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ABSTRACT

In response to the rise of multicore processors, mainstream languages have begun to offer primi-
tives for concurrent programming. To avoid the cost of inter-core synchronisation, the new C/C++
standard, C11 [2], offers weakly consistent relazed operations, alongside traditional reads, writes
and mutexes. When using relaxed operations, different threads may see different, apparently con-
tradictory orders of events.

C11 permits a particularly surprising kind of relaxed behaviour: cycles in causality. Two condi-
tional guards on different threads can be satisfied by writes down the other branch. Both branches
execute, even though each appears to depend on the other.

x=0; y=0;
if (x == 42) || if (y == 23)
y = 23; Il x = 42;

Such behaviour could potentially be produced by hardware speculation or compiler optimisations,
but it is unclear whether it occurs in current implementations. Causal cycles are known to be
problematic: the Java standard tried to rule them out, but inadvertently forbade several widely-
used optimisations [3]. C11 heavily deprecates cycles, but falls short of banning them outright.

A property is compositional if each program sub-component can be analysed separately while
assuming its surrounding context is well-behaved. By allowing programs to be decomposed, com-
positionality aids documentation, testing and verification. In most languages, safety properties
(e.g., absence of memory faults) are compositional, because a given fault must originate in the
sub-component or its context, but not both. Causal cycles in C11 allow two faults to cause each
other, which violates this assumption and breaks compositionality [1].

Fixing compositionality in C11 requires a condition for ruling out cycles which avoids Java’s
problems. This remains a difficult open problem.

BODY

C/C++ permit seemingly-impossible cycles in causality. This breaks composi-
tionality: two apparently safe programs may fault when composed.
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