
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Taming Release-Acquire Consistency

Ori Lahav Nick Giannarakis Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS), Germany

{orilahav,nickgian,viktor}@mpi-sws.org

Abstract
We introduce a strengthening of the release-acquire fragment of
the C11 memory model that (i) forbids dubious behaviors that are
not observed in any implementation; (ii) supports fence instructions
that restore sequential consistency; and (iii) admits an equivalent
intuitive operational semantics based on point-to-point communi-
cation. This strengthening has no additional implementation cost:
it allows the same local optimizations as C11 release and acquire
accesses, and has exactly the same compilation schemes to the x86-
TSO and Power architectures. In fact, the compilation to Power is
complete with respect to a recent axiomatic model of Power; that
is, the compiled program exhibits exactly the same behaviors as the
source one. Moreover, we provide criteria for placing enough fence
instructions to ensure sequential consistency, and apply them to an
efficient RCU implementation.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords Weak memory model; release-acquire; C11; opera-
tional semantics

1. Introduction
Weak memory models for programming languages formalize the
set of behaviors that multithreaded programs may exhibit taking
into account the effect of both the hardware architectures and com-
piler optimizations. An important such model is the C11 model in-
troduced in the 2011 revisions of the C and C++ standards [14, 15].

C11 provides several kinds of memory accesses, each having
a different implementation cost and providing different synchro-
nization guarantees. At one end of the spectrum, non-atomic ac-
cesses provide absolutely no guarantees in case of racy access (they
are considered programming errors). At the other end, sequentially
consistent accesses are globally synchronized following the simple
and well-known model of sequential consistency (SC) [19]. Be-
tween these two extremes, the most useful access kinds are release

[Copyright notice will appear here once ’preprint’ option is removed.]

stores and acquire loads that strike a good balance between perfor-
mance and programmability.

While the full C11 model suffers from some problems (such
as “out-of-thin-air executions” [8, 38]), its release-acquire frag-
ment, obtained by restricting all writes and reads to be release
and acquire accesses respectively, constitutes a particularly useful
and (relatively) well-behaved model. This fragment, hereinafter re-
ferred to as RA, provides much weaker guarantees than SC, that
allow high performance implementations, and still suffice for fun-
damental concurrent algorithms (e.g., a variant of the read-copy-
update synchronization mechanism [13] presented in the sequel).
To understand RA, consider the following two programs:

Store buffering (SB)
Initially, x = y = 0.

x := 1
wait(y=0)

y := 1
wait(x=0)

May terminate under RA.

Message passing (MP)
Initially, x = y = 0.

x := 1
y := 1

wait (y = 1)
wait (x = 0)

Never terminates under RA.
RA is designed to support “message passing”, a common idiom
for relatively cheap synchronization between threads. On the other
hand, to allow efficient implementations, a non-SC behavior is al-
lowed in the case of the “store buffering” program. An intuitive (but
incomplete) explanation of these examples can be given in terms of
reorderings (performed by the hardware and/or the compiler): con-
secutive write and read accesses may be arbitrarily reordered, but
reordering of two reads or two writes is disallowed. This easily ac-
counts for the non-SC result of the SB program, and explains why
MP does not expose undesirable behaviors.

The precise formulation of RA is declarative (also known as ax-
iomatic): the model associates a set of graphs (called: executions)
to every program, and filters out disallowed executions by imposing
certain formal restrictions. Roughly speaking, it requires that every
read is justified by a corresponding write, that cannot appear later
according to the program order. This induces a happens-before re-
lation on the memory accesses, that, assuming only release/acquire
accesses, is taken to be the union of the program order and the
reads-from justification edges. An additional condition is needed
to ensure that reads cannot observe overwritten values. For that,
the model asserts the existence of a per-location modification order
that orders write accesses, and requires that reads are justified only
by writes that happened before and are maximal according to the
modification order.

The RA model is appropriate as a rigorous foundation that is
not tied to a particular compiler and architecture. Further, C11 in
general, and RA in particular, has verified compilation schemes to
the x86-TSO and Power/ARM architectures [6, 7, 29]. However,
RA suffers from three problems.

Problem 1: Unobservable relaxed behaviors. First, there is a
mismatch between the declarative model and the intuitive reorder-
ing account. The following program (again, assuming all accesses
are release/acquire) may terminate under the formal model if the

1 2015/11/6

x := 2 and y := 2 writes are placed before the x := 1 and y := 1
writes in the respective modification orders.

x := 1
y := 2

y := 1
x := 2

wait (x = 1 ∧ y = 1)
(2+2W)

Disallowing reordering of consecutive writes should, however, for-
bid this behavior. Furthermore, this behavior is not observable on
any known hardware under any known sound compilation scheme
of the C11 release writes.

Problem 2: Overly weak SC fences. C11 provides a memory
fence construct, called SC fences, that enforces stronger ordering
guarantees among memory accesses. Despite their name, however,
C11’s semantics for these fences is overly weak and fails to en-
sure sequential consistency when used in conjunction with release-
acquire accesses. For example, consider the following program:

x := 1 y := 1
wait (x = 1)
wait (y = 0)

wait (y = 1)
wait (x = 0)

(IRIW)

Assuming that initially x = y = 0, this program may terminate
under RA. Furthermore, according to the C11 semantics, inserting
SC fence instructions between the two waits on the reader threads
does not rule out this weak behavior. Again, this is a result of
too liberal specification: the compilation of SC fences generates
hardware fence instructions (mfence on x86-TSO, sync on Power,
dmb on ARM, mf on Itanium) that forbid such weak behaviors.1

Problem 3: No intuitive operational semantics. The axiomatic
nature of RA is also a drawback: global restrictions on executions
do not allow the traditional understanding of programs that simu-
lates their step-by-step progress. Thus, both programming and de-
veloping techniques for reasoning about programs are substantially
more difficult with a purely declarative memory model. For these
tasks, a more operational approach can be very helpful. The most
well-known example is, of course, SC, that is naturally modeled
by a machine with one global shared memory and interleaved ac-
cesses.

For weak models, total store ordering (TSO) [25, 33] provides
a good case in point. This weak memory model emerged from a
concrete operational model provided by the SPARC and x86 archi-
tectures. In addition to a main memory, TSO-machines have per-
processor store buffers, where write operations are enqueued, and
non-deterministically propagate to the main memory. Based on this
operational model, several reasoning methods and analysis tech-
niques have been developed for TSO. This includes some of the
most useful and well-studied verification techniques: model check-
ing and abstract interpretation (see, e.g., [1, 5, 12, 17, 20]), program
logics (see, e.g., [27, 32]), simulations for verifying program trans-
formations (see, e.g., [16, 22, 30, 37]), and reductions to SC (see,
e.g., [2, 9, 10, 24]).

In this paper, we attempt to overcome these drawbacks. We
propose a simple strengthening of RA that solves problems 1 and 3,
and an alternative modeling of SC fences to solve problem 2. Next,
we briefly overview each of these contributions.

Strong release-acquire. We introduce a model, called SRA (for
“Strong RA”), that strengthens RA by requiring the union of the
per-location modification orders and the happens-before relation
to be acyclic. As a result, SRA forbids behaviors that require
reordering of two writes as in the (2+2W) example, but coincides
with RA for programs containing no write-write races.

1 Specifically for the IRIW program, we note that on x86-TSO and
Itanium, its weak behavior is forbidden even without a fence. For Itanium,
see ftp://download.intel.com/design/Itanium/Downloads/
25142901.pdf, §3.3.5.

More importantly, alongside the declarative definition, SRA has
an intuitive operational presentation, that, like the operational se-
mantics of TSO, does not refer at all to formal restrictions on graphs
and partial orders. Unlike TSO, SRA-machines are based on point-
to-point communication: processors have local memories and they
communicate with one another via ordered message buffers using
global timestamps to order different writes to the same location.
This operational model is not meant to mimic any real hardware im-
plementation, but to serve as a formal foundation for understanding
and reasoning about concurrent programs under SRA.

Moreover, we show that SRA allows the same program trans-
formations as RA and has the same implementation cost over x86-
TSO and Power. For the latter, we prove that the existing compi-
lation schemes for the C11 release-acquire accesses to TSO and
Power guarantee the stronger specification of SRA. In fact, under
the declarative Power/ARM memory model of Alglave et al. [4] the
compilation to Power corresponds exactly to SRA, which means
that SRA cannot further be strengthened without performance im-
plications. In contrast, TSO is strictly stronger than SRA (the dif-
ference can be observed even with two threads). Nevertheless, for a
restricted class of programs following a certain client-server com-
munication discipline, we prove that TSO and SRA coincide.

Stronger semantics for SC fences. To address problem 2 above,
we suggest a new semantics for SC fences. Our key idea is to
model SC fence commands using an existing mechanism: as if
they were atomic (acquire-release) update commands to a special,
otherwise unused, location with an arbitrary value. We show that
inserting fences between every two potentially racy RA accesses in
each thread restores SC. For a particular large and common class
of programs, it suffices to have a fence between every potentially
racy write and subsequent potentially racy read. To demonstrate
the usefulness of this criterion, we show how it can be utilized
to reduce reasoning about the correctness of an RA-based RCU
implementation down to SC.

Moreover, we show that this modeling of SC fences bears no
additional implementation cost, and again one can follow the ex-
isting compilation scheme used for SC fences to TSO and Power.
In fact, we prove that the semantics of Power’s sync instruction is
equivalent to our modeling of SC fences as acquire-release updates.

The rest of this paper is organized as follows: §2 reviews the RA
memory model, §3 presents our declarative SRA model, §4 pro-
vides an equivalent operational model for SRA, §5 discusses fences
and reduction theorems to SC, §6 shows that TSO is stronger than
SRA and presents conditions under which they are equivalent, §7
proves that Power’s sync fences are equivalent to release-acquire
updates to a distinguished location and that SRA and its compi-
lation to Power are equivalent, §8 discusses related work, and §9
concludes.

Supplementary material including full proofs as well as Coq
proof scripts is available at: http://plv.mpi-sws.org/sra/.
Except for the results in §4, all propositions and theorems of this
paper have been proved in Coq with minor presentational differ-
ences.

