
Verifying Concurrent Memory Reclamation
Algorithms with Grace

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang

1 IMDEA Software Institute
2 Tel-Aviv University
3 University of Oxford

Abstract. Memory management is one of the most complex aspects of mod-
ern concurrent algorithms, and various techniques proposed for it—such as haz-
ard pointers, read-copy-update and epoch-based reclamation—have proved very
challenging for formal reasoning. In this paper, we show that different memory
reclamation techniques actually rely on the same implicit synchronisation pat-
tern, not clearly reflected in the code, but only in the form of assertions used to
argue its correctness. The pattern is based on the key concept of a grace period,
during which a thread can access certain shared memory cells without fear that
they get deallocated. We propose a modular reasoning method, motivated by the
pattern, that handles all three of the above memory reclamation techniques in a
uniform way. By explicating their fundamental core, our method achieves clean
and simple proofs, scaling even to realistic implementations of the algorithms
without a significant increase in proof complexity. We formalise the method us-
ing a combination of separation logic and temporal logic and use it to verify
example instantiations of the three approaches to memory reclamation.

1 Introduction
Non-blocking synchronisation is a style of concurrent programming that avoids the
blocking inherent to lock-based mutual exclusion. Instead, it uses low-level synchro-
nisation techniques, such as compare-and-swap operations, that lead to more complex
algorithms, but provide a better performance in the presence of high contention among
threads. Non-blocking synchronisation is primarily employed by concurrent implemen-
tations of data structures, such as stacks, queues, linked lists and hash tables.

Reasoning about concurrent programs is generally difficult, because of the need to
consider all possible interactions between concurrently executing threads. This is espe-
cially true for non-blocking algorithms, where threads interact in subtle ways through
dynamically-allocated data structures. In the last few years, great progress has been
made in addressing this challenge. We now have a number of logics and automatic
tools that combat the complexity of non-blocking algorithms by verifying them thread-
modularly, i.e., by considering every thread in an algorithm in isolation under some
assumptions on its environment and thus avoiding explicit reasoning about all thread
interactions. Not only have such efforts increased our confidence in the correctness of
the algorithms, but they have often resulted in human-understandable proofs that eluci-
dated the core design principles behind these algorithms.

However, one area of non-blocking concurrency has so far resisted attempts to give
proofs with such characteristics—that of memory management. By their very nature,
non-blocking algorithms allow access to memory cells while they are being updated

by concurrent threads. Such optimistic access makes memory management one of the
most complex aspects of the algorithms, as it becomes very difficult to decide when it
is safe to reclaim a memory cell. Incorrect decisions can lead to errors such as memory
access violations, corruption of shared data and return of incorrect results. To avoid this,
an algorithm needs to include a protocol for coordinating between threads accessing
the shared data structure and those trying to reclaim its nodes. Relying on garbage
collection is not always an option, since non-blocking algorithms are often implemented
in languages without it, such as C/C++.

In recent years, several different methods for explicit memory reclamation in non-
blocking algorithms have been proposed:

– Hazard pointers [12] let a thread publish the address of a node it is accessing as a
special global pointer. Another thread wishing to reclaim the node first checks the
hazard pointers of all threads.

– Read-copy-update (RCU) [11] lets a thread mark a series of operations it is perform-
ing on a data structure as an RCU critical section, and provides a command that waits
for all threads currently in critical sections to exit them. A thread typically accesses
a given node inside the same critical section, and a reclaimer waits for all threads to
finish their critical sections before deallocating the node.

– Epoch-based reclamation [5] uses a special counter of epochs, approximating the
global time, for quantifying how long ago a given node has been removed from the
data structure. A node that has been out of the data structure for a sufficiently long
time can be safely deallocated.

Despite the conceptual simplicity of the above methods, their implementations in
non-blocking algorithms are extremely subtle. For example, as we explain in §2, the
protocol for setting a hazard pointer is more involved than just assigning the address
of the node being accessed to a global variable. Reasoning naturally about protocols so
subtle is very challenging. Out of the above algorithms, only restricted implementations
of hazard pointers have been verified [14, 6, 3, 16], and even in this case, the resulting
proofs were very complicated (see §6 for discussion).

The memory reclamation algorithms achieve the same goal by intuitively similar
means, yet are very different in details. In this paper, we show that, despite these differ-
ences, the algorithms actually rely on the same synchronisation pattern that is implicit—
not clearly reflected in the code, but only in the form of assertions used to argue its cor-
rectness. We propose a modular reasoning method, formalising this pattern, that handles
all three of the above approaches to memory reclamation in a uniform way. By explicat-
ing their fundamental core, we achieve clean and simple proofs, scaling even to realistic
implementations of the algorithms without a significant increase in proof complexity.

In more detail, we reason about memory reclamation algorithms by formalising the
concept of a grace period—the period of time during which a given thread can access
certain nodes of a data structure without fear that they get deallocated. Before deallo-
cating a node, a reclaimer needs to wait until the grace periods of all threads that could
have had access to the node pass. Different approaches to memory reclamation define
the grace period in a different way. However, we show that, for the three approaches
above, the duration of a grace period can be characterised by a temporal formula of a
fixed form “η since µ”, e.g., “the hazard pointer has pointed to the node since the node
was present in the shared data structure”. This allows us to express the contract between
threads accessing nodes and those trying to reclaim them by an invariant stating that a

1 int *C = new int(0);
2 int inc() {
3 int v, *s, *n;
4 n = new int;
5 do {
6 s = C;
7 v = *s;
8 *n = v+1;
9 } while

10 (!CAS(&C,s,n));
11 // free(s);
12 return v;
13 }

14 int *C = new int(0);
15 int *HP[N] = {0};
16 Set detached[N] = {∅};
17 int inc() {
18 int v, *n, *s, *s2;
19 n = new int;
20 do {
21 do {
22 s = C;
23 HP[tid-1] = s;
24 s2 = C;
25 } while (s != s2);
26 v = *s;
27 *n = v+1;
28 } while(!CAS(&C,s,n));
29 reclaim(s);
30 return v; }

31 void reclaim(int *s) {
32 insert(detached[tid-1],s);
33 if (nondet()) return;
34 Set in_use = ∅;
35 while (!isEmpty(
36 detached[tid-1])) {
37 bool my = true;
38 int *n =
39 pop(detached[tid-1]);
40 for (int i = 0;
41 i < N && my; i++)
42 if (HP[i] == n)
43 my = false;
44 if (my) free(n);
45 else insert(in_use, n);
46 }
47 moveAll(detached[tid-1],
48 in_use); }

(a) (b) (c)

Fig. 1. A shared counter: (a) an implementation leaking memory; (b)-(c) an implementation based
on hazard pointers. Here tid gives the identifier of the current thread.

node cannot be deallocated during the corresponding grace period for any thread. The
invariant enables modular reasoning: to prove the whole algorithm correct, we just need
to check that separate threads respect it. Thus, a thread accessing the data structure has
to establish the assertion “η since µ”, ensuring that it is inside a grace period; a thread
wishing to reclaim a node has to establish the negation of such assertions for all threads,
thus showing that all grace periods for the node have passed. Different algorithms just
implement code that establishes assertions of the same form in different ways.

We formalise such correctness arguments in a modular program logic, combining
one of the concurrent versions of separation logic [17, 4] with temporal logic (§3). We
demonstrate our reasoning method by verifying example instantiations of the three ap-
proaches to memory reclamation—hazard pointers (§4), RCU (§5) and epoch-based
reclamation [7, §D]. In particular, for RCU we provide the first specification of its inter-
face that can be effectively used to verify common RCU-based algorithms. Due to space
constraints, the development for epochs is deferred to [7, §D]. As far as we know, the
only other algorithm that allows explicitly returning memory to the OS in non-blocking
algorithms is the Repeat-Offender algorithm [8]. Our preliminary investigations show
that our method is applicable to it as well; we leave formalisation for future work.

2 Informal Development
We start by presenting our reasoning method informally for hazard pointers and RCU,
and illustrating the similarities between the two.

2.1 Running Example
As our running example, we use a counter with an increment operation inc that can be
called concurrently by multiple threads. Despite its simplicity, the example is represen-
tative of the challenges that arise when reasoning about more complex algorithms.

