
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Lightweight Verification of Separate Compilation

Jeehoon Kang
Seoul National University, South Korea

jeehoon.kang@sf.snu.ac.kr

Yoonseung Kim
Seoul National University, South Korea

yoonseung.kim@sf.snu.ac.kr

Chung-Kil Hur ∗

Seoul National University, South Korea
gil.hur@sf.snu.ac.kr

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Viktor Vafeiadis
MPI-SWS, Germany
viktor@mpi-sws.org

Abstract
Major compiler verification efforts, such as the CompCert project,
have traditionally simplified the verification problem by restricting
attention to the correctness of whole-program compilation, leaving
open the question of how to verify the correctness of separate
compilation. Recently, a number of sophisticated techniques have
been proposed for proving more flexible, compositional notions
of compiler correctness, but these approaches tend to be quite
heavyweight compared to the simple “closed simulations” used
in verifying whole-program compilation. Applying such techniques
to a compiler like CompCert, as Stewart et al. have done, involves
major changes and extensions to its original verification.

In this paper, we show that if we aim somewhat lower—to prove
correctness of separate compilation, but only for a single compiler—
we can drastically simplify the proof effort. Toward this end, we
develop several lightweight techniques that recast the compositional
verification problem in terms of whole-program compilation, thereby
enabling us to largely reuse the closed-simulation proofs from
existing compiler verifications. We demonstrate the effectiveness
of these techniques by applying them to CompCert 2.4, converting
its verification of whole-program compilation into a verification
of separate compilation in less than two person-months. This
conversion only required a small number of changes to the original
proofs, and uncovered two compiler bugs along the way. The result
is SepCompCert, the first verification of separate compilation for
the full CompCert compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

Keywords Compositional compiler verification, separate compila-
tion, CompCert

∗Corresponding author.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Over ten years ago, Xavier Leroy initiated the CompCert project [10,
11], a landmark effort that resulted in the first realistic verified
compiler. The CompCert compiler [4] is realistic in the sense
that it “could realistically be used in the context of production
of critical software”. In particular, it compiles a significant subset
of the C language down to assembly, and it performs a number
of common and useful optimizations. It is verified in the sense
that it “is accompanied by a machine-checked proof [in Coq]
of a semantic preservation property: the generated machine code
behaves as prescribed by the semantics of the source program.” As
such, CompCert guarantees that program analyses and verifications
performed on its input carry over soundly to its machine-level output.
It has served as a fundamental building block in academic work on
end-to-end verified software [1], as well as receiving significant
interest from the avionics industry [16].

There is, however, a key dimension in which the verification of
CompCert is not realistic—namely that, for simplicity, it only estab-
lishes the correctness of whole-program compilation: if CompCert
is used to compile a self-contained C program consisting of a single
file, then the output of CompCert preserves the semantics of that
program. But clearly this does not correspond to what many clients
of a verified compiler would expect. For example, it is often essen-
tial in practice to be able to compile a client module separately from
the many standard libraries it depends on, yet be assured that linking
the resulting binaries together will result in an executable that pre-
serves the semantics of the linked source modules. Furthermore, it
is commonplace for different modules in a program to be compiled
with different sets of optimization passes turned on. Although the
CompCert compiler does indeed support such forms of separate
compilation, its verification statement says nothing about them.

The technical reason for this limitation is that it makes it possible
for the CompCert verification to be carried out straightforwardly
using closed simulations: simulations between closed (i.e., self-
contained, executable) programs. For each pass of the compiler,
the output of the pass is shown to simulate the input of the pass,
assuming and preserving whatever invariant the verifier wishes to
impose on the relation between the states of the input and output.
Working with closed simulations simplifies life in two ways: (1) the
simulation proof for each pass can rely on whatever state invariant it
chooses, independent of what invariants are used in other passes, and
(2) these independent simulations collectively imply the end-to-end
correctness of the whole compiler (this is sometimes called “vertical
compositionality”). However, closed simulations are by definition
simulations over whole program states, thus seemingly confining
their applicability to the verification of whole-program compilation.

1 2015/12/24

There has consequently been a great deal of work in the past
several years attempting to prove compiler correctness without the
whole-program restriction. Indeed, it turns out that even specifying,
let alone verifying, when separate compilation is “correct”—often
referred to as compositional compiler correctness [2]—is non-trivial,
and has sparked a variety of interesting proposals involving techni-
cally sophisticated techniques, such as Kripke logical relations [6],
multi-language semantics [13], and parametric simulations [7, 12].
All these approaches aim to achieve a highly flexible form of com-
positionality, guaranteeing for instance that the results of multiple
different verified compilers can be correctly linked together, and
that it is safe to link those results with hand-written assembly code.

It seems, however, that achieving such flexibility comes at
the expense of significant complication to the proof method. For
example, Perconti and Ahmed’s approach [13] involves constructing
logical relations over a multi-language semantics encompassing
all languages used in a compiler, a considerable departure from
CompCert-style verification. Neis et al.’s method [12] employs a
novel notion of “parametric inter-language simulations (PILS)”,
whose proof of the aforementioned “vertical compositionality” is
highly involved [8], whereas for closed simulations it is trivial.
In the context of CompCert, Stewart et al. recently developed
Compositional CompCert [17], a re-engineering of CompCert to
support verified separate compilation, along with the ability to link C
modules with assembly modules. Their approach, however, relies on
a novel notion of “structured simulation” on top of a multi-language
“interaction semantics” [3], which is different enough from the closed
simulations employed in the CompCert verification that it required
significant changes and extensions to the original proofs.

In this paper, we ask the question: If we aim somewhat lower, can
we do a lot better? That is, if we pursue a more restricted notion of
compositional correctness than prior work has done, can we develop
a much simpler, more lightweight proof method that enables us to
reuse existing verifications of whole-program compilation as much
as possible instead of rewriting them?

Indeed, we can. In particular, we restrict attention here to
verifying separate compilation for a single compiler. Our goal is to
establish that, when different modules in a program are compiled
separately by the same verified compiler, the linking of the resulting
assembly modules preserves the semantics of the linking of the
original source modules. Within the scope of this more modest but
still important goal, we develop simple and effective techniques for
verifying two levels of compositional correctness:

• Compositional Correctness Level A: Correctness of compila-
tion is preserved when linking modules that were compiled with
the same exact compiler.
• Compositional Correctness Level B: Correctness of compila-

tion is preserved when linking modules that were compiled with
the same compiler, but possibly with different optimizations—i.e.,
different modules may be compiled with different optimization
passes turned on.

Level B correctness is stronger than Level A, and correspondingly
requires somewhat (but not much) more work to prove.

The key idea spanning both levels is to formulate a compositional
correctness statement about a single module M in terms of a
“contextual” correctness statement about how M behaves when
linked with arbitrary other modules to form a complete program.
The latter has the advantage of being a statement about closed
(whole) programs, and as such, we can prove it using the kind
of simple, closed-simulation-style proofs employed in traditional
verifications of whole-program compilation. This in turn enables
us to significantly reuse existing compiler proofs. We believe the
lightweight nature of our techniques—and the consequent ease of

adapting existing verifications to use them—will make them a highly
attractive option for compiler verifiers.

We demonstrate the effectiveness of our techniques by applying
them to CompCert 2.4. In less than two person-months total, we
adapted the existing CompCert verification to support both Level A
and Level B compositional correctness, and much of that time was
spent trying to understand the original CompCert proof. The result
of this effort is SepCompCert, the first verification of separate
compilation for the full CompCert compiler. The SepCompCert
verification (available online [15]) is mostly the same as the original
CompCert verification, and is only 2% (for Level A) or 3% (for
Level B) larger than the original verification in terms of lines of Coq.
Furthermore, in the process of porting CompCert to SepCompCert,
we uncovered two bugs in CompCert: one in an invalid axiom, and
one (in CompCert’s “value analysis”) that was outside the scope of
CompCert’s original verification because it only showed up in the
presence of separate compilation. These have been confirmed and
subsequently fixed in the latest version of the compiler.1

The remainder of the paper is structured as follows. In §2, we give
a high-level overview of our new techniques, which are presented
in detail in the subsequent sections in the context of our CompCert
adaptation. In §7, we conclude with a comparison to related work.

2. High-Level Overview
We begin by briefly reviewing CompCert’s correctness statement
for whole-program compilation, as well as its closed-simulation
verification method (§2.1). We then explain our Level A and Level
B notions of compositional correctness and our techniques for
establishing them (§2.2 and §2.3). We also briefly give some
intuition as to why it is easy to adapt CompCert’s verification
to employ our new techniques, but we leave a more thorough
explanation of this adaptation to subsequent sections. Throughout
the section, we keep the presentation semi-formal, abstracting away
unnecessary detail to get across the main ideas.

