concurrent programs directly, without going via linear-
isability. Their work is complimentary to ours: it provides efficient proof techniques,
whereas we identify obligations to prove, independent of a particular proof system.

Acknowledgements. We thank Thomas Dinsdale-Young and Ilya Sergey for comments
that helped improve the paper. This work was supported by the EU FET project AD-
VENT.

References
1. Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Parameterised linearisability (exten-

ded version). Available from http://software.imdea.org/∼gotsman/.
2. Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for

concurrent objects. Theor. Comput. Sci., 411(51-52), 2010.
3. Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.

Ann. Pure Appl. Logic, 151(2-3), 2008.
4. Alexey Gotsman and Hongseok Yang. Liveness-preserving atomicity abstraction. In ICALP,

2011.
5. Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer. In CONCUR,

2012.
6. Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the

synchronization-parallelism tradeoff. In SPAA, 2010.
7. Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-

concurrent transactional objects. In PPOPP, 2008.
8. Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for con-

current objects. ACM Trans. Program. Lang. Syst., 12(3), 1990.
9. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,

163(2), 2000.
10. Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely. Quarantining weakness -

compositional reasoning under relaxed memory models. In ESOP, 2013.
11. Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for concurrent objects.

Theor. Comput. Sci., 338(1-3), 2005.
12. James Laird. A game semantics of idealized CSP. ENTCS, 45, 2001.
13. Claudio Russo. The Joins concurrency library. In PADL, 2007.
14. Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style reas-

oning in a logic for higher-order concurrency. In ICFP, 2013.
15. Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In FoSSaCS,

2002.