The implementation shown in Figure 1a follows a typical pattern of non-blocking
algorithms. The current value of the counter is kept in a heap-allocated node pointed

to by the global variable C. To increment the counter, we allocate a new memory cell n
(line 4), atomically read the value of C into a local pointer variable s (line 6), dereference
s to get the value v of the counter (line 7), and then store v’s successor into n (line 8).
At that point, we try to change C so that it points to n using an atomic compare-and-
swap (CAS) command (line 10). A CAS takes three arguments: a memory address (e.g.,
&C), an expected value (s) and a new value (n). It atomically reads the memory address
and updates it with the new value if the address contains the expected value; otherwise,
it does nothing. The CAS thus succeeds only if the value of C is the same as it was
when we read it at line 6, thus ensuring that the counter is updated correctly. If the
CAS fails, we repeat the above steps all over again. The algorithm is memory safe, i.e.,
it never accesses unallocated memory cells. It is also functionally correct in the sense
that every increment operation appears to take effect atomically. More formally, the
counter is linearizable with respect to the expected sequential counter specification [9].
Unfortunately, the algorithm leaks memory, as the node replaced by the CAS is never
reclaimed. It is thus not appropriate for environments without garbage collection.

A naive fix. One can try to prevent memory leakage by uncommenting the free com-
mand in line 11 of Figure 1a, so that the node previously pointed to by C is deallocated
by the thread that changed C’s value (in this case we say that the thread detached the
node). However, this violates both memory safety and linearizability. To see the former,
consider two concurrent threads, one of which has just read the value x of C at line 6,
when the other executed inc to completion and reclaimed the node at the address x.
When the first thread resumes at line 7 it will access an unallocated memory cell.

The algorithm also has executions where a memory fault does not happen, but inc
just returns an incorrect value. Consider the following scenario: a thread t1 running inc
gets preempted after executing line 7 and, at that time, C points to a node x storing v; a
thread t2 executes inc, deallocating the node x and incrementing the counter to v+1; a
thread t3 calls inc and allocates x, recycled by the memory system; t3 stores v+2 into
x and makes C point to it; t1 wakes up, its CAS succeeds, and it sets the counter value
to v + 1, thereby decrementing it! This is a particular instance of the well-known ABA
problem: if we read the value A of a global variable and later check that it has the value
A, we cannot conclude, in general, that in the meantime it did not change to another
value B and then back to A. The version of the algorithm without free in line 11 does
not suffer from this problem, as it always allocates a fresh cell. This algorithm is also
correct when executed in a garbage-collected environment, as in this case the node x in
the above scenario will not be recycled as long as t1 keeps the pointer s to it.

2.2 Reasoning about Hazard Pointers
Figure 1b shows a correct implementation of inc with explicit memory reclamation
based on hazard pointers [12]. We assume a fixed number of threads with identifiers
from 1 to N . As before, the thread that detaches a node is in charge of reclaiming it.
However, it delays the reclamation until it is assured that no other thread requested that
the node be protected from reclamation. A thread announces a request for a node to be
protected using the array HP of shared hazard pointers indexed by thread identifiers. Ev-
ery thread is allowed to write to the entry in the array corresponding to its identifier and
read all entries. To protect the location s, a thread writes s into its entry of the hazard
array (line 23) and then checks that the announcement was not too late by validating
that C still points to s (line 25). Once the validation succeeds, the thread is assured that

the node s will not be deallocated as long as it keeps its hazard pointer equal to s. In
particular, it is guaranteed that the node s remains allocated when executing lines 26–
28, which ensures that the algorithm is memory safe. This also guarantees that, if the
CAS in line 28 is successful, then C has not changed its value since the thread read it at
line 24. This prevents the ABA problem and makes the algorithm linearizable.

The protection of a node pointed to by a hazard pointer is ensured by the behaviour
of the thread that detaches it. Instead of invoking free directly, the latter uses the
reclaim procedure in Figure 1c. This stores the node in a thread-local detached set
(line 32) and occasionally performs a batched reclamation from this set (for clarity, we
implemented detached as an abstract set, rather than a low-level data structure). To this
end, the thread considers every node n from the set and checks that no hazard pointer
points to it (lines 40–43). If the check succeeds, the node gets deallocated (line 44).
Reasoning challenges. The main idea of hazard pointers is simple: threads access-
ing the shared data structure set hazard pointers to its nodes, and threads reclaiming
memory check these pointers before deallocating nodes. However, the mechanics of
implementing this protocol in a non-blocking way is very subtle.

For example, when a thread t1 deallocates a node x at line 44, we may actually
have a hazard pointer of another thread t2 pointing to x. This can occur in the following
scenario: t2 reads the address x from C at line 22 and gets preempted; t1’s CAS detaches
x and successfully passes the check in lines 40–43; t2 wakes up and sets its hazard
pointer to x; t1 deallocates x at line 44. However, such situations do not violate the
correctness, as the next thing t2 will do is to check that C still points to x at line 25.
Provided x has not yet been recycled by the memory system, this check will fail and the
hazard pointer of t2 will have no force. This shows that the additional check in line 25
is indispensable for the algorithm to be correct.

It is also possible that, before t2 performs the check in line 25, x is recycled, al-
located at line 19 by another thread t3 and inserted into the shared data structure at
line 28. In this case, the check by t2 succeeds, and the element can safely be accessed.
This highlights a subtle point: when t3 executes the CAS at line 28 to insert x, we might
already have a hazard pointer pointing to x. This, however, does not violate correctness.
Our approach. We achieve a natural reasoning about hazard pointers and similar pat-
terns by formalising the main intuitive concept in their design—that of a grace period.
As follows from the above explanation, a thread t can only be sure that a node x its
hazard pointer points to is not deallocated after a moment of time when both the haz-
ard pointer was set and the node was pointed to by C. The grace period for the node x
and thread t starts from this moment and lasts for as long as the thread keeps its hazard
pointer pointing to x. Informally, this is described by the following temporal judgement:

“the hazard pointer of thread t has pointed to x since C pointed to x”, (1)

where since is a temporal connective with the expected interpretation: both of the facts
connected were true at some point, and since then, the first fact has stayed true. We can
thus specify the contract between threads accessing nodes and those trying to reclaim
them by the following invariant that all threads have to respect:

“for all t and x, if the hazard pointer of thread t has pointed to x since
C pointed to x, then x is allocated.” (2)

It is this invariant that justifies the safety of the access to a shared node at line 26. On
the other hand, a thread that wants to deallocate x when executing reclaim checks that

the hazard pointers of other threads do not point to x (lines 40–43) only after detaching
the node from the shared data structure, and it keeps the node in the detached set until
its deallocation. Thus, even though threads can set their hazard pointers to x after the
reclaimer executes the check in lines 40–43, they cannot do this at the same time as C
points to x. Hence, when the reclaimer deallocates x at line 44, we know that

“for all t, C has not pointed to x since the hazard pointer of t did not
point to x.” (3)

Clearly, (3) is inconsistent with (1). Therefore, no thread is inside a grace period for x
at the time of its deallocation, and the command in line 44 does not violate invariant (2).

More formally, let us denote the property “the hazard pointer of thread t points to
node x” by ηt,x, “C points to node x” by µx, and “x is allocated” by λx. Then (1) is
(ηt,x since µx), (2) is (∀t, x. (ηt,x since µx) =⇒ λx), and (3) is (∀t.¬µx since ¬ηt,x).
The combination of (1) and (3) is inconsistent due to the following tautology:

∀η, µ. (η since µ) ∧ (¬µ since ¬η) =⇒ false. (4)

The above argument justifies the memory safety of the algorithm, and (as we show
in §4) the absence of memory leaks. Moreover, (2) guarantees to a thread executing inc
that, when the CAS in line 28 succeeds, the node s has not been reallocated, and so the
ABA problem does not occur.

We have achieved a simple reasoning about the algorithm by defining the duration of
a grace period (1), the protocol all threads follow (2), and the fact a reclaimer establishes
before deallocating a node (3) as temporal formulas of particular forms. We find that
the above reasoning with temporal facts of these forms is applicable not only to our
example, but also to uses of hazard pointers in other data structures [7, §B], and in fact,
to completely different approaches to memory reclamation, as we now illustrate.

2.3 Reasoning about Read-Copy-Update

Read-Copy-Update (RCU) [11] is a non-standard synchronisation mechanism used in
Linux to ensure safe memory deallocation in data structures with concurrent access. So
far, there have been no methods for reasoning about programs with RCU. We now show
that we can use our temporal reasoning principle based on grace periods to this end.