2.1 CompCert’s Whole-Program Compilation Correctness
End-to-End Correctness Roughly speaking, the correctness result
of CompCert can be understood to assert the following. Suppose
s.c is a “source” file (in C), t.asm is a “target” file (in assembly),
and C is a verified compiler (represented as a function from C files
to assembly files).

C(s.c) = t.asm s = load(s.c) t = load(t.asm)

Behav(s) ⊇ Behav(t)

If t.asm is the result of compiling s.c with C, then executing
t.asm according to assembly semantics will result in a subset of
the behaviors one could observe from executing s.c according to
C semantics. (We write s = load(s.c) to denote the machine state
that results from loading s.c into memory, Behav(s) to denote the
observable behaviors of the execution of s, and analogously for t
and t.asm.) Hence, we say that t.asm, the target-level output of C,
refines its source-level input, s.c.

Per-Pass Correctness To verify whole-program compilation cor-
rectness for the compiler C, we verify each pass of C independently.
Specifically, for each pass (transformation) T from language L1

to L2—where the Li’s may be C, assembly, or some intermediate
languages—we show the following:

T (s.l1) = t.l2 s = load(s.l1) t = load(t.l2)

Behav(s) ⊇ Behav(t)

1 The latest version of CompCert is 2.5. It was released on June 12, 2015,
after we had already completed our verification of SepCompCert. See §7 for
discussion of what would be involved in porting SepCompCert to handle the
new features of CompCert 2.5.

2 2015/12/24

Figure 1. Proving Level A correctness. Here, we show the case of
three separately-compiled modules and two compiler passes, T1 and
T2. Since the compilations march in lock step, we can verify each
pass as applied to all modules simultaneously.

That is, given the input s.l1 and output t.l2 of the T transfor-
mation, we show that the behaviors of t.l2 are contained within
those of s.l1. Since subset inclusion is transitive, it easy to see that
the proofs of the constituent passes of C compose to establish the
whole-program correctness of C as a whole.

Verifying Per-Pass Correctness Now how does one actually prove
the verification condition for each individual pass? The standard
approach taken by CompCert is to use (closed) simulations. Infor-
mally, we will say that a simulation R is a relation between running
programs (i.e., machine states) in L1 and L2 such that, if (s, t) ∈ R,
then the behaviors one observes while stepping through the execu-
tion of t are matched by corresponding observable behaviors in the
execution of s. One can think of R as imposing an invariant, which
describes (and connects) the possible machine states of the source
and target programs, and which must be maintained as the programs
execute. We leave further details about simulations until later in the
paper; suffice it to say that they satisfy the following “adequacy”
property:

R is a simulation (s, t) ∈ R
Behav(s) ⊇ Behav(t)

Thus, to establish the verification condition for pass T , it suffices to
exhibit a simulation R that relates load(s.l1) and load(t.l2).

Note: The verification approach described above, relying on
“backward” simulations, is something of an oversimplification of
what CompCert actually does. In fact, to make the proofs more
convenient, CompCert uses a mixture of forward and backward
simulations. We gloss over this point here because it is orthogonal
to our high-level story, but we will return to it at the end of §3.

2.2 SepCompCert’s Compositional Correctness Level A
End-to-End Correctness For Level A, we aim to show that if we
separately compile n different C modules (s1.c, . . . , sn.c) using
the same exact verified compiler C, producing n assembly modules
(t1.asm, . . . , tn.asm), then the assembly-level linking of the ti’s
will refine the C-level linking of the si’s. Formally:

∀i ∈ {1 . . . n}. C(si.c) = ti.asm
s = load(s1.c ◦ . . . ◦ sn.c) t = load(t1.asm ◦ . . . ◦ tn.asm)

Behav(s) ⊇ Behav(t)

Here, ◦ represents simple syntactic linking, i.e., essentially concate-
nation of files (plus checks to make sure that externally declared
variables/functions have the expected types). See §4 for further
details about syntactic linking.

Per-Pass Correctness To prove that compiler C satisfies Level A
compositional correctness, we again want to reduce the problem to
one of verifying the individual passes of C. The key idea here, as

illustrated in Figure 1, is that since we know that the source modules
are all compiled via the exact same sequence of passes, we can
verify their compilations in lock step. In other words, it suffices to
verify that, for each pass T from L1 to L2, the following holds:

∀i ∈ {1 . . . n}. T (si.l1) = ti.l2
s = load(s1.l1 ◦ . . . ◦ sn.l1) t = load(t1.l2 ◦ . . . ◦ tn.l2)

Behav(s) ⊇ Behav(t)

As before, these per-pass correctness results can be transitively
composed to immediately conclude end-to-end correctness of C.

Verifying Per-Pass Correctness So how do we prove this Level
A per-pass correctness condition? Assuming that we have already
proven whole-program per-pass correctness and are trying to port
the proof over, there are two cases.

Trivial case: Many compiler passes are inherently composi-
tional, transforming the code of each module independently, i.e., in
a way that is agnostic to the presence of other modules. Put another
way, such compiler passes commute with linking:

T (s1.l1) ◦ . . . ◦ T (sn.l1) = T (s1.l1 ◦ . . . ◦ sn.l1)

If this commutativity property holds for a pass T , then Level A
per-pass correctness becomes a trivial corollary of whole-program
per-pass correctness, where we instantiate the s.l1 from §2.1 with
s1.l1 ◦ . . . ◦ sn.l1. In verifying Level A correctness for CompCert
2.4, we found that 13 of its 19 passes fell into this trivial case.

Non-trivial case: If the trivial commutativity argument does not
apply, then there is some new work to do to port a proof of whole-
program per-pass correctness to Level A per-pass correctness.

However, at least for CompCert, we found it very easy to perform
this adaptation. Why? First of all, since Level A correctness assumes
that all modules in the program are transformed in the same way,
we can essentially reuse the simulation relation R for pass T that
was used in the original CompCert verification.

We do, however, have to worry about the soundness of the pro-
gram analyses that the compiler performs, because the correctness
of the compiler rests to a large extent on the correctness of these
analyses. To prove Level A correctness of these analyses, we must
prove that they remain sound even when they only have access to
a single module in the program rather than the whole program. In-
tuitively, this should follow easily if: (1) the analyses have been
proven sound under the assumption that they are fed the whole pro-
gram (CompCert has done that already), and (2) the analyses are
monotone, meaning that they only become more conservative when
given access to a smaller fragment of the program (as happens with
separate compilation).

In adapting CompCert to Level A correctness, the main work
was therefore in verifying that its program analyses were indeed
monotone. This was largely straightforward, with one exception:
the “value analysis” employed by several optimizations was not
monotone. It made an assumption about variables declared as
extern const, which was valid for whole-program compilation,
but not in the presence of separate compilation. As we explain in
detail in §4, this manifested itself as a bug in constant propagation
when linking separately-compiled files. After we fixed this bug in
value analysis, monotonicity became straightforward to show, and
thus so did Level A correctness (for the remaining 6 passes that did
not fall into the trivial case).

2.3 SepCompCert’s Compositional Correctness Level B
End-to-End Correctness The CompCert compiler performs sev-
eral key optimizations at the level of its RTL intermediate language
(i.e., they are transformations from RTL to RTL). For Level B,
we would like to strengthen Level A correctness by allowing each
source module si to be compiled by a different compiler Ci. How-
ever, the differences we permit between the Ci’s are restricted: they

3 2015/12/24

Figure 2. Proving Level B correctness. Here, we show only the
RTL-level passes (for other passes, it is the same as Level A). Since
each module is compiled with different optimization passes, we
verify each pass applied to exactly one module, while simultaneously
the other modules undergo the identity transformation.

may differ only in which optimization passes they apply at the RTL
level. Given this restriction on the Ci’s, the Level B correctness
statement is the same as the Level A correctness statement except
for the replacement of C with Ci:

∀i ∈ {1 . . . n}. Ci(si.c) = ti.asm
s = load(s1.c ◦ . . . ◦ sn.c) t = load(t1.asm ◦ . . . ◦ tn.asm)

Behav(s) ⊇ Behav(t)

Per-Pass Correctness To verify the above correctness statement,
we yet again want to reduce it to verifying the individual passes of
C. For all passes besides the RTL-level optimizations, we can verify
per-pass correctness exactly as in Level A, since all the Ci’s must
perform these same passes in the same order. However, for the RTL
optimizations, we must do something different because at the RTL
level the various Ci’s do not all march in lock step.

