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Abstract. One of the main challenges in stating the correctness of transactional
memory (TM) systems is the need to provide guarantees on the system state ob-
served by live transactions, i.e., those that have not yet committed or aborted. A
TM correctness condition should be weak enough to allow flexibility in imple-
mentation, yet strong enough to disallow undesirable TM behavior, which can
lead to run-time errors in live transactions. The latter feature is formalized by ob-
servational refinement between TM implementations, stating that properties of a
program using a concrete TM implementation can be established by analyzing its
behavior with an abstract TM, serving as a specification of the concrete one.
We show that a variant of transactional memory specification (TMS), a TM cor-
rectness condition, is equivalent to observational refinement for the common pro-
gramming model in which local variables are rolled back upon a transaction abort
and, hence, is the weakest acceptable condition for this case. This is challenging
due to the nontrivial formulation of TMS, which allows different aborted and live
transactions to have different views of the system state. Our proof reveals some
natural, but subtle, assumptions on the TM required for the equivalence result.

1 Introduction

result := abort;
while (result == abort) {

result := atomic {
x := X.read();
y := Y.read();
z := 42 / (x - y);
Z.write(z); } }

Fig. 1. TM usage

Transactional memory (TM) eases the task of writing con-
current applications by letting the programmer designate
certain code blocks as atomic. TM allows developing a pro-
gram and reasoning about its correctness as if each atomic
block executes as a transaction—in one step and without
interleaving with others—even though in reality the blocks
can be executed concurrently. Figure 1 shows how atomic
blocks are used to manipulate several shared transactional
objects X, Y and Z, access to which is mediated by the TM.

The common approach to stating TM correctness is through a consistency condition
that restricts the possible TM executions. The main subtlety of formulating such a con-
dition is the need to provide guarantees on the state of transactional objects observed
by live transactions, i.e., those that have not yet committed or aborted. Because live
transactions can always be aborted, one might think it unnecessary to provide any guar-
antees for them, as done by common database consistency conditions [1]. However, in
the setting of transactional memory, this is often unsatisfactory. For example, in Fig-
ure 1 the programmer may rely on the fact that X 6= Y, and, correspondingly, make sure
that every committing transaction preserves this invariant. If we allow the transaction



to read values of X and Y violating the invariant (counting on it to abort later, due to
inconsistency), this will lead to the program faulting due to a division by zero.

The question of which TM consistency condition to use is far from settled, with sev-
eral candidates having been proposed [2–5]. An ideal condition should be weak enough
to allow flexibility in TM implementations, yet strong enough to satisfy the intuitive
expectations of the programmer and, in particular, to disallow undesirable behaviors
such as the one described above. Observational refinement [6, 7] allows formalizing
the programmer’s expectations and thereby evaluating consistency conditions system-
atically. Consider two TM implementations—a concrete one, such as an efficient TM,
and an abstract one, such as a TM executing every atomic block atomically. Informally,
the concrete TM observationally refines the abstract one for a given programming lan-
guage if every behavior a user can observe of any program P in this language using
the concrete TM can also be observed when P uses the abstract TM instead. This al-
lows the programmer to reason about the behavior of P (e.g., the preservation of the
invariant X 6= Y) using the expected intuitive semantics formalized by the abstract TM;
the observational refinement relation implies that the conclusions (e.g., the safety of the
division in Figure 1) will carry over to the case when P uses the concrete TM.

In prior work [8] we showed that a variant of the opacity condition [2] is equiva-
lent to observational refinement for a particular programming language and, hence, is
the weakest acceptable consistency condition for this language. Roughly speaking, a
concrete TM implementation is in the opacity relation with an abstract one if for any
sequence of interactions with the concrete TM, dubbed a history, there exists a history
of the abstract TM where: (i) the actions of every separate thread are the same as in the
original history; and (ii) the order of non-overlapping transactions present in the original
history is preserved. However, our result considered a programming language in which
local variables modified by a transaction are not rolled back upon an abort. Although
this assumption holds in some situations (e.g., Scala STM [9]), it is non-standard and
most TM systems do not satisfy it. In this paper, we consider a variant of transactional
memory specification (TMS) [5], a condition weaker than opacity,4 and show that, under
some natural assumptions on the TM, it is equivalent to observational refinement for a
programming language in which local variables do get rolled back upon an abort.