RCU primer. RCU provides three commands: rcu enter, rcu exit and sync. The
rcu enter and rcu exit commands delimit an RCU critical section. They do not ensure
mutual exclusion, so multiple threads can be in their critical sections simultaneously.
Instead of enforcing mutual exclusion, RCU provides the sync command, which records
the identifiers of the threads currently in critical sections and waits until all of them exit
the sections. Note that if a new thread enters a critical section while sync is waiting, the
command does not wait for the completion of its section. For example, when t1 calls
sync in the execution in Figure 2, it has to wait for critical sections S1, S5 and S6 to
finish. However, it does not wait for S2 or S4, as they start after sync was called.

Figure 2 shows an abstract implementation of the RCU primitives, formalising the
above description of their semantics (for now, the reader should disregard the anno-
tations in the figure). A concrete optimised RCU implementation would simulate the
abstract one. Whether every thread is inside or outside an RCU critical section is deter-
mined by its entry in the rcu array.

1 bool rcu[N] = {0};
2 rcu_enter() {〈rcu[tid-1]=1〉RCUtid

;}
3 rcu_exit() {〈rcu[tid-1]=0〉RCUtid

;}
4 sync() {
5 bool r[N] = {0};
6 for(int i = 0; i < N; i++)
7 〈r[i] = rcu[i]〉Id;
8 for(int i = 0; i < N; i++)
9 if(r[i]) {while(〈rcu[i]〉Id);}

10 }

;

synct1

t2

t3

t4

t5

rcu enter; S1; rcu exit rcu enter; S2; rcu exit

rcu enter; S3; rcu exit rcu enter; S4; rcu exit

rcu enter; S5; rcu exit

rcu enter; S6; rcu exit

Fig. 2. An abstract RCU implementation and an illustration of the semantics of sync. Blocks
represent the time spans of RCU critical sections or an execution of sync.

1 int *C = new int(0);
2 bool rcu[N] = {0};
3 Set detached[N] = {∅};
4

5 void reclaim(int* s) {
6 insert(detached[tid-1], s);
7 if (nondet()) return;
8 sync();
9 while (!isEmpty(detached[tid]))

10 free(pop(detached[tid])); }

15 int inc() {
16 int v, *n, *s;
17 n = new int; rcu_enter();
18 do {
19 rcu_exit(); rcu_enter();
20 s = C; v = *s; *n = v+1;
21 } while (!CAS(&C,s,n));
22 rcu_exit();
23 reclaim(s);
24 return v; }

Fig. 3. Counter with RCU-based memory management

RCU-based counter. Figure 3 gives the implementation of the running example using
RCU. Its overall structure is similar to the implementation using hazard pointers. In
inc, we wrap an RCU critical section around the commands starting from the read
of the global variable C at line 20 and including all memory accesses involving the
value read up to the CAS at line 21. The correctness of the algorithm is ensured by
having reclaim call sync at line 8, before deallocating the detached nodes. This blocks
the thread until all critical sections that existed at the time of the call to sync finish.
Since, when sync is called, the nodes to be deallocated have already been moved to
the thread-local detached set, newly arriving inc operations have no way of gaining
a reference to one of these nodes, which guarantees the safety of their deallocation. We
can similarly argue that an ABA problem does not occur, and thus, the algorithm is
linearizable. We can formulate the contract among threads as follows:

“for all t and x, if thread t has stayed in a critical section since it saw C
pointing to x, then x is allocated,” (5)

which is of the same form as (2). Here, a grace period for a thread, specified by the
‘since’ clause, lasts for as long as the thread stays in its critical section. During the time
span of sync, every thread passes through a point when it is not in a critical section.
Hence, after executing line 8, for every node x to be deallocated we know:

“for all t, C has not pointed to x since t was not in a critical section,” (6)

which is of the same form as (3). As before, this is inconsistent with the ‘since’ clause
of (5), which guarantees that deallocating x will not violate (5).
Pattern. The algorithms using hazard pointers and read-copy-update fundamentally
rely on the same synchronisation pattern, where a potentially harmful race between
threads accessing nodes and those trying to reclaim them is avoided by establishing an

assertion of the form (ηt,x since µx) before every access, and (¬µx since ¬ηt,x) before
every deallocation. This implicit pattern is highlighted not by examining the syntactic
structure of different memory management implementations, but by observing that the
arguments about their correctness have the same form, as can be seen in our proofs.

3 Abstract Logic
Reasoning about highly concurrent algorithms, such as the example in §2, is conve-
nient in logics based on rely-guarantee [10, 15], which avoids direct reasoning about all
possible thread interactions in a concurrent program by specifying a relation (the guar-
antee condition) for every thread restricting how it can change the program state. For
any given thread, the union of the guarantee conditions of all the other threads in the
program (its rely condition) restricts how those threads can interfere with it, and hence,
allows reasoning about this thread in isolation.

The logic we use to formalise our verification method for memory reclamation
algorithms uses a variant of rely-guarantee reasoning proposed in SAGL [4] and
RGSep [17]—logics for reasoning about concurrent programs that combine rely-
guarantee reasoning with separation logic. These partition the program heap into several
thread-local parts (each of which can only be accessed by a given thread) and the shared
part (which can be accessed by all threads). The partitioning is defined by proofs in the
logic: an assertion in the code of a thread restricts its local state and the shared state.
Thus, while reasoning about a thread, we do not have to consider local states of other
threads. Additionally, the partitioning is dynamic, meaning that we can use ownership
transfer to move some part of the local state into the shared state and vice versa. Rely
and guarantee conditions are then specified as relations on the shared state determining
how the threads change it. This is in contrast with the original rely-guarantee method,
in which rely and guarantee conditions are relations on the whole program state. We
use RGSep [17] as the basis for the logic presented in this section. Our logic adds just
enough temporal reasoning to RGSep to formalise the verification method for algo-
rithms based on grace periods that we explained in §2.

3.1 Preliminaries
Programming language. We formalise our results for a simple language:

C ::= α | C;C | C + C | C∗ | 〈C〉 P ::= C1 ‖ . . . ‖ CN
A program P is a parallel composition of N threads, which can contain primitive com-
mands α ∈ PComm, sequential composition C;C ′, nondeterministic choice C + C ′,
iteration C∗ and atomic execution 〈C〉 of C. We forbid nested atomic blocks. Even
though we present our logic for programs in the above language, for readability we use
a C-like notation in our examples, which can be easily desugared [7, §A].
Separation algebras. To reason about concurrent algorithms, we often use permis-
sions [1], describing ways in which threads can operate on an area of memory. We
present our logic in an abstract form [2] that is parametric in the kind of permissions
used. A separation algebra is a set Σ, together with a partial commutative, associative
and cancellative operation ∗ on Σ and a unit element ε ∈ Σ. The property of cancella-
tivity says that for each θ ∈ Σ, the function θ ∗ · : Σ ⇀ Σ is injective. In the rest of the
paper we assume a separation algebra State with the operation ∗. We think of elements
θ ∈ State as portions of program states and the ∗ operation as combining such portions.

Primitive commands. We assume that the semantics of every primitive command α ∈
PComm, executed by thread t, is given by a transformer f tα : State → P(State)>.
Here P(State)> is the set of subsets of State with a special element > used to denote
an error state, resulting, e.g., from dereferencing an invalid pointer. For our logic to be
sound, we need to place certain standard restrictions on f tα, deferred to [7, §A].

Notation. We write g(x)↓ to mean that the function g is defined on x, and g(x)↑ that
it is undefined on x. We also write for an expression whose value is irrelevant.

3.2 Assertion Language

Assertions in the logic describe sets of worlds, comprised of the local state of a thread
and a history of the shared state. Local states are represented by elements of a separa-
tion algebra (§3.1), and histories, by sequences of those. Our assertion language thus
includes three syntactic categories, for assertions describing states, histories and worlds.

Logical variables. Our logic includes logical variables from a set LVar = LIVar]
LSVar; variables from LIVar = {x, y, . . .} range over integers, and those from LSVar =
{X,Y, . . .}, over memory states. Let LVal = State ∪ Z be the set of values of logical
variables, and LInt ⊆ LVar→ LVal, the set of their type-respecting interpretations.

Assertions for states. We assume a language for denoting subsets of State× LInt:

p, q ::= true | ¬p | p⇒ q | X | ∃x. p | ∃X. p | emp | p ∗ q | . . .

The interpretation of interesting connectives is as follows:

θ, i |= emp ⇐⇒ θ = ε θ, i |= X ⇐⇒ θ = i(X)
θ, i |= p ∗ q ⇐⇒ ∃θ′, θ′′. (θ′ ∗ θ′′ = θ) ∧ (θ′, i |= p) ∧ (θ′′, i |= q)

The assertion emp denotes an empty state; X , the state given by its interpretation; and
p ∗ q, states that can be split into two pieces such that one of them satisfies p and the
other, q. We assume that ∗ binds stronger than the other connectives.

Assertions for histories. A history is a non-empty sequence recording all shared states
that arise during the execution of a program: ξ ∈ History = State+. We denote the
length of a history ξ by |ξ|, its i-th element by ξi, and its i-th prefix, by ξ|i (so that∣∣ξ|i∣∣ = i.) We refer to the last state ξ|ξ| in a history ξ as the current state. We define
assertions denoting subsets of History× LInt:

τ, Υ ::= true | ¬τ | τ1 ⇒ τ2 | ∃x. τ | ∃X. τ | p | τ1 since τ2 | τ / p
ξ, i |= p ⇐⇒ ξ|ξ|, i |= p
ξ, i |= τ1 since τ2 ⇐⇒ ∃i ∈ {1, ..., |ξ|}. (ξ|i, i |= τ2) ∧ ∀j ∈ {i, ..., |ξ|}. (ξ|j , i |= τ1)
ξ, i |= τ / p ⇐⇒ ∃ξ′, θ. (ξ = ξ′θ) ∧ (ξ′, i |= τ) ∧ (θ, i |= p)

The assertion p denotes the set of histories of shared states, whose last state satisfies p;
the box signifies that the assertion describes a shared state, as opposed to a thread-local
one. The assertion (τ1 since τ2) describes those histories where both τ1 and τ2 held at
some point in the past, and since then, τ1 has held continuously. The assertion τ / p (τ
extended with p) describes histories obtained by appending a state satisfying p to the
end of a history satisfying τ . It is easy to check that (4) from §2 is indeed a tautology.

Assertions for worlds. A world consists of a thread-local state and a history of shared
states such that the combination of the local state and the current shared state is defined:

ω ∈World = {(θ, ξ) ∈ State× History | (θ ∗ ξ|ξ|)↓}. (7)

We define assertions denoting subsets of World× LInt:

P,Q ::= p | τ | true | ¬P | P ⇒ Q | ∃x. P | ∃X.P | P ∗Q
θ, ξ, i |= p ⇐⇒ θ, i |= p θ, ξ, i |= τ ⇐⇒ ξ, i |= τ
θ, ξ, i |= P ∗Q ⇐⇒ ∃θ′, θ′′. (θ = θ′ ∗ θ′′) ∧ (θ′, ξ, i |= P) ∧ (θ′′, ξ, i |= Q)

An assertion P ∗Q denotes worlds in which the local state can be divided into two parts
such that one of them, together with the history of the shared partition, satisfies P and
the other, together with the same history, satisfiesQ. Note that ∗ does not split the shared
partition, p does not restrict the shared state, and τ does not restrict the thread-local one.

3.3 Rely/Guarantee Conditions and the Temporal Invariant
Actions. The judgements of our logic include guarantee G and rely R conditions, de-
termining how a thread or its environment can change the shared state, respectively.
Similarly to RGSep [17], these are sets of actions of the form l | p ∗X q ∗X , where
l, p and q are assertions over states, and X is a logical variable over states. An action
denotes a relation in P(State× State× State):

Jl | p∗X q∗XK = {(θl, θp, θq) | ∃i. (θl, i |= l)∧(θp, i |= p∗X)∧(θq, i |= q∗X)},
and a rely or a guarantee denotes the union of their action denotations. We write R ⇒
R′ for JRK ⊆ JR′K. Informally, the action l | p ∗X q ∗X allows a thread to change
the part of the shared state that satisfies p into one that satisfies q, while leaving the rest
of the shared state X unchanged. The assertion l is called a guard: it describes a piece
of state that has to be in the local partition of the thread for it to be able to perform
the action. We omit l when it is emp. Our actions refer explicitly to the unchanged part
X of the shared state, as we often need to check that a command performing an action
preserves global constraints on it (see §4.3). We require that p and q in l | p∗X q∗X
be precise. An assertion r for states is precise [13], if for every state θ and interpretation
i, there exists at most one substate θ1 satisfying r, i.e., such that θ1, i |= r and θ = θ1∗θ2
for some θ2. Informally, a precise assertion carves out a unique piece of the heap.
Temporal invariant. Rely/guarantee conditions describe the set of actions that threads
can perform at any point, but do not say anything about temporal protocols that the
actions follow. We describe such protocols using a temporal invariant, which is an
assertion Υ over histories of the shared state. Every change to the shared state that a
thread performs using one of the actions in its guarantee has to preserve Υ ; in return,
a thread can rely on the environment not violating the invariant. We require that Υ be
insensitive to logical variables, i.e., ∀ξ, i, i′. (ξ, i |= Υ) ⇐⇒ (ξ, i′ |= Υ).
Stability. When reasoning about the code of a thread in our logic, we take into account
the interference from the other threads in the program, specified by the rely R and the
temporal invariant Υ , using the concept of stability. An assertion over worlds P is stable
under an action l | ps qs and a temporal invariant Υ , if it is insensitive to changes to
the shared state permitted by the action that preserve the invariant:

∀θ, θs, θ′s, θl, i, ξ. ((θ, ξθs, i |= P) ∧ (ξθs, i |=Υ) ∧ (ξθsθ
′
s, i |=Υ) ∧

(θl, θs, θ
′
s) ∈ Jl | ps qsK ∧ (θ ∗ θl ∗ θs)↓ ∧ (θ ∗ θ′s)↓) =⇒ (θ, ξθsθ

′
s, i |= P).

(8)

f tidα (JpK) ⊆ JqK
R,G, Υ `tid {p}α {q}

LOCAL

P ∧ Υ ⇒ P ′ R⇒ R′ G′ ⇒ G Q′ ∧ Υ ⇒ Q
R′, G′, Υ `tid {P ′}C {Q′}
R,G, Υ `tid {P}C {Q}

CONSEQ

R,G, Υ `tid {P}C {Q}
F is stable under R ∪G and Υ

R,G, Υ `tid {P ∗ F}C {Q ∗ F}
FRAME

Q⇒ Υ P , Q are stable under R and Υ
∅, G, true `tid {P} 〈C〉a {Q}
R,G, Υ `tid {P} 〈C〉a {Q}

SHARED-R

p⇒ l ∗ true {l | ps qs} ⇒ {a} a ∈ G ∅, ∅, true `tid {p ∗ ps}C {q ∗ qs}

∅, G, true `tid {p ∧ τ ∧ ps } 〈C〉a {q ∧ ((τ ∧ ps) / qs)}
SHARED

R1, G1, Υ `1 {P1}C1 {Q1} . . . Rn, Gn, Υ `n {Pn}Cn {Qn}
Rtid =

⋃
{Gk | 1 ≤ k ≤ n ∧ k 6= tid} P1 ∗ . . . ∗ Pn ⇒ Υ Pk, Qk stable under Rk and Υ

` {P1 ∗ . . . ∗ Pn}C1 ‖ . . . ‖ Cn {Q1 ∗ . . . ∗Qn}
PAR

Fig. 4. Proof rules of the logic

This makes use of the guard l: we do not take into account environment transitions when
the latter cannot possibly own the guard, i.e., when θl is inconsistent with the current
thread-local state θ and the current shared state θs. An assertion is stable underR and Υ ,
when it is stable under every action in R together with Υ . We only consider assertions
that are closed under stuttering on histories: (θ, ξθsξ′, i |= P)⇒ (θ, ξθsθsξ

′, i |= P).

3.4 Proof System

The judgements of the logic are of the formR,G, Υ `tid {P}C {Q}. Here P andQ are
the pre- and postcondition of C, denoting sets of worlds; G describes the set of atomic
changes that the thread tid executing C can make to the shared state; R, the changes to
the shared state that its environment can make; and Υ , the temporal invariant that both
have to preserve. The judgement guarantees that the command C is safe, i.e., it does not
dereference any invalid pointers when executed in an environment respecting R and Υ .