The key idea for handling the RTL optimizations, as illustrated
in Figure 2, is to pad the Ci’s with extra dummy identity passes
(which do not affect their end-to-end functionality) so that, whenever
one compiler is performing an RTL optimization pass, the other
compilers will for that step perform an identity transformation. Thus,
we first verify the RTL passes of C1 in parallel with identity passes
for the other compilers, then verify the RTL passes of C2 in parallel
with identity passes for the other compilers, and so on. For this to
work, the Level B per-pass correctness statement (for optimization
passes T from RTL to RTL) must be updated as follows:

T (s.rtl) = t.rtl
s = load(u1.rtl ◦ . . . ◦ um.rtl ◦ s.rtl ◦ v1.rtl ◦ . . . ◦ vn.rtl)
t = load(u1.rtl ◦ . . . ◦ um.rtl ◦ t.rtl ◦ v1.rtl ◦ . . . ◦ vn.rtl)

Behav(s) ⊇ Behav(t)

One can view this notion of per-pass correctness as being essentially
a form of contextual refinement: the output of T must refine its input
when linked with a context consisting of some arbitrary other RTL
modules (the ui’s and vj’s). If we can prove this, it should be clear
from Figure 2 how the per-pass proofs link up transitively.

Verifying Per-Pass Correctness So how do we prove this contex-
tual refinement? Unlike for Level A, we cannot simply reuse the
existing simulation R from the whole-program per-pass correctness
proof for T , because R is not necessarily reflexive and thus does
not necessarily relate the execution of code from ui.rtl (or vj .rtl)
with itself. Instead, we must use an amended simulation R′, which
accounts for two possibilities: either we are executing code from s
on one side of the simulation and code from t on the other, in which
case the proof that R′ is indeed a simulation proceeds essentially
as did the proof that R was a simulation; or we are executing code
from ui.rtl (or vj .rtl), in which case both sides of the simulation
are executing exactly the same RTL instructions.

In principle, the latter case could involve serious new proof
effort. However, at least for CompCert, we found that in fact the
substance of this new part of the proof was hiding in plain sight
within the original CompCert verification! The reason, intuitively,
is that RTL-to-RTL optimization passes are rarely unconditional
transformations: their output typically only differs from their input
when certain conditions (e.g. determined by a static analysis) hold,
and since these conditions do not always hold, these passes may end
up leaving any given input instruction unchanged. To account for
this possibility, the original CompCert verification must therefore
already prove that arbitrary RTL instructions simulate themselves.
Consequently, in porting CompCert 2.4 to Level B compositional
correctness, we were able to simply extract and compose (essentially,
copy-and-paste) these micro-simulation proofs into the simulation
proof for the latter part of R′.

3. Constant Propagation in CompCert
To flesh out the technical details of how we adapted CompCert to
SepCompCert, we will use constant propagation, one of CompCert’s
RTL-level optimizations, as a running example. In this section, we
will begin by reviewing the RTL language itself, how constant
propagation works, and how CompCert verifies it.

3.1 RTL Syntax and Semantics
We start with the syntax and semantics of CompCert’s register
transfer language (RTL), the compiler’s internal language where
constant propagation takes place. For presentation purposes, we
simplify the language a bit by removing types and other unnecessary
details.

Syntax The syntax of the CompCert’s RTL is given in Figure 3.
Programs are just a list of global declarations, which consist of
(i) declarations of external variables and functions provided by
different compilation units, and (ii) definitions of variables and
functions provided by the current compilation unit. For global
variable declarations and definitions, we also specify a (positive)
integer number denoting the size of the declared block in bytes.

Function declarations only contain the function signature, which
is a list of parameters, but function definitions additionally contain
a list of local registers, the size of their stack frame, and the code.
The code is essentially a control-flow graph of three-address code:
it is represented as a mapping from node identifiers to instructions,
where instructions either do some local computation (e.g., write a
constant to a register, or perform some arithmetic computation), load
from a memory address, store to memory, do a comparison, call a
function, or exit the function and return a result. Each instruction
also stores the node identifier(s) of its successor instruction(s).

Throughout we assume that programs satisfy some basic well-
formedness properties: there cannot be multiple definitions for
the same global variable, declarations and definitions of the same
variable should have matching signatures, and the parameter and
local variable lists for each function do not have duplicate entries.

4 2015/12/24

Prog ::= Decl
Decl ::= extern [const] Id [Int] // External Variable

| [const] Id [Int] := { GVal } // Variable
| extern Id FSig // External Function
| Id FDef // Function

FSig ::= (Reg) // Function Signature
FDef ::= (Reg) {Reg ; sp[Int] ; Code } // Function Definition
Code ::= NId : Instr

Instr ::= Reg := FVal jmp NId // Immediate Value
| Reg := op Reg jmp NId // Operation
| Reg := FVal [Int] jmp NId // Load
| FVal [Int] := Reg jmp NId // Store
| cond -op Reg ? jmp NId : jmp NId // Conditional
| Reg := FVal(Reg) jmp NId // Call
| return Reg // Return
| . . .

GVal ::= Id | Int | undef
FVal ::= GVal | Reg | sp
Int ::= the set of 32-bit integers
Id ::= the set of identifiers for variables and functions
Reg ::= the set of register names
NId ::= the set of node labels

Figure 3. RTL syntax.

Mem
def
= { (nb, bs) | nb ∈ BId ∧ bs ∈ BId ⇀finBlock }

Block
def
= { (p, n, c) | p ∈ {valid, freed} ∧ n ∈ N ∧ c ∈ Valn}

Val
def
= Int]Addr] {undef}

Addr
def
= { (l, i) ∈ BId × Int }

GEnv
def
= { (g, d) | g ∈ Id ⇀finBId ∧

d ∈ BId ⇀finFSig] FDef }
State

def
= IState] CState] RState

IState
def
= { istm s fd sp pc rs |

m ∈ Mem ∧ s ∈ StkFrm ∧ fd ∈ FDef ∧
sp ∈ Addr ∧ pc ∈ NId ∧ rs ∈ Reg ⇀finVal }

CState
def
= { cstm s fds vs | m ∈ Mem ∧ s ∈ StkFrm ∧

fds ∈ FDef] FSig ∧ vs ∈ Val }
RState

def
= { rstm s v | m ∈ Mem ∧ s ∈ StkFrm ∧ v ∈ Val }

StkFrm
def
= { (r, fd, sp, pc, rs) | r ∈ Reg ∧ fd ∈ FDef ∧

sp ∈ Addr ∧ pc ∈ NId ∧ rs ∈ Reg ⇀finVal }

Figure 4. RTL semantic domains.

Semantics We move on to the semantics of RTL. Figure 4 defines
the necessary semantic domains.

Memory, m ∈ Mem , is represented as a finite collection of
allocation blocks (a mapping from block identifiers to blocks), each
of which is a contiguous portion of memory that may be either
valid to access or already deallocated (freed) and therefore invalid
to access. CompCert values, v ∈ Val , can be either 32-bit integers,
logical addresses (pairs of a block identifier together with an offset
within the block), or the special undef value used to represent
uninitialized data. A global environment, ge = (g, d) ∈ GEnv ,
maps each global variable name to a logical block identifier, and
each logical block identifier corresponding to some function’s code
to either the corresponding function signature for external functions
or the corresponding function definition for functions defined in the
program.

Next, program states can be of three kinds: normal instruction
states (ist), call states (cst) just before passing control to an
invoked function, and return states (rst), just after returning from
an invoked function. Instruction states store the memory (m), the
sequence of parent stack frames (s), the definition of the function
whose body is currently executed (fd), the current stack pointer (sp),
the program counter (pc), and the contents of the local registers (rs).
Call states record the memory, the stack, and the function to be called
(fds) with its arguments (args). The function to be called can be
either an internal function, in which case we record its definition, or
an external one, in which case we record its signature. Return states
record just the memory, the stack, and the value that was returned
by the function. A stack s is a list of stack frames, each of which
records the same information as normal instruction states, except
with the addition of a register name r where its return value should
be stored, and minus the memory (m) and stack (s) components.

The meaning of programs is described by three definitions:

get-genv ∈ Prog → GEnv
load ∈ Prog ⇀ State
↪→ ∈ P(GEnv × State × Event × State)

The first function, get-genv(prg), returns the global environment
corresponding to the program: it ‘allocates’ the global variables of
the program sequentially in blocks 1, 2, 3, and so on, and maps the
blocks corresponding to function symbols to the relevant function
definition or signature.

Similarly, load(prg) returns the initial state obtained by loading
a program into memory: it initializes the memory m with the initial
values of the global variables at the appropriate addresses generated
by get-genv(prg), and returns a call state, cstm [] fd [], where
fd is the function definition corresponding to main(). Loading is
a partial function because it is undefined for programs without a
main() function.