2. RA Memory Model
In this section, we present RA, the declarative model behind the
release-acquire fragment of C11’s memory model [6]. The basic
approach in the C11 formalization is to define the semantics of a
program P to be the set of consistent executions of P . For the sim-
plicity of the presentation, we employ a simplified programming
language. While our notations are slightly different, the declarative
semantics presented in this section corresponds exactly to the se-
mantics of C11 programs from [6] in which all reads are acquire

2 2015/11/6

ftp://download.intel.com/design/Itanium/Downloads/25142901.pdf
ftp://download.intel.com/design/Itanium/Downloads/25142901.pdf
http://plv.mpi-sws.org/sra/

skip; c −→ c

c1
l−→ c′1

c1; c2
l−→ c′1; c2

c1 −→ c′1
c1; c2 −→ c′1; c2

y ∈ fv[e] l = 〈R, y, v〉

x := e
l−→ x := e{v/y}

fv[e] = ∅ l = 〈W, x, JeK〉

x := e
l−→ skip

l = 〈U, x, v, JeK(v)〉

〈x := e(x)〉 l−→ skip

y ∈ fv[e] l = 〈R, y, v〉

if e then c else c′
l−→ if e{v/y} then c else c′

fv[e] = ∅ JeK 6= 0

if e then c else c′ −→ c

fv[e] = ∅ JeK = 0

if e then c else c′ −→ c′

repeat c until e −→ c; if e then (repeat c until e) else skip

l = 〈R, x, v〉 JeK(v) = 0

when e(x) do x := e′(x)
l−→ when e(x) do x := e′(x)

l = 〈U, x, v, Je′K(v)〉 JeK(v) 6= 0

when e(x) do x := e′(x)
l−→ skip

Figure 1. Command steps.

P (i)
l−→ c

P
l,i−−→ P [i 7→ c]

P (i) −→ c

P −→ P [i 7→ c]

Figure 2. Program steps

lab(a) = l tid(a) = i

G
l,i−−→ G; a

Figure 3. Execution steps

P
l,i−−→ P ′ G

l,i−−→ G′

〈P,G〉 −→ 〈P ′, G′〉
P −→ P ′

〈P,G〉 −→ 〈P ′, G〉

Figure 4. Program and execution combined steps

reads, writes are release writes, and atomic updates are acquire-
release read-modify-writes (RMWs).

Basic notations. Given a relation R on a set A, R?, R+, and R∗

respectively denote its reflexive, transitive, and reflexive-transitive
closures. The inverse relation of R is denoted by R−1. When R is
a strict partial order, a pair 〈a, b〉 ∈ R is called an immediate R-
edge if b immediately follows a in R, that is: no c ∈ A satisfies
both 〈a, c〉 ∈ R and 〈c, b〉 ∈ R. We denote by R1;R2 the
left composition of two relations R1, R2. Finally, IdA denotes the
identity relation on the set A.

A simplified programming language. We assume a finite set
Loc of locations, a finite set Val of values with a distinguished
value 0 ∈ Val, and any standard interpreted language for expres-
sions containing at least all locations and values. We use x, y, z as
metavariables for locations, v for values, e for expressions, and de-
note by fv[e] the set of locations that appear free in e. The sequential
fragment of the language is given by the following grammar:

c ::= skip | if e then c else c | repeat c until e | wait e |
c ; c | x := e | 〈x := e(x)〉 | when e(x) do x := e′(x)

All commands are standard. The command wait e is a syntactic
sugar for repeat skip until e. The command 〈x := e(x)〉
is an atomic assignment corresponding to a primitive RMW in-
struction and, as such, mentions only one location. The command
when e(x) do x := e′(x) corresponds to a compare-and-swap
loop, that loops until the value v of x satisfies JeK(v) 6= 0, and then
atomically assigns Je′K(v) to x.

To define multithreaded programs, we assume a constant num-
ber N of threads with thread identifiers being 1, ... , N , and take
a program P to be a function that assigns a command c to every
thread identifier. We use i, j as metavariables for thread identifiers.

Executions. We employ the following terminology:

• A type is either R (“Read”), W (“Write”), or U (“Update”). We
use T as a metavariable for types.

• A label is either a triple of the form 〈R, x, vr〉, a triple of the
form 〈W, x, vw〉, or a quadruple of the form 〈U, x, vr, vw〉. We
denote by Lab the set of all labels.

• An event is a tuple of the form 〈k, i, l〉, where k is an event
identifier (natural number), i is a thread identifier (natural num-
ber), and l is a label. The functions id, tid, lab, typ, loc, valr ,

and valw respectively return (when applicable) the k, i, l, T, x,
vr and vw components of an event (or its label). We denote by
A the set of all events, while R,W , and U respectively denote
the set of events a ∈ A with typ(a) being R, W, or U.

• A reads-from edge is a pair 〈a, b〉 ∈ (W ∪ U) × (R ∪ U)
satisfying loc(a) = loc(b) and valw(a) = valr(b).

An execution G is a triple 〈A, po, rf 〉 where:

• A ⊆ A is a finite set of events. We denote by G.Tx the set of
events a ∈ A for which typ(a) = T and loc(a) = x, whileG.T
denotes the set

⋃
xG.Tx.

• po, called program order, is a strict partial order on A.
• rf is a set of reads-from edges in A×A.

Note that the program order of an execution may not respect
the thread identifiers assigned to its events. This cannot happen in
executions that are generated by programs (see Prop. 1 below).

Relating programs and executions. Figure 1 presents the seman-
tics of sequential programs (commands in our language) as a la-
beled transition system. The system associates (some) command
steps with labels in Lab. Note that in this stage the values of reads
are completely arbitrary. Given the command steps, program steps
are also labeled transitions, as presented in Fig. 2. These are asso-
ciated with pairs of the form 〈l, i〉 ∈ Lab× {1, ... , N}.

To relate programs with executions, we combine the program
steps with execution steps. The definition of execution steps, given
in Fig. 3, employs the following notation:

Notation 1. Given two executions G1 = 〈A1, po1, rf 1〉 and
G2 = 〈A2, po2, rf 2〉, with A1 ∩ A2 = ∅, we denote by G1;G2

the execution 〈A1 ∪A2, po1 ∪ po2 ∪ po, rf 1 ∪ rf 2〉, where po =
{〈a1, a2〉 ∈ A1×A2 | tid(a1) = tid(a2)}. We identify an event a
with the execution 〈{a}, ∅, ∅〉 when writing expressions like G; a.

Thus, each execution step labeled with l, i augments an execu-
tion G with an event a, whose label is l and thread identifier is i.
Fig. 4 presents the combined semantics, where steps are either a la-
beled program step combined with an execution step with the same
label, or an internal program step that does not affect the execution.

Definition 1. We say that G is an execution of a program P if
〈P,G∅〉 −→∗ 〈Pfinal, G〉, where G∅ denotes the empty execution
(i.e., G∅ = 〈∅, ∅, ∅〉), and Pfinal is the program given by λi. skip.

3 2015/11/6

x := 1
y := 2
z1 := 1
wait (z2 = 1)
wait (x = 1)

y := 1
x := 2
z2 := 1
wait (z1 = 1)
wait (y = 1)

〈W, x, 1〉

〈W, y, 2〉

〈W, z1, 1〉

〈R, z2, 1〉

〈R, x, 1〉

〈W, y, 1〉

〈W, x, 2〉

〈W, z2, 1〉

〈R, z1, 1〉

〈R, y, 1〉

Figure 5. A program together with one of its executions. Arrows
denote immediate program order edges.

Figure 5 provides an example of a program (a thread-partitioned
version of the (2+2W) example from §1) and one of its executions.
Note that if G is an execution of some program P then it does not
include any reads-from edges, and it is well-structured with respect
to tid. We refer to such executions as plain:

Definition 2. An execution G = 〈A, po, rf 〉 is called plain if
rf = ∅, 1 ≤ tid(a) ≤ N for every a ∈ A, and tid(a) = tid(b) iff
〈a, b〉 ∈ po ∪ po−1 for every two different events a, b ∈ A.

The last condition guarantees that po consists of a disjoint union
of N strict total orders, one for each thread.

Proposition 1. If 〈P,G∅〉 −→∗ 〈P ′, G〉 then G is plain.

Consistency. Many of the executions associated with a program
P are nonsensical as they can, for instance, read values never
written in the program. Thus, the model restricts the attention to
consistent executions. For the purpose of this paper, following [18],
we find it technically convenient to define consistency using two
properties, that we call completeness and coherence.

Definition 3. An execution G = 〈A, po, rf 〉 is called complete if
for every b ∈ G.R ∪G.U, we have 〈a, b〉 ∈ rf for some a ∈ A.

Completeness of an execution guarantees that every read/update
event is justified by a corresponding write/update (recall that, by
definition, reads-from edges are only from a write/update event to
a read/update event with the same location and value). Obviously,
not all reads-from edges are allowed. Roughly speaking, the model
has to ensure that overwritten values are not read. RA does this by
asserting the existence of a modification order on write accesses to
the same location, as defined next.

Definition 4. Given x ∈ Loc, a relation mox is an x-modification
order in an execution G = 〈A, po, rf 〉 if the following hold:

• mox is a strict total order on G.Wx ∪G.Ux.
• mox ; (po ∪ rf)+ is irreflexive.
• If 〈a, c〉 ∈ rf and 〈b, c〉 ∈ (po ∪ rf)+ ∪ mox , then 〈a, b〉 6∈
mox .

Figure 6 illustrates the conditions on mox imposed by this def-
inition. First, (po ∪ rf)+ (that corresponds to C11’s “happens-
before” relation) between two write accesses enforces mox in
the same direction. The second forbidden case corresponds to
C11’s coherence write-read axiom, that ensures that read/update
events cannot read from an overwritten write/update event. The
third case is needed to assert that update events read from the
mox -latest event. Note that program order always appears together
with the reads-from relation. This follows the basic principle of
release/acquire consistency according to which reads-from edges
induce synchronizations between events.

The following alternative more compact definition of an x-
modification order is useful in some of the proofs below.

Wx/Ux

Wx/Ux

(po ∪ rf)+mox

Wx/Ux Wx/Ux

Rx/Ux

rf (po ∪ rf)+

mox
Wx/Ux Wx/Ux

Ux

rf mox

mox

Figure 6. Illustration of forbidden cases according to Def. 4.

〈W, x, 1〉

〈W, y, 2〉

〈W, z1, 1〉

〈R, z2, 1〉

〈R, x, 1〉

〈W, y, 1〉

〈W, x, 2〉

〈W, z2, 1〉

〈R, z1, 1〉

〈R, y, 1〉

rf rf
rf rf

mox moy

Figure 7. Evidence for RA-consistency of the execution in Fig. 5.

Proposition 2. A relation mox is an x-modification order in an ex-
ecutionG = 〈A, po, rf 〉 iff it is a strict total order onG.Wx∪G.Ux,
and po∪rf ∪mox∪frx is acyclic, where frx = (rf −1;mox) \ IdA.

Next, RA-coherent executions are those that never read “over-
written” values, and RA-consistent executions are defined by com-
bining completeness and RA-coherence.

Definition 5. An executionG = 〈A, po, rf 〉 is called RA-coherent
if po ∪ rf is acyclic (i.e., (po ∪ rf)+ is irreflexive) and for every
x ∈ Loc, there exists an x-modification order in G.