This result is not just a straightforward adjustment of the one about opacity to a
more realistic setting: TMS weakens opacity in a nontrivial way, which makes reason-
ing about its relationship with observational refinement much more intricate. In more
detail, the key feature of opacity is that the behavior of all transactions in a history of
the concrete TM, including aborted and live ones, has to be justified by a single history
of the abstract TM. TMS relaxes this requirement by requiring only committed trans-
actions in the concrete history to be justified by a single abstract one obeying (i)–(ii)
above; every response obtained from the TM in an aborted or live transaction may be
justified by a separate abstract history. The constraints on the choice of the abstract
history are subtle: on one hand, somewhat counter-intuitively, TMS allows it to include
transactions that aborted in the concrete history, with their status changed to committed,
and exclude some that committed; on the other hand, this is subject to certain carefully
chosen constraints. The flexibility in the choice of the abstract history is meant to al-
low the concrete TM implementation to perform as many optimizations as possible.

4 The condition we present here is actually called TMS1 in [5, 10]. These papers also propose
another condition, TMS2, but it is stronger than opacity [10] and therefore not considered here.



However, it is not straightforward to establish that this flexibility does not invalidate
observational refinement (and hence, the informal guarantees that programmers expect
from a TM) or that the TMS definition cannot be weakened further.

Our results ensure that this is indeed the case. Informally, if local variables are not
rolled back when transactions abort, threads can communicate to each other the obser-
vations they make inside aborted transactions about the state of transactional objects.
This requires the TM to provide a consistent view of this state across all transactions, as
formalized by the use of a single abstract history in opacity. However, if local variables
are rolled back upon an abort, no information can leak out of an uncommitted transac-
tion, possibly apart from the fact that the code in the transaction has faulted, stopping
the computation. To get observational refinement in this case we only need to make
sure that a fault in the transaction occurring with the concrete TM could be reproduced
with the abstract one. For this it is sufficient to require that the state of transactional ob-
jects seen by every live transaction can be justified by some abstract history; different
transactions can be justified by different histories.

Technically, we prove that TMS is sufficient for observational refinement by estab-
lishing a nontrivial property of the set of computations of a program, showing that a
live transaction cannot notice the changes in the committed/aborted status of transac-
tions concurrent with it that are allowed by TMS (Lemma 1, Section 6.1). Proving that
TMS is necessary for observational refinement is challenging as well, as this requires us
to devise multiple programs that can observe whether the subtle constraints governing
the change of transaction status in TMS are fulfilled by the TM. We have identified sev-
eral closure properties on the set of histories produced by the abstract TM required for
these results to hold. Although intuitive, these properties are not necessarily provided
by an arbitrary TM, and our results demonstrate their importance.

To concentrate on the core goal of this paper, the programming language we con-
sider does not allow explicit transaction aborts or transaction nesting and assumes a
static separation of transactional and non-transactional shared memory. Extending our
development to lift these restrictions is an interesting avenue for future work. Also, due
to space constraints, we defer some of the proofs to Appendix D.

2 Programming Language Syntax

We consider a language where a program P = C1 ‖ · · · ‖ Cm is a parallel compo-
sition of threads Ct, t ∈ ThreadID = {1, . . . ,m}. Every thread t ∈ ThreadID has a
set of local variables LVart = {x, y, . . .} and threads share a set of global variables
GVar = {g, . . .}, all of type integer. We let Var = GVar ]

⊎m
t=1 LVart be the set of

all program variables. Threads can also access a transactional memory, which manages
a fixed collection of transactional objects Obj = {o, . . .}, each with a set of methods
that threads can call. For simplicity, we assume that each method takes one integer pa-
rameter and returns an integer value, and that all objects have the same set of methods
Method = {f, . . .}. The syntax of commands C is standard: C can be of the forms

c | C;C | while (b) do C | if (b) then C else C | x := atomic {C} | x := o.f(e)

where b and e denote Boolean and integer expressions over local variables, left un-
specified. The syntax includes primitive commands c from a set PComm, sequential



composition, conditionals, loops, atomic blocks and object method invocations. Prim-
itive commands execute atomically, and they include assignments to local and global
variables and a special fault command, which stops the execution of the program in
an error state. Thus, fault encodes illegal computations, such as division by zero.