The ↪→ relation is a small-step reduction relation describing how
program states evolve during the computation. For clarity, we write
s
σ
↪→ge s

′ instead of (ge, s, σ, s′) ∈ ↪→. The operational semantics
for RTL is fairly standard and shown in Figure 5: there is a rule for
each of the various basic instructions of the language. Starting from
normal instruction states, the instruction at the node pointed to by
the program counter is scrutinized (fd@pc). Depending on what
instruction is there, only one rule is applicable. The corresponding
rule calculates the new values of the registers, the memory (for
store instructions), and the next program counter. Calls and returns
are treated a bit differently: they do not directly transition from an
instruction state to the next instruction state—they go through an
intermediate call/return state.

In more detail, calling a function (rule CALL) looks up the
function in the global environment, evaluates its arguments, creates
a new stack frame corresponding to the current instruction state, and
transitions to a call state. From a call state, there are two possible
execution steps. If the function to be called is internal, i.e., we have
its function definition fd ∈ FDef , rule INTERNAL-CALL applies. It
allocates the necessary stack space for the called function, initializes
the parameter registers with the values passed as arguments, sets
the program counter to point to the first node of the called function,
and moves to the appropriate instruction state of the called function.
If the function to be called is external, i.e., we have a function
signature fs ∈ FSig , rule EXTERNAL-CALL goes directly to the
return state, and generates an event σ indicating that it called an
external function.

Conversely, returning from a function (rule RETURN) evaluates
the result to be returned, deallocates the stack space used by the
function, and transitions to the return state. The only possible step
form a return state (rule RETURN2) then pops the top-most stack
frame and transitions to a normal instruction state thereby restoring

5 2015/12/24

IMM
fd@pc = (dst := src jmp pc′)

rs′ = rs[dst← JsrcK (ge, sp, rs)]

istm s fd sp pc rs
ε
↪→ge istm s fd sp pc′ rs′

OP
fd@pc = (dst := op args jmp pc′)

rs′ = rs[dst← JopK (ge, sp, JargsK (rs))]

istm s fd sp pc rs
ε
↪→ge istm s fd sp pc′ rs′

LOAD
fd@pc = (dst := src[n] jmp pc′)

(l, i) = JsrcK (ge, sp, rs)
rs′ = rs[dst← m[(l, i+ n)]]

istm s fd sp pc rs
ε
↪→ge istm s fd sp pc′ rs′

STORE
fd@pc = (dst[n] := src jmp pc′)

(l, i) = JdstK (ge, sp, rs)
m′ = m[(l, i+ n)← JsrcK (rs)]

istm s fd sp pc rs
ε
↪→ge istm

′ s fd sp pc′ rs

COND
fd@pc = (cond -op args ? jmp pc1 : jmp pc2)

b = Jcond -opK (ge, sp, JargsK (rs))
pc′ = b ? pc1 : pc2

istm s fd sp pc rs
ε
↪→ge istm s fd sp pc′ rs

CALL
fd@pc = (res := f(args) jmp pc′)

(l, 0) = JfK (ge, sp, rs)
fds′ = findfunc(ge, l)
vs = JargsK (rs)

istm s fd sp pc rs
ε
↪→ge cstm ((res, fd, sp, pc′, rs)::s) fds′ vs

RETURN
fd@pc = (return r)

v = JrK (rs)
m′ = free(m, sp, stacksize(fd))

istm s fd sp pc rs
ε
↪→ge rstm

′ s v

INTERNAL-CALL
(m′, l) = alloc(m, stacksize(fd))

pc = entrynode(fd)
rs = init-regs(params(fd), vs)

cstm s fd vs
ε
↪→ge istm

′ s fd (l, 0) pc rs

RETURN2
rs′ = rs[res← v]

rstm (res, fd, sp, pc, rs)::s v
ε
↪→ge istm s fd sp pc rs′

EXTERNAL-CALL
(σ, v,m′) ∈ extcall-sem(fs, ge, vs,m)

cstm s fs vs
σ
↪→ge rstm

′ s v

Figure 5. Operational semantics of RTL.

the registers, program counter, and stack pointers of the calling
function.

3.2 Constant Propagation in CompCert
Given a program prg, constant propagation walks through each
function definition fd of the program and transforms it using the
function transfun(prg, fd). This in turn runs a “value analysis”
to determine which variables (whether global variables or local
registers) hold a known constant value at each program point and
then, based on that information, simplifies the program.

The analysis consists of two parts: (a) the global part, which
detects which global variables cannot be updated (i.e., those declared
with the const qualifier), and (b) the local part, which analyzes the
code of a function and calculates an abstract value for each register
and stack variable. The abstract value of a variable can be either⊥ if
the variable holds undef, or a constant number, or NS if the variable
contains anything except for a pointer pointing into the current stack
frame, or> if no more precise information is known. These abstract
values form a lattice by taking the order ⊥ v num v NS v >.

The value analysis performs a usual traversal of the code. When
calling a function, if it can be determined that no memory address
can point to the current stack frame and none of the function’s
arguments point to the current stack frame (i.e., their abstract value
is at most NS), then the abstract value of the function’s result is
also NS , and the abstraction of the stack memory is preserved. If,
however, a pointer to the current stack frame has escaped, then any
information about the stack memory is forgotten.

The transformation part itself is straightforward: at each node n
of the function’s CFG, if the analysis has determined that a variable
has a constant value at node n, then the use of that variable is
replaced by the constant it holds, and the instruction is suitably
simplified.

extern g(a,b);
const gv[1] := { 0 };

f() {
x, y;
sp[4];

1: sp[0] := 0 jmp 2;
2: x := 0 jmp 3;
3: y := g(sp,x) jmp 4;
4: sp[0] > 0 ?

jmp 5 : jmp 6;
5: x > 0 ? jmp 6 : jmp 7;
6: return gv[0];
7: return y;
}

7→
7→

extern g(a,b);
const gv[1] := { 0 };

f() {
x, y;
sp[4];

1: sp[0] := 0 jmp 2;
2: x := 0 jmp 3;
3: y := g(sp,x) jmp 4;
4: sp[0] > 0 ?

jmp 5 : jmp 6;
5: jmp 7;
6: return 0;
7: return y;
}

Figure 6. Example of constant propagation.

As an example, Figure 6 shows the effect of constant propagation
applied to a simple program. The program contains one internal
function, f, which calls an external function, g, and three zero-
initialized variables: a local variable (a register), x, an address-taken
variable on the stack, sp[0], and a global variable, gv[0]. After
the external function call, constant propagation can safely assume
that x = 0 and thereby simplify the conditional at node 5, but
cannot do the same for sp[0] at node 4 because its address was
passed to the external function and its value might therefore have
changed. Further, at node 6, constant propagation notes that the
global variable gv[0] has been declared with the const qualifier,
and can therefore assume that gv[0] = 0.

6 2015/12/24

prg ` fd ∼fdef fd
′ def

= fd′ = transfun(prg, fd)

prg ` fd ∼fdef fd
′ rs ≤def rs

′

prg ` (r, fd, sp, pc, rs) ∼frame (r, fd′, sp, pc, rs′)

prg ` [] ∼stack []

prg ` sf ∼frame sf
′ s ∼stack s

′

prg ` sf ::s ∼stack sf ::s′

m vext m
′ s ∼stack s

′ prg ` fd ∼fdef fd
′ rs ≤def rs

′

prg ` istm s fd sp pc rs ∼state istm′ s′ fd
′ sp pc rs′

m vext m
′ s ∼stack s

′ prg ` fd ∼fdef fd
′ args ≤def args

′

prg ` cstm s fd args ∼state cstm′ s′ fd
′ args′

m vext m
′ s ∼stack s

′ v ≤def v
′

prg ` rstm s v ∼state rstm′ s′ v′

(s, s′) ∈ R(prg)
def
= prg ` s ∼state s

′ ∧ sound-state(prg, s)

Figure 7. Definition of CompCert’s simulation relation for the
constant propagation pass.

3.3 CompCert’s Verification of Constant Propagation
The correctness proof of the constant propagation pass in CompCert
establishes the existence of a simulation relation, R, that relates the
loading of the source and target programs. That is, for every well-
formed source RTL program prg, it proves there exists a simulation
R(prg) such that (load(prg), load(Tcp(prg))) ∈ R(prg).