Definition 6. A plain execution G = 〈A, po, ∅〉 is called RA-
consistent if G′ = 〈A, po, rf 〉 is complete and RA-coherent for
some set rf ⊆ A×A of reads-from edges.

Figure 7 presents four reads-from edges whose addition to the
execution in Fig. 5 results in an RA-coherent execution. In the
same figure, we also depict modification orders for each location,
witnessing RA-coherence.

Finally, we define the semantics of programs under RA. The
idea is to filter out the non-consistent executions among all execu-
tions of a given program. If we are left with at least one execution,
then the program may terminate under RA. In the formal defini-
tion, we also support initialized locations. Thus, we assume some
initial state, taken to be a function σ from Loc to Val∪{⊥}, where
σ(x) = ⊥ means that x is uninitialized. To attach an initialization
part to program executions we employ the following notation.

Notation 2. Given an initial state σ, Aσ denotes the set of events
{ax | σ(x) 6= ⊥}, where each ax is the event defined by id(ax) =
tid(ax) = 0 and lab(ax) = 〈W, x, σ(x)〉. Given an initial state σ
and a plain execution G = 〈A, po, ∅〉, σ;G denotes the execution
〈A ∪Aσ, po ∪ (Aσ ×A), ∅〉.
Definition 7. A program P may terminate under RA from an initial
state σ if σ;G is RA-consistent for some execution G of P .

In particular, the program in Fig. 5 may terminate under RA
from the initial state λx.⊥ (no location is initialized), since its
execution presented in the figure is RA-consistent.

3. SRA Memory Model
In this section we present the SRA model, a strengthening of RA.
The main idea is simple: under RA, no condition relates modifica-
tion orders of different locations. However, there are cases in which
the behavior for each individual location follows the release/acquire
paradigm, whereas the combination of the behaviors over all loca-
tions should be disallowed. More specifically, executions as the one

4 2015/11/6

in Fig. 7 include a cycle in po ∪ rf ∪
⋃
xmox . Forbidding such cy-

cles is the only additional condition in SRA.

Definition 8. An execution G = 〈A, po, rf 〉 is called SRA-
coherent if there exist relations {mox}x∈Loc, such that:

• For every x ∈ Loc, mox is an x-modification order in G.
• po ∪ rf ∪

⋃
xmox is acyclic.

SRA-consistency is defined like RA-consistency (see Def. 6),
but refers to SRA-coherence instead of RA-coherence. Similarly,
termination under SRA is defined as under RA (see Def. 7), re-
ferring to SRA-consistency. (The same applies for the other model
definitions that appear in this paper: we define X-coherence, and
X-consistency and termination under X are defined as for RA.)

Clearly, we have that RA ≤ SRA, i.e., if G is SRA-coherent
then it is also RA-coherent. The execution in Fig. 5 is RA-
consistent but not SRA-consistent, and hence, SRA is strictly
stronger than RA. Next, we show that the two models coincide
for executions that do not have any write-write races.

Definition 9. Let G = 〈A, po, rf 〉 be an execution. We say that
two events a, b ∈ A race in G if loc(a) = loc(b), a 6= b, neither
〈a, b〉 ∈ (po∪rf)+ nor 〈b, a〉 ∈ (po∪rf)+, and either a ∈ W∪U
or b ∈ W ∪ U . The execution G is called WW-race free if no two
write/update events race in G.

Proposition 3. WW-race free RA-coherent executions are also
SRA-coherent.

Proof. Let G = 〈A, po, rf 〉 be an RA-coherent WW-race free ex-
ecution, and for every x ∈ Loc, let mox be an x-modification
order in G. Since (po ∪ rf)+ is total on G.Wx ∪ G.Ux and
mox ; (po ∪ rf)+ is irreflexive, we have that mox ⊆ (po ∪ rf)+

for every x ∈ Loc. Hence, po ∪ rf ∪
⋃
xmox is acyclic.

The simplest syntactic way to enforce WW-race freedom in all
possible executions of a given program is to disallow commands
modifying the same location in different threads. All executions
of programs obeying this discipline are WW-race free, and so are
their extensions with reads-from edges. Except for the (2+2W)
program, the examples above meet this criterion, and hence, for
these programs RA and SRA exhibit exactly the same behaviors.

Furthermore, a common approach to ensure WW-race freedom
when such a split does not exist is to use critical sections. More
specifically, given a distinguished lock location l that is accessed by
separate lock() and unlock() pairs of commands (implemented
respectively by when (l = 0) do l := 1 and l := 0), we refer to
commands between consecutive lock and unlock commands as pro-
tected. Assuming that every command in a program P that modifies
a location also modified in another thread, is protected, we have that
any complete execution G′ = 〈A, po, rf 〉 that extends a plain exe-
cution G = 〈A, po, ∅〉 of P is WW-race free. Consequently, SRA
and RA coincide for such programs.

3.1 Validity of Local Program Transformations
We now show that SRA does not harm compiler optimizations. We
follow the development of Vafeiadis et al. [38], who studied the va-
lidity of common source-to-source program transformations under
C11, and identified the set of valid reorderings of adjacent com-
mands and eliminations of redundant commands. Here we show
that SRA allows the same transformations that were proven to be
sound for release/acquire accesses. The basic soundness claim is
that a local transformation does not introduce new behaviors. Thus,
showing correctness of such transformations amounts to providing
a corresponding SRA-consistent execution of the source program
for every SRA-consistent execution of the target. First, we consider
the elimination of redundant adjacent accesses.

Notation 3. Given a plain execution G = 〈A, po, ∅〉, and an
event a ∈ A, we denote by G \ {a} the plain execution given
by 〈A′, po ∩ (A′ ×A′), ∅〉, where A′ = A \ {a}.
Proposition 4. Let 〈a, b〉 be an immediate po-edge of a plain
execution G = 〈A, po, ∅〉. Suppose that loc(a) = loc(b), and one
of the following holds:

• a, b ∈ W and G \ {a} is SRA-consistent.
• a, b ∈ R, valr(a) = valr(b), and G \ {a} is SRA-consistent.
• a ∈ W , b ∈ R, valw(a) = valr(b), and G \ {b} is SRA-

consistent.

Then, G is SRA-coherent.

On the program level, Prop. 4 ensures the soundness of simpli-
fications like:

x := 1;x := 2 x := 2
if x = 1 then y := x else c if x = 1 then y := 1 else c

x := 1; y := x x := 1; y := 1

The second kind of sound transformations under RA are re-
ordering of adjacent accesses. First, reordering of two accesses of
different locations, such that at least one of them is local, is safe.
Second, a write access and a consecutive read access to a different
location can be safely reordered. The next proposition ensures that
these transformations are sound also for SRA.

Proposition 5. Let 〈a, b〉 be an immediate po-edge of a plain ex-
ecution G = 〈A, po, ∅〉. Suppose that loc(a) 6= loc(b), the execu-
tion 〈A, (po \ {〈a, b〉}) ∪ {〈b, a〉}, ∅〉 is SRA-consistent, and one
of the following holds:

• Either loc(a) or loc(b) is local in G (a location x is local in G
if po is total on {a ∈ A | loc(a) = x}).

• a ∈ W and b ∈ R.

Then, G is SRA-consistent.

This allows basic reorderings, and they can be combined with
the previous eliminations. For example, x := 1; y := 1; z := x can
be simplified to x := 1; y := 1; z := 1 under any context. Indeed,
the resulting program executions will have three consecutive events
a, b, cwith labels 〈W, x, 1〉, 〈W, y, 1〉, 〈W, z, 1〉 (respectively). By the
third part of Prop. 4, its consistency implies the consistency of the
same execution with a new node a′ between a and b whose label is
〈R, x, 1〉. Then, by the second part of Prop. 5, we have that the same
execution with a reversed immediate po-edge between a′ and b is
also consistent. The last execution is an execution of the original
program, and hence the transformation is sound.

Finally, note that from the definition of SRA (similarly to RA) it
is clear that removing po-edges preserves SRA-consistency. There-
fore, the basic sequentialization transformation “c1 ‖ c2 c1; c2”
is sound. Surprisingly, this transformation is unsound under the
TSO model (see §6). Indeed, the (IRIW) program does not termi-
nate under TSO, while its transformation that puts the two writes
before the corresponding reads may terminate.

3.2 An Alternative Formulation
An equivalent definition of SRA can be obtained by requiring that
there is a single modification order over all locations satisfying
similar conditions to those of an x-modification order. In particular,
this definition will be used to relate SRA and TSO in §6.

Definition 10. A relation mo is called a modification order in an
execution G = 〈A, po, rf 〉 if the following hold:

• mo is a strict total order on G.W ∪G.U.
• mo; (po ∪ rf)+ is irreflexive.
• If 〈a, c〉 ∈ rf , 〈b, c〉 ∈ (po ∪ rf)+ ∪mo, and loc(a) = loc(b),

then 〈a, b〉 6∈ mo.

5 2015/11/6

Proposition 6. If mo is a modification order in G, then for every
x ∈ Loc, mox = mo ∩ ((G.Wx ∪ G.Ux) × (G.Wx ∪ G.Ux)) is an
x-modification order.

Proposition 7. An execution G = 〈A, po, rf 〉 is SRA-coherent iff
po ∪ rf is acyclic and there exists a modification order in G.

4. An Equivalent Operational Model
In this section we develop a simple and intuitive operational seman-
tics for our programming language that precisely corresponds to the
SRA model. In other words, we propose a particular machine, de-
fine how it executes programs, and show that a program P may ter-
minate under SRA iff it can be fully executed in the machine. The
machine consists of N processors, each of which is running a par-
ticular program thread. Unlike program executions, machine exe-
cutions are ordinary sequentially consistent executions, where steps
are taken non-deterministically by different processors. In addition,
the machine transitions do not refer at all to formal consistency re-
quirements on graphs. We believe that these properties make this
semantics easy to grasp by practitioners, as well as a solid founda-
tion for adapting existing formal verification and testing methods
for the SRA weak memory model.

There are two main ideas in the proposed machine structure.
First, it is based on point-to-point communication. Each proces-
sor has a local memory and an outgoing message buffer, that con-
sists of write instructions performed or observed by that processor.
The processors non-deterministically choose between performing
their own instructions or processing messages from other proces-
sors’ buffers. When performing a read, while following some pro-
gram instruction, the processor obtains the read value by inspecting
its local memory. When performing a write, either when following
a program instruction or when processing a message, the proces-
sor writes to its local memory and reports this write to the other
processors by putting a corresponding message in its buffer. Ev-
ery message can be processed at most once by every other proces-
sor, and messages should be processed in the same order in which
they were issued. Thus, message buffers are taken to be lists, and
each processor maintains a set of indices storing its current location
in every other buffer, and constantly progressing while processing
messages. Naturally, a message can be removed from a buffer when
all processors have processed it.