The proof rules of our logic are given in Figure 4. We have omitted the more stan-
dard rules [7, §A]. We have a single axiom for primitive commands executing on the
local state (LOCAL), which allows any pre- and postconditions consistent with their se-
mantics. The axiom uses the expected pointwise lifting of the transformers f tα from §3.1
to assertion denotations, preserving the interpretation of logical variables. The CONSEQ
rule looks as usual in rely/guarantee, except it allows strengthening the pre- and post-
condition with the information provided by the temporal invariant Υ .

By convention, the only commands that can operate on the shared state are atomic
blocks, handled by the rules SHARED-R and SHARED. The SHARED-R rule checks that
the atomic block meets its specification in an empty environment, and then checks that
the pre- and postcondition are stable with respect to the actual environment R, and that
the postcondition implies the invariant Υ . Note that to establish the latter in practice,
we can always add Υ to the precondition of the atomic block using CONSEQ.

SHARED handles the case of an empty rely condition, left by SHARED-R. It is the
key rule in the proof system, allowing an atomic command C to make a change to
the shared state according to an action l | ps qs. The action has to be included
into the annotation a of the atomic block, which in its turn, has to be permitted by
the guarantee G. The annotations are part of proofs in our logic. For the logic to be
sound, we require that every atomic command in the program be annotated with the

same action throughout the proof. SHARED also requires the thread to have a piece of
state satisfying the guard l in its local state p. It combines the local state p with the
shared state ps, and runs C as if this combination were in the thread’s local state. The
rule then splits the resulting state into local q and shared qs parts. Note that SHARED
allows the postcondition of the atomic block to record how the shared state looked like
before its execution: the previous view ps of the shared state and the assertion τ about
its history are extended with the new shared state qs with the aid of / (§3.1).

The FRAME rule ensures that if a command C is safe when run from states in P ,
then it does not touch an extra piece of state described by F . Since F can contain
assertions constraining the shared state, we require it to be stable under R ∪G and Υ .

PAR combines judgements about several threads. Their pre- and postconditions in
the premisses of the rule are ∗-conjoined in the conclusion, which composes the local
states of the threads and enforces that they have the same view of the shared state.

3.5 Soundness

Let us denote by Prog the set of programs P with an additional command done, de-
scribing a completed computation. The language of §3.1 has a standard small-step oper-
ational semantics, defined by a relation−→: Config×Config, which transforms config-
urations from the set Config = (Prog×State)∪{>}. (Note that this semantics ignores
the effects of weak memory consistency models, which are left for future work.) We
defer the definition of −→ to [7, §A]. The following theorem is proved in [7, §E].

Theorem 1 (Soundness). Assume ` {P}P {Q} and take θl, θs and i such that
θl, θs, i |= P . Then (P, θl ∗ θs) 6−→∗> and, whenever (P, θl ∗ θs) −→∗ (done ‖
. . . ‖ done, θ′), for some θ′l, θ

′
s and ξ we have θ′ = θ′l ∗ θ′s and θ′l, ξθ

′
s, i |= Q.

4 Logic Instantiation and Hazard Pointers

As explained in §2, proofs of algorithms based on grace periods, use only a restricted
form of temporal reasoning. In this section, we describe an instantiation of the abstract
logic of §3 tailored to such algorithms. This includes a particular form of the tempo-
ral invariant (§4.2) and a specialised version of the SHARED rule (SHARED-I below)
that allows us to establish that the temporal invariant is preserved using standard state-
based reasoning. We present the instantiation by the example of verifying the concurrent
counter algorithm with hazard pointers from §2.

4.1 Assertion Language

Permissions. We instantiate State to RAMe = N⇀fin ((Z× {1,m}) ∪ {e}). A state
thus consists of a finite partial function from memory locations allocated in the heap to
the values they store and/or permissions. The permission 1 is a full permission, which
allows a thread to perform any action on the cell; the permission m is a master per-
mission, which allows reading and writing the cell, but not deallocating it; and e is an
existential permission, which only allows reading the cell and does not give any guar-
antees regarding its contents. The transformers f tα over RAMe are given in [7, §A].

We define ∗ on cell contents as follows: (u,m) ∗ e = (u, 1); undefined in all other
cases. This only allows a full permission to be split into a master and an existential one,

X X (Id) x 7→m | x 7→e ∗X X (Take)

HP[tid−1] 7→ ∗X HP[tid−1] 7→ ∗X (HPtid)

C 7→ x ∗ x 7→ ∗X C 7→ y ∗ y 7→ ∗ x 7→e ∗X (Inc)

Gtid = {HPtid, Inc,Take, Id}; Rtid =
⋃
{Gk | 1 ≤ k ≤ N ∧ k 6= tid}

ΥHP ⇐⇒ ∀x, t. ((HP[t− 1] 7→ x ∗ true since C 7→ x ∗ x 7→ ∗ true)⇒ x 7→e ∗ true)

Fig. 5. Rely/guarantee conditions and the temporal invariant used in the proof of the counter
algorithm with hazard pointers

which is enough for our purposes. For θ1, θ2 ∈ RAMe, θ1 ∗ θ2 is undefined, if for some
x, we have θ1(x)↓, θ2(x)↓, but (θ1(x) ∗ θ2(x))↑. Otherwise,

θ1∗θ2 = {(x,w) | (θ1(x)=w∧θ2(x)↑)∨(θ2(x)=w∧θ1(x)↑)∨(w= θ1(x)∗θ2(x))}.

State assertions. To denote elements of RAMe, we extend the assertion language for
predicates over states given in §3.2: p ::= . . . | E 7→ F | E 7→m F | E 7→e , where
E,F range over expressions over integer-valued logical variables. The semantics is as
expected; e.g., [JEKi : (JF Ki, 1)], i |= E 7→ F and x 7→ u⇔ x 7→m u ∗ x 7→e .

Conventions. We assume that logical variables t, t′, . . . range over thread identifiers in
{1, . . . , N}. We write A[k] for A + k, and truee for ∃A. ~x∈A x 7→e , where ~ is the
iterated version of ∗. We adopt the convention that global variables are constants, and
local variables are allocated at fixed addresses in memory. For a local variable var of
thread tid, we write var P for ∃var . (&var + tid − 1) 7→ var ∗ P , where &var is
the address of the variable. Note that here var is a program variable, whereas var is a
logical one. We use a similar notation for lists of variables V .

4.2 Actions and the Temporal Invariant
The actions used in the proof of the running example and the rely/guarantee conditions
constructed from them are given in Figure 5. Id allows reading the contents of the shared
state, but not modifying it, and HPtid allows modifying the contents of the t-th entry in
the hazard pointer array. The rely Rtid and the guarantee Gtid are set up in such a way
that only thread tid can execute HPtid.

Inc allows a thread to change the node pointed to by C from x to y, thus detaching
the old node x. Note that y 7→ occurs on the right-hand side of Inc, but not on its
left-hand side. Hence, the thread executing the action transfers the ownership of the
node y (in our example, initially allocated in its local state) into the shared state. Since
x 7→ occurs on the left-hand side of Inc, but only x 7→e occurs on its right-hand side,
the thread gets the ownership of x 7→m . This is used to express the protocol that the
thread detaching the node will be the one to deallocate it. Namely, Take allows a thread
to take the remaining existential permission from the shared state only when it has the
corresponding master permission in its local state. The existential permission left in
the shared state after a thread executes Inc lets concurrently running threads access the
detached node until it is deallocated.

Threads can only execute Take and other actions when these do not violate the
temporal invariant ΥHP in Figure 5. Temporal invariants used for proofs of algorithms
based on grace periods are of the form “∀x, t. (g since r) ⇒ c ”, where “g since r ”

1 int *C = new int(0), *HP[N] = {0};
2 Set detached[N] = {∅};
3 int inc() {
4 int v, *n, *s, *s2;
5 {V Ftid ∧ I}
6 n = new int;
7 do {
8 {V n 7→ ∗ Ftid ∧ I}
9 do {

10 {V n 7→ ∗ Ftid ∧ I}
11 〈s = C〉Id;
12 {V n 7→ ∗ Ftid ∧ I}
13 〈HP[tid-1] = s〉HPtid

;

14 {V n 7→ ∗ Ftid ∧ I ∧
15 HP[tid− 1] 7→ s ∗ true }
16 〈s2 = C〉Id;
17 {V n 7→ ∗ Ftid ∧ I ∧

18 (HP[tid− 1] 7→ s ∗ true
19 since C 7→ s2 ∗ s2 7→ ∗ true)}
20 } while (s != s2);

21 {V n 7→ ∗ Ftid ∧ I ∧ s 7→e ∗ true ∧
22 (HP[tid− 1] 7→ s ∗ true
23 since C 7→ s ∗ s 7→ ∗ true)}
24 〈v = *s〉Id;
25 *n = v+1;

26 {V n 7→ ∗ Ftid ∧ I ∧ s 7→e ∗ true ∧
27 (HP[tid− 1] 7→ s ∗ true
28 since C 7→ s ∗ s 7→ ∗ true)}
29 } while (!CASInc,Id(&C, s, n));

30 {V s 7→m ∗ Ftid ∧ I ∧ s 7→e ∗ true }
31 reclaim(s);
32 {V Ftid ∧ I}
33 return v; }

Fig. 6. Proof outline for inc with hazard pointers. Here V is v, n, s, s2 , my , in use , i.

defines the duration of the grace period for a thread t and a location x, and c gives
the property that has to be maintained during the grace period. In our example, the
invariant formalises (2): if a hazard pointer of t has pointed to a node x continuously
since C pointed to x, then an existential permission for x is present in the shared state.