The simulation relation, R, used for the constant propagation
pass is given in Figure 7. It is defined in terms of matching relations
on states, stack frames, and stacks and function definitions (∼state,
∼frame, ∼stack, and ∼fdef respectively). These relations take as
a parameter the source program, prg, which is used to relate the
function definitions of the source and target programs.2

We say that two function definitions are related in the program
prg, written fd ∼fdef fd

′, if the target function, fd′, is the result
of applying constant propagation to the source function, fd. Two
stack frames are related by prg ` sf ∼frame sf

′ if the function
code in sf ′ is the transformation of the function code of sf , the
stack pointer and program counters agree, and the registers of sf ′

hold equal or more defined values than those of sf . Two stacks are
related, prg ` s ∼stack s

′, if they have the same length and their
stack frames are related elementwise.

Two states are related, prg ` s ∼state s′ if (1) they are of
the same kind, (2) the memory of s′ is an extension of that of s,
(3) their stacks are related by ∼stack, (4) the respective function
definitions are related by ∼fdef (when applicable), (5) the stack
pointer and program counter agree (when applicable), and (6) the
registers/arguments/return value of s is equal or less defined than
that of s′.

Finally, the two states are in the simulation relation R if they are
related by ∼state and the source state satisfies the value analysis
invariant, sound-state(prg, s). This invariant basically says that
the (concrete) value of each variable in the state s is included
in the variable’s abstract value computed by the analysis at the
current program point. The invariant depends on the program for

2 The version shown here is a slight simplification of the actual simulation
used in the constant propagation pass. It abstracts away some tedious details
of the actual∼frame definition that are orthogonal to the problem of porting
the simulation proof to SepCompCert. This is merely to streamline the
presentation.

two reasons: (1) so that it can calculate the global environment,
ge = get-genv(prg), and (2) so that it can ‘run’ the analysis on the
program so as to be able to compare its results with the current state.

The basic soundness properties of the value analysis are (1) that
the sound-state invariant holds for the initial state of a program,
and (2) that it is preserved by execution steps. Formally:

s = load(prg)

sound-state(prg, s)

sound-state(prg, s)
ge = get-genv(prg) s

t
↪→ge s

′

sound-state(prg, s′)

The CompCert proof then establishes (i) that

(load(prg), load(Tcp(prg))) ∈ R
and (ii) that R is a simulation relation. As for (i), the initial states
after loading satisfy ∼state by construction, and the initial source
state satisfies sound-state thanks to the soundness of the value
analysis above.

It remains to show that R is indeed a simulation. Specifically,
CompCert shows that it is a “forward” simulation, meaning that
for any related states (s, t) ∈ R, if the source state s takes a step
to s′ with an event σ, the target t also takes a step to some state t′

with the same event σ, such that (s′, t′) ∈ R. From (s, t) ∈ R, we
know that we are executing the instructions at the same pc. Thus
by the definition of constant propagation, the target instruction is
either identical to the source instruction or obtained by replacing
a variable with a constant or converting a conditional jump to an
unconditional jump, depending on the value analysis result. Here,
thanks to the soundness of the current state w.r.t. the analysis result
and the relation between the two states specified by ∼state, we
can easily deduce that executing the source and target instructions
results in related states. Also, the soundness of the new source state
s′ follows from the soundness preservation property of the value
analysis stated above.

Finally, we briefly discuss why CompCert establishes a forward
rather than a backward simulation, even though the former implies
that the source’s behaviors refine the target’s, which seems the
wrong way around. First, a forward simulation is easier to establish
than a backward one because a single instruction in the source
may be compiled down to several instructions in the target. Second,
CompCert composes forward simulations of all passes using the
transitivity of forward simulations, which is not hard to show. Then it
converts the composed forward simulation between C and assembly
to a backward simulation between them using some technical
properties of C and assembly (namely, that C is receptive and
assembly is determinate). Finally, from this backward simulation,
one can establish that the target’s behaviors refine the source’s.

It is important to note that this approach of using forward
simulations (when convenient) carries over without modification
when porting CompCert to Level A and B compositional correctness,
as we do in the next section.

4. Adapting the Constant Propagation Proof
In this section, we explain how to adapt the CompCert proof of
constant propagation to support separate compilation. Before doing
so, let us briefly explain syntactic linking in some more detail since
it is central to the compositional correctness results we prove.

Syntactic linking merges global declarations for each identifier.
The linker must check if the declarations meet the following condi-
tions:

• The declarations have the same type. They should be either (i)
function declarations or definitions of the same signature, or (ii)
variable declarations or definitions of the same type.
• At most one of the declarations is a definition. If there is a

single definition, then that is the result of the linking; otherwise,

7 2015/12/24

everything is necessarily the same declaration, and that is the
result of the linking.

We have generically defined syntactic linking for all the languages
used in CompCert, as it does not depend on specific language
features.

4.1 Verifying Compositional Correctness Level A
Adapting the Simulation Relation Definition To verify composi-
tional correctness Level A, we will—as in the original CompCert
proof—construct a simulation relationR that relates the initial states
of the source and target programs. The difference is that the source
program consists of multiple files, each of which is separately com-
piled.

prg = s1 ◦ . . . ◦ sn prg′ = Tcp(sn) ◦ . . . ◦ Tcp(sn)

∃R. simulation R ∧ (load(prg), load(prg′)) ∈ R
Therefore, for each function definition (fd) in the source program
(prg), the corresponding function definition (fd′) in the target pro-
gram (prg′) is no longer obtained by transfun(prg, fd), but rather
by transfun(si, fd) for some subprogram si of prg. Moreover, the
value analysis run as part of transfun also gets a subprogram of
prg as its first argument.

Consequently, the simulation relation we use for the proof of
soundness has to change. The main change is, naturally, in the
definition of ∼fdef . Two function definitions are now related if the
second can be obtained by transforming the first in the context of a
subprogram of prg.

prg ` fd ∼fdef fd
′ def

= ∃sprg ⊆ prg. fd′ = transfun(sprg, fd)

where sprg ⊆ prg iff ∃sprg′. sprg ◦ sprg′ = prg.3

The second change is to decouple the two uses of prg in
sound-state, changing its signature so that it takes three arguments:
two programs prg and sprg, and a state s. The first program, prg,
corresponds to the full program and is used to calculate the global
environment, whereas the second program, sprg, is a subprogram
of the first one and is used to perform the global analysis (i.e., to
detect which variables are constant).

We then define a wrapper predicate sound-state′ as follows:

sound-state′(prg, s)
def
= ∀sprg ⊆ prg. sound-state(prg, sprg, s)

and change R to use sound-state′ instead of sound-state.

Adapting the Proof of Value Analysis There are multiple proofs
that require adaptation. First, we have to prove that value analysis
is correct with respect to our stronger invariant. That is, we have to
show that sound-state′ holds of the initial state of a loaded program
and that it is preserved by execution steps.

The latter requirement is actually trivial to show and requires
only very minor changes to the CompCert proof script. The reason
for this, informally, is that the uses of the prg and sprg parameters
in the revised sound-state invariant are really decoupled and that
the preservation proof never depends on them being the same.

The former requirement, however, requires some more work:
not only should sound-state(prg, prg, load(prg)) hold for all pro-
grams prg, but rather sound-state(prg, sprg, load(prg)) should
hold for all programs prg and all subprograms sprg ⊆ prg. In
essence, to satisfy this stronger statement, the additional require-
ment that we have to show is that value analysis is monotone with
respect to linking. That is, for each global variable x, we prove

sprg ⊆ prg =⇒ abs-val(sprg, x) w abs-val(prg, x)

3 In the Coq development, we define sprg ⊆ prg in an equivalent but more
direct, semantic way, rather than relying on syntactic linking (◦). This enables
us to avoid having to prove associativity and commutativity of linking.

// a.c
#include <stdio.h>
int x;
extern int* const xptr;
int main() {
x = 1;
*xptr = 0;
// expected: 0, actual: 2
printf("%d\n",x+x);
return 0;

}

// b.c
#include <stdio.h>
extern int x;
int* const xptr = &x;

Figure 8. A bug due to CompCert 2.4 value analysis: two C files
whose separate compilation and linking exposes the bug.

where abs-val(prg, x) is the abstract value of x computed by the
global analysis on prg. In other words, running the analysis on a
larger program may only give results that are at least as precise.

Somewhat surprisingly, (the global part of) the value analysis
in CompCert 2.4 does not satisfy this monotonicity requirement
because of its treatment of variables declared as both extern and
const. Figure 8 presents two C files that, when compiled separately
and linked together, expose the bug. Since the global variable xptr
is declared using the const qualifier, the global part of CompCert
2.4’s value analysis assumes that it is uninitialized and therefore
assigns it the abstract value ⊥. As a result, the value analysis deems
that xptr cannot possibly alias with x. At the printf statement,
it hence deduces that x = 1, and constant propagation “optimizes”
away the summation x+x to the constant 2, which gets printed. This
analysis, however, is unsound. In particular, the assumption that
xptr is uninitialized is invalid in the context of multiple separately
compiled files: since xptr is also declared as extern, another file
(b.c) can provide a definition that initializes it. And indeed, since
the definition of xptr in b.c causes x and xptr to alias, the correct
result is 0, not 2.