This already gives intuitive account for the possible non-SC
behavior in the store buffering example, that cannot occur in the
message passing example (see §1). In a terminating run of the (SB)
program, both processors follow their own instructions, ignoring
the other message buffer. On the other hand, in every run of the
(MP) program, for the first wait command to terminate, the second
processor must process the message from the first processor that
sets y to 1. Since outgoing messages are ordered, it will first process
the message that sets x to 1, assigning 1 to x in its local memory.
Thus, the second wait will never terminate.

Nevertheless, so far, the proposed machine fails to explain the
following example (litmus test CoRR2 in [23]):

x := 1 x := 2
wait (x = 1)
wait (x = 2)

wait (x = 2)
wait (x = 1)

(CoRR2)

Assuming that initially all variables are 0, under SRA (or, similarly,
under RA or SC, as they coincide on programs with a single vari-
able) this program cannot terminate. Indeed, in its executions, the
x-modification order must order the two writes, forcing one par-
ticular order in which the two values can be observed. However,
according to the description above, nothing forbids the two readers
to process the messages from the two buffers in opposite orders.

To address this mismatch, the second main idea in the machine
is the use of global timestamps counting the number of writes

to every location. Whenever some local write is performed to a
location x, the global timestamp for x is increased, and attached
both to the local stored value and to the message reporting this
write. When processing a write message to location x from another
buffer, the processor compares the timestamp stored in its local
memory for x with the timestamp of the message, and performs
the write only if the message has a greater timestamp. Otherwise,
the processor skips the message. For the example above, assuming
that the first reader terminated, it must be the case that the x := 2
was performed after the x := 1 write (otherwise, this reader would
skip the message for x := 2). Hence, the second reader can either
process the x := 1 message first, and then the x := 2 one (exactly
as the first reader), or process first the x := 2 message, but then it
is forced to skip the older message, and cannot observe the value 1.

As shown below, a machine based on these two simple ideas
provides a precise account for SRA. Note that this operational
model is too strong for RA. Indeed, getting back to the (2+2W)
example (see Fig. 5), assuming that the first processor terminated
and the second arrived just before the last wait, note that before
processing the z2 := 1 message, the first processor must have
processed the x := 2 message before its own x := 1 instruction, or
skipped the x := 2 message. Thus, x := 2 had a smaller timestamp
than x := 1, and so, y := 1 had a smaller timestamp than y := 2.
This implies, however, that between performing the local y := 1
write instruction and processing the z1 := 1 message, the second
processor must have processed the y := 2 message, and replace
the value locally stored for y from 1 to 2. Thus, the last wait of the
second processor cannot terminate.

Next, we turn to the formal development of the operational
semantics and its soundness and completeness proof. We define
the machine as a labeled transition system: a set of states and a
labeled transition relation. A machine state takes the form of a pair
[S, T], where S assigns a processor state to every processor, and T
is the global timestamps table. In turn, a processor state consists of
a local memoryM , an outgoing message buffer L, and a function I
that records the current location in every other message buffer. For
every 1 ≤ i ≤ N , I(i) is the index of the first message in the buffer
of processor i which was not yet observed by the current processor.

Definition 11. A processor state is a tuple 〈M,L, I〉, where:

• M : Loc → ((Val × N) ∪ {〈⊥, 0〉}) is the local memory. We
write M(x) = v@t for M(x) = 〈v, t〉, and M(x) = ⊥@0
means that x is uninitialized.

• L is an outgoing message buffer that takes the form of a list of
messages, where a message m has the form bx :=v@tc, where
x ∈ Loc, v ∈ Val, and t ∈ N. We use “;” for concatenation
of such lists (and write, e.g., m;L or L;m), and often refer to
L as an array. L[k] denotes the kth message in L (starting from
1), and |L| is the number of messages in L.

• I : {1, ... , N} → N+ is a function assigning an index in every
other message list.

Definition 12. A machine state is a pair of the form [S, T], where
S is a function assigning a processor state to every processor
1 ≤ i ≤ N , and T : Loc → N assigns a timestamp to every
location. Given an initial state σ, the initial machine state [Sσ, T∅]
is given by Sσ = λi. 〈Mσ, L∅, I∅〉 and T∅ = λx. 0, where
Mσ = λx. σ(x)@0, L∅ = ε, and I∅ = λi. 1.

The machine semantics is given in Fig. 8. Its steps follow the
informal description above: (READ) steps read from the local mem-
ory; (WRITE) steps write to the local memory, add a corresponding
message, and increment the global stored timestamp for the specific
location; (PROCESS) steps pull a message from some buffer with a
timestamp that is greater than the local stored one, perform the local
write, and increment the current location in the buffer; (SKIP) steps

6 2015/11/6

(READ)
S(i) = 〈M,−,−〉
M(x) = v@−

[S, T]
〈R,x,v〉,i−−−−−−→ [S, T]

(WRITE)
S(i) = 〈M,L, I〉 T (x) = t

M ′ = M [x 7→ v@t+ 1] L′ = L; bx :=v@t+ 1c
T ′ = T [x 7→ t+ 1]

[S, T]
〈W,x,v〉,i−−−−−−→ [S[i 7→ 〈M ′, L′, I〉], T ′]

(UPDATE)
S(i) = 〈M,L, I〉 T (x) = t M(x) = vr@t

M ′ = M [x 7→ vw@t+ 1] L′ = L; bx :=vw@t+ 1c
T ′ = T [x 7→ t+ 1]

[S, T]
〈U,x,vr,vw〉,i−−−−−−−−−→ [S[i 7→ 〈M ′, L′, I〉], T ′]

(PROCESS)

i 6= j S(i) = 〈M,L, I〉 S(j) = 〈−, Lj ,−〉
I(j) = k k ≤ |Lj | Lj [k] = bx :=v@tjc

M(x) = −@ti ti < tj
M ′ = M [x 7→ v@tj] L′ = L; bx :=v@tjc I′ = I[j 7→ k + 1]

[S, T] −→ [S[i 7→ 〈M ′, L′, I′〉], T]
(SKIP)

i 6= j S(i) = 〈M,L, I〉 S(j) = 〈−, Lj ,−〉
I(j) = k k ≤ |Lj | Lj [k] = bx :=−@tjc

M(x) = −@ti tj ≤ ti
I′ = I[j 7→ k + 1]

[S, T] −→ [S[i 7→ 〈M,L, I′〉], T]

(CLEAN)

S(i) = 〈M,m;L, I〉 ∀j 6= i. S(j) = 〈Mj , Lj , Ij〉 ∀j 6= i. Ij(i) > 1
∀j 6= i. S′(j) = 〈Mj , Lj , Ij [i 7→ Ij(i)− 1]〉 S′(i) = 〈M,L, I〉

[S, T] −→ [S′, T]

Figure 8. Machine steps

P
l,i−→ P ′ [S, T]

l,i−→ [S′, T ′]

〈P, [S, T]〉 −→ 〈P ′, [S′, T ′]〉
P −→ P ′

〈P, [S, T]〉 −→ 〈P ′, [S, T]〉
[S, T] −→ [S′, T ′]

〈P, [S, T]〉 −→ 〈P, [S′, T ′]〉

Figure 9. Program and machine combined steps

pull a message from some buffer with a timestamp that is less than
or equal to the local stored one, and skips the message by just incre-
menting the current location in the buffer; and (CLEAN) steps re-
move the first message in a buffer, provided that all processors have
already processed or skipped it. Finally, (UPDATE) steps (which
were not explained above) naturally combine reads and writes. In
addition, for performing (UPDATE) the processor should have the
most recent value of the updated location x. Thus, it verifies that the
timestamp t stored in its memory for x (M(x) = vr@t) is equal
to the global timestamp of x (T (x) = t). Otherwise, the processor
cannot continue and is forced to pull messages from other proces-
sors. This corresponds to the fact that SRA update events (exactly
as RA ones, and unlike plain read events) should read from their
immediate predecessor in the relevant modification order.

The combined machine and program semantics is given in
Fig. 9. Note that it is defined exactly as the combined execution
and program semantics (see Fig. 4), using machine steps instead of
execution steps, and including internal machine steps that do not
affect the program ((PROCESS), (SKIP), and (CLEAN) steps).

Theorem 1 (Soundness and Completeness). A program P may
terminate under SRA from an initial state σ iff 〈P, [Sσ, T∅]〉 −→∗
〈Pfinal, [S, T]〉 for some machine state [S, T].

A straightforward application of this theorem is to provide al-
ternative accounts for the soundness of the source-to-source trans-
formations mentioned in §3.1. Using the operational model, prov-
ing validity of such transformations becomes a more ordinary task:
one should show that the behavior of the machine on the result-
ing program is also possible when running the original one. For
example, we give an informal argument for the soundness of the
transformation that eliminates the first assignment command in a
pair of the form x := v;x := v′. To simulate an execution of the
resulting program, the machine running the original program can
perform the two writes in two consecutive steps when the resulting
program performs the second write, and pulls the two correspond-

ing messages in consecutive steps whenever the machine running
the resulting program pulls the x := v′ message.

Note that two possible variants of the machine are equivalent
to our definition. First, if we omit the (CLEAN) rule, then the local
memory is uniquely defined by the message buffer, and instead of
inspecting the value (and timestamp) of a location x in the memory,
each processor can check for the last message modifying x that
appears in its buffer. The second alternative is to have one message
queue between every (ordered) pair of processors. In this case,
there is no need for pointers in message lists. Instead, every write
message is enqueued to all outgoing queues, and the processors
asynchronously dequeue messages from their incoming queues.

Soundness and completeness proof. As the main tool in the
proof of Thm. 1, we introduce the notion of a history, that intu-
itively correspond to a log of a machine execution. Formally, a his-
tory is a totally ordered set of actions – expressions of the form a@i
where a is an event and i is a thread identifier, such that a ∈ W∪U
whenever tid(a) 6= i. An action a@i is standing for “processor i
observes event a”. The event a can either be an event originated
by thread i (tid(a) = i), or a write/update event of another thread
(as reads are not reported in message buffers). Obviously, not every
order of actions is possible. Next, we define legal histories.

Definition 13. A history H = 〈B,≤〉 induces the following
functions:

1. H.before : R ∪ U → P(W ∪ U) is given by H.before(a) =
{b ∈ W ∪ U | b@tid(a) < a@tid(a), loc(b) = loc(a)}.

2. H.last : R ∪ U ⇀ W ∪ U is a partial function assigning
a write/update event b to every read/update event a such that
b@tid(b) = max≤{c@i ∈ B | c ∈ H.before(a), i = tid(c)}.
If H.before(a) is empty, then H.last(a) is undefined.