4.3 Proof Outlines and a Derived Rule for Grace Periods
The proof outline for the running example is shown in Figures 6 and 7. In the figure,
we write CASa,b(addr,v1,v2) as a shorthand for the following, where the assume
command “assumes” its parameter to be non-zero [7, §A]:
if (nondet()) {〈assume(*addr == v1); *addr = v2〉a; return 1; }

else { 〈assume(*addr != v1)〉b; return 0; }

The bulk of the proof employs standard state-based reasoning of the kind performed
in RGSep [17]. Temporal reasoning is needed, e.g., to check that every command chang-
ing the shared state preserves the temporal invariant ΥHP (the premiss Q ⇒ Υ in
SHARED-R). We start by discussing the proof outline of inc in Figure 6 in general
terms; we then describe the handling of commands changing the shared state in detail.
Verifying inc. LetH ⇔ (~t HP[t−1] 7→) and I ⇔ H ∗ ∃y. C 7→ y ∗ y 7→ ∗ truee .
The pre- and postcondition of inc in Figure 6 thus state that the shared state always
contains the hazard pointer array, the pointer at the address C and the node it identifies.
Additionally, we can have an arbitrary number of existential permissions for nodes that
threads leave in the shared state in between executing Inc and Take. We also have an
assertion Ftid, defined later, which describes the thread-local detached set.

At line 11 of inc, the current thread reads the value of C into the local variable
s. For the postcondition of this command to be stable, we do not maintain any cor-
relation between the values of C and s, as other threads might change C using Inc at
any time. The thread sets its hazard pointer to s at line 13. The postcondition includes
HP[tid− 1] 7→ s ∗ true , which is stable, as Rtid and Gtid (Figure 5) allow only the cur-
rent thread to execute HPtid.

At line 16, the thread reads the value of C into s2. Right after executing the com-
mand, we have HP[tid− 1] 7→ s ∗ true ∧ C 7→ s2 ∗ s2 7→ ∗ true . This assertion is un-

stable, as other threads may change C at any time using Inc. We therefore weaken it to
the postcondition shown by using the tautology (η ∧ µ) ⇒ (η since µ). It is easy to
check that an assertion (η since µ) is stable if η is. Since HP[tid− 1] 7→ s ∗ true is sta-
ble, so is the postcondition of the command in line 16. After the test s != s2 in line 20
fails, the since clause in this assertion characterises the grace period of the thread tid for
the location s, as stated by ΥHP. This allows us to exploit ΥHP at line 23 using CONSEQ,
establishing s 7→e ∗ true . This assertion allows us to access the node at the address s
safely at line 24.

If the CAS in line 29 is successful, then the thread transfers the ownership of the
newly allocated node n to the shared state, and takes the ownership of the master per-
mission for the node s; the existential permission for s stays in the shared state. The
resulting assertion s 7→m ∧ s 7→e ∗ true is stable, because the only action that can
remove s 7→e from the shared state, Take, is guarded by s 7→m . Since the current
thread has the ownership of s 7→m and s 7→m ∗ s 7→m is inconsistent, the condition
(θ ∗ θl ∗ θs)↓ in (8), checking that the guard is consistent with the local state, implies
that the action cannot be executed by the environment, and thus, the assertion is stable.

Derived rule for grace periods. To check that the commands in lines 13 and 29 of inc
preserve ΥHP, we use the following rule SHARED-I, derived from SHARED [7, §A]:

p⇒ l ∗ true a = (l | p′s q′s) ∈ G ps ⇒ p′s qs ⇒ q′s
∅, ∅, true `tid {p ∗ (ps ∧ ¬(g ∧ r))}C {q ∗ (qs ∧ (g ∧ r ⇒ c))}
∅, ∅, true `tid {p ∗ (ps ∧ g ∧ c)}C {q ∗ (qs ∧ (g ⇒ c))}

∅, G, true `tid {p ∧ ps ∧ ((g since r)⇒ c)}〈C〉a {q ∧ qs ∧ ((g since r)⇒ c)}

This gives conditions under which 〈C〉 preserves the validity of an assertion of the form

(g since r)⇒ c (9)

and thus allows us to prove the preservation of a temporal invariant of the form (9) using
standard Hoare-style reasoning. In the rule, ps describes the view of the shared partition
that the current thread has before executingC, and qs, the state in whichC leaves it. The
rule requires that the change from ps to qs be allowed by the annotation a = (l | p′s
q′s), i.e., that ps ⇒ p′s and qs ⇒ q′s. It further provides two Hoare triples to be checked
of C, which correspond, respectively, to the two cases for why (g since r) ⇒ c may
hold before the execution of C: ¬(g since r) or (g since r) ∧ c .

As in SHARED, the two Hoare triples in the premiss allow the command inside
the atomic block to access both local and shared state. Consider the first one. We can
assume ¬(g ∧ r) in the precondition, as it is implied by ¬(g since r). Since g since r
does not hold before the execution of C, the only way to establish it afterwards is by
obtaining g∧ r. In this case, to preserve (9), we have to establish c, which motivates the
postcondition. Formally: ((¬(g since r)) / g ∧ r ⇒ c)⇒ ((g since r)⇒ c).

Consider now the second Hoare triple. Its precondition comes from the tautology
((g since r) ∧ c) ⇒ g ∧ c . We only need to establish c in the postcondition when
g since r holds there, which will only be the case if g continues to hold after C
executes: (((g since r) ∧ c) / g ⇒ c)⇒ ((g since r)⇒ c).

Preserving the temporal invariant. We illustrate the use of SHARED-I on the com-
mand in line 29 of Figure 6; the one in line 13 is handled analogously. We consider
the case when the CAS succeeds, i.e., C is {assume(C == s); C = n;}. Let P

1 void reclaim(int *s) { {V s 7→m ∗ Ftid ∧ s 7→e ∗ true ∧ I}
2 insert(detached[tid-1], s);
3 if (nondet()) return;
4 Set in_use = ∅;
5 while (!isEmpty(detached[tid-1])) {
6 {V ∃A. detached[tid− 1] 7→ A ∗D(A) ∗D(in use) ∧A 6= ∅ ∧ I}
7 bool my = true;
8 Node *n = pop(detached[tid-1]);

9 {V my ∧ ∃A. detached[tid− 1] 7→A ∗D(A) ∗D(in use) ∗ n 7→m ∧ n 7→e ∗ true ∧ I}
10 for (int i = 0; i < N && my; i++) {

11 {V my ∧ ∃A. detached[tid− 1] 7→ A ∗D(A) ∗D(in use) ∗ n 7→m ∗ n 7→e ∗ true ∧
12 0 ≤ i < N ∧ I ∧ H ∗ ∃y. y 6= n ∧ C 7→ y ∗ y 7→ ∗ truee ∧
13 ∀0 ≤ j < i. (∃y. y 6= n ∧ C 7→ y ∗ y 7→ ∗ truee since ∃x. x 6= n ∧ HP[j] 7→ x ∗ true)}
14 if (〈HP[i] == n〉Id) my = false;
15 }
16 if (my) {