Restoring soundness of the value analysis is straightforward: one
simple if rather crude fix (which has been adopted by CompCert
2.5 since we reported the bug) is just to ignore the const modifier
on extern declarations. Having done that, it is easy to show that
the analysis is monotone with respect to program linking and that
therefore the initial state of loading a program satisfies the stronger
invariant sound-state′(prg, load(prg)).

Adapting the Proof of Constant Propagation Showing that con-
stant propagation is sound requires only very little additional work.

The only important difference is in the treatment of global envi-
ronments that index the ↪→ relation. Generally, these environments
are obtained by the respective programs (ge = get-genv(prg) and
ge′ = get-genv(prg′)).

The original CompCert 2.4 proof used the fact that prg′ =
Tcp(prg) to establish a relationship between ge and ge′. It proved
two basic properties relating the two global environments: (1) that
they map each global variable name to the same block identifier,
and (2) that if ge maps a block identifier to a function signature
or definition fds, then ge′ maps it to transfun(prg, fds), where
transfun applied to a function signature returns the same signature.
These lemmas were then used in the proof that R is a simulation
relation.

Since, now, the relationship between prg and prg′ is more
involved, we have to update the proof of the first lemma, which
is rather straightforward, as well as the statement and proofs of the
second lemma. For the second lemma, we now assert that if gemaps
a block identifier to a function signature or definition fds, then ge′

maps it to transfun(sprg, fds) for some subprogram sprg ⊆ prg.
Besides this change, the proof that now (the new definition of) R is
a simulation relation is basically unchanged. The few lines of the

8 2015/12/24

proof script that required editing were those invoking the lemmas
about the relationship between the global environments.

4.2 Verifying Compositional Correctness Level B
Adapting the Simulation Relation Definition We move on to
verifying the second level of compositional correctness, that of
composition with the same compiler modulo optimization flags. As
we have explained in §2.3, for every optional optimization pass,
we need to show that linking it against the identity compiler is
sound. Since constant propagation is one of the optional optimization
passes, we have to prove the following:

prg = u1 ◦ . . . ◦ um ◦ s ◦ v1 ◦ . . . ◦ vn
prg′ = u1 ◦ . . . ◦ um ◦ Tcp(s) ◦ v1 ◦ . . . ◦ vn

∃R. simulation R ∧ (load(prg), load(prg′)) ∈ R
In the scenario above, the corresponding target function definition
fd′ of a source function definition fd is either syntactically identical
to fd if it belongs to one of the ui/vj files, or has been obtained by
optimizing fd if it belongs to the s file. To account for the change,
we should therefore redefine the ∼fdef relation as follows:

prg ` fd ∼fdef fd
′ def

=
fd′ = fd ∨ (∃sprg ⊆ prg. fd′ = transfun(sprg, fd))

This is the only change needed in the simulation relation.

Adapting the Proof of Constant Propagation To avoid changing
the proof script of the main lemma showing that R is in fact a
simulation, we prove a helper lemma (transf step correct identical)
saying that, given two matching instruction states with fd′ = fd,
when the source state takes a step, the target state can also take a
step and reach a matching state. As explained in §2.3, the content
of the proof of this helper lemma is already present in the existing
simulation proof, just not in one place, so it simply needs to be
extracted and consolidated. We then adapt the proof of the main
lemma (showing R is a simulation) so that it performs a case split
on whether fd = fd′ or not, and correspondingly either invokes our
helper lemma or uses the same proof script as for Level A.

5. Porting CompCert to SepCompCert
In the previous sections, we looked at the specific example of con-
stant propagation in detail and explained how we ported CompCert’s
proof of that pass to SepCompCert’s Level A and B notions of com-
positional correctness. In this section, we discuss some details of
other CompCert passes for which porting to SepCompCert required
some interesting (but still not much) work.

Figure 9 shows which verification technique we apply to each
optimization pass of CompCert. For Level A, we apply the trivial
technique based on commutativity with linking to 13 passes and
the non-trivial technique to 6 passes. For Level B, we apply our
technique to all 6 RTL-to-RTL passes.

5.1 RTL-Level Optimizations that Rely on Value Analysis
Three RTL-level optimizations rely on the value analysis: constant
propagation, common subexpression elimination (CSE), and dead-
code elimination (DCE). These passes are inter-procedural solely
because they rely on the value analysis. Thus, the porting of the
proofs of CSE and DCE to support compositional correctness pro-
ceeded analogously to the porting of the constant propagation pass.

5.2 Selection
The selection pass “recognizes opportunities for using combined
arithmetic and logical operations and addressing modes offered by
the target processor.” [4]. The pass is mostly intra-procedural, except
for the following two transformations on function calls.

Recognizing Immediate Calls The selection pass transforms an
indirect call via a function pointer expression, say ep, into an
immediate call, if it can determine that the expression ep always
evaluates to the pointer to an internal function. The pass uses a
simple analysis classify call(prg, ep) for determining this. For
separate compilation, we proved the monotonicity of the analysis:
the result classify call(sprg, ep) for a subprogram sprg ⊆ prg
is sound w.r.t. the whole program prg.

64-bit Integer Operations into Library Calls The selection pass
transforms some 64-bit integer operations into calls to library helper
functions. For example, (long long) f, a cast from float to
long long, is transformed into a call int64 dtos(f) to the cor-
responding helper function. For this transformation to be valid, the
pass should ensure that the helper function (e.g., int64 dtos) is
declared as an external function in the source program’s global envi-
ronment. CompCert has a designated checker check helpers(prg)
to ensure this property.

For separate compilation, we proved that the checker for helper
functions is monotone w.r.t. linking: check helpers(prg1) and
check helpers(prg2) implies check helpers(prg1 ◦ prg2) for
all programs prg1 and prg2. The proof is a little bit involved, as
linking reorders global declarations, and the corresponding logical
blocks for the helper functions in the global environments may vary.

Compiler Bug We Found The original CompCert 2.4 used a func-
tion get helpers instead of check helpers. We found and re-
ported a compiler bug related to get helpers, which was subse-
quently confirmed.

We found the bug in the course of proving monotonicity regard-
ing get helpers. This function is directly implemented in OCaml
and its property is axiomatized in Coq as follows.

Axiom get_helpers_correct:
forall ge hf, get_helpers ge = OK hf ->
i64_helpers_correct ge hf.

The problem was that this axiom is not strong enough to prove
monotonicity, and even worse, not true for the OCaml implementa-
tion of get helpers. One of the properties this axiom postulates is
that helper functions like int64 dtos are only declared but not
defined in the source program. However, get helpers does not
check it at compile time!

Here is an example that exposes the bug.

#include <stdio.h>
long long __i64_dtos(float t) {
return 3;

}
int main() {
// expected: 5, actual: 3
printf(\%lld\n", (long long) 5.0f);
return 0;

}

Here the cast (long long) 5.0f is converted to a call to the
library helper function i64 dtos(5.0f) by the selection pass.
However, we successfully hijack the function call by overwriting
the function i64 dtos, which results in printing 3 instead of the
correct result 5. Now, strictly speaking, due to the hijacking of a
reserved identifier, this example has undefined semantics according
to the C99 standard, so CompCert’s behavior here is technically
legal. But the dependence on an invalid axiom is clearly a bug.

After we reported this bug, it was fixed in the development branch
of CompCert (and subsequently CompCert 2.5). In this fix, which
we backported to CompCert 2.4 using git-cherry-pick, the
OCaml get helpers function is replaced by the aforementioned
check helpers, which is implemented and verified directly in Coq,
thereby avoiding the need for an invalid axiom.

9 2015/12/24

Figure 9. Optimization passes of SepCompCert Level A and Level B.

5.3 Inlining
The inlining pass is inherently inter-procedural, as it replaces a
call to a simple function with the body of the function. In the
pass, the selector funenv program(prg) chooses internal function
definitions of prg that are worth inlining in other functions. For
the inlining pass to be valid, the pass should ensure that function
definitions in funenv program(prg) are indeed defined in the
global environment get-genv(prg).

For separate compilation, we proved that the global environment
initialization is monotone for function definitions: if a function
definition, say fd, is defined in get-genv(sprg) and sprg ⊆ prg,
then fd is also defined in get-genv(prg). The proof is a little bit
involved for the same reason as for check helpers in the selection
pass: linking reorders global declarations and the corresponding
logical blocks in the global environments.