An atomic block x := atomic {C} executes C as a transaction, which the TM can
commit or abort. The system’s decision is returned in the local variable x, which gets
assigned distinguished values committed or aborted. We do not allow programs in our
language to abort a transaction explicitly and forbid nested atomic blocks and, hence,
nested transactions. We also assume that a program can invoke methods on transac-
tional objects only inside atomic blocks and access global variables only outside them.
Local variables can be accessed in both cases; however, threads cannot access local
variables of other threads. Due to space constraints, we defer the formalisation of the
rules on variable accesses to Appendix A. When we later define the semantics of our
programming language, we mandate that, if a transaction is aborted, local variables are
rolled back to the values they had at its start, and hence, the values written to them by
the transaction cannot be observed by the following non-transactional code.

3 Model of Computations

To define the notion of observational refinement for our programming language and the
TMS consistency condition, we need a formal model for program computations. To this
end, we introduce traces, which are certain finite sequences of actions, each describing
a single computation step (we do not consider infinite computations).

Definition 1. Let ActionId be a set of action identifiers. A TM interface action ψ has
one of the following forms:

Request actions Matching response actions
(a, t, txbegin) (a, t,OK) | (a, t, aborted)
(a, t, txcommit) (a, t, committed) | (a, t, aborted)
(a, t, call o.f(n)) (a, t, ret(n′) o.f) | (a, t, aborted)

where a ∈ ActionId, t ∈ ThreadID, o ∈ Obj, f ∈ Method and n, n′ ∈ Z. A primitive
action χ has the form (a, t, c), where c ∈ PComm is a primitive command. We use ϕ to
range over actions of either type.

TM interface actions denote the control flow of a thread t crossing the boundary be-
tween the program and the TM: request actions correspond to the control being trans-
ferred from the former to the latter, and response actions, the other way around. A
txbegin action is generated upon entering an atomic block, and a txcommit action
when a transaction tries to commit upon exiting an atomic block. Actions call and ret
denote a call to and a return from an invocation of a method on a transactional object
and are annotated with the method parameter or return value. The TM may abort a
transaction at any point when it is in control; this is recorded by an aborted response
action.

A trace τ is a finite sequence of actions satisfying certain natural well-formedness
conditions (stated informally due to space constraints; see Appendix B): every action in
τ has a unique identifier; no action follows a fault; request and response actions are



properly matched; for every thread t, τ |t cannot contain a request action immediately
followed by a primitive action; actions denoting the beginning and end of transactions
are properly matched; call and ret actions occur only inside transactions; and commands
in τ do not access local variables of other threads and do not access global variables
when inside a transaction. We denote the set of traces by Trace. A history is a trace
containing only TM interface actions; we use H,S to range over histories. We specify
the behavior of a TM implementation by the set of possible interactions it can have
with programs: a transactional memory T is a set of histories that is prefix-closed and
closed under renaming action identifiers.

We denote irrelevant expressions by _ and use the following notation: τ(i) is the
i-th element of τ ; τ |t is the projection of τ onto actions of the form (_, t, _); |τ | is the
length of τ ; τ1τ2 is the concatenation of τ1 and τ2. We say that an action ϕ is in τ ,
denoted by ϕ ∈ τ , if τ = _ϕ_. The empty sequence of actions is denoted ε.

A transaction T is a nonempty trace such that it contains actions by the same thread,
begins with a txbegin action and only its last action can be a committed or an aborted
action. A transaction T is: committed if it ends with a committed action, aborted if it
ends with aborted, commit-pending if it ends with txcommit, and live, in all other cases.
We refer to this as T ’s status. A transaction T is completed if it is either committed or
aborted, and visible if it contains a txcommit action. A transaction T is in a trace τ ,
written T ∈ τ , if τ |t = τ1Tτ2 for some t, τ1 and τ2, where either T is completed or
τ2 is empty. We denote the set of all transactions in τ by tx(τ) and use self-explanatory
notation for various subsets of transactions: committed(τ), aborted(τ), pending(τ),
live(τ), visible(τ). For ϕ ∈ τ , the transaction of ϕ in τ , denoted txof(ϕ, τ), is the
subsequence of τ comprised of all actions that are in the same transaction in τ as ϕ
(undefined if ϕ does not belong to a transaction).