17 {V ∃A. detached[tid− 1] 7→ A ∗D(A) ∗D(in use) ∗ n 7→m ∧ n 7→e ∗ true ∧ I ∧
18 ∀t.¬ C 7→ n ∗ true since ¬ HP[t− 1] 7→ n ∗ true }
19 〈 ; 〉Take
20 {V ∃A. detached[tid− 1] 7→ A ∗D(A) ∗D(in use) ∗ n 7→ ∧ I}
21 free(n);
22 } else { insert(in_use, n); }
23 } {V detached[tid− 1] 7→ ∅ ∗D(in use) ∧ I}
24 moveAll(in_use, detached[tid-1]); {V Ftid ∧ I}
25 }

Fig. 7. Proof outline for reclaim with hazard pointers. V is v, n, s, s2 , my , in use , i.

and Q be the pre- and postconditions of this command in lines 26 and 30, respec-
tively. We thus need to prove Rtid, Gtid, Υ `tid {P} 〈C〉Inc {Q}. We first apply CON-
SEQ to strengthen the precondition of the CAS with Υ , and then apply SHARED-R.
This rule, in particular, requires us to show that the temporal invariant is preserved:
∅, Gtid, true `tid {P ∧ Υ} C {Q ∧ Υ}. Let us first strip the quantifiers over x and t in
Υ using a standard rule of Hoare logic. We then apply SHARED-I with

g = (HP[t−1] 7→ x ∗ true); r = (C 7→ x ∗ x 7→ ∗ true); c = (x 7→e ∗ true);
ps = (H ∗ ∃y. C 7→ y ∗ y 7→ ∗ truee); p = n 7→ ;
qs = (H ∗ ∃y. C 7→ y ∗ y 7→ ∗ s 7→e ∗ truee); q = s 7→m .

We consider only the first Hoare triple in the premiss of SHARED-I, which corresponds
to g since r being false before the atomic block. The triple instantiates to

{n 7→ ∗ ((H ∗ ∃y. C 7→ y ∗ y 7→ ∗ truee) ∧ ¬(HP[t− 1] 7→x ∗ true ∧ C 7→x ∗x 7→ ∗ true))}
assume(C == s); C = n; {s 7→m ∗ (H ∗ ∃y. C 7→ y ∗ y 7→ ∗ s 7→e ∗ truee) ∧

(((HP[t−1] 7→ x ∗ true)∧ (C 7→ x ∗x 7→ ∗ true))⇒ (x 7→e ∗ true))}

Recall that when the CAS at line 29 inserts a node into the shared data structure, we
already might have a hazard pointer set to the node (§2). The postcondition of the above
triple states that, in this case, we need to establish the conclusion of the temporal invari-
ant. This is satisfied, as x 7→ ⇔ x 7→m ∗ x 7→e .
Verifying reclaim. We now explain the proof outline in Figure 7. The predicate Ftid

describes the detached set of thread tid:

D(A) ⇐⇒ ~x∈A(x 7→m ∧ x 7→e ∗ true);
Ftid ⇐⇒ ∃A. detached[tid− 1] 7→ A ∗D(A).

(10)

Ftid asserts that thread tid owns the tid-th entry of the detached array, which stores the
set A of addresses of detached nodes; D(A) asserts that, for every x ∈ A, the thread
has the master permission for x in its local state, and the shared state contains the
existential permission for x. The assertion Ftid is stable, since, as we explained above,
so is x 7→m ∧x 7→e ∗ true . We assume the expected specifications for set operations.

The core of reclaim is the loop following the pop operation in line 8, which checks
that the hazard pointers do not point to the node that we want to deallocate. The as-
sertion in line 13 formalises (3) and is established as follows. If the condition on the
pointer HP[i] in line 14 fails, then we know that ∃x. x 6= n ∧ HP[i] 7→ x ∗ true . Recall
that, according to (7), §3.2, the combination of the local and the shared states has to
be consistent. Then, since we have n 7→m in our local state, we cannot have C point-
ing to n: in this case the full permission n 7→ would be in the shared state, and
n 7→ ∗ n 7→m is inconsistent. Hence, ∃y. y 6= n ∧ C 7→ y ∗ y 7→ ∗ true . By the
tautology (η ∧ µ)⇒ (η since µ), we obtain the desired assertion:

∃y. y 6= n ∧ C 7→ y ∗ y 7→ ∗ true since ∃x. x 6= n ∧ HP[i] 7→ x ∗ true . (11)

Since n 7→m ∧ ∃y. y 6= n ∧ C 7→ y ∗ y 7→ ∗ true is stable, so is the loop invariant.
At line 19, we use (11) and (4) to show that the existential permission for the node n
can be safely removed from the shared state. After this, we recombine it with the local
master permission to obtain n 7→ , which allows deallocating the node.

Absence of memory leaks. According to Theorem 1, the above proof establishes that
the algorithm is memory safe. In fact, it also implies that the algorithm does not leak
memory. Indeed, let P be the program consisting of any number of inc operations
running in parallel. From our proof, we get that P satisfies the following triple:

` {L ∗ (~t detached[t− 1] 7→ ∅) ∧ (~t HP[t− 1] 7→ 0) ∗ ∃y. C 7→ y ∗ y 7→ 0 }
P {L ∗ (~t Ft) ∧ (~t HP[t− 1] 7→) ∗ ∃y. C 7→ y ∗ y 7→ ∗ truee },

where L includes the local variables of all threads. The assertion truee in the postcon-
dition describes an arbitrary number of existential permissions for memory cells. How-
ever, physical memory cells are denoted by full permissions; an existential permission
can correspond to one of these only when the corresponding master permission is avail-
able. Every such master permission comes from some Ft, and hence, the corresponding
cell belongs to detached[t − 1]. Thus, at the end of the program, any allocated cell is
reachable from either C or one of the detached sets.

Extensions. Even though we illustrated our proof technique using the idealistic ex-
ample of a counter, the technique is also applicable both to other algorithms based on
hazard pointers and to different ways of optimising hazard pointer implementations. In
[7, §B], we demonstrate this on the example of a non-blocking stack with several op-
timisations of hazard pointers used in practice [12]: e.g., the pointers are dynamically
allocated, reclaim scans the hazard list only once, and the detached sets are repre-
sented by lists with links stored inside the detached elements themselves. The required
proof is not significantly more complex than the one presented in this section.

In [7, §C], we also present an adaptation of the above proof to establish the lineariz-
ability of the algorithm following the approach in [17] (we leave a formal integration of
the two methods for future work). The main challenge of proving linearizability of this
and similar algorithms lies in establishing that the ABA problem described in §2 does

Let S(tid, k) = rcu[tid− 1] 7→ k ∗ true and

X X (Id) rcu[tid− 1] 7→ ∗X rcu[tid− 1] 7→ ∗X (RCUtid)

Then, R, {RCUtid}, Υ `tid {S(tid, 0) ∧ emp} rcu enter() {S(tid, 1) ∧ emp};
R, {RCUtid}, Υ `tid {S(tid, 1) ∧ emp} rcu exit() {S(tid, 0) ∧ emp};
R, {Id}, Υ `tid {p ∧ τ} sync() {p ∧ ∀t. τ since S(t, 0)},

where 1. R⇒ {(rcu[tid− 1] 7→ x ∗ true) (rcu[tid− 1] 7→ x ∗ true)};
2. Υ is stable under {Id,RCUtid} and true; and
3. p ∧ τ is stable under R ∪ {Id} and Υ .

Fig. 8. Specification of RCU commands

not occur, i.e., when the CAS in line 29 of Figure 6 is successful, we can be sure that
the value of C has not changed since we read it at line 16. In our proof this is easy to es-
tablish, as between lines 16 and 29, all assertions are stable and contain s 7→e ∗ true ,
which guarantees that s cannot be recycled.

5 Formalising Read-Copy-Update
RCU specification. We start by deriving specifications for RCU commands in our logic
from the abstract RCU implementation in Figure 2; see Figure 8. The formula S(tid, 1)
states that the thread tid is in a critical section, and S(tid, 0), that it is outside one. We
use the identity action Id and an action RCUtid allowing a thread tid to enter or exit a
critical section. The latter is used to derive the specification for rcu enter and rcu exit
(see Figure 2). To satisfy the premisses of the SHARED-R rule in these derivations, we
require certain conditions ensuring that the RCU client will not corrupt the rcu array.
First, we require that the rely R does not change the element of the rcu array for the
thread tid executing the RCU function (condition 1). In practice, R includes the actions
RCUk for k 6= tid and actions that do not access the rcu array. Second, we require that
Υ be preserved under the actions that RCU functions execute (condition 2).