5.4 SimplExpr
The SimplExpr pass is essentially intra-procedural since just “side
effects are pulled out of CompCert C expressions” [4]. However, it
does not commute with linking because a single counter is used
globally to generate temporary variable names for all function
definitions.

Updating the existing proof was easy because the original
simulation relation R does not bake in the specific way temporary
variable names are generated. Thus, we did not need to change the
simulation relationR and the simulation proof at all. We just needed
to update the proof that the initial states after loading satisfy the
relation R even in the presence of separate compilation, which was
straightforward.

6. Results
We applied our Level A and B techniques to CompCert 2.4 with
three patches applied (two bug fixes and RTL-level optimization
flags), resulting in SepCompCert-LevelA and SepCompCert-LevelB.
In the former, we prove the behavioral refinement result between the

source C program obtained by syntactically linking several C files
and the target assembly program obtained by syntactically linking
the results of compiling source files with the same optimization flag.
In the latter, we prove the same behavioral refinement result even
when each source file is compiled with a different optimization flag.

In the table in Figure 10, we summarize the changes we made
in number of lines of Coq. For these statistics, we first split the
development of CompCert into two categories: (i) Compiler &
Verification; and (ii) Metatheory (i.e., everything else). The former
includes all Coq files in the directories cfrontend, backend,
driver, arm, ia32, and powerpc; and the latter includes all other
files.

We calculated the statistics fully automatically using the Unix
diff command. The column Rm shows the number of lines of
code (LOC) removed from the original CompCert code reported
by the diff command, and the columns AddD and AddN together
show the number of LOC added in SepCompCert. Here, AddD
counts the LOC that are derived from the original CompCert code
including copy-pasted-and-modified code and AddN the LOC that
we newly proved. We syntactically marked the newly proved code
in SepCompCert, so that we can automatically distinguish AddD
and AddN.

The shaded part in the table denotes interesting changes we
made. In Level A, the shaded part is mainly due to proving various
monotonicity properties. In Level B, the shaded part is mainly
due to copy-paste-and-modifying the original proof of simulation.
Examples of (what we consider) uninteresting changes, which are
not shaded, include (a) proving straightforward “wheel-greasing”
lemmas that merely serve to streamline the proof effort, and (b)
updating automatically generated hypothesis names appropriately
(e.g., changing apply H1 to apply H2).

SepCompCert supports verified separate compilation to all three
target assembly languages of CompCert—PowerPC, ARM, and
IA32—with very few changes made to the original proofs. In
the whole development, for Level A, we modified only 0.2%
of the existing code (Rm) and introduced an additional 1.6%

10 2015/12/24

CompCert SepCompCert-LevelA SepCompCert-LevelB
(LOC) Rm AddD AddN Rm AddD AddN

Total 206702 318 (0.2%) 465 (0.2%) 3392 (1.6%) 372 (0.2%) 1439 (0.7%) 4845 (2.3%)
Compiler & Verification 88451 318 (0.4%) 465 (0.5%) 1153 (1.3%) 372 (0.4%) 1439 (1.6%) 1726 (2.0%)
driver/Compiler.v 367 6 (1.6%) 6 (1.6%) 9 (2.5%) 9 (2.5%)
../ValueAnalysis.v 1825 16 (0.9%) 33 (1.8%) 86 (4.7%) 16 (0.9%) 33 (1.8%) 86 (4.7%)
../Cstrategy.v 3070
../SimplExpr(proof|spec).v 3383 14 (0.4%) 10 (0.3%) 68 (2.0%) 14 (0.4%) 10 (0.3%) 68 (2.0%)
../SimplLocalsproof.v 2251 19 (0.8%) 19 (0.8%)
../Cshmgenproof.v 1515 21 (1.4%) 21 (1.4%)
../Cminorgenproof.v 2256 11 (0.5%) 11 (0.5%)
../Select*proof.v 2686 86 (3.2%) 117 (4.4%) 203 (7.6%) 86 (3.2%) 117 (4.4%) 203 (7.6%)
../RTLgen(proof|spec).v 2781 12 (0.4%) 12 (0.4%)
../Tailcallproof.v 627 8 (1.3%) 21 (3.3%) 186 (29.7%) 37 (5.9%)
../Inlining(proof|spec).v 1979 59 (3.0%) 98 (5.0%) 50 (2.5%) 60 (3.0%) 323 (16.3%) 64 (3.2%)
../Renumberproof.v 267 30 (11.2%) 126 (47.2%) 35 (13.1%)
../Constpropproof.v 644 50 (7.8%) 68 (10.6%) 26 (4.0%) 52 (8.1%) 180 (28.0%) 36 (5.6%)
../CSEproof.v 1238 29 (2.3%) 56 (4.5%) 34 (2.7%) 30 (2.4%) 146 (11.8%) 45 (3.6%)
../Deadcodeproof.v 1024 58 (5.7%) 77 (7.5%) 34 (3.3%) 54 (5.3%) 171 (16.7%) 45 (4.4%)
../Allocproof.v 2219 14 (0.6%) 14 (0.6%)
../Tunnelingproof.v 417
../Linearizeproof.v 750 8 (1.1%) 8 (1.1%)
../CleanupLabelsproof.v 372
../Stackingproof.v 2894 10 (0.3%) 10 (0.3%)
../Asmgenproof0proof.v 867
arm/*proof*.v 4046
ia32/*proof*.v 3683
powerpc/*proof*.v 3912
others in cfrontend, backend,
driver, arm, ia32, powerpc 43378 549 (1.3%) 138 (0.3%) 1012 (2.3%)

Metatheory 118251 2239 (1.9%) 3119 (2.6%)

Rm: LOC removed from CompCert AddD: LOC added but derived from CompCert AddN: LOC newly added
%: ratio to the LOC of CompCert shaded cell : interesting changes

Figure 10. Changes to lines of code when porting CompCert to SepCompCert-LevelA and SepCompCert-LevelB.

(AddN+AddD-Rm); and for Level B, we modified only 0.2%
of the existing code (Rm) and introduced an additional 2.8%
(AddN+AddD-Rm). We spent less than two person-months in total
for the whole development, much of which was spent understanding
the existing CompCert development.

7. Discussion and Related Work
Compositional Compiler Correctness The most closely related
work to ours is Stewart et al.’s Compositional CompCert [17], which
establishes compositional correctness for a significant subset of
CompCert 2.1. Their approach builds on their previous work on
interaction semantics [3], which defines linking between modules
in a (somewhat) language-independent way. (The languages in
question must share a common memory model, as is the case for
C, assembly, and all the intermediate languages of CompCert.)
Essentially, interaction semantics enables Compositional CompCert
to reduce the compiler verification problem to one of contextual
refinement. The output of the compiler is proven to refine the source
under an arbitrary “semantic context”, which may consist of a
linking of C and assembly modules.

On the one hand, Compositional CompCert is targeting a more
ambitious goal than SepCompCert. Their approach inherently sup-
ports the possibility of linking results of multiple different compilers,
as well as the ability to link C modules with hand-coded assembly
modules, both of which are beyond the scope of our techniques.

On the other hand, as we explained in the introduction, the
modesty of our goal is quite deliberate—it enables our SepCompCert
verification to use a considerably more lightweight approach than
they do. For example, they report that their porting of CompCert
passes to verify compositional correctness took approximately

10 person-months and led to more than a doubling in the size
of each pass. In contrast, our porting took less than 2 person-
months, and even if we look at just the passes alone (ignoring
the metatheory), they are on average less than 2% (for Level A) or
4% (for Level B) larger than the original CompCert passes. The
new metatheory backing up our proof technique is also smaller than
the corresponding new metatheory of Compositional CompCert by
roughly a factor of 7.

One reason for this, we believe, is that the structured simulations
employed in the Compositional CompCert proof require all passes
in the compiler to be verified using a common “memory-injection”
invariant. In contrast, with SepCompCert we were able to essentially
reuse the invariants from the original CompCert proof, which are
different for different passes. Another potential reason concerns the
treatment of inter-module vs. external function calls. In CompCert,
external functions are assumed to satisfy a number of axioms, which
are used in the verification to establish that external function calls
preserve the simulation relation in each pass. In Compositional
CompCert, inter-module function calls are treated the same as
external function calls, and as a result Stewart et al.’s verification
must additionally establish that functions compiled by the compiler
satisfy the external function axioms. In contrast, with SepCompCert
we reduce the problem of verifying separate compilation to that of
verifying correctness of compilation for a whole (multi-module)
program. Thus, for us, inter-module function calls are not treated
as external calls—they merely shift control to another part of the
program—and there is no need for us to prove that CompCert-
compiled functions satisfy the external function axioms.

There are two other points of difference worth mentioning. First,
we have ported over the entire CompCert 2.4 compiler, from C to

11 2015/12/24

assembly (including the x86, Power, and ARM backends), whereas
Compositional CompCert omitted the front-end of CompCert 2.1
(from C to Clight), along with three of its RTL-level optimizations
(CSE, constant propagation, and inlining). Second, due to its use of
interaction semantics, Compositional CompCert employs a bespoke
“semantic” notion of linking (even for linking assembly files), which
has not yet been related to the standard notion of syntactic linking
(see §4) that we employ in the SepCompCert verification. Syntactic
linking corresponds much more closely to the physical linking of
machine code implemented by the gcc linker that CompCert uses
by default. Proving this is outside the scope of our verification effort,
however, since CompCert only verifies correctness of compilation
down to the assembly level, not to the machine-code level where
linking is actually performed.

Concurrently with Stewart et al.’s work, Ramananandro et al. [14]
developed a different approach to compositional correctness for
CompCert. While similar in many ways to the approach of Stew-
art et al., the compositional semantics of Ramananandro et al.
defines linking so that the linking of assembly-level modules boils
down to syntactic linking (essentially, concatenation), as it does
in SepCompCert. On the other hand, they have only used their
approach to compositionally verify a few passes of CompCert.

Also concurrently with the above work, Gu et al. [5] have
developed CompCertX, a compositional adaptation of CompCert
specifically targeted for use in the compositional verification of OS
kernels. CompCertX supports linking of compiled C code with hand-
written assembly code, and ports over all passes of CompCert, but
the source and target of the compiler are different from CompCert’s.
In particular, the ClightX source language of CompCertX does not
generally allow functions to modify other functions’ stack frames
and thus does not support stack-allocated data structures. Although
this restriction is not problematic for their particular application to
OS kernel verification, it means that, as the authors themselves note,
“CompCertX can not be regarded as a full featured separate compiler
for CompCert.”

There have been several approaches proposed for compositional
correctness of compilers other than CompCert as well, although
these all involve de novo verifications rather than ports of existing
whole-program compiler verifications.

Perconti and Ahmed [13] present an approach to composi-
tional compiler correctness for ML-like languages. They use multi-
language semantics to combine all the languages of a compiler into
one joint language, with wrapping operations to coerce values in one
language to values of the appropriate type in the other languages.
Like Compositional CompCert, their approach recasts the compiler
verification problem as a contextual refinement problem, except that
they model contexts syntactically rather than semantically and use
logical relations as a proof technique for establishing contextual
refinement rather than structured simulations. It is difficult to gauge
how well this approach scales as a practical compiler verification
method because it has not yet been mechanized or applied to a
full-blown compiler.

Wang et al. [18] develop a compositional verification framework
for a compiler for Cito, a simple C-like language [18]. Their
approach is quite different from the others in that it characterizes the
compiler verification problem in terms of Hoare-style specifications
of assembly code. Currently, the approach is limited in its ability
to talk about preservation of termination-sensitive properties, and
as its verification statement is so different from the traditional end-
to-end behavioral refinement result established by a compiler like
CompCert, it is not clear how Wang et al.’s method could reuse
existing CompCert-style verifications.

Most recently, Neis et al. [12] present parametric inter-language
simulations (PILS), which they use to compositionally verify Pilsner,
a compiler for an ML-like core language, in Coq. PILS build

on earlier work by Hur et al. on logical relations [2, 6] and
parametric bisimulations (aka relation transition systems) [7, 8].
Pilsner supports a very strong compositional correctness statement,
but it also required a major verification effort, involving several
person-years of work and 55K lines of Coq.

Generality of Our Techniques In this paper, we have presented
several simple techniques for establishing Level A and Level B
compositional correctness, and demonstrated the feasibility and
effectiveness of these techniques by porting a major landmark
compiler verification (CompCert 2.4) to support compositional
correctness without much difficulty at all. We hope the almost
embarrassingly simple nature of these techniques will encourage
future compiler verifiers to consider proving at least a restricted
form of compositional correctness for their compilers from the start.

One may wonder, however, how general our techniques are. Are
they dependent on particular aspects of CompCert 2.4? Can they be
applied to other verified compilers? For C or for other languages?
Given the landscape of compiler verification, dotted as it is with
unique and majestic mountains, it is difficult to give sweepingly
general answers to these questions. But we can say the following.

We believe our techniques should be applicable to the most
recent version of CompCert (2.5), but a necessary first step is to
determine the appropriate notion of syntactic linking. CompCert
2.5 introduces support for static variables (which in C means
variables that are only locally visible within a single file). The
presence of static variables means that the simple canonical
definition of syntactic linking we have used no longer works and
must be revisited. Assuming a reasonable definition can be found, as
we expect, we do not foresee any problems adapting our techniques
to handle it.

Regarding the application to compilers for other languages, we
can only speculate, but we also do not foresee any fundamental
problems. For instance, CakeML [9] is a verified compiler for a sig-
nificant subset of Standard ML, implemented in HOL4. CakeML’s
end-to-end verification statement concerns the correctness of an
x86 implementation of an interactive SML read-eval-print loop. In
that sense, the verification is not exactly “whole-program” because
new code can be compiled and added to a global database interac-
tively. But it also does not support true separate compilation in the
sense that SepCompCert does because modules cannot be compiled
independently of the other modules they depend on.

We believe in principle it should be possible to use our techniques
to adapt CakeML to verify correctness of separate compilation,
because CakeML is not an optimizing compiler and in particular
does not perform any optimizations that depend fundamentally on
the whole-program assumption. The key challenge will be figuring
out how to define separate compilation and linking themselves.
The latter may be especially interesting since CakeML (unlike
CompCert) verifies correctness of compilation all the way down to
x86-64 machine code, and thus linking will need to be defined at the
machine-code level.

Acknowledgements
This research has been supported in part by the ICT R&D program
of MSIP/IITP (Grant R0132-15-1006), and in part by EC FET
project ADVENT (308830). The first and second authors have been
supported by Korea Foundation for Advanced Studies Scholarships.

We thank Jim Apple and Xavier Leroy for helpful feedback.

12 2015/12/24

References
[1] Andrew W. Appel. Program Logics for Certified Compilers. Cam-

bridge University Press, 2014.

[2] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and
compiler correctness. In ICFP, 2009.

[3] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W.
Appel. Verified compilation for shared-memory C. In ESOP, 2014.

[4] The CompCert C compiler. http://compcert.inria.fr/.

[5] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. Deep specifications and certified abstraction layers. In POPL,
2015.

[6] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between
ML and assembly. In POPL, 2011.

[7] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. The
marriage of bisimulations and Kripke logical relations. In POPL, 2012.

[8] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The
transitive composability of relation transition systems. Technical
Report MPI-SWS-2012-002, MPI-SWS, 2012.

[9] Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott Owens.
CakeML: A verified implementation of ML. In POPL, 2014.

[10] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

[11] Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[12] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, and Viktor Vafeiadis. Pilsner: A compositionally verified
compiler for a higher-order imperative language. In ICFP, 2015.

[13] James T. Perconti and Amal Ahmed. Verifying an open compiler using
multi-language semantics. In ESOP, 2014.

[14] Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig,
and Yuchen Fu. A compositional semantics for verified separate
compilation and linking. In CPP, 2015.

[15] SepCompCert. http://sf.snu.ac.kr/sepcompcert/.

[16] J. Souyris. Industrial use of CompCert on a safety-critical software
product, February 2014. Talk slides available at: http://projects.
laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf.

[17] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. Compositional CompCert. In POPL, 2015.

[18] Peng Wang, Santiago Cuellar, and Adam Chlipala. Compiler verifica-
tion meets cross-language linking via data abstraction. In OOPSLA,
2014.

13 2015/12/24

http://compcert.inria.fr/
http://sf.snu.ac.kr/sepcompcert/
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf

	Introduction
	High-Level Overview
	CompCert's Whole-Program Compilation Correctness
	SepCompCert's Compositional Correctness Level A
	SepCompCert's Compositional Correctness Level B

	Constant Propagation in CompCert
	RTL Syntax and Semantics
	Constant Propagation in CompCert
	CompCert's Verification of Constant Propagation

	Adapting the Constant Propagation Proof
	Verifying Compositional Correctness Level A
	Verifying Compositional Correctness Level B

	Porting CompCert to SepCompCert
	RTL-Level Optimizations that Rely on Value Analysis
	Selection
	Inlining
	SimplExpr

	Results
	Discussion and Related Work