4 Transactional Memory Specification (TMS)

In this section we define the TMS [5] correctness condition in our setting. TMS was
originally formulated using I/O automata; here we define it in a different style appro-
priate for our goals (we provide further comparison in Section 7). Since threads may
communicate through global variables outside of transactions, they may observe the
real-time order between non-overlapping transactions in a history. Therefore, this order
is a crucial building block in the TMS definition, as is common in consistency condi-
tions for shared-memory concurrency, such as opacity [2] or linearizability [12].

Definition 2. Let ψ = (_, t, _) and ψ′ = (_, t′, _) be two actions in a history H; ψ is
before ψ′ in the real-time order in H , denoted by ψ ≺H ψ′, if H = HψH2H

′
2ψ
′H3

and either (i) t = t′ or (ii) (_, t′, txbegin) ∈ H ′2ψ′ and either (_, t, committed) ∈ ψH2

or (_, t, aborted) ∈ ψH2. A transaction T is before an action ψ′ in the real-time order
in H , denoted by T ≺H ψ′, if ψ ≺H ψ′ for every ψ ∈ T . A transaction T is before a
transaction T ′ in the real-time order in H , denoted by T ≺H T ′, if T ≺H T ′(1).

The following opacity relation [2, 8] H vop S ensures that S is a a permutation of
H preserving the real-time order.

Definition 3. A historyH is in the opacity relation with a history S, denoted byH vop

S, if ∀ψ,ψ′. (ψ ∈ S ⇐⇒ ψ ∈ H) ∧ (ψ ≺H ψ′ =⇒ ψ ≺S ψ′).



Given a history H of program interactions with a concrete TM, TMS requires us
to justify the behavior of all committed transactions in H by a single history S of
the abstract TM, and to justify each response action ψ inside a transaction in H by
an abstract history Sψ . As we show in this paper, the existence of such justifications
ensures that TMS implies observational refinement between the two TMs: the behavior
of a program during some transaction in the history H of the program’s interactions
with the concrete TM can be reproduced when the program interacts with the abstract
TM according to the history S or Sψ . Below we use this insight when explaining the
rationale for key TMS features.

The history Sψ used to justify a response action ψ includes the transaction of ψ and
a subset of transactions from H whose actions justify the response ψ. The following
notion of a possible past of a history H = H1ψ defines all sets of transactions from
H that can form Sψ . Note that, if a transaction selected by this definition is aborted
or commit-pending in H , its status is changed to committed when constructing Sψ ,
as formalized later in Definition 5. Informally, the response ψ is given as if all the
transactions in its possible past have taken effect and all the others have not. We first
give the formal definition of a possible past, and then explain it using an example.

Definition 4. A history Hψ = H ′1ψ is a possible past of a history H = H1ψ, where ψ
is a response action that it is not a committed or aborted action, if:

(i) H ′1 is a subsequence of H1;
(ii) Hψ is comprised of the transaction of ψ and some of the visible transactions in

H: tx(Hψ) ⊆ {txof(ψ,H)} ∪ visible(H).
(iii) for every transaction T ∈ Hψ , out of all transactions preceding T in the real-time

order in H , the history Hψ includes exactly the committed ones:

∀T ∈ tx(Hψ).∀T ′ ∈ tx(H). T ′ ≺H T =⇒
(T ′ ∈ tx(Hψ) ⇐⇒ T ′ ∈ committed(H)).

We denote the set of possible pasts of H by TMSpast(H).

We explain the definition using the history H of the trace shown in Figure 2; one
of its possible pasts Hψ consists of the transactions T1, T4 and T5. According to (ii),
the transaction of ψ (T5 in Figure 2) is always included into any possible past, and
live transactions are excluded: since they have not made an attempt to commit, they
should not have an effect on ψ. Out of the visible transactions in H , we are allowed
to select which ones to include (and, hence, treat as committed), subject to (iii): if we
include a transaction T then, out of all transactions preceding T in the real-time order
in H , we have to include exactly the committed ones. For example, since T4 and T5 are
included in Hψ , T1 must also be included and T3 must not. This condition is necessary
for TMS to imply observational refinement. Informally, T3 cannot be included into Hψ