Definition 14. A history H = 〈B,≤〉 is called legal if the follow-
ing hold:

1. valr(a) = valw(H.last(a)) for every a ∈ dom(H.last).
2. For every a ∈ W ∪ U and b@i ∈ B, if a@tid(b) < b@tid(b),

then a@i ∈ B and a@i < b@i.
3. For every a ∈ W ∪ U and b ∈ U , if loc(a) = loc(b)

and a@tid(a) < b@tid(b), then b ∈ dom(H.last) and
a@tid(a) ≤ H.last(b)@tid(H.last(b)).

4. a@tid(a) ≤ a@i for every a@i ∈ B.

The first condition ensures that the performed reads/updates
obtain the values of the latest write/update (to the relevant location)
that was observed by the current thread. The second condition

7 2015/11/6

corresponds to the fact that message buffers are ordered—before
thread i observes an event b originated by thread j, it must observe
every event a that was observed by j before it originated b. The
third requirement guarantees that updates are performed only while
having the latest value. The last condition ensures that events are
observed by other threads only after their origination. Next, we
relate histories to a given plain execution and initial state.

Definition 15. Let G = 〈A, po, ∅〉 be a plain execution, and σ be
an initial state. A history H = 〈B,≤〉 is called:

• G-suitable if the following hold:
1. For every a@i ∈ B, we have a ∈ A.
2. For every a ∈ A, we have a@tid(a) ∈ B.
3. For every 〈a, b〉 ∈ po, we have a@tid(a) < b@tid(b).

• σ-suitable if valr(a) = σ(loc(a)) whenever a@tid(a) ∈ B
and a ∈ (R∪ U) \ dom(H.last).

• 〈G, σ〉-legal if it is legal, G-suitable and σ-suitable.

The next key theorem is the formal correspondence between
SRA-consistency and legal histories.

Theorem 2. Let G be a plain execution, and σ be an initial state.
Then, σ;G is SRA-consistent iff there exists a 〈G, σ〉-legal history.

Proof sketch. We consider here the case that σ = λx. ⊥. Assuming
G = 〈A, po, ∅〉 is SRA-consistent, choose rf such that G′ =
〈A, po, rf 〉 is a complete and SRA-coherent execution, and let mo
be a modification order in G′ (see Prop. 7). For every 1 ≤ i ≤ N ,
let Ai = {a ∈ A | tid(a) = i}, A′i = Ai ∪ G.W ∪ G.U, and
≺i= ((hb ∩ (A′i × A′i)) ∪ ((Ai × (A′i \ Ai)) \ hb−1))+, where
hb = (po ∪ rf)+. In addition, let B = {a@i | 1 ≤ i ≤ N, a ∈
A′i}, B′ = {a@i ∈ B | tid(a) = i, a ∈ W ∪ U}, and define the
following relations:

1. T1 = {〈a@i, b@j〉 ∈ B ×B | i = j, a ≺i b}.
2. T2 = {〈a@i, b@j〉 ∈ B′ × (B \B′) | a = b}.
3. T3 = {〈a@i, b@j〉 ∈ B′ ×B′ | 〈a, b〉 ∈ mo}.

We show that T1 ∪ T2 ∪ T3 is acyclic, take ≤ to be a total order on
B extending (T1 ∪ T2 ∪ T3)

+, and prove that H is 〈G, σ〉-legal.
For the converse, given a 〈G, σ〉-legal history H = 〈B,≤〉,

we show that G′ = 〈A, po, H.rf 〉 is a complete execution, where
H.rf = {〈a, b〉 ∈ A×A | H.last(b) = a}. To prove that it is also
SRA-coherent, we choose mo = {〈a, b〉 ∈ (G.W∪G.U)× (G.W∪
G.U) | a@tid(a) < b@tid(b)}, and use Prop. 7.

Roughly speaking, using Theorem 2, the soundness proof pro-
ceeds by showing that a log of a terminating execution of the ma-
chine from an initial state [Sσ, T∅] of a program P forms a 〈G, σ〉-
legal history, where G is an execution of P . The completeness
proof makes use of the other direction of Theorem 2, and shows that
histories are “executable”, i.e., every 〈G, σ〉-legal history, where G
is an execution of a program P , can be followed by the machine
executing P starting from [Sσ, T∅].

5. Fence Commands
In this section, we extend our programming language with a mem-
ory fence command, denoted by fence(), and show that these
commands can be used to enforce sequential consistency under RA
(or SRA). Our semantics for fence commands is as if they were
atomic assignments (RMWs) to a particular otherwise unused lo-
cation. In other words, fence() is simply syntactic sugar for the
atomic assignment 〈f := 0〉, where f is a distinguished loca-
tion that is not mentioned in any non-fence command. As a result,
fence() instructions induce fence events, that is events with labels
〈U, f, 0, 0〉. We further require that any initial state σ has σ(f) = 0.

Accordingly, executions of programs (together with the initializa-
tion part) are all well-formed, as defined next:

Definition 16. An executionG = 〈A, po, rf 〉 is well-formed if the
set Af = {a ∈ A | loc(a) = f} consists only of fence events,
except for one event a with lab(a) = 〈W, f, 0〉 that initializes f
(i.e., 〈a, b〉 ∈ po for every b ∈ Af \ {a}).

The fundamental property, that allows the reduction to SC,
is that fence events are totally ordered by rf + as shown by the
following proposition.

Proposition 8. Given a well-formed complete RA-coherent exe-
cution G = 〈A, po, rf 〉, the relation rf + is total on the set of fence
events in G.

Based on this property, we show that our fences are sufficient for
restoring SC. More specifically, we call an event G-racy if it races
with some other event in an executionG (see Def. 9), and show that
having a fence event between every two (po ∪ rf)+-related racy
events in a well-formed complete RA-coherent execution means
that the execution is also SC-coherent. Following Shasha and Snir
[31], we employ the following definition of SC-coherence:

Definition 17. An execution G = 〈A, po, rf 〉 is called SC-
coherent if there exist relations {mox}x∈Loc, such that:

• For every x ∈ Loc, mox is an x-modification order in G.
• The relation po ∪ rf ∪

⋃
xmox ∪

⋃
x frx is acyclic, where

frx = (rf −1;mox) \ IdA.

Theorem 3. Let G = 〈A, po, rf 〉 be a well-formed complete RA-
coherent execution. Suppose that for every two G-racy events a, b,
if loc(a) 6= loc(b), and 〈a, b〉 ∈ po ∪ (po; (po ∪ rf)∗; po), then
〈a, c〉, 〈c, b〉 ∈ (po ∪ rf)+ for some fence event c. Then, G is SC-
coherent.

A simple corollary of this theorem is a per-execution data race
freedom (DRF) property:

Corollary 1. Well-formed complete RA-coherent executions that
have no racy events are also SC-coherent.

The simplest way to enforce executions that satisfy the condi-
tion of Thm. 3 in a given program is for each thread to include
a fence command between every two accesses of different shared
variables. In general, all these fences are necessary: the SB program
shows fences may be needed between writes and subsequent reads,
IRIW shows that fences are needed between two reads, and the fol-
lowing two programs show that fences are required between two
writes, and between a read and a subsequent write. Assuming all
variables are initialized to 0, these programs (without the crossed
out fences) may terminate under RA (or SRA) but not under SC.

x := 1

��
��XXXXfence()

y := 1

y := 2
fence()
wait (x = 0)

wait (y = 1)
fence()
wait (y = 2)

x := 1
wait (x = 1)

���
�XXXXfence()

y := 1

y := 2
fence()
wait (x = 0)

wait (y = 1)
fence()
wait (y = 2)

It is worth contrasting Thm. 3 with the corresponding one for
TSO. Under TSO, fences between every shared variable write and
every subsequent shared variable read suffice to restore SC [24].
For a particular common class of programs, however, we can get a
reduction to SC that requires fewer fences similar to those required
for TSO. This is based on the following theorem:

Theorem 4. Let G = 〈A, po, rf 〉 be a well-formed complete
RA-coherent execution. Assume that G is WW-race free and there
exists a setB ⊆ A of protected events such that the following hold:

8 2015/11/6

1. (po ∪ rf)+ is total on B.
2. If a races with b in G, then either a ∈ B or b ∈ B.
3. For every G-racy write/update event a ∈ B and G-racy read

event b ∈ B, if loc(a) 6= loc(b) and 〈a, b〉 ∈ (po ∪ rf)+, then
〈a, c〉, 〈c, b〉 ∈ (po ∪ rf)+ for some fence event c.

4. For every G-racy write/update event a 6∈ B and G-racy read
event b 6∈ B, if loc(a) 6= loc(b) and 〈a, b〉 ∈ (po ∪ rf)+, then
〈a, c〉, 〈c, b〉 ∈ (po ∪ rf)+ for some fence or protected event c.

Then, G is SC-coherent.

Theorem 4 can be applied in various cases, e.g., two-threaded
programs (by taking B to consist of the events of one of the
threads), and concurrent data structures with a single writer and
multiple readers (by taking B to consist of the writer events).

A direct use of Thm. 4 is for programs that include critical sec-
tions (see the discussion after Prop. 3 in §3). First, we lift the def-
initions of racy events to the program level by over-approximating
the set of racy events: Say that two commands race on x if they
both mention x, appear on different threads, at least one of them
modifies x, and at least one of them is unprotected (appears out-
side a critical section). In addition, we say that a command is an
x-racy read command if it reads x and races on x with some other
command; and similarly, a command is an x-racy write command
if it modifies x and races on x with some other command. Then,
obeying the following conditions suffice to guarantee SC behavior:

(i) Every command modifying a location also modified in an-
other thread, is protected.

(ii) No two unprotected commands race (on some location).

(iii) There exist fence commands:
• Outside critical sections, between every x-racy write com-

mand and subsequent y-racy read command for x 6= y.
• Inside critical sections, between every x-racy write com-

mand and subsequent y-racy read command for x 6= y.
• Either after the last racy write command or before the first

racy read command inside all critical sections.

Indeed, suppose that a program P obeying this discipline may
terminate under RA. Let G′ = 〈A, po, rf 〉 be an RA-coherent
complete execution that extends a plain execution G = 〈A, po, ∅〉
of P . Condition (i) ensures that G′ is WW-race free. We take the
set B of protected events to be the set of all events induced by the
commands in the critical sections. Then, (po ∪ rf)+ is total on B.
Further, we can assume that all lock() commands immediately
succeed and induce a single update event in G′ (otherwise, remove
the read events that correspond to failed attempts to acquire the
lock, and G′ remains an RA-coherent complete execution that
extends an execution of P). Condition (ii) ensures no races between
two events outside B. Additionally, conditions (ii)-(iii) guarantee
that conditions 3 and 4 of Thm. 4 are met. The theorem implies
that G′ is SC-coherent, and hence P may terminate under SC.