The specification for sync is the most interesting one. The precondition p ∧ τ is
required to be stable (condition 3), and thus holds for the whole of sync’s duration.
Since, while sync is executing, every thread passes through a point when it is not in a
critical section, we obtain ∀t. τ since S(t, 0) in the postcondition. (We mention the local
state p in the specification, as it helps in checking stability; see below.) The derivation
of the specification from Figure 2 is straightforward: e.g., the invariant of the loop in
line 8 is r, i p ∧ ∀t. (t < i + 1 ∨ r[t − 1] = 0) ⇒ (τ since S(t, 0)). As usual, here
we obtain the since clause by weakening: (τ ∧ S(tid, 0))⇒ (τ since S(tid, 0)).
Verification of the RCU-based counter. Since this RCU-based algorithm is simi-
lar to the one using hazard pointers, most actions in relies and guarantees are reused
from that proof (Figure 5): we let Gtid = {Id, Inc,Take,RCUtid} and Rtid =

⋃
{Gk |

1 ≤ k ≤ N ∧ k 6= tid}. The following invariant formalises (5):

ΥRCU ⇐⇒ ∀x, t. (S(t, 1) since C 7→ x ∗ x 7→ ∗ true)⇒ x 7→e ∗ true .

The proof outline for the RCU-based counter is given in Figure 9. The assertion Ftid

is the same as for hazard pointers and is defined by (10) in §4. The assertion I describes
the state invariant of the algorithm:

I ⇐⇒ (~t rcu[t− 1] 7→) ∗ ∃y. C 7→ y ∗ y 7→ ∗ truee .

1 int *C=new int(0); bool rcu[N]={0};
2 Set detached[N]={∅};
3 int inc() {
4 int v, *n, *s;
5 {V Ftid ∧ I ∧ S(tid, 0)}}
6 n = new int;
7 {V n 7→ ∗ Ftid ∧ I ∧ S(tid, 0)}}
8 rcu_enter();
9 do { {V n 7→ ∗ Ftid ∧ I ∧ S(tid, 1)}

10 rcu_exit();
11 rcu_enter();
12 〈s = C〉Id;
13 {V n 7→ ∗ Ftid ∧ I ∧ s 7→e ∗ true ∧
14 (S(tid, 1) since C 7→ s ∗ s 7→ ∗ true)}
15 〈v = *s〉Id;
16 *n = v+1;

17 {V n 7→ ∗ Ftid ∧ I ∧ s 7→e ∗ true
18 (S(tid, 1) since C 7→ s ∗ s 7→ ∗ true)}
19 } while (!CASInc,Id(&C, s, n));
20 rcu_exit();
21 {V s 7→m ∗ Ftid ∧ I ∧ S(tid, 0) ∧
22 s 7→e ∗ true }
23 reclaim(s);
24 {V Ftid ∧ I ∧ S(tid, 0)}
25 return v; }

26 void reclaim(int* s) {
27 {V s 7→m ∗ Ftid ∧ I ∧ S(tid, 0) ∧
28 s 7→e ∗ true }
29 insert(detached[tid-1], s);
30 if (nondet()) return;
31 {V I ∧ S(tid, 0) ∧
32 ∃A. detached[tid− 1] 7→ A ∗
33 (~x∈A x 7→m) ∧
34 (~x∈A x 7→e) ∗ true ∧
35 (~x∈A ¬C 7→ x ∗ x 7→ ∗ true)}
36 sync();
37 {V I ∧ S(tid, 0) ∧
38 ∃A. detached[tid− 1] 7→ A ∗
39 ~x∈A((x 7→m ∧ x 7→e ∗ true) ∧ ∀t.
40 ¬C 7→ x ∗ x 7→ ∗ true since S(t, 0))}
41 〈 ; 〉Take
42 {V I ∧ S(tid, 0) ∧
43 ∃A. detached[tid− 1] 7→ A ∗
44 (~x∈A x 7→)}
45 while (!isEmpty(detached[tid]))
46 free(pop(detached[tid]));
47 {V Ftid ∧ I ∧ S(tid, 0)}
48 }

Fig. 9. Counter with an RCU-based memory management. Here V is v, n, s.

The key points are as follows. After reading C at line 12, we obtain an unsta-
ble assertion S(tid, 1) ∧ C 7→ s ∗ s 7→ ∗ true , which we weaken to a stable one
(S(tid, 1) since C 7→ s ∗ s 7→ ∗ true). Then ΥRCU yields s 7→e ∗ true , which jus-
tifies the safety of dereferencing s at line 15. The same assertion in line 17 would let us
rule out the ABA problem in a linearizability proof. We get the assertion in line 35 from
the tautology x 7→m ⇒ ¬C 7→ x ∗ x 7→ ∗ true . At line 36, we apply the specifica-
tion of sync with τ = (~x∈A x 7→e) ∗ true ∧ (~x∈A ¬C 7→ x ∗ x 7→ ∗ true) and
p = (~x∈A x 7→m). The resulting since clause formalises (6) and allows us to justify
that the Take action in line 41 does not violate ΥRCU.

Like for hazard pointers, this proof implies that the algorithm does not leak memory,
and that the ABA problem does not occur.

6 Related Work
Out of the three techniques for memory reclamation that we consider in this paper, only
restricted versions of the non-blocking stack with hazard pointers that we handle in [7,
§B] have been verified: in concurrent separation logic [14], a combination of separation
logic and temporal logic [6], a reduction-based tool [3] and interval temporal logic [16].
These papers use different reasoning methods from the one we propose, none of which
has been grounded in a pattern common to different algorithms.

Among the above-mentioned verification efforts, the closest to us technically is the
work by Fu et al. [6], which proposed a combination of separation logic and temporal
logic very similar to the one we use for formalising our method. We emphasise that
we do not consider the logic we present in §3 as the main contribution of this paper,

but merely as a tool for formalising our reasoning method. It is this method that is the
main difference of our work in comparison to Fu et al. The method used by Fu et al.
to verify a non-blocking stack with hazard pointers leads to a complicated proof that
embeds a lot of implementation detail into its invariants and rely/guarantee conditions.
In contrast, our proofs are conceptually simple and technically straightforward, due to
the use of a strategy that captures the essence of the algorithms considered. Fu et al.
also handle only an idealistic implementation of hazard pointers, where deallocations
are not batched, and many assertions in the proof inherently rely on this simplification.
We do not think that their proof would scale easily to the implementation that batches
deallocations (§2), let alone other extensions we consider [7, §B].

Having said that, we fully acknowledge the influence of the work by Fu et al. In par-
ticular, we agree that a combination of temporal and separation logics provides a useful
means of reasoning about non-blocking algorithms. We hope that our formalisation of
powerful proof patterns in such a combined logic will motivate verification researchers
to adopt the pattern-based approach in verifying other complex concurrent algorithms.

Acknowledgements. We thank the following people for discussions and comments: Richard
Bornat, Sungkeun Cho, Byron Cook, Wonchan Lee, Paul McKenney, Peter O’Hearn, Matthew
Parkinson, Mooly Sagiv, Viktor Vafeiadis, Jonathan Walpole, Eran Yahav and Kwangkeun Yi.

References
1. J. Boyland. Checking interference with fractional permissions. In SAS, 2003.
2. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In LICS,

2007.
3. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, 2009.
4. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic

and assume-guarantee reasoning. In ESOP, 2007.
5. K. Fraser. Practical lock-freedom. PhD Thesis. University of Cambridge, 2004.
6. M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic concurrency using

a program logic for history. In CONCUR, 2010.
7. A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory reclamation algo-

rithms with grace. Technical Report 7/13, School of Computer Science, Tel-Aviv University,
2013. Available at www.cs.tau.ac.il/∼maon.

8. M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A mechanism for
supporting dynamic-sized, lock-free data structures. In DISC, 2002.

9. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 1990.

10. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.
11. P. McKenney. Exploiting deferred destruction: an analysis of read-copy-update techniques

in operating system kernels. PhD Thesis. OGI, 2004.
12. M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Trans. Parallel Distrib. Syst., 2004.
13. P. O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.
14. M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking stack. In

POPL, 2007.
15. A. Pnueli. In transition from global to modular temporal reasoning about programs. In

Logics and Models of Concurrent Systems, 1985.
16. B. Tofan, G. Schellhorn, and W. Reif. Formal verification of a lock-free stack with hazard

pointers. In ICTAC, 2011.
17. V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. University of

Cambridge, 2008.