because, in a program producing H , in between T3 aborting and T5 starting, thread
t2 could have communicated to thread t3 the fact that T3 has aborted, e.g., using a
global variable g, as illustrated in Figure 2. When executing ψ, the code in T5 may
thus expect that T3 did not take effect; hence, the result of ψ has to reflect this, so that
the code behavior is preserved when replacing the concrete TM by an abstract one in
observational refinement. This is a key idea used in our proof that TMS is necessary for
observational refinement (Section 6.2). In contrast to T3, we can include T4 into Hψ

even if it is aborted or commit-pending. Since our language does not allow accessing



t1 T1 C
χ1

T2 C/A/CP/L
g′ == 1

t2 T3 A
g := 1 χ2

T4 C/A/CP
g′ := 1

t3
g == 1

T5 ψ

Fig. 2. Transactions T1, T4 and T5 form one possible past of the history H of the trace shown.
Allowed status of transactions in H is denoted as follows: committed – C, aborted – A, commit-
pending – CP, live – L. The transaction T5 executes only primitive actions after ψ in the trace.

global variables inside transactions, there is no way for the code in T5 to find out about
the status of T4 from thread t2, and hence, this code will not notice if the status of
T4 is changed to committed when replacing the concrete TM by an abstract one in
observational refinement. For similar reasons, we can exclude T2 from Hψ even if it
is committed. This idea is used in our proof that TMS is sufficient for observational
refinement (Section 6.1).

Before giving the definition of TMS, we introduce operations used to change the
status of transactions in a possible past of a history to committed. Suffix commit com-
pletion below converts commit-pending transactions into committed; then completed
possible past defines a possible past with all transactions committed.

Definition 5. A history Hc is a suffix completion of a history Hψ if Hc = HψH ′,
every action in H ′ is either committed or aborted, and every transaction in Hc except
possibly that of ψ, is completed. It is a suffix commit completion of H if H ′ consists of
committed actions only. The sets of suffix completions and suffix commit completions
of H are denoted comp(H) and ccomp(H), respectively.

A history Hc
ψ is a completed possible past of a history H = H1ψ, if Hc

ψ is a suffix
commit completion of a history obtained from a possible past H ′1ψ of H by replacing
all the aborted actions inH ′1 by committed actions. The set of completed possible pasts
of H is denoted cTMSpast(H):

cTMSpast(H1ψ)= {Hc
ψ | ∃H ′1.H ′1ψ ∈TMSpast(H1ψ)∧Hc

ψ ∈ ccomp(com(H ′1)ψ)},

where |com(H ′1)| = |H ′1| and

com(H ′1)(i) = (if (H ′1(i) = (a, t, aborted)) then (a, t, committed) else H ′1(i)).

For example, one completed possible past of the history in Figure 2 consists of the
transactions T1, T4 and T5, with the status of the latter changed to committed if it was
previously aborted or commit-pending. Note that a history H has a suffix completion
only if H is of the form H = H1ψ where all the transactions in H1ψ, except possibly
that of ψ, are commit-pending or completed. Also, cTMSpast(H1ψ) 6= ∅ only if ψ is a
response action.

The following definition of the TMS relation between TMs matches a history H
arising from a concrete TM with a similar history S of an abstract TM. As part of this
matching, we require that S preserves the real-time order of H . As in Definition 4(iii),
this requirement is necessary to ensure observational refinement between the TMs: pre-
serving the real-time order is necessary to preserve communication between threads
when replacing the concrete TM with the abstract one.



Definition 6. A history H is in the TMS relation with TM T , denoted H vtms T , if:
(i) ∃Hc ∈ comp(H|¬live), S ∈ T . Hc|com vop S, where ·|¬live and ·|com are the pro-

jections to actions by transactions that are not live and by committed transactions,
respectively; and

(ii) for every response action ψ such that it is not a committed or aborted action and
H = H1ψH2, we have ∃Hc

ψ ∈ cTMSpast(H1ψ).∃Sψ ∈ T . Hc
ψ vop Sψ .

A TM TC is in the TMS relation with a TM TA, denoted by TC vtms TA, if ∀H ∈
TC . H vtms TA.