5.1 Verifying a Read-Copy-Update Implementation
We demonstrate the application of Thm. 4 to a practical weak mem-
ory algorithm, the user-mode read-copy-update (RCU) implemen-
tation of Desnoyers et al. [13].

RCU is a mechanism, deployed heavily in the Linux kernel,
that allows a single writer to manipulate a data structure, such as
a linked list or a binary search tree, while multiple readers are con-
currently accessing it. To ensure that a single writer updates the
data structure at any given time, a global lock is used to protect the
writes. To ensure correctness of the concurrent readers, the writer
instead of directly modifying a piece of the structure, first copies
that piece, modifies the copy, and then makes the new copy acces-

rcu quiescent state():
L1: ((((hhhhfence(); // fence removed
L2: rc[get my tid()] := gc;
L3: fence();

rcu thread offline():
L4: ((((hhhhfence(); // fence removed
L5: rc[get my tid()] := 0;
L6: fence(); // fence inserted

rcu thread online():
L7: rc[get my tid()] := gc;
L8: fence();

synchronize rcu():
L10: local was online := (rc[get my tid()] 6= 0);
L11: ((((hhhhfence(); // fence removed
L12: if was online then rc[get my tid()] := 0;
L13: lock();
L14: gc := gc + 1;
L15: ((((

(hhhhhbarrier(); fence(); // barrier replaced by fence
L16: for i := 1 to N do
L17: wait (rc[i] ∈ {0,gc});
L18: unlock();
L19: if was online then rc[get my tid()] := gc;
L20: fence();

Figure 10. A user-mode read-copy-update implementation based
on [13], where all variable accesses are release/acquire accesses.
The fences are shown as in the original program: fence() is
a memory fence, while barrier() is a compiler fence. In our
variant, we replace the compiler fence with a (stronger) memory
fence, insert a fence on line 6, and remove the unnecessary fences.

sible and the old one inaccessible. To deallocate the inaccessible
piece, it invokes the synchronize rcu() procedure, which waits
for all the readers to stop accessing the old copy.

The readers, on the other hand, do not acquire any locks. They
only need to periodically call rcu quiescent state() when they
are not accessing the data structure and not keep any internal point-
ers to the data structure across calls to rcu quiescent state().
Alternatively, the readers may also call rcu thread offline()
when they have stopped accessing the data structure and call
rcu thread online() before accessing it again. The second al-
ternative is slightly more expensive but avoids the need of having
to call rcu quiescent state() every once in a while.

Figure 10 shows the implementations of the four aforemen-
tioned synchronization methods. The threads synchronize via two
variables: the global counter, gc, and an array of read counters, rc,
with one entry for each thread, and use a global lock to serialize
accesses to the synchronize rcu method.

RCU programs, based on the implementation in Fig. 10, follow
the syntactic discipline that allows us to apply Thm. 4.

(i) The only commands that modify a location also modified in
another thread, are the assignment to gc on line 14, and the
writer’s updates of the RCU-protected data structure, which
are all protected by the lock.

(ii) Restricting attention to unprotected commands (lines 2, 5,
7, 10, 12, 19), the only locations that are modified are the
rc[i]’s and was online, but each of them is accessed only
by one particular thread. The RCU-protected data structure
itself is modified only by protected commands.

(iii) Outside the critical sections, there is a fence immediately
after every racy write command (namely, the assignments to
rc[get my tid()] on lines 2,5,7,19).

(iv) Within the critical section of synchronize rcu() (lines
14-17), there is a fence immediately after every assignment

9 2015/11/6

a : Wx/Ux b : Wx/Ux

c : Rx/Ux

Wy/Uy

Ry/Uy

rf

mo

rf \ po

po

mo
a : Wx/Ux b : Wx/Ux

c : Rx/Ux Uy

rf mo

po

mo

Figure 11. Illustration of the additional forbidden cases under
TSO according to Thm. 5.

(namely, the assignment to gc on line 14), and before the first
racy read (line 17).

(v) The critical section modifying the RCU-protected data struc-
ture has no racy reads.

Therefore, by Thm. 4, RCU programs have the same behaviors
under SC as under RA (and SRA).

6. Relation to TSO
In this section we study the relationship between SRA and TSO,
the total store ordering memory model provided by the x86 and
SPARC architectures. TSO is known to be stronger than RA. We
show that it is also (strictly) stronger than SRA. This entails that
the ordinary compilation of C11 release/acquire accesses to TSO
actually also guarantees SRA consistency.

To relate SRA and TSO, we use the declarative model of TSO
of Owens et al. [25] that was used to prove correctness of the
compilation of RA to x86-TSO.

Definition 18. A relation tso is called a total store order for an
execution G = 〈A, po, rf 〉 if it satisfies the following:

• tso is a strict partial order on A, that is total on G.W ∪G.U.
• po ⊆ tso ∪ (G.W×G.R) and rf ⊆ tso ∪ po.
• If 〈a, c〉 ∈ rf , 〈b, c〉 ∈ po ∪ tso, b ∈ W ∪ U , and loc(a) =
loc(b), then 〈a, b〉 6∈ tso.

G is called TSO-coherent if there exists a total store order for it.

Note that unlike modification orders, the total store order relates
also read events. Next, we provide an equivalent characterization
that is based on a modification order and has a similar nature to the
formulation of SRA given in Prop. 7 (see also Fig. 11).

Theorem 5. An execution G = 〈A, po, rf 〉 is TSO-coherent iff
po ∪ rf is acyclic, and there exists a modification order mo in G
(see Def. 10) that satisfies the following additional condition:

• If 〈a, c〉 ∈ rf , 〈b, c〉 ∈ ((mo; (rf \ po)) ∪ (mo ∩ (A × U)));
po, and loc(a) = loc(b), then 〈a, b〉 6∈ mo.

Proof sketch. For one direction, we take mo = tso ∩ ((W ∪U)×
(W ∪ U)), and show that mo satisfies the required conditions. For
the converse, we show that (mo ∪ (po \ (W ×A)) ∪ (rf \ po))+
is a total store order for G.

Intuitively speaking, the modification order of Thm. 5 is the
order in which the writes propagate to the main memory of the
TSO-machine. When a processor of a TSO-machine reads from
a location x, it obtains the value of the last write instruction to
x that appears in its local store buffer, and if no such instruction
exists, it obtains the value of the write to x that was the last to
propagate to the memory. The condition on the pair 〈b, c〉 in the
theorem ensures that the reads-from edge 〈a, c〉 corresponds to
reading from the main memory, rather than from the local buffer.
Note that taking just 〈b, c〉 ∈ ((mo; rf) ∪ mo); po instead of
〈b, c〉 ∈ ((mo; (rf \ po)) ∪ (mo ∩ (A×U))); po in the condition
given in Thm. 5 results in another formulation of SC.

Using this theorem and Prop. 7, the relation to SRA is an
immediate corollary: We have that SRA ≤ TSO, i.e., if G is TSO-
coherent then it is also SRA-coherent. Note that SRA is strictly
weaker than TSO (even for WW-race free executions): the IRIW
program (presented in §1) may terminate under SRA but not under
TSO. In addition, as the following example shows, two threads
suffice for observing the difference between SRA and TSO.

x := 1
〈f1 := 1〉
wait (y = 0)

y := 1
〈f2 := 1〉
wait (x = 0)

(SBU)

This program may terminate under SRA but not under TSO (where
initially all variables are 0). However, if we restrict our attention
to executions without update events, then SRA and TSO coincide
for two threaded executions. To see this, it suffices to note that
mo; (rf \ po) ⊆ (po ∪ rf)+ for such executions.

An important consequence of the relation to SRA is that the
same compilation scheme for RA (that maps writes, reads, and up-
dates to plain TSO write, read, and RMW instructions [6]) guaran-
tees SRA. Therefore, SRA has no additional implementation cost
over RA on TSO-machines. Additionally, note that our fence in-
structions (updates to an unused location, see §5) can be compiled
directly to an mfence instruction on x86-TSO. The correctness is
obvious: Compiling the atomic assignment 〈f := 0〉 to a suitable
x86-TSO RMW instruction (such as lock xchg) is sound. But
then, according to the operational x86-TSO model, if we ignore
the value of location f , the effect of an mfence and a RMW on f
is identical: they wait for the store buffer to be flushed.

Next, we identify a condition that ensures that RA and TSO
coincide.

Theorem 6. LetG = 〈A, po, rf 〉 be a WW-race free RA-coherent
execution. Suppose that G.U = ∅, and there exists a set B ⊆ A of
protected events such that the following hold:

• (po ∪ rf)+ is total on B.
• If a races with b in G, then either a ∈ B or b ∈ B.
• If 〈a, b〉 ∈ rf \ po, then either a ∈ B or b ∈ B.

Then, G is TSO-coherent.

Remark 1. As the following example shows, the claim of Thm. 6
does not hold if we allow even a single update to an otherwise
unused location:

x := 1
z1 := 1
wait (z2 = 1)
wait (y = 0)

wait (z1 = 1)
z2 := 1

y := 1
〈f := 1〉
wait (x = 0)

This program may terminate under RA but not under TSO (where
initially all variables are 0). In fact, under RA (or SRA), adding one
update event to an otherwise unused location has no effect (whereas
in the TSO-machine it forces the buffer to be flushed). This may
indicate that the current semantics of updates in TSO is too strong,
and weaker update instructions, as studied in [26], can be useful.

A consequence of Thm. 6 is that TSO and RA coincide for
update-free “client-server programs”. We say that a program fol-
lows the client-server discipline iff its locations can be partitioned
into disjoint sets X1, ... , XN such that thread S (“the server”)
writes only to variables in XS, and each (“client”) thread i 6= S
reads only from variables in XS ∪ Xi and writes only to vari-
ables in Xi. In other words, client threads cannot communicate di-
rectly with other client threads, but only via the distinguished server
thread. By taking the set B to be the set of events generated by the
server, we can apply Thm. 6 for executions of such programs. As an
example, Thm. 6 can be applied to a fence-free implementation of a
simple version of the RCU mechanism (presented in Fig. 12). This

10 2015/11/6

rcu quiescent state():
rc[get my tid()] := gc;

synchronize rcu():
gc := gc + 1;
for i := 1 to N do
wait (rc[i] = gc);

Figure 12. Simple RCU implementation

G.isync = {〈a, b〉 | ∃c ∈ G.isync. 〈a, c〉 ∈ deps ∧ 〈c, b〉 ∈ po}
G.lwsync = {〈a, b〉 | ∃c ∈ G.lwsync. 〈a, c〉 ∈ po ∧ 〈c, b〉 ∈ po}
G.sync = {〈a, b〉 | ∃c ∈ G.sync. 〈a, c〉 ∈ po ∧ 〈c, b〉 ∈ po}
G.ppo = (deps ∪G.isync) ∩ ((R× (R∪W))

G.fence = G.sync ∪ (G.lwsync ∩ ((R× (R∪W)) ∪ (W ×W))

G.rfe = rf \ po
G.hb = G.ppo ∪G.fence ∪G.rfe

G.base = G.rfe?;G.fence;G.hb∗

G.po-aa = po ∩ ((At ∩W)× (At ∩W))

G.rmw = ipo ∩ ((At ∩R)× (At ∩W))

Figure 13. Auxiliary notations for a Power execution G =
〈A, po, deps, rf , At〉. ipo denotes the set of immediate po-edges.

(|x|) = lwz r0, x · cmpw r0, r0 · beq L · L: · isync
(|x := v|) = li r0, v · lwsync · stw r0, x

(|〈x := x+ 1〉|) =
lwsync · Loop: ·
lwarx r0, 0, x · addi r0, r0, 1 · stwcx. r0, 0, x ·
bne Loop · cmpw r0, r0 · beq L · L: · isync

(|fence()|) = sync

Figure 14. Compilation of reads, writes, atomic increments and
fences to Power

version does not support readers going offline (and thus, requires
them to constantly periodically call rcu quiescent state()),
and assumes that one particular thread serves as the writer (that
calls synchronize rcu()). This allows reasoning about correct-
ness under RA using existing techniques for TSO.

7. Relation to Power
In this section, we show that the SRA memory model is equivalent
to the Power memory model of Alglave et al. [4] when following
the standard compilation scheme of C11 release/acquire atomics to
Power [7, 29], i.e., inserting an lwsync (lightweight synchroniza-
tion) fence before every write and a conditional branch followed by
an isync fence after every read. Atomic updates are compiled into
two consecutive ‘atomic’ accesses: a load reserve (lwarx) instruc-
tion followed by a store conditional (stwcx) instruction, wrapped
inside an “update loop” because the store-conditional may fail to
perform the update. Fence commands are compiled to a single
Power sync fence instruction. Figure 14 depicts some examples.

The Power model. To make our presentation self-contained, we
briefly recall the definition of Alglave et al. [4]. The reader is
referred to this paper for further explanations and details. A Power
execution is taken to be a tuple G = 〈A, po, deps, rf , At〉 where:

• A ⊆ Ap, whereAp is the set of Power events.Ap includes read
and write events (R andW , see §2), but no updates (G.U = ∅).
In addition, it includes events for the different Power fence

instructions (whose types are sync, lwsync, or isync). We
denote by S the set of all events with type sync.

• po and rf are program order and reads from edges (as before).
• deps ⊆ po denotes the set of data, address and control depen-

dency edges between instructions that Power implementations
are guaranteed to preserve. In particular, the compilation of the
acquire read induces a (control) dependency edge between the
read and the isync events by introducing a “fake” compare-
and-branch sequence.

• At ⊆ A records the set of atomic events in G (i.e., the loads
and stores belonging to an update).

A Power execution G induces a number of relations, defined
in Fig. 13: instruction fence order (G.isync), lightweight fence
order (G.lwsync), strong fence order (G.sync), preserved pro-
gram order (G.ppo), fence order (G.fence), external reads-from
(G.rfe), happens-before (G.hb), basic propagation (G.base), pro-
gram order between atomic events (G.po-aa), and read-modify-
write (G.rmw). For all these notations, we omit the “G.” prefix
when it is clear from the context.

Definition 19. A Power execution G = 〈A, po, deps, rf , At〉 is
called Power-coherent if hb is acyclic (No-thin-air) and there exist
relations {cox}x∈Loc, such that each cox is a total strict order on
G.Wx and the following hold:

• SC-per-loc: po|x ∪ rf ∪ fr ∪ co is acyclic for every x ∈ Loc,
where po|x = {〈a, b〉 ∈ po | loc(a) = loc(b) = x}.

• Atomicity: rmw ∩ (fre; coe) = ∅.
• Observation: fre; prop; hb∗ is irreflexive.
• Propagation: co ∪ po-aa ∪ prop is acyclic.

where co =
⋃
x cox, coe = co \ po, fr = rf −1; co, fre = fr \ po,

prop = (base ∩ (W × W)) ∪ (chapo?; base∗; sync; hb∗), and
chapo = coe ∪ fre ∪ rfe ∪ (coe; rfe) ∪ (fre; rfe).

The relation co, called coherence order, is used instead of the
modification order in the SRA model (see Prop. 7). The SC-per-
loc property is similar to the x-modification order definition (see
Prop. 2), but weaker as it rules out cycles with accesses of only
one location. Nevertheless, it suffices to rule out the weak behavior
of the (CoRR2) example. The Atomicity property basically corre-
sponds to the third case of Fig. 6. The Observation property rules
out the weak behavior of the MP example, making use of the rela-
tion prop, called propagation order. Finally, Propagation rules out
the weak behavior of the (2+2W) example.

Alternative semantics for sync fences. We first prove a gen-
eral property of the Power model: its sync fences are equiva-
lent to release-acquire RMWs to a distinguished location. This
entails that sync instructions (and events) are redundant in the
Power model, and justifies our treatment of fences as syntactic
sugar for the atomic assignment 〈f := 0〉. To prove this property,
we define a correspondence between Power executions with sync
events and those obtained from them by replacing these events
with release-acquire updates. Given plain Power executions Gs =
〈As, pos , depss, ∅, Ats〉 and Gr = 〈Ar, por, depsr, ∅, Atr〉, we
write Gs ≈ Gr if no event in Gs accesses location f and Gr is
obtained from Gs by (1) adding an initialization event with label
〈W, f, 0〉 and (2) splitting each sync event of Gs into a sequence
of four por-consecutive events with labels 〈lwsync〉, 〈R, f, 0〉,
〈W, f, 0〉 and 〈isync〉, (3) adding a depsr edge between each
〈R, f, 0〉 event and its corresponding 〈W, f, 0〉 and isync events,
and (4) including the introduced read and write events in Atr .

Theorem 7. Let Gs, Gr be plain Power executions, such that
Gs ≈ Gr . Then,Gs is Power-consistent iffGr is Power-consistent.

11 2015/11/6

Proof sketch. We write as ≈ ar for corresponding events as in Gs
and ar in Gr . Let rfs , such that G′s = 〈As, pos , depss, rfs , Ats〉
is complete and Power-coherent, and let {cox}x∈Loc\{f} be the
coherence orders for G′s that satisfy the conditions of Def. 19. We
construct rfr and cof , such that G′r = 〈Ar, por , depsr, rfr , Atr〉
is complete and {cox}x∈Loc satisfy the conditions of Def. 19 for
G′r . We note that Propagation entails that the relation(

pos ; hb
∗; (co ∪ po-aa ∪ (base ∩ (W ×W)))∗;

chapo?; base∗; pos

)
∩ (S × S)

is acyclic (using the notations of Fig. 13 and Def. 19 for Gs). Take
T to be a strict total order on Gs.sync × Gs.sync extending this
relation. We set cof = {〈ar, br〉 ∈ Gr.Wf ×Gr.Wf | ∃〈as, bs〉 ∈
T. as ≈ ar∧bs ≈ br} and rfr = rfs∪(icof ; rmw−1), where icof
consists of the immediate cof -edges, and show that the conditions
of Def. 19 are satisfied.

For the converse, we pick rfs = {〈a, b〉 ∈ rfr | loc(a) 6= f}
and show that the conditions of Def. 19 are satisfied for the relations
{cox}x∈Loc\{f}.

An interesting consequence of this theorem is that a Power pro-
gram with just one sync fence is equivalent to the program where
that sync fence is replaced with an lwsync fence. Indeed, the ef-
fect of a release-acquire RMW to an otherwise unused location is
equivalent to the effect of a single lwsync fence.

Compilation soundness and completeness. To relate the SRA
and Power models, we first define a correspondence between ex-
ecutions defined in §2 (that we refer to as SRA executions) and
Power executions. Here, we consider only Power executions that
result from the standard compilation scheme of C11 release-acquire
accesses to Power (see Fig. 14). Further, observing that a program
may terminate under Power iff it has a Power-consistent execution
in which all update loops succeed immediately, we assume that up-
date commands generate just one read event.

Definition 20. Given an SRA execution G = 〈A, po, rf 〉 and a
Power execution Gp = 〈Ap, pop , deps, rfp , At〉 with Gp.sync =
∅, we write G ∼ Gp if there exist bijections:

w : G.W ∪G.U→ Gp.W fw : G.W ∪G.U→ Gp.lwsync
r : G.R ∪G.U→ Gp.R fr : G.R ∪G.U→ Gp.isync

such that the following hold, where g : Ap → A denotes the
function w−1 ∪ f−1

w ∪ r−1 ∪ f−1
r :

• loc◦w = loc, valw ◦w = valw, loc◦r = loc, valr ◦r = valr

• pop =


{〈a, b〉 ∈ Ap ×Ap | 〈g(a), g(b)〉 ∈ po}
∪{〈fw(a), w(a)〉 | a ∈ G.W}
∪{〈r(a), fr(a)〉 | a ∈ G.R}
∪{〈fw(a), r(a)〉 | a ∈ G.U}
∪{〈r(a), w(a)〉 | a ∈ G.U}
∪{〈w(a), fr(a)〉 | a ∈ G.U}


+

• deps ⊇ {〈r(a), w(a)〉 | a ∈ G.U}
• deps ⊇ {〈r(a), fr(a)〉 | a ∈ G.U ∪G.R}
• rfp = {〈w(a), r(b)〉 | 〈a, b〉 ∈ rf }
• At = {r(a) | a ∈ G.U} ∪ {w(a) | a ∈ G.U}

Informally, one can easily see that for every SRA executionG of
a program P , there exists a Power execution Gp of the compilation
of P such that G ∼ Gp, and vice versa. For Power executions that
relate to SRA ones, we can simplify the Power model as follows:

Proposition 9. LetGp = 〈A, po, deps, rf , At〉 be a Power execu-
tion that is ∼-related to some SRA execution. Then:

• ppo = po ∩ (R× (R∪W)).

• fence =

(
((po \ rmw) ∩ ((R∪W)×W));
(po ∩ (W × (R∪W)))?

)
.

Next, we prove that for related executions, SRA-coherence co-
incides with Power-coherence.

Theorem 8. Let G ∼ Gp be related SRA and Power executions.
Then, G is SRA-coherent iff Gp is Power-coherent.

Proof sketch. For one direction, we show that any total order ex-
tending {〈w−1(ap), w

−1(bp)〉 | 〈ap, bp〉 ∈ (co ∪ prop)+} is a
modification order inG. For the converse, we satisfy the conditions
of Def. 19 by taking cox = {〈w(a), w(b)〉 | 〈a, b〉 ∈ mox}.

The exact correspondence between SRA and Power entails that
SRA cannot be further strengthened without modifying the existing
compilation scheme. Note that for RA only the right-to-left impli-
cation holds because SRA is strictly stronger than RA.

8. Related Work
Steinke and Nutt [34] developed a hierarchy of memory models ex-
pressed in terms of per-thread view order, that uniformly accounts
for several classical consistency models (such as causal consistency
[3] and PRAM consistency [21]). Except for SC, all these classical
models are strictly weaker than RA. Roughly speaking, the reason
is that a per-thread view induces a per-thread modification order,
while RA assumes a global modification order for each location.

There are some other recent operational memory models. Many
of these (e.g., [4, 8, 36]) are essentially wrappers around a declar-
ative model: they build an execution graph in a stepwise fashion
and check for consistency as new events are added to the execu-
tion. In contrast, our operational semantics for SRA does not refer
to graphs and consistency axioms. An operational memory model
for Power was defined by Sarkar et al. [28], and it is stronger than
the model of [4]. Their operational model attempts to cover the en-
tire Power architecture and is thus substantially more complex than
ours. In addition, Zhang and Feng [40] present an operational weak
memory model for Java that models weak behaviors by allowing
event replay. The resulting model is much weaker than RA.

Wickerson et al. [39] proposed a new simpler semantics for SC
accesses, including SC fences. While their semantics of SC fences
is stronger than the C11’s semantics, it is weaker than ours, and
still allows weak behaviors for RA programs even when fences are
placed between every two commands.

Weak consistency models appear also in the context of dis-
tributed systems, and more specifically, for replicated databases.
These models include an additional construct of a transaction,
which can be seen as an atomic block of instructions. Recently,
Cerone et al. [11] proposed a framework for specifying such mod-
els, and studied several important ones in this framework. Among
those, the closest to SRA is PSI (“Parallel Snapshot Isolation”).
Stripping compound transactions out, and adapting to our termi-
nology, PSI-coherence can be seen as a strengthening of SRA with
the condition asserting that po ∪ rf ∪

⋃
ymoy ∪ frx is acyclic for

every x ∈ Loc (where, as above, frx = (rf −1;mox) \ IdA). The
next example shows that PSI is strictly stronger than SRA:

x := 1
x := 2
y := 1
z := 1

y := 2
wait (x = 1)
wait (z = 1)
wait (y = 2)

This program may terminate under SRA (and, hence, also under
Power), but not under PSI. In addition, it may terminate under TSO.
Hence, we believe that PSI is too strong as a high-performance
memory model for a programming language. Note, however, that
PSI coincides with SRA for WW-race free executions.

Regarding the verification of RCU, Tassarotti et al. [35] and
Lahav and Vafeiadis [18] use program logics (called GPS and

12 2015/11/6

OGRA, respectively) to verify an RCU implementation under RA.
However, their RCU implementation is based on the simple one
shown in Fig. 12, while the more advanced implementation of
Fig. 10 was not considered.

9. Conclusion
We have presented a new memory model, SRA, a slight strength-
ening of RA with many nice properties: (1) it is equivalent to RA
in the absence of write-write races, (2) it has the same implementa-
tion cost on TSO and Power, (3) it allows the same local program
transformations, and (4) it has an intuitive operational characteri-
zation. Moreover, we provided a simple notion of a strong memory
fence that suffices for restoring sequential consistency assuming all
(racy) accesses are RA, and presented reduction theorems to SC
and TSO for particular classes of programs.

Practically speaking, the results of this paper suggest two in-
dependent strengthenings of the C11 memory model that do not
incur any performance penalty: (1) adopting SRA instead of RA
as the semantics of release-acquire accesses, and (2) modeling SC
fences as release-acquire RMWs to a special location. Of course,
a prerequisite for employing (1) in C11 is the investigation of our
results in the broader context of the full C11 memory model, which
includes more access kinds: non-atomic, SC atomic, relaxed atomic
and consume atomic accesses. The most important of these are the
non-atomic accesses because they avoid the synchronization over-
head on Power, ARM, and Itanium. For them, the extension of our
results is mostly straightforward (as sketched in the supplementary
materiel). In fact, we believe that a programming language that has
only release/acquire accesses (with SRA semantics) alongside non-
atomic accesses (that should not be racy) should provide a reason-
able balance between performance and programmability.

In addition, the simple operational model for SRA may pave
the way for better understanding of programs running under weak
memory, and development of essential verification methods and
tools for these programs (e.g., model checking and program log-
ics). Another theoretically interesting question is whether basic RA
admits a similar machine semantics.

Acknowledgments
We would like to thank Marko Doko, Jeehoon Kang, Peter Sewell,
Francesco Zappa Nardelli, and the POPL’16 reviewers for their
helpful feedback. This work was supported by EC FET project
ADVENT (308830).

References
[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and

K. Sagonas. Stateless model checking for TSO and PSO. In Tools
and Algorithms for the Construction and Analysis of Systems, TACAS
2015, volume 9035 of LNCS, pages 353–367. Springer, 2015.

[2] P. A. Abdulla, M. F. Atig, and N. T. Phong. The best of both worlds:
Trading efficiency and optimality in fence insertion for TSO. In ESOP
2015: 24th European Symposium on Programming, volume 9032 of
LNCS, pages 308–332. Springer, 2015.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal
memory: definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995.

[4] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans.
Program. Lang. Syst., 36(2):7:1–7:74, July 2014.

[5] J. Barnat, L. Brim, and V. Havel. LTL model checking of parallel
programs with under-approximated TSO memory model. In 13th
International Conference on Application of Concurrency to System
Design, ACSD’13, pages 51–59, July 2013.

[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematiz-
ing C++ concurrency. In 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 55–66.
ACM, 2011.

[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: From C++11 to POWER. In 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 509–520. ACM, 2012.

[8] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and
P. Sewell. The problem of programming language concurrency se-
mantics. In 24th European Symposium on Programming (ESOP 2015),
volume 9032 of LNCS, pages 283–307. Springer, 2015.

[9] A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness
against total store ordering. In Automata, Languages and Program-
ming, volume 6756 of LNCS, pages 428–440. Springer, 2011.

[10] A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing
robustness against TSO. In Programming Languages and Systems,
volume 7792 of LNCS, pages 533–553. Springer, 2013.

[11] A. Cerone, G. Bernardi, and A. Gotsman. A Framework for Trans-
actional Consistency Models with Atomic Visibility. In 26th Inter-
national Conference on Concurrency Theory (CONCUR 2015), vol-
ume 42 of LIPIcs, pages 58–71. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015.

[12] A. Dan, Y. Meshman, M. Vechev, and E. Yahav. Effective abstractions
for verification under relaxed memory models. In Verification, Model
Checking, and Abstract Interpretation, volume 8931 of LNCS, pages
449–466. Springer, 2015.

[13] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole. User-level implementations of read-copy update. IEEE
Trans. Parallel Distrib. Syst., 23(2):375–382, 2012. .

[14] ISO/IEC 14882:2011. Programming language C++, 2011.

[15] ISO/IEC 9899:2011. Programming language C, 2011.

[16] S. Jagannathan, V. Laporte, G. Petri, D. Pichardie, and J. Vitek. Atom-
icity refinement for verified compilation. ACM Trans. Program. Lang.
Syst., 36(2):6:1–6:30, 2014.

[17] M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstrac-
tions for relaxed memory models. In 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI
’11, pages 187–198. ACM, 2011.

[18] O. Lahav and V. Vafeiadis. Owicki-gries reasoning for weak memory
models. In Automata, Languages, and Programming, ICALP’15,
volume 9135 of LNCS, pages 311–323. Springer, 2015.

[19] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):690–
691, 1979.

[20] A. Linden and P. Wolper. An automata-based symbolic approach for
verifying programs on relaxed memory models. In Model Checking
Software, volume 6349 of LNCS, pages 212–226. Springer, 2010.

[21] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory.
Technical report, Technical Report CS-TR-180-88, Princeton Univer-
sity, 1988.

[22] W. Mansky and E. L. Gunter. Verifying optimizations for concurrent
programs. In First International Workshop on Rewriting Techniques
for Program Transformations and Evaluation, WPTE 2014, volume 40
of OASICS, pages 15–26. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014.

[23] L. Maranget, S. Sarkar, and P. Sewell. A tutorial intro-
duction to the ARM and POWER relaxed memory models.
http://www.cl.cam.ac.uk/˜pes20/ppc-supplemental/test7.pdf, 2012.

[24] S. Owens. Reasoning about the implementation of concurrency ab-
stractions on x86-TSO. In ECOOP 2010: 24th European Conference
on Object-Oriented Programming, volume 6183 of LNCS, pages 478–
503. Springer, 2010.

[25] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:
x86-TSO. In TPHOLs 2009, volume 5674 of LNCS, pages 391–407.
Springer, 2009.

13 2015/11/6

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

[26] B. Rajaram, V. Nagarajan, S. Sarkar, and M. Elver. Fast RMWs
for TSO: Semantics and implementation. In 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, pages 61–72. ACM, 2013.

[27] T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE
2010, volume 6217 of LNCS, pages 55–70. Springer, 2010.

[28] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI
’11, pages 175–186. ACM, 2011.

[29] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 311–322. ACM, 2012.

[30] J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22, 2013.

[31] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst., 10
(2):282–312, 1988.

[32] F. Sieczkowski, K. Svendsen, L. Birkedal, and J. Pichon-Pharabod. A
separation logic for fictional sequential consistency. In ESOP 2015,
volume 9032 of LNCS, pages 736–761. Springer, 2015.

[33] SPARC International Inc. The SPARC Architecture Manual: Version
8. Prentice-Hall, Inc., 1992. ISBN 0-13-825001-4.

[34] R. C. Steinke and G. J. Nutt. A unified theory of shared memory
consistency. J. ACM, 51(5):800–849, Sept. 2004.

[35] J. Tassarotti, D. Dreyer, and V. Vafeiadis. Verifying read-copy-update
in a logic for weak memory. In 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2015,
pages 110–120. ACM, 2015.

[36] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In 2014 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’14, pages 691–707. ACM, 2014. .

[37] V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination op-
timisations. In 18th International Conference on Static Analysis,
SAS’11, volume 6887 of LNCS, pages 146–162. Springer, 2011.

[38] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid in
the C11 memory model and what we can do about it. In 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, pages 209–220. ACM, 2015.

[39] J. Wickerson, M. Batty, and A. F. Donaldson. Overhauling SC atomics
in C11 and OpenCL. In 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, 2016.

[40] Y. Zhang and X. Feng. An operational approach to happens-before
memory model. In 7th International Symposium on Theoretical As-
pects of Software Engineering, TASE 2013, pages 121–128. IEEE
Computer Society, 2013.

14 2015/11/6

