
Verifying Read-Copy-Update in a Logic for Weak Memory

Joseph Tassarotti
Carnegie Mellon University, USA

jtassaro@andrew.cmu.edu

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Viktor Vafeiadis
MPI-SWS, Germany
viktor@mpi-sws.org

Abstract
Read-Copy-Update (RCU) is a technique for letting multiple readers
safely access a data structure while a writer concurrently modifies it.
It is used heavily in the Linux kernel in situations where fast reads
are important and writes are infrequent. Optimized implementations
rely only on the weaker memory orderings provided by modern hard-
ware, avoiding the need for expensive synchronization instructions
(such as memory barriers) as much as possible.

Using GPS, a recently developed program logic for the C/C++11
memory model, we verify an implementation of RCU for a singly-
linked list assuming “release-acquire” semantics. Although release-
acquire synchronization is stronger than what is required by real
RCU implementations, it is nonetheless significantly weaker than
the assumption of sequential consistency made in prior work on
RCU verification. Ours is the first formal proof of correctness for an
implementation of RCU under a weak memory model.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms Languages, Theory, Verification

Keywords Concurrency; Weak memory models; C/C++; RCU;
Program logic; Separation logic

1. Introduction
Traditionally, most work on concurrent program verification has
assumed a sequentially consistent (SC) model of memory, in which
updates to memory are globally visible to all threads as soon as they
occur [10]. For performance reasons, however, modern architectures
offer weaker guarantees about the ordering of concurrent memory
operations [11, 16]. Although it is possible to simulate SC semantics
on such hardware by inserting explicit synchronization instructions
(e.g., barriers/fences), the cost of doing so—particularly for high-
performance concurrent code—can be prohibitive.

Fortunately, for many concurrent algorithms, full SC behavior
is unnecessary, and more limited forms of synchronization suffice.
One widely-used example is Read-Copy-Update (RCU) [12, 13].
RCU is a technique, deployed heavily in the Linux kernel, that lets a
single writer manipulate a data structure while multiple readers are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737992

concurrently accessing it. Instead of directly modifying a piece of
the structure, the writer first copies that piece, modifies the copy, and
then makes the new copy accessible and the old one inaccessible.
Once no readers are capable of accessing the old copy, the writer
may safely deallocate it. However, until that time, some readers
may see the old copy while others see the new copy, and there is no
guarantee when readers will begin to see the new copy.

As this description suggests, RCU employs some synchroniza-
tion (e.g., to ensure memory safety), but not full SC semantics, and
its reliance on weaker memory assumptions is essential to its effi-
ciency. However, the only existing formal proof of correctness for
an RCU-based data structure [7] assumes an SC memory model.

In this paper, we give the first formal proof of correctness
for an implementation of RCU under a weak memory model.
Specifically, we verify a user-space RCU implementation of linked
lists (based on that of Desnoyers et al. [5]), programmed using
release-acquire atomics, one of the main weak-memory access
modes supported by the C/C++11 language standard [8].

Why focus on release-acquire? There are several reasons. First,
the semantics of C11’s release-acquire mode has been fully formal-
ized [3], rendering our RCU implementation amenable to formal
verification, and unlike several other features of the C11 model [20],
its semantics is relatively uncontroversial. Second, release-acquire
semantics, while significantly weaker than SC, nevertheless provides
sufficiently strong synchronization to guarantee safety of our RCU
implementation. In fact, release-acquire provides stronger semantics
than what real RCU implementations require—the release-consume
mode of C11 was designed specifically to support RCU, but the
“right” semantics of release-consume is still a matter of debate, and
at present most C compilers do not implement it differently from
release-acquire [14]. Third, release-acquire semantics is “reason-
able”, in the sense that one can reason about it using a more restricted
version of the kinds of reasoning principles that hold under SC se-
mantics. This claim was substantiated formally by recent work of
Turon et al. [17] on a logic called GPS, which supports Hoare-style
verification of C11 programs under release-acquire semantics. Here,
we leverage (a mild extension of) GPS in our verification, while
simultaneously demonstrating a much more significant case study
for the use of GPS than any that Turon et al. previously considered.

Above and beyond our formal verification of RCU in GPS
(described in full formal detail in our technical appendix [1]), an
important contribution of this work is the proof idea itself, and
it is the elucidation of this proof idea that is our main goal in
this paper. Previously, the correctness of RCU has been argued
using the concept of a grace period during which reader threads
may finish accessing an old node before it is deallocated. Indeed,
Gotsman et al.’s proof in the SC setting depends on an extension of
separation logic with a temporal “since” operator to formalize grace
periods. In contrast, our proof avoids any such extension; we rely
instead on GPS’s notion of per-location protocols, which describe
how the state of a shared memory location may evolve over time.
Using per-location protocols, Turon et al. showed how to formalize

1

the folklore intuition that release-writes and acquire-reads support
a form of message passing between threads. We in turn show how
such message passing provides a self-sufficient explanation of how
RCU works—e.g., of how the writer tells the readers which nodes
have been deallocated, or how the readers tell the writer that they
will no longer access them. No additional mechanism is required.

In the rest of the paper, we present the semantics of release-
acquire (§2), our implementation of RCU and why intuitively it
works (§3), our specification of RCU and why it is useful (§4),
a review of GPS with some minor extensions (§5), a high-level
description of our verification of RCU in GPS (§6), and discussion
of related work (§7).

2. Release-Acquire Semantics
Our implementation of RCU uses a simple imperative while-
language extended with C11’s release-acquire memory operations.
In this section, we try to give some intuition for the semantics
of these operations. Thorough, formal presentations of the C11
memory model can be found in Batty et al. [3] and Vafeiadis et al.
[20].

The C11 standard divides memory accesses into two types—
atomic and non-atomic—and we will say that a memory location is
atomic (resp. non-atomic) if all accesses to it are of that type. Non-
atomic accesses are the default variety, appropriate for most use
cases: they are fast and do not require the compiler to emit special
synchronization instructions, but the standard says that the behavior
of a program is undefined if it involves racy non-atomic accesses (i.e.,
two unordered non-atomic accesses to a single location, at least one
of which is a write). Thus, the onus is on the programmer to employ
enough synchronization to ensure that there are no non-atomic data
races.

One way of implementing such synchronization is using atomic
locations, which are intended for racy access. The C11 standard
lets programmers annotate reads and writes for atomic locations
with different consistency level options, ranging from sequentially
consistent (SC) to fully relaxed, depending on how cheap they want
the accesses to be and how much instruction reordering they can
tolerate.

We focus here on only two of these options: release writes
and acquire reads. When a thread performs a release write, and
another thread observes that write via an acquire read, the operations
that precede the write are guaranteed to “happen-before” the read.
This kind of “transitive visibility”, as it is often called, allows
programmers to use release-acquire to implement a message-passing
idiom.

For example, consider the following contrived yet illustrative
code (which we will show how to verify in §5):

[x]na := 37;
[lf]rel := 1;
while ([rf]acq != 1) {
/* spin */
}
[x]na := 49;

[y]na := 25;
if ([lf]acq == 1) {

[y]na := [x]na;
}
[rf]rel := 1;
/* postcond: y ↪→ 37 ∨ y ↪→ 25 */

Here, we have two non-atomic memory locations, x and y, and
two atomic “flags”, lf and rf . We write [x]na to indicate a non-
atomic operation on location x, and [lf]rel and [lf]acq for release
and acquire operations on lf . The code on the sides of the vertical
bars represents two different threads, and initially we assume that
all locations contain 0.

The effect of this code is to pass control of the non-atomic
location x from the left thread to the right thread and back. The
left thread initializes location x with value 37, and then sets its flag
lf to 1 with a release write, to signal that the right thread can now
access x. The right thread checks if lf is set to 1, and if so, it reads

the value of x (non-atomically) and sets y to that value; otherwise,
it sets y to 25. Because the non-atomic write of 37 to x preceded
the release write to lf , and the matching acquire read of lf as 1 (if
it occurred) preceded the non-atomic read of x, we will be able to
establish: (1) the write to x happened before the read of x, so there
is no data race on x, and (2) as a postcondition, y may either point
to 25 or 37, but not 0. After the second thread finishes accessing x,
it does a release write of 1 to rf to signal to the left thread that it is
done. The first thread spins until it observes this write. At this point,
it knows it can safely update x again because the second thread’s
read of x must have happened already.

In the previous example, the two threads synchronized their
operations via release writes to the atomic locations lf and rf to
send messages back and forth, and acquire reads to receive them.
In contrast, here is an example based on the classic “Dekker’s
algorithm” for mutual exclusion [6], which is safe under SC but not
under release-acquire:

[x]rel := 1
if [y]acq == 0 then

[z]na := 1

[y]rel := 1
if [x]acq == 0 then

[z]na := 2

Here, the left thread does a release write to set x to 1, while the right
thread does the same for y. Each thread then does an acquire read of
the other’s variable to see if it has been updated. If not, each thread
tries to modify the non-atomic z.

Under an SC semantics, one of the thread’s writes must happen
before the other: that thread “wins” and may write to z. For instance,
if the left thread reads y and sees 0, it concludes that the right thread
has not written to y yet, so the left thread knows it has won the race.
However, under release-acquire, the writes to x and y are unordered,
and it is possible for the left thread to read 0 from y and for the right
thread to read 0 from x in the same execution. If this happens, they
will both try to write to z, resulting in a data race.

Informally, if we think in terms of message passing, this example
is unsound because it tries to conclude something from the negative
fact that a message has not yet arrived. To be safe, under release-
acquire, we can only draw sound conclusions from the positive
information that a message has arrived, as in the first example. Later
in §5, we will see how this intuitive reasoning is formalized in GPS.

3. RCU
We now describe how RCU can be implemented for a singly linked
list using the release-acquire memory operations. In explaining the
algorithm, we focus on how the orderings imposed by pairs of
release-acquire operations ensure that there are no data races. In
each case, we can informally describe these operations in terms of
how they send messages between the threads. In §6 our proof will
make this message-passing explanation precise.

A simplified part of our verified implementation is presented in
Figure 1. Nodes in the list are records with two fields. The data
field contains the contents of the node, and link is a pointer to the
next node in the list.

Initialization A new RCU instance is created by calling rcuNew.
This returns a pointer q to the metadata for the RCU instance, which
consists of a counter for the writer (q + wcounter), an array of
counters for the readers (q+rcounters, which we describe below),
a field containing a pointer to the head of the list (q + link), and
a pointer to a structure used for a custom allocator that recycles
deallocated nodes (q + free). The counters all start at 0, and the
q + link field is initially a null pointer.

Reading The readers access the nodes in the list in a loop that
maintains a current pointer into the list. They start the traversal by
calling rcuReadStart to get the first pointer to the head of the list.
This does an acquire read on q + link and returns the result.

2

rcuNew() ,
1: let q = alloc(N + 3)
2: [q + link]rel := 0;

for i = 0 to N − 1 do
3: [q + rcounters + i]rel := 0;
4: [q + wcounter]rel := 0;
5: [q + free]na := rcuAllocInit();
6: q

rcuReadStart(q) ,
7: [q + link]acq

rcuReadNext(q, p) ,
8: let v = [p + data]na
9: let p′ = [p + link]acq

10: (v, p′)

rcuNodeAppend(q, p, v) ,
11: let x = rcuAlloc(q)
12: [x + data]na := v;
13: [x + link]rel := 0;
14: [p+ link]rel :=x;
15: x

rcuNodeUpdate(q, x, p, v) ,
16: let c = [x + link]acq
17: let x′ = rcuAlloc(q)
18: [x′ + data]na := v;
19: [x′ + link]rel := c;
20: [p + link]rel :=x

′;
21: rcuSynchronize(q);
22: rcuFree(q, x);
23: x′

rcuNodeDelete(q, x, p) ,
24: let c = [x + link]acq
25: [p+ link]rel := c;
26: rcuSynchronize(q);
27: rcuFree(q, x);

rcuSynchronize(q) ,
28: let oldgc = [q + wcounter]acq
29: let newgc = oldgc + 1
30: [q + wcounter]rel :=newgc;
31: for i = 0 to N − 1 do
32: while [q + rcounters + i]acq != newgc;
33: end

rcuQuiescentState(q, tid) ,
34: let t = [q + wcounter]acq
35: [q + rcounters + tid]rel := t

Figure 1. A concurrent linked list with a single writer implemented using QSBR RCU.

19 19 . . . 1919
wcounter rcounters

9 2 3 ×
W

R

(a) State before rcuNodeUpdate.

19 19 . . . 1919
wcounter rcounters

9 2 3 ×

6

W

R

(b) State after the writer executed line 19.

19 19 . . . 1919
wcounter rcounters

9 2 3 ×

6

W

R

Msg: “Location initialized”

(c) State after the writer linked the new
node onto the list (line 20).

19 19 . . . 1920
rcounters

9 2 3 ×

6

W

R

Msg: “Request to deallocate”

(d) State after the writer updated its counter
(line 30).

20 19 . . . 2020
wcounter rcounters

9 2 33 ×

6

W

R

Msg: “Request granted”

(e) State after the reader has updated its
counter (line 35) and the writer noticed it
(line 32).

20 20 . . . 2020
wcounter rcounters

9 3 ×

6

W

R

(f) State after rcuSynchronize(q) fin-
ished. The writer can safely free the node
(line 22).

Figure 2. Illustration of updating a node in the list using RCU.

Then, within a loop, they check that their current pointer is
not null, and if so, access the value stored at the node and the
next node by calling rcuReadNext with their current pointer as
p. The function simply reads off the data and link fields of p
and returns the results. While the data field is read non-atomically,
the link field is accessed by an acquire read—this ensures correct
synchronization with the writer.

Updating the list We now explain how the writer modifies the list
by walking through an example shown in Figure 2. It depicts the
linked list, as well as the counters in the RCU metadata. The writer
thread and one reader thread are represented by diamonds labeled
“W” and “R”. To represent messages being passed from one thread
to the other through a location, we draw a dashed arrow from the
sender to the location and another from the location to the reader.

Suppose the writer wants to change the value in the second
node of the linked list shown in Figure 2a. To do so, it calls
rcuNodeUpdate(q, x, p, v), where q is a pointer to the RCU meta-
data, x is a pointer to the node that it wants to modify, p is a pointer
to the previous node, and v is the new value for the node. This func-
tion first allocates a new node by calling rcuAlloc(q) (not shown
in the figure). Next, the writer copies the old node’s link field, and
sets the updated value as in Figure 2b. Then, it updates the previous
node’s link field with a release write so that it points to the new
node (line 20), rendering the old node unreachable as shown in 2c.
At this point, readers may begin to see the new node when they do
an acquire read on the previous link pointer (line 9). The pairing
between this release write and the readers’ acquire reads is the first
important point of synchronization in RCU:

3

Release-Acquire Pair 1 (link field): The ordering im-
posed by the release writes and acquire reads on the link
fields ensures that the initialization of the node precedes
the readers’ accesses. In other words, the writer passes a
message to the readers saying that the next node is safe to
access.

Similar synchronization points occur when writers append new
nodes onto the end of the list with rcuNodeAppend or delete a node
from the list with rcuNodeDelete.

Deallocating the old node After completing the release write
in Figure 2c, the writer calls rcuSynchronize to wait until no
readers can access the old copy any longer, so that it can deallocate
the removed node. There are a number of ways to implement
rcuSynchronize without sacrificing reader performance. The code
in Figure 1 uses Quiescent State Based Reclamation (QSBR) [5].

In QSBR, the writer begins the synchronization operation by
incrementing its counter (line 30 and Figure 2d). It then repeatedly
reads each reader counter in turn until they all match the writer
counter’s new value. When readers are not accessing the list (that
is, they are quiescent), they periodically call rcuQuiescentState,
which examines the writer’s counter and copies its value into the
reader’s counter (Figure 2e). Once the writer sees that every reader’s
counter matches its own, it knows they have all entered a quiescent
state since the old node became unreachable. This means that if the
readers access the list in the future, they will not access the old node,
so the node can be safely deallocated (Figure 2f).

These counter fields must be atomic, because the readers will try
to concurrently read the writer’s counter as the writer is incrementing
it, and vice-versa. Both counters are involved in a release-acquire
synchronization:

Release-Acquire Pair 2 (wcounter field): The synchro-
nization between the write on line 30 and the read on line 34
guarantees that once the reader sees the updated counter,
it will see the update that made the old node unreachable
(line 20). When the writer increments its counter, it pub-
lishes the fact that a node has been made unreachable to-
gether with a request for permission to deallocate the node.

Release-Acquire Pair 3 (rcounters + tid field): When
the readers update their counters to match the writer’s on
line 35, they acknowledge the writer’s request by giving
up their own permission to access the unreachable node.
The release-acquire ordering ensures that any accesses the
reader was doing before calling rcuQuiescentState all
finish before the writer proceeds to deallocate the node.

Memory management After calling rcuSynchronize, the writer
calls rcuFree (not shown in Figure 1; see the appendix [1]). Earlier
work on formally specifying the C11 memory model [3] did not
address the semantics of free. Since our focus is on RCU rather
than the behavior of deallocation in C11, we have opted to remain
within the scope of what we can formalize—we thus hand-roll our
own naive, ad hoc memory reclamation routine in rcuFree. The
call to rcuFree adds the address of the old node to a pool. The
implementation of rcuAlloc (again, see the appendix) first tries to
remove an address from the pool and return it. If the pool is empty,
it calls alloc().

In this simplified version of our implementation, there is a fixed
number of readers, N , and the writer immediately synchronizes and
deallocates the old node as soon as it performs an update. In the
full version verified in the appendix, we allow the readers to register
themselves dynamically and let the writer batch its deallocations for
efficiency.

{
true

}
rcuNew(){

q.∃H.WriterSafe(q, [(q, null)]) ∗∗
tid<N

ReaderSafe(q,H, tid)
}

{
WriterSafe(q, L · (p, v) · L′)

}
[p + link]acq{

p′.WriterSafe(q, L · (p, v) · L′) ∗ ((p′ = 0 ∧ L′ = nil)
∨ (p′ 6= 0 ∧ ∃L′′, v′. L′ = (p′, v′) · L′′))

}
{
WriterSafe(q, L · (p, v) · L′) ∧ v 6= null

}
[p + data]na{

x. x = v ∧WriterSafe(q, L · (p, v) · L′)
}

{
WriterSafe(q, L · (p, v)) ∗�P (v′)

}
rcuNodeAppend(q, p, v′){

x.WriterSafe(q, L · (p, v) · (x, v′))
}

{
WriterSafe(q, L · (p, v0) · (x, v1) · L′) ∗�P (v′1)

}
rcuNodeUpdate(q, x, p, v′1){

x′.WriterSafe(q, L · (p, v0) · (x′, v′1) · L′)
}

{
WriterSafe(q, L · (p, v0) · (x, v1) · L′)

}
rcuNodeDelete(q, x, p){

WriterSafe(q, L · (p, v0) · L′)
}

{
ReaderSafe(q,H, tid)

}
rcuReadStart(q){

p. ReaderSafe(q,H, tid) ∗�SafePtr(q,H, p)
}

{
ReaderSafe(q,H, tid) ∗�SafePtr(q,H, p) ∗ p 6= 0

}
rcuReadNext(q, p){

(v, p′).ReaderSafe(q,H, tid) ∗�SafePtr(q,H, p′) ∗�P (v)
}

{
ReaderSafe(q,−, tid)

}
rcuQuiescentState(q, tid){

∃H ′.ReaderSafe(q,H ′, tid)
}

Figure 3. Specifications of the RCU operations.

4. RCU Specification
GPS [17] lets us prove Hoare-style triples of the form:{

P
}
e
{
x.Q

}
asserting that if a thread starts with the resources described by P
and executes expression e, then:

• The execution of e is guaranteed to be free of memory errors
(e.g. accessing uninitialized data) and non-atomic data races.
• If e terminates with value V , then [V/x]Q describes the thread’s

resources afterward.

Later, we will review the logical mechanisms that GPS provides
for proving these triples. For now, we describe the specification for
RCU that we will prove. The full specification is shown in Figure 3.
We assume some fixed predicate P (x) that we require to hold of
values stored in the list. Any value inserted by the writer must
satisfy this predicate, and readers are guaranteed that values they
get out will also satisfy it. The RCU specification then employs
three predicates which are defined in terms of underlying GPS
primitives but can be treated abstractly by a client: WriterSafe(q, L),
ReaderSafe(q,H, tid), and SafePtr(H, p).

WriterSafe(q, L) represents the permissions owned by the
writer. The logical list L is of the form (q, null) · (l1, v1) ·

4

(l2, v2) · · · (ln, vn), where li is a pointer to the ith node in the
list, and vi is the value stored in the data field of that node. The
predicate says that for the RCU structure with metadata at q, the
physical list contains the nodes mentioned in L. We generate this
permission when we create a new RCU instance, at which point L
consists only of (q, null). Accessing the link field of a pointer in
L just returns the next pointer in L. Each of the writer’s methods
consumes this permission, and returns a version where the contents
of L have been modified accordingly.

ReaderSafe(q,H, tid) is the analogous permission for readers.
From the perspective of the client code, H is completely abstract:
it simply represents the version of the list that the tid-th reader
sees. SafePtr(q,H, p) means that p is a pointer to a properly
initialized node. The specification for rcuReadStart says that
it always returns a SafePtr. As the reader inspects the list using
rcuReadNext, p must be a non-null SafePtr, and when the call
returns, it returns another SafePtr.

When the reader calls rcuQuiescentState(q), it gives up its
current ReaderSafe(q,H, tid) and receives ReaderSafe(q,H ′, tid)
in return, for some fresh H ′. This makes any previous SafePtr
assertions unusable, and forces the reader to start again at the head
of the list by getting a new SafePtr from rcuReadStart.

Finally, note that some predicates (P and SafePtr) are “boxed”,
i.e., appearing under a � modality. This means that these predicates
denote “duplicable facts” (with the property that �Q⇔ �Q ∗Q)
as opposed to uniquely owned permissions, a distinction that will
be explored further in the next section.

5. GPS
In this section, we briefly review some of the key mechanisms in
GPS that we will use in verifying our RCU implementation. We then
illustrate their use on the simple message-passing example from §2.
Although the example is contrived, its verification closely mirrors
the structure of the RCU verification, and it shows off all the features
of GPS working in tandem. It is thus quite useful as a warm-up for
the main attraction.

5.1 Key Features of GPS
The four key features of GPS are as follows.

Ownership of non-atomics The assertion x ↪→ v says that x is
a non-atomic location pointing to the value v. This assertion is
precisely the standard points-to assertion of separation logic [15]:
whoever asserts x ↪→ v is the exclusive “owner” of x, and has the
freedom to read and write it arbitrarily.

Here, we also extend GPS slightly to support fractional per-
missions [4] on non-atomic locations. We annotate the points-to
relation with a permission k, which is an element of a permission
algebra [18]. This algebra is a set with a distinguished element >,
representing “full” permission, and a partial operation ⊕ for com-

bining permissions. Now, x
k
↪−→ v, where k 6= >, denotes only

ownership of a partial permission to access x, which means the
ability to read x but not write it. The initial (full) owner of x may
thus split up its ownership assertion into pieces to be given out to
readers, and then later on collect those pieces to reconstitute the full
permission so that it can update x. Crucially, though, with neither
full nor fractional ownership is it possible for one thread to read x at
the same time another may be writing it: thus, we guarantee absence
of data races on non-atomics.

In the RCU proof, since we assume one writer and a fixed number
of readers, N , our permission algebra will be sets of thread IDs,
with> = {0, . . . , N} and⊕ defined as disjoint set union. We write

x
tid
↪−→ v (for 0 ≤ tid ≤ N) as shorthand for x

{tid}
↪−−−→ v, the partial

permission for thread tid to read x (thread N is the writer).

Protocols for message passing via atomics Unlike non-atomics,
atomic locations are meant to be read and written simultaneously.
We therefore cannot make any stable assertions about the precise
contents of an atomic location, but we can assert something about
how those contents are permitted to evolve over time. We call such
an assertion a protocol assertion, x : s τ . It asserts two things.
First, it says that x is governed by the protocol τ . This protocol
consists of a partially ordered set of logical states S that x can be
in, together with an interpretation function τ(s, v) that says what
assertion must hold when x is in logical state s ∈ S and stores value
v. Second, the protocol assertion says that x is at least in state s
of its protocol. This assertion is a duplicable fact, and may thus be
shared freely between threads, because GPS requires writes to x to
always advance the state of its protocol—so once x is at least in
state s, it will remain so forever.

Through their interpretation functions, protocols offer a way for
threads to pass messages to each other. Specifically, suppose two
threads both know x : s τ . When one of the threads writes v to
x, it must be able to prove that τ(s′, v) holds for some future state
s′ of s. Subsequently, when the other thread performs a read on x,
observing value v, it will learn that there is some future state s′ of
s such that τ(s′, v) holds. The protocol has thus served to transmit
the knowledge of ∃s′ w s. τ(s′, v) from one thread to the other.

Exchanges for ownership transfer While protocols support the
transfer of knowledge (i.e., duplicable facts) between threads, ex-
changes support the transfer of exclusive ownership of resources
between them.1 This will be very important when verifying our
message-passing example (see §5.2 below), wherein we want to
pass exclusive ownership of x ↪→ 37 back and forth between the
two threads.

The exchange mechanism is very simple. Suppose P and Q
are assertions such that P ∗ P ⇒ false and Q ∗ Q ⇒ false, i.e.,
they denote exclusive ownership, so two threads cannot assert P
simultaneously (and likewise for Q). We write σ : P ! Q to say
that σ is the name of an exchange between P and Q, and we write
exch(σ) to represent the assertion that the exchange σ has been
created. The idea is that σ, once created, represents an invariant
governing some shared state, which asserts that that shared state
either satisfies P or it satisfies Q. Once created, the σ invariant is
enforced permanently, and thus the assertion exch(σ) is duplicable
knowledge that can be freely shared amongst threads.

To see how exchanges support ownership transfer, suppose
thread 1 owns P , thread 2 owns Q, and thread 1 wishes to transfer
ownership of P to thread 2. Thread 1 can create the exchange σ
by giving up ownership of P to the exchange, thereby learning
exch(σ) in return. It may then use release-acquire message passing
(as described above) to inform thread 2 of the knowledge that σ
exists. Since thread 2 owns Q, it can then give up Q in exchange for
P . These logical ownership transfers are summarized as follows:

(P ∨Q)V exch(σ) P ∧ exch(σ)V Q Q ∧ exch(σ)V P

Note that the assumption that assertions P and Q are exclusive
(non-duplicable) is essential in order to ensure that there is a unique
recipient of the ownership transfer. For instance, if Q were some
duplicable fact, then multiple threads would be able to exchange Q
for P , which would result (unsoundly) in multiple threads gaining
simultaneous ownership of P .

Ghost PCMs for encoding auxiliary state Ghost (or auxiliary)
state is a ubiquitous mechanism in program logics, enabling the
verifier to record and manipulate additional logical state beyond the
physical state manipulated by the program itself. GPS supports a

1 The original version of GPS featured a slightly more limited primitive called
escrows. Exchanges generalize escrows to support bidirectional transfer.

5

L

R

LX

lf

1
x ↪→ 37

2
exch(LX)

(a) The left thread creates and
publishes the exchange LX.

R

LX
3 rto

k

x ↪→
37

x ↪→
37

4
rto

k

(b) The right thread uses the
LX exchange twice.

L

R

rf

RX
5

rtok

6exc
h(R

X)

(c) The right thread creates and
publishes RX.

L LX

RX

7
ltok

rtok

8 rtok

x ↪→ 37

(d) The left thread uses LX
and RX to get x ↪→ 37.

Figure 4. Message passing and ownership transfer in the simple message-passing example.

LX : x ↪→ 37! rtok : � Tok

RX : rtok : � Tok ! ltok : � Tok

lf , rf :

0 1

LFP(s, v), (s = 0 ∗ v = 0) ∨ (s = 1 ∗ v = 1 ∗ exch(LX))

RFP(s, v), (s = 0 ∗ v = 0) ∨ (s = 1 ∗ v = 1 ∗ exch(RX))

Figure 5. Protocols/exchanges for message-passing example.

very general notion of ghost state in the form of user-defined partial
commutative monoids (PCMs). Given a PCM µ and an element
t ∈ µ we write γ : t µ to say that a thread owns element t from
instance γ of the monoid µ. Then, we can split or combine ghost
state elements as follows:

γ : t ·µ t′ µ ⇔ γ : t µ ∗ γ : t′ µ

In particular, if t ·µ t′ is not defined (which is possible since the
monoid is partial), then γ : t µ ∗ γ : t′ µ ⇒ false.

Recent work has shown that PCMs are remarkably expressive [9].
In this paper, we focus on two relatively simple types of PCMs
that are relevant to the RCU proof: the permission token and
master/snapshot PCMs.

Permission tokens represent capabilities to perform certain oper-
ations. We will use them, for instance, to represent the permissions
to make certain steps in a protocol, or the permission to access
certain exchanges. Permission tokens are defined by the monoid
Tok which has two elements � and ε, with ε as identity and � · �
undefined. The key property of a permission token is that it is non-
duplicable (γ : � Tok ∗ γ : � Tok ⇒ false) and thus represents
an exclusive capability. We discuss master/snapshot PCMs in §6.1.

5.2 Verifying the Message-Passing Example
To show how the above mechanisms work together, let us return to
the first example in §2. Our verification, which we describe here
at a high (but still detailed) level, guarantees two things: (a) the
postcondition, namely that, once the threads terminate, y points to
25 or 37, and (b) that the code is “safe”, meaning that there are no
data races on the non-atomic x and y.

[x]na := 37;
[lf]rel := 1;
while ([rf]acq != 1) {
/* spin */
}
[x]na := 49;

[y]na := 25;
if ([lf]acq == 1) {

[y]na := [x]na;
}
[rf]rel := 1;
/* postcond: y ↪→ 37 ∨ y ↪→ 25 */

We walk through the proof now step by step. These steps are
illustrated pictorially in Figure 4, and they involve protocols and
exchanges that are defined formally in Figure 5.

At the start of the proof, we associate the flags lf and rf
with the left and right flag protocols LFP and RFP, respectively
(explained below). We also create the left and right permission
tokens, ltok : � Tok and rtok : � Tok , and give the left and
right threads exclusive ownership of their respective tokens.

Step 1 (Fig. 4a): The left thread first sets x to 37. It then wants to
transfer ownership of x to the right thread. To do so, it creates
the exchange LX. By giving up ownership of x ↪→ 37 to the
exchange, it gains the knowledge exch(LX) that LX exists.

Step 2 (Fig. 4a): The left thread now wants to send its knowledge
of exch(LX) to the right thread by setting its flag, lf , to 1.
To reason about this, we use the left flag protocol LFP. This
protocol asserts that x is initially 0, and that it may be set to 1
but can never be set back to 0 again. It also asserts that when lf
is set to 1, it must be the case that exch(LX) holds. Since the
left thread knows exch(LX), it is free to update lf to 1 (updating
the logical state s of lf ’s LFP protocol to 1 as well).

Step 3 (Fig. 4b): The right thread may or may not observe that lf
has been set to 1. In case it does not observe it, this and the
next step are skipped. In case it does observe it, it learns that
the LFP protocol must be in the 1 state, and hence it learns
that LX exists. It then uses LX to exchange its own permission
token, rtok , for ownership of x ↪→ 37. Now that it owns x, it
can safely read it and be sure that it will see the value 37.

Step 4 (Fig. 4b): The right thread now wants to transfer ownership
of x back to the left thread. To achieve this, its first step is to
perform the reverse trade on LX, putting ownership of x ↪→ 37
back under control of LX in return for its permission token rtok .
Note: at this point, regardless of whether Steps 3 and 4 were
performed or not, y points to either 25 or 37, as desired.

Step 5 (Fig. 4c): The right thread next creates the exchange RX by
transferring its permission token rtok into the exchange. In
doing so, it learns exch(RX).

Step 6 (Fig. 4c): The right thread now wants to send its knowledge
of exch(RX) to the left thread by setting its flag, rf , to 1. To
reason about this, we use a right flag protocol, RFP, that is very
similar to the left flag protocol, LFP, the only difference being
that in state 1, RFP asserts exch(RX) (rather than exch(LX)).
The right thread may thus set rf to 1 because it knows RX
exists.

Step 7 (Fig. 4d): The left thread loops until it observes that rf has
been set to 1. Once it observes this, it knows that the RFP
protocol must be in state 1 and thus that RX exists. It then uses
RX to exchange its own permission token, ltok , for the right
permission token, rtok .

Step 8 (Fig. 4d): Finally, the left thread uses its original LX ex-
change to trade the right permission token, rtok , for ownership
of x ↪→ 37. It now knows that it has exclusive ownership of x
and may therefore safely modify it again.

6

W

R

PermX

p + link

1

Node i perm.

(a) Writer creates exchanges for
node permissions.

W

R

PermX

p + link

exch(PermX)
2

(b) Writer sends knowledge
about exchanges to readers.

W

R

PermX

p + linkΓ.r
xto

k(t
id,

i)

3

Node i
perm.

(c) Readers trade rxtok for
node permissions via PermX.

W

R

PermX

p + linkΓ.r
xto

k(t
id,

i)

4

Node i
perm.

(d) Readers get back rxtok by
returning the permissions.

W

R

PermX

wcounter

5SnapshotValid(H)

(e) Writer requests deallocation permis-
sion by sending the list snapshot.

W

R

PermX

rcounters + tid

ModX

6
Γ.rxtok(tid, i)

exch(ModX)
7

(f) Readers create exchange for re-
quested rxtok and notify the writer.

W

PermX

ModX
8

Γ.wxtok(tid, i)

Γ.rxtok(tid, i)

Γ.rxt
ok(ti

d, i)
9

Node i perm.

(g) Writer uses ModX and PermX to
retrieve the node permissions.

Figure 6. Message passing and ownership transfer in our RCU implementation.

6. RCU Proof Overview
In §5, we saw how protocols and exchanges could be used to
implement message passing and ownership transfer. We now use
these mechanisms to formalize the intuitive explanation we gave for
RCU in §3.

There are two important ownership transfers involved in RCU:
the writer transfers fractional ownership of nodes to readers when
the nodes are added to the list, and readers transfer the fractional
ownership of deleted nodes back to the writer during synchroniza-
tion. The astute reader may note, however, that these nodes consist
of both a non-atomic (data) field and an atomic (link) field, but in
§5 we only discussed fractional ownership of non-atomics. Indeed,
what does it even mean to “own” an atomic location, given that
protocol assertions on atomic locations are duplicable?

We will return to this subtlety in §6.1; first, we will explain at
a high level how protocols and exchanges are used in the steps of
the algorithm, glossing over the details of ownership for atomics.
Figure 6 shows the message passing and ownership transfer involved
in the release-acquire pairs in terms of the predicates and exchanges
used in the proof. Figure 7 contains the formal definitions. Note that
these definitions refer to various pieces of ghost state (e.g., tokens)
projected from Γ. This Γ is just a record collecting together all the
state associated with a particular instance of an RCU linked list.

Step 1 (Fig. 6a): After initializing a new node with value v at phys-
ical location x, the writer will own x + data ↪→ v, as well
as the x+ link field. Since in our RCU implementation it is
possible that the physical x is a recycled node (i.e., one that
participated in the data structure previously but was deallocated
and reallocated), we also create a fresh abstract node ID, i,
which serves as a logical proxy for the current allocation of
x. (Each time x is re-allocated, it will thus be associated with
a different abstract ID. This simplifies protocol reasoning, en-
abling us, for instance, to use one-time token permissions to
pass ownership of x back and forth between writer and readers,
even though the physical x may in fact be passed back and
forth multiple times if it is recycled.) This ID i will designate
a token that a reader will have to use to get access to the node.
The writer then splits the ownership of x+ data and x+ link
into fractional pieces for the readers. For each reader thread

tid < N , it transfers the fractional pieces designated for reader
tid into an exchange, PermX(Γ, x, tid, i). The other side of
this exchange is the (tid, i) token from the Γ.rxtok ghost state.
Reader tid begins by owning all of the {tid} × N of these
tokens. (Compare this with the LX exchange created in Step 1
of the example in §5.2.)

Step 2 (Fig. 6b): We set up a protocol LLP on the link field, which
formalizes Release-Acquire Pair 1 from §3. When the writer
updates the link field of the parent p to point to x, it will
store the knowledge that each PermX(Γ, x, tid, i) exchange
has been created. (Compare this with LFP in Step 2 in §5.2.)

Step 3 (Fig. 6c): When reader tid reads p+link, it will learn about
PermX(Γ, x, tid, i), and use its Γ.rxtok token to get access to
x’s fields.

Step 4 (Fig. 6d): When the reader is done with the node, it uses
PermX in the opposite direction to get its Γ.rxtok token back.
(Compare this and the previous step with Steps 3 and 4 in §5.2.)

Step 5 (Fig. 6e): Now, suppose later on the writer has deleted the
node at location x, where x is associated with abstract node
ID i, and now the writer wants to deallocate it. To do so, it
increments wcounter, which in turn is governed by protocol
WCP (formalizing Release-Acquire Pair 2 from §3). It stores
SnapshotValid(H), which asserts that the abstract IDs for
the nodes in the list are in fact in the state suggested by the
“history snapshot” H . We explain history snapshots in §6.1, but
intuitively, they represent the history of updates to the list, and
H here is the most up-to-date history. In particular, since x has
been deleted from the list, H here will mark x as a dead node.
When reader tid sees the updated writer’s counter, it infers that
the writer wants to deallocate x because H marks x as dead.

Step 6 (Fig. 6f): For each of the abstract nodes i that the writer has
requested for deallocation, the reader creates a ModX(Γ, tid, i)
exchange, into which it transfers its (tid, i)-th Γ.rxtok. The
other side of the exchange is a corresponding (tid, i) token from
Γ.wxtok. Here, Γ.wxtok is a set of tokens that the writer starts
with, which it uses to retrieve the reader’s tokens. (Compare
with the creation of the RX exchange in Step 5 in §5.2.)

Step 7 (Fig. 6f): The reader transmits its knowledge of the existence
of these ModX exchanges by updating its counter, rcounters+
tid. This counter is in turn governed by protocol RCP(Γ, tid),

7

PermX(Γ, l, tid, i) :
(

(∃v. l + data
tid
↪−→ v ∗ P (v)) ∗ (∃j, L. l + link : (i · L,−) LLP(Γ, l, j) ∗ j : Mastertid(i · L))

)
! Γ.rxtok : {(tid, i)}

ModX(Γ, tid, i) : Γ.rxtok : {(tid, i)} ! Γ.wxtok : {(tid, i)}

SnapshotValid(Γ, H) , H 6= nil ∗ Γ.history : Snapshot(H) ∗ base(H) 6∈ dead(H) ∗H∗(Γ.q) = base(H) · nil

∗ (∀l ∈ dom(H∗). ∃j. j : Snapshot(H∗(l)) ∗ l + link : − LLP(Γ, l, j)

∗ H∗(hd(H∗(l))) 6= > ⇒ l + link : (H∗(l), H
∗(hd(H∗(l)))) LLP(Γ, l, j))

Protocol State Interpretation (where x is the value stored at the location in question) Ordering (State ≤ State′)

LLP(Γ, l, j)
(i0 ·L0,
i1 ·L1)

(i1 6= null⇒ x 6= 0 ∗H∗(x) = i1 · − ∗ ∀t < N. exch(PermX(Γ, x, t, i1)))

∗ (i1 = null⇒ x = 0) ∗ ∃H. Γ.history : Snapshot(H)

∗ j : Snapshot(i0 · L0) ∗H∗(i0) = i1 · L1 ∗H∗(l) = i0 · L0

Lexicographic, with
L0 ≤ L′0 if L0

is a suffix of L′0

WCP(Γ) (H, v) x = v ∗ Γ.ctok : {(N, v)} ∗ SnapshotValid(Γ, H)
(H = H ′ ∧ v ≤ v′)
∨ (H ≤ H ′ ∧ v < v′)

RCP(Γ, tid) (H, v)
x = v ∗ Γ.ctok : {(tid, v)} ∗ (∀i ∈ dead(H). exch(ModX(tid, i)))

∗ Γ.q + wcounter : (H, v) WCP(Γ)
Same as WCP(Γ)

Figure 7. Exchanges and protocols for RCU.

formalizing Release-Acquire Pair 3 from §3. (Compare with
the use of protocol RFP in Step 6 in §5.2.)

Step 8 (Fig. 6g): As the writer sees the updated rcounters + tid
fields, it uses each ModX(tid, i) it learns about to exchange its
own (tid, i)-th Γ.wxtok token for the corresponding (tid, i)-th
Γ.rxtok token. (Compare with the token exchange that occurs
in Step 7 in §5.2.)

Step 9 (Fig. 6g): Finally, it uses these Γ.rxtok tokens with the
PermX(Γ, x, tid, i) exchange to get back all the fractional
permissions for x. After it has done this for for every reader’s
token, it will have collected the full permission for x, and it may
deallocate the node. (Compare with the final Step 8 in §5.2.)

In the remainder of this section, we first present some more
detail about the ghost state constructions needed in the proof,
including those needed to account for ownership transfer of atomics
(§6.1). We then explain the definitions of the abstract predicates
ReaderSafe and SafePtr (from the spec in Figure 3) and sketch
why the reader specifications are correct (§6.2). We conclude with a
brief discussion of the extensions to our basic RCU implementation
that are supported by our full verification (§6.3). The definition of
WriterSafe and the full Hoare-style proofs are given in the appendix.

6.1 Ghost State
Our proof uses ghost state in three ways: (1) as permission tokens
for exchanges, (2) to control the progress of protocols, and (3) to
track the state (and more generally the history) of the linked list.

Exchange tokens We have the Γ.rxtok and Γ.wxtok tokens for
the PermX and ModX exchanges. As we want a fresh token for each
thread and for each abstract node ID, we take the PCM to be the
powerset of {0, . . . , N −1}×N with disjoint union as composition.
Reader tid starts with the set {tid}×N of Γ.rxtok. Meanwhile, the
writer starts with all of the Γ.wxtok.

Protocol state tokens Each thread has a counter which it alone is
allowed to modify. The way we enforce this is by giving the thread
a set of tokens, one for each state in the protocol associated with the
counter. The interpretation function for the protocol then requires
that to move to state s, the thread must give up the token which
matches s. The thread begins with all of these tokens and deposits

one each time it updates its counter. It knows that no other thread
could have concurrently updated its counter, because it owns the
unique token needed for the update.

For RCU, we use the powerset of {0, . . . , N}×N PCM for these
tokens. The instance of this PCM is called Γ.ctok (for “counter
token”). Reader tid starts with {tid} ×N, and the writer starts with
{N}×N. Then, we set up the interpretations of the WCP and RCP
protocols for the counters so that each counter can only be updated
to value v by the thread tid holding the appropriate counter token.

Master/snapshot PCM We will use a particular PCM construction
to track the history of various objects in the RCU proof. The
construction is a variant of the authoritative monoid described in
Jung et al. [9]. This PCM allows a thread to update the history of an
object by extending a non-duplicable “master” view of it. The PCM
will also contain duplicable elements called “snapshots”, which are
partial, possibly stale, histories of the object. Readers use knowledge
of these snapshots to establish lower bounds on the object’s state.

Suppose P is a poset that represents a state transition system for
some object. Suppose further that P has a least element, as well as
an additional ordering property that for all x, y, z ∈ P , if x ≤ z
and y ≤ z, then either x ≤ y or y ≤ x. We can then define a PCM
whose elements have the form Masterk(p) and Snapshot(p), where
p ∈ P and k is a partial permission. Composition for this PCM is
defined as follows (if the r.h.s. is undefined, so is the composition):

Masterk(p) ·Masterk′(p
′) , Masterk⊕k′(p), if p = p′

Snapshot(p) ·Masterk(p′) , Masterk(p′), if p ≤ p′

Masterk(p) · Snapshot(p′) , Masterk(p), if p′ ≤ p
Snapshot(p) · Snapshot(p′) , Snapshot(max(p, p′))

We will write Master(p) as an abbreviation for Master>(p) (the full
master permission).

To see why this construction is useful, imagine the RCU writer
owns Master(p). This enables the writer to do two things. First, own-
ing Master(p) entitles the writer to update it to any Master(p′) such
that p′ ≥ p. Formally, this is justified by GPS’s “frame-preserving
ghost update rule”, which says that the update is valid so long as any
PCM elements compatible with Master(p) are also compatible with

8

Master(p′). This “frame-preserving” condition guarantees that the
writer’s update does not invalidate the knowledge of other threads,
and it holds here because indeed the only snapshots Snapshot(p′′)
compatible with Master(p) must have p′′ ≤ p ≤ p′. Second, since
Master(p) = Master(p) · Snapshot(p), owning Master(p) entitles
the writer to fork off as many copies of Snapshot(p) as needed and
transmit knowledge of them to readers through protocols. If a reader
learns of Snapshot(p) through such a protocol, it then knows that p
is a lower bound on the state of the object, i.e., that the master copy
must be in a state p′ ≥ p, and that if it ever learns of some other
Snapshot(p′), it must be that either p ≤ p′ or p′ ≤ p.

We will instantiate this definition with two different posets in
the proof: the poset of action histories, which track the sequence
of actions taken by the writer, and the poset of abstract node ID
histories, which track the connection between a physical location
and its logical proxies.

Action histories As part of Release-Acquire Pair 2, the writer
needs to inform the readers that the node it wants to deallocate is no
longer reachable. To do this, we record the history of the list as a
piece of ghost stateH , which is a list of abstract actions taken by the
writer. Actions are of the form alloc(l, i, i′), upd(i, i′), or del(i),
where l is a location, i ∈ N and i′ ∈ N ∪ {null}. An alloc(l, i, i′)
action represents allocating l and associating it with abstract node i,
whose link field points to i′ (which could be null). The upd(i, i′)
action represents updating the link field of node i to point to i′.
Finally, del(i) indicates the writer’s intention to deallocate node i.

Given a historyH and an abstract location i, we can consider the
subhistory ofH containing only actions of the form alloc(−, i,−),
upd(i,−), or del(i). We call this the subhistory of H restricted
to i, written Hi. For convenience, we treat H as a partial function,
writing H∗(i) = > if del(i) ∈ H , and H∗(i) = in · . . . · i1
if Hi = alloc(−, i, i1) · upd(i, i2) · · · upd(i, in). We can also
consider the subtrace Hl of H containing only actions involving a
physical location l. We define a similar partial function H∗, where
H∗(l) = in · . . . · i1 if Hl = alloc(l, i1,−) · · · alloc(l, in,−).

If the first action in H is alloc(−, i,−), upd(i,−), or del(i),
we say that the base of H , written base(H), is i. The base(H) is
the abstract location corresponding to q + link, the pointer to the
head of the list. We define dead(H) to be the set of all i such that
H(i) = > and live(H) , dom(H) \ dead(H). We restrict the set
of histories to “well-formed” ones, in which no node ever points to
a dead node or an uninitialized node.

Histories can be ordered by saying that H1 ≤ H2 if H1 is a
prefix of H2. This ordering satisfies the following monotonicity
properties, which we will use later in §6.2. If H1 ≤ H2, then:

1. dead(H1) ⊆ dead(H2), dom(H∗1) ⊆ dom(H∗2), and
dom((H1)∗) ⊆ dom((H2)∗).

2. If l ∈ dom(H1), then (H1)∗(l) ≤ (H2)∗(l), and
if i ∈ live(H1) ∩ live(H2), then H∗1 (i) ≤ H∗2 (i).

It also satisfies the specific ordering property needed to use the
master/snapshot PCM, i.e., that H1 ≤ H3 and H2 ≤ H3 imply
H1 ≤ H2 or H2 ≤ H1. In our RCU proof, Γ.history is an
instance of this snapshot PCM. The writer is the thread that owns the
authoritative Master(H), putting it in a privileged position. First of
all, the thread is allowed to update the state of the history PCM
to Master(H ′) so long as H ′ ≥ H , i.e., so long as the writer
only extends the history with new actions that do not invalidate
any existing snapshots. Second, the writer can copy off duplicable
snapshots of this master, and then store them in the q + wcounter
counter and the link fields of the nodes. Since these snapshots are
duplicable, they can be passed to readers as part of the protocol
for Release-Acquire Pair 2. If a reader has Snapshot(H) : history ,
then it knows that this snapshot H is a lower bound on the state

of the master history. Consequently, once the reader learns that an
abstract node i is in dead(H), it knows that the master copy can
never revive i without violating dead set monotonicity, so it is safe
for the reader to give up its rxtok tokens for i in Step 6 of the proof.
Once an abstract node is dead, it stays dead.

“Atomic ownership” and abstract node ID histories In our ex-
planation of the RCU proof, we described the PermX(Γ, l, tid, i)
exchange as a way to transfer fractional ownership of a physical
node l (with abstract ID i) back and forth between the writer and
the tid-th reader. For the nonatomic data component of a node
l, it is clear what this means: PermX serves to transfer the frac-
tional permission l+ data

tid
↪−→ v (along with the knowledge of the

per-item invariant P (v)) back and forth. However, as noted at the
beginning of §6, it is not clear what it means to transfer (fractional)
ownership of l’s atomic component—namely, its link field. Atomic
locations are not (fractionally) ownable: they are governed by shared
protocols and may be read/written concurrently.

Indeed, when the writer transfers “ownership” of l to reader tid,
it does not actually transfer ownership of its atomic l+link field, as
this is not possible. Rather, the writer uses PermX to transfer several
things which collectively suffice to enable the reader to safely access
the l + link field. First, it transfers the knowledge that l + link
obeys the LLP protocol (see Step 2 of the proof outline above, and
more below). Second, it transfers the knowledge that the physical
location l is currently associated with abstract ID i and that l will
not be recycled and reassociated with any other abstract ID until the
reader gives back its fractional ownership of the node to the writer.
This is important because the reader will depend on i being a logical
proxy for l in the proof; if l were to be recycled prematurely, any
reasoning that the reader did based on i would not be sound.

Formally, we encode the knowledge about the association be-
tween physical locations l and abstract IDs i—along with the per-
mission to reassociate locations with new abstract IDs when they are
recycled—as elements of a second master/snapshot PCM. For each l,
we keep a list of which abstract node IDs it has been associated with.
The head of the list represents the node’s current abstract ID. We
can impose a partial ordering on these lists by saying that L ≤ L′ if
L is a suffix of L′. (This ordering satisfies the additional property
needed to use the master/snapshot construction.)

When the writer first allocates a node at physical location l, it
associates l with a fresh abstract node ID i by creating a new master
instance j of the above PCM, initialized to store the singleton list
[i]. Via the PermX exchange, the writer then transfers fractional
ownership of j to each of its readers (i.e., it gives reader tid
j : Mastertid([i])). With this fractional ownership in hand, the

readers know that the writer cannot possibly reassociate l with a
different abstract ID (by advancing the state of j) because that would
require it to own the full master copy of j.

Finally, the writer assigns l + link the protocol LLP(Γ, l, j).
The states of this protocol are pairs of nonempty lists (i0·L0, i1·L1),
where the first component represents the list of abstract IDs that
l has been associated with (i0 is the current one), and the second
represents the sequence of nodes its link field has pointed to during
the period of l’s association with i0. Note that the LLP protocol’s
interpretation of this state includes a snapshot of the PCM instance
j, with state i0 ·L0. When the readers read l + link, this snapshot,
together with their fractional ownership of j, lets them conclude
that i0 is the same abstract ID i that they know about from PermX.

During synchronization, the writer will collect all the fractional
pieces of j back, so that it can safely deallocate l. The writer
maintains the invariant that it owns the full master j for every node
in the deallocated node pool. Hence, if the writer ends up recycling
l to represent a new node, it will be able to associate a fresh abstract
node ID i′ with l by pushing i′ onto the head of the list stored in j.

9

6.2 Reader Abstract Predicates
We now give the parts of the definitions of ReaderSafe and SafePtr
that are relevant for accessing nodes in the list:

ReaderSafe(q,H, tid) , ∃Γ. Γ.q = q ∗ SnapshotValid(Γ, H)

∗ Γ.rxtok : {tid} × (N \ dead(H)) ∗ (counter resources)

∗ ∃j. q + link : (base(H), H∗(base(H))) LLP(Γ, q, j)

∗ j : Mastertid(base(H))

SafePtr(q,H, p) , ∃Γ. Γ.q = q ∗ SnapshotValid(Γ, H)

∗ (p 6= 0⇒ ∃i. i 6∈ dead(H)

∗ ∀tid < N. exch(PermX(Γ, p, tid, i)))

The ReaderSafe(q,H1, tid) predicate asserts that H1 is a valid
snapshot and contains all the Γ.rxtok tokens for thread tid except
for the nodes that are dead in H1. In addition, the reader is given
partial “ownership” of q + link (whose abstract node ID is fixed
to be base(H1) since q + link is never deallocated). From this
definition, it is clear how we lose ReaderSafe(q,H1, tid) during
rcuQuiescentState, and get back ReaderSafe(q,H2, tid) for
some H2. During this function, the reader will transfer some of its
Γ.rxtok into exchanges. However, it learns that SnapshotValid(H2)
for some new H2, and only gives up tokens in dead(H2).

SafePtr(q,H1, p) just says that if p is non-null, then there exists
a PermX(Γ, p, tid, i) exchange for some i 6∈ dead(H1). By the
definition of ReaderSafe(q,H1, tid), the reader thus knows that it
must have Γ.rxtok : (tid, i) , so it can use this, together with the
PermX exchange, to gain access to the node located at p. From this
we can see why the precondition for rcuReadNext is sufficient.

The postcondition for rcuReadNext requires us to prove that
when the reader does an acquire read on p+ link (line 9) and gets
some value p′, that SafePtr(q,H1, p

′) is also true. Now, we know
from PermX(Γ, p, tid, i) that p is associated with abstract node ID
i, since the exchange contains a piece of the master PCM element
listing all the abstract IDs that p has been associated with. This list
has the form i · L for some L. Since this is part of the master copy,
no other thread could have associated p with some new ID. When
we read p+ link, the protocol guarantees that if p′ 6= 0, then the
protocol state is of the form (i · L, i′ · L′), and there exists some
snapshot of an H2 such that H∗2 (i) = i′ · L′ and (H2)∗(p) = i · L.
In addition, we also learn that there are PermX(Γ, p′, tid, i′) for
each tid. This gives us most of what we need in order to establish
SafePtr(q,H1, p

′)—it merely remains to show that i′ 6∈ dead(H1).
Now, because of the rules for snapshot composition, either

H1 ≤ H2 or H2 ≤ H1. In the former case, we are done, because
i′ 6∈ dead(H2), and as noted in §6.1, dead sets grow monotonically.
In the latter case, where H2 ≤ H1, the monotonicity properties
mentioned in §6.1 give us that that (H1)∗(p) ≥ (H2)∗(p) = i · L.
However, by SnapshotValid, the reader has a snapshot of the
abstract IDs that matches (H1)∗(p). Since this snapshot cannot be
bigger than the master, we have (H1)∗(p) ≤ i · L. Hence, we must
have that (H1)∗(p) = i · L. In addition, from SafePtr(q,H1, p),
we know that i 6∈ dead(H1) and thus that H∗1 (i) 6= >. Using
SnapshotValid again, this means that the reader already had a
protocol assertion about p+ link that said it was at least in state
(i·L,H∗1 (i)). Therefore, we must have (i·L,H∗1 (i)) ≤ (i·L, i′ ·L′),
which implies H∗1 (i) ≤ i′ · L′. Using the monotonicity properties
from §6.1 once more, since H1 ≥ H2, we have that H∗1 (i) ≥
H∗2 (i) = i′ · L′. Hence, H∗1 (i) = i′ · L′, and so i′ 6∈ dead(H1).

6.3 Extensions to the Basic RCU Implementation
The full version of RCU verified in the appendix contains two
additional features:

• the writer batches together several node deallocations, and
• readers dynamically register themselves.

Supporting batched deallocation is straightforward. In the call to
rcuNodeUpdate, the writer adds the old node to a deallocation
stack. Then, when it wants to deallocate the stack, it performs
rcuSynchronize, and gets the reader tokens for all nodes in the
stack at once.

For dynamic registration, the RCU metadata contains an addi-
tional field, q + numreaders, which is a counter storing the num-
ber of readers. To register, a reader does a fetch-and-increment
on this field to get their tid. During rcuSynchronize, the writer
reads q + numreaders and only examines the q + rcounters en-
tries for registered readers. For the proof, we have a protocol on
q + numreaders that initially contains ReaderSafe(q,H, tid) for
all tid. During the fetch-and-increment, the reader takes out the
ReaderSafe(q,H, tid) for the tid it gets assigned. Similarly, during
rcuSynchronize, when the writer wants to deallocate the node
currently associated with logical ID i, it takes out Γ.rxtok(tid, i)
for all tids that have not yet been assigned to registered readers.

7. Related Work
Consume reads. The C11 memory model also includes consume
reads, which are weaker than acquire reads and cheaper to imple-
ment efficiently on the Power and ARM architectures. With acquire
reads, everything following the read is guaranteed to happen after
the things preceding the matching release write. However, with con-
sume reads, only the things that have a data dependency on the value
read are guaranteed to happen after. For example, consider:

[x]na := 25;
[y]na := 37;
[m]rel :=x;

let p = [m]cons
if (p != 0) {

[a]na := [p]na;
[b]na := [y]na;
}

In this example, the right thread’s read through the pointer p is
guaranteed to happen after the write that initialized x, because this
access depends on the value from the consume read ofm. In contrast,
the access to y is racy, because it does not have a data dependency,
only a control dependency. This ordering is sufficient for RCU
if the reader does consume reads on the link field, because the
accesses to the fields of the node will depend on the pointer it reads.
In fact, supporting RCU was a primary motivation for including
consume reads in the C11 standard. However, the standard may be
revised because the current rules for data dependency tracking are
too complicated, and most compilers treat consume reads as acquire
reads [14]. Once these revisions are finalized, we believe it should
be possible to extend GPS with support for consume reads through
a modality that tracks dependencies.

User-space RCU. Our implementation of RCU is based on that
of Desnoyers et al. [5], who describe a number of RCU imple-
mentations, of which QSBR is one that provides highly optimized
performance. Our implementation differs from theirs in a few ways.
First, their implementation uses memory barriers rather than C11
concurrency primitives. At present, there are no program logics for
C11 that are as rich as GPS (in its support for protocols) and that
also handle release/acquire fences and relaxed accesses. However,
we believe that, assuming some handling of such mechanisms is
developed in the way we imagine should be possible, our message-
passing explanation will still suffice, without requiring us to revert
to the notion of a grace period (see below). In particular, if the ap-
propriate logic existed, we believe the following relaxations would
be possible without changing the basic structure of our proof:

• All the release writes in rcuNew (lines 2, 3, 4), the write at line 19
in rcuNodeUpdate, and the write at line 13 in rcuNodeAppend

10

could be made relaxed (or even non-atomic). In fact, these are
initialization writes, so no explicit release fence is needed.
• The reads at lines 7 and 9 could be made consume reads, as

explained above.
• The read at line 32 could be made relaxed, provided we add an

acquire fence after line 33.
• The reads at lines 16, 24, and 28 could be made relaxed (or

non-atomic) because only the same thread can write to the
field. Doing so should not affect the proof, as no real ownership
transfer is performed.

In addition, Desnoyers et al.’s implementation of QSBR allows
readers to go “offline” for extended periods by setting their counter
field to 0. The writer’s counter starts at 1, and when the writer
performs rcuSynchronize, it checks that each reader’s counter
either matches its own or is 0. Later, the reader can go back online by
copying the writer’s counter value again. We left a proper treatment
of this extension for future work because it requires a combination
of weak-memory primitives and stronger synchronization operations
(SC fences), for which no adequate verification techniques presently
exist.

Other RCU verifications. Gotsman et al. [7] verify an RCU-based
non-blocking stack implementation under a sequentially consistent
memory model. Their RCU synchronization procedure is closer
to exclusively using the offline/online feature of QSBR described
above. They formalize the concept of a grace period, which is often
used to informally explain RCU. A grace period is the length of
time from when a node becomes unreachable until no readers are
accessing it any longer. They show that this concept can be used
to structure the proofs of related memory management techniques
such as hazard pointers and epoch-based reclamation. Their proof
uses a concurrent separation logic extended with temporal operators
to make statements about the grace period. It would be interesting
to try to add such temporal operators to a logic like GPS and see
if a proof based on grace periods can be formalized in the setting
of weak memory, but as we have shown, one can verify an RCU
implementation even without them.

Alglave et al. [2] use a bounded model checker to examine a
real implementation of RCU taken from the Linux kernel, which
uses explicit hardware fences rather than the new C11 concurrency
primitives. They apply their tool to a test harness running one reader
and one writer concurrently, and verify (on several architectures) that
the reader will not see malformed or uninitialized data. In contrast,
we consider a simpler implementation of RCU, but provide a general
proof of correctness against a modular Hoare-style specification.

Relaxed Separation Logic (RSL). One reason perhaps why there
has been no prior work on formally verifying RCU in a weak-
memory setting is that program logics for weak-memory concur-
rency have only begun appearing very recently. For instance, it was
only in 2013 that Vafeiadis and Narayan [19] proposed RSL, the
first program logic for the C11 memory model. RSL is a simpler
logic than its sequel, GPS, and also less powerful: the GPS paper
presents several examples that are beyond the scope of RSL. It is
therefore instructive to consider whether we could have verified our
RCU implementation using the simpler RSL. We cannot provide
a definite answer whether this is possible or not, but we believe it
is rather unlikely, given how heavily our proof relies on the rely-
guarantee reasoning afforded by protocols, which is not directly
supported in RSL.

Acknowledgments
This research was supported in part by an NDSEG fellowship from
the US Department of Defense, by the Air Force Office of Scientific
Research under Award No. FA9550-12-1-0370, by the EC FP7
FET project ADVENT, and by an internship from MPI-SWS. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the supporting organizations.

References
[1] Supplemental material for this paper available at the following URL:

http://plv.mpi-sws.org/gps/rcu/.
[2] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient

bounded model checking of concurrent software. In CAV, 2013.
[3] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing

C++ concurrency. In POPL, 2011.
[4] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission

accounting in separation logic. In POPL, 2005.
[5] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and

J. Walpole. User-level implementations of read-copy update. IEEE
Trans. Parallel Distrib. Syst., 23(2):375–382, 2012.

[6] E. W. Dijkstra. EWD123: Cooperating Sequential Processes. Technical
report, 1965.

[7] A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory
reclamation algorithms with grace. In ESOP, 2013.

[8] ISO/IEC 9899:2011. Programming language C.
[9] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,

and D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In POPL, 2015.

[10] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. on Computers, C-28(9):
690–691, 1970.

[11] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. Martin, P. Sewell, and D. Williams. An axiomatic
memory model for POWER multiprocessors. In CAV. 2012.

[12] P. E. McKenney. Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels. PhD
thesis, OGI School of Science and Engineering at Oregon Health and
Sciences University, 2004.

[13] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In PDCS, 1998.

[14] P. E. McKenney, T. Riegel, J. Preshing, H. Boehm, C. Nelson, and
O. Giroux. N4215: Towards implementation and use of mem-
ory order consume, 2014. Available at http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2014/n4215.pdf.

[15] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[16] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: A rigorous and usable programmer’s model for x86 multi-
processors. CACM, 53(7):89–97, 2010.

[17] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In OOPSLA, 2014.

[18] V. Vafeiadis. Concurrent separation logic and operational semantics.
In MFPS, volume 276 of ENTCS, 2011.

[19] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In OOPSLA, 2013.

[20] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid in
the C11 memory model and what we can do about it. In POPL, 2015.

11

http://plv.mpi-sws.org/gps/rcu/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4215.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4215.pdf

	Introduction
	Release-Acquire Semantics
	RCU
	RCU Specification
	GPS
	Key Features of GPS
	Verifying the Message-Passing Example

	RCU Proof Overview
	Ghost State
	Reader Abstract Predicates
	Extensions to the Basic RCU Implementation

	Related Work