5 Observational Refinement

Our main result relates TMS to observational refinement, which we introduce in this
section. This requires defining the semantics of the programming language, i.e., the set
of traces that computations of programs produce. Due to space constraints, we defer its
formal definition to Appendix C and describe only its high-level structure. A state of a
program records the values of all its variables: s ∈ State = Var → Z. The semantics
of a program P = C1 ‖ · · · ‖ Cm is given by the set of traces [[P, T ]](s) ⊆ Trace it
produces when executed with a TM T from an initial state s. To define this set, we first
define the set of traces [[P ]](s) ⊆ Trace that a program can produce when executed from
s with the behavior of the TM unrestricted, i.e., considering all possible values the TM
can return to object method invocations and allowing transactions to commit or abort
arbitrarily. We then restrict to the set of traces produced by P when executed with T by
selecting those traces that interact with the TM in a way consistent with T : [[P, T ]](s) =
{τ | τ ∈ [[P ]](s) ∧ history(τ) ∈ T }, where history(·) projects to TM interface actions.
The definition of [[P ]](s) follows the intuitive semantics of our programming language.
In particular, it mandates that local variables be rolled back upon a transaction abort
and includes traces corresponding to incomplete program computations into [[P ]](s).

We can now define observations and observational refinement. Informally, given a
trace τ of a client program, we consider observable: (i) the sequence of actions per-
formed outside transactions in τ ; (ii) the per-thread sequence of actions in τ excluding
uncommitted transactions; and (iii) whether a τ ends with fault or not. Then observa-
tional refinement between a concrete TM TC and an abstract one TA states that every
observable behavior of a program P using TC can be reproduced when P uses TA.
Hence, any conclusion about its observable behavior that a programmer makes assum-
ing TA will carry over to TC . Since our notion of observations excludes actions per-
formed inside aborted or live transactions other than faulting, the programmer cannot
make any conclusions about them. But, crucially, the programmer can be sure that, if a
program is non-faulting under TA, it will stay so under TC . An action ϕ ∈ τ is transac-
tional if ϕ ∈ T for some T ∈ τ , and non-transactional otherwise. We denote by τ |trans
and τ |¬trans the projections of τ to transactional and non-transactional actions.

Definition 7. The thread-local observable behavior of thread t in a trace τ , denoted by
observablet(τ), is  if τ |t ends with a fault action, and (τ |t)|obs otherwise, where ·|obs
denotes the projection to non-transactional actions and actions by committed transac-
tions. A TM TC observationally refines a TM TA, denoted by TC � TA, if for every
program P , state s and trace τ ∈ [[P, TC ]](s) we have: (i) ∃τ ′ ∈ [[P, TA]](s). τ ′|¬trans =
τ |¬trans; and (ii) ∀t.∃τ ′t ∈ [[P, TA]](s). observablet(τ

′
t) = observablet(τ).



6 Main Result

The main result of this paper is that the TMS relation is equivalent to observational
refinement for abstract TMs that enjoy certain natural closure properties. Their formu-
lation relies on the following notions.

A history Ha is an immediate abort extension of a history H if H is a subse-
quence of Ha, and whenever ψ ∈ Ha and ψ 6∈ H we have: (i) ψ = (_, _, txbegin) or
ψ = (_, _, aborted), (ii) if ψ = (_, t, txbegin) then Ha = H ′aψ (_, t, aborted) _, where
H ′a ∈ {ε, _ (_, _, committed), _ (_, _, aborted)}, and (iii) if ψ = (_, _, aborted) then
there exists ψ′ 6∈ H such that Ha = _ψ′ψ_. We denote by addab(H) the set of all
immediate abort extensions of H . Informally, a history Ha ∈ addab(H) is an exten-
sion of H with transactions that abort immediately after their invocation. Note that the
added transactions are placed either right before other transactions begin or right after
they complete.

A history Hc is a non-interleaved completion of a history H if H is a subse-
quence of Hc, pending(Hc) = ∅ and whenever ψ ∈ Hc and ψ 6∈ H we have
Hc = _ (_, t, txcommit)ψ_ and either ψ = (_, t, committed) or ψ = (_, t, aborted).
We denote the set of non-interleaved completions of H by nicomp(H). Informally,
H ′ ∈ nicomp(H) completes each commit-pending transaction in H by adding a
committed or aborted action at its end.

The required closure properties are formulated as follows:
CLP1 A TM T is closed under immediate aborts if whenever H ∈ T and

aborted(H) = ∅, we also have H ′ ∈ T for any history H ′ ∈ addab(H).
CLP2 A TM T is closed under removing transaction responses if whenever

H1(_, t, aborted)H2 ∈ T orH1(_, t, committed)H2 ∈ T forH2 not containing
actions by t, we also have H1H2 ∈ T .

CLP3 A TM T is closed under removing live and aborted transactions if whenever
H ∈ T , we also have H ′ ∈ T for any history H ′ which is a subsequence of
H such that committed(H ′) = committed(H), pending(H ′) = pending(H),
live(H ′) ⊆ live(H) and aborted(H ′) ⊆ aborted(H).

CLP4 A TM T is closed under completing commit-pending transactions if whenever
H ∈ T , we have nicomp(H) ∩ T 6= ∅.

These properties are satisfied by the expected TM specification that executes every
transaction atomically [8].

Theorem 1. Let TC and TA be transactional memories.
(i) If TA satisfies CLP1 and CLP2, then TC vtms TA =⇒ TC � TA.

(ii) If TA satisfies CLP3 and CLP4, then TC � TA =⇒ TC vtms TA.

6.1 Proof of Theorem 1(i) (Sufficiency)

Let us fix a program P = C1 ‖ . . . ‖ Cm and a state s. As we have noted before, the
main subtlety of TMS lies in justifying the behavior of a live transaction under TC by
a history of TA where the committed/aborted status of some transactions is changed, as
formalized by the use of cTMSpast in Definition 6(ii). Correspondingly, the most chal-
lenging part of the proof is to show that a trace from [[P, TC ]](s) with a fault inside a
live transaction can be transformed into a trace with the fault from [[P, TA]](s). The
following lemma describes the first and foremost step of this transformation: given a



trace τ ∈ [[P ]](s) with a live transaction and a history Hc
ψ ∈ cTMSpast(history(τ)),

the lemma converts τ into another trace from [[P ]](s) that contains the same live trans-
action, but whose history of non-aborted transactions is Hc

ψ . In other words, this estab-
lishes that the live transaction cannot notice changes in the committed/aborted status of
other transactions done by cTMSpast. Let τ |¬abortedtx be the projection of τ excluding
aborted transactions.

Lemma 1 (Live transaction insensitivity). Let τ = τ1ψτ2 ∈ [[P ]](s) be such that ψ
is a response action by thread t0 that is not a committed or aborted action and τ2 is a
sequence of primitive actions by thread t0. For any Hc

ψ ∈ cTMSpast(history(τ)) there
exists τψ ∈ [[P ]](s) such that history(τψ)|¬abortedtx = Hc

ψ and τψ|t0 = τ |t0 .

Proof. We first show how to construct τψ and then prove that it satisfies the required
properties. We illustrate the idea of its construction using the trace τ in Figure 2. Let
history(τ) = H1ψ. Since Hc

ψ ∈ cTMSpast(H), by Definition 5 there exist histories
H ′1, H ′′1 , and Hcc such that

H ′1ψ ∈ TMSpast(H1ψ) ∧ H ′′1 = com(H ′1) ∧ Hc
ψ = H ′′1ψH

cc ∈ ccomp(H ′′1ψ).

Recall that, for the τ in Figure 2, H ′1ψ consists of the transactions T1, T4 and T5.
Then H ′′1 is obtained from H ′1 by changing the last action of T4 to committed if it was
aborted; Hc

ψ is obtained by completing T4 with a committed action if it was commit-
pending. The trickiness of the proof comes from the fact that just mirroring these trans-
formations on τ may not yield a trace of the program P : for example, if T4 aborted,
the code in thread t2 following T4 may rely on this fact, communicated to it by the TM
via a local variable. Fortunately, we show that it is possible to construct the required
trace by erasing certain suffixes of every thread and therefore getting rid of the actions
that could be sensitive to the changes of transaction status, such as those following T4.
This erasure has to be performed carefully, since threads can communicate via global
variables: for example, the value written by the assignment to g′ in the code following
T4 may later be read by t1, and, hence, when erasing the the former, the latter action
has to be erased as well. We now explain how to truncate τ consistently.

Let ψb be the last txbegin action in H ′1ψ; then for some traces τ b1 and τ b2 we have
τ = τ b1ψ

bτ b2ψτ2. For the τ in Figure 2, ψb is the txbegin action of T4. Our idea is, for
every thread other than t0, to erase all its actions that follow the last of its transactions
included into H ′1ψ or its last non-transactional action preceding ψb, whichever is later.
Formally, for every thread t, let τ It denote the prefix of τ |t that ends with the last TM
interface action of t in H ′1ψ, or ε if no such action exists. For example, in Figure 2, τ It1
and τ It2 end with the last TM interface actions of T1 and T4, respectively. Similarly, let
τNt denote the prefix of τ |t that ends in the last non-transactional action of t in τ b1 , or
ε if no such action exists. For example, in Figure 2, τNt1 and τNt2 end with χ1 and χ2,
respectively. Let τt0 = τ |t0 and for each t 6= t0 let τt be τ It , if |τNt | < |τ It |, and τNt ,
otherwise. We then let the truncated trace τ ′ be the subsequence of τ such that τ ′|t = τt
for each t. Thus, for the τ in Figure 2, in the corresponding trace τ ′ the actions of t1 end
with χ1 and those of t2 with the last action of T4; note that this erases both operations
on g′. To construct τψ from τ ′, we mirror the transformations of H ′1 into H ′′1 and Hc

ψ .
Let τ ′′ be defined by |τ ′′| = |τ ′| and

τ ′′(i) = (if (τ ′(i) = (a, t, aborted) ∧ τ ′(i) ∈ H ′1)) then (a, t, committed) else τ ′(i)).



τ ∗ ψb

τ It

τNt (a) τt = τNt

τ ∗ ψb

τ It

τNt (b) τt = τ It

τ ψb ∗∗

τ It

τNt (c) τt = τ It

Fig. 3. Cases in the proof of Lemma 1. ∗ all actions by t are transactional; ∗∗ all actions by t come
from a single transaction, started before or by ψb

Then we let τψ = τ ′′Hcc.
We first prove that τψ|t0 = τ |t0 . Let T = txof(ψ,H1ψ); then by Definition 4(ii),

T ∈ H ′1ψ. Hence, by Definition 4(iii) we have

∀T ′. T ′ ≺H′
1ψ
T ⇐⇒ T ′ ≺H1ψ T ∧ T ′ ∈ committed(H1ψ), (1)

so that (H ′1ψ)|t0 does not contain aborted transactions and τ ′′|t0 = τ ′|t0 = τ |t0 . Be-
sides, Hcc|t0 = ε and, hence, τψ|t0 = τ ′′|t0 = τ |t0 .

We now sketch the proof that τψ ∈ [[P ]](s), appealing to the intuitive understanding
of the programming language semantics. To this end, we show that τ ′ and then τ ′′

belong to [[P ]](s). We start by analyzing how the trace τ |t is truncated to τt for every
thread t 6= t0. Let us make a case split on the relative positions of τNt , τ It and ψb in
τ . There are three cases, shown in Figure 3. Either τt = τNt (a, thread t1 in Figure 2)
or τt = τ It (b, c). In the former case, ψb has to come after the end of τNt . In the latter
case, either ψb comes after the end of τ It (b) or is its last action or precedes the latter (c,
thread t2 in Figure 2).

By the choice of τNt , in (a) and (b) the fragment of τ in between the end of τNt
and ψb can contain only those actions by t that are transactional (T2 in Figure 2). By
the choice of τ It and ψb, in (c) the fragment of τ in between ψb and the end of τ It
cannot contain a txbegin action by t; hence, by the choice of τNt it can contain only
those actions by t that are transactional. Furthermore, these have to come from a single
transaction, started either by ψb or before it (T4 in Figure 2). Finally, by the choice
of ψb the actions of t0 following ψb are transactional and come from the transaction
of ψ, also started either by ψb or before it (T5 in Figure 2). Given this analysis, the
transformation from τ to τ ′ can be viewed as a sequence of two: (i) erase all actions
following ψb, except those in some of transactions that were already ongoing at this
time; (ii) erase some suffixes of threads containing only transactional actions. Since
transactional actions do not access global variables, they are not affected by the actions
of other threads. Furthermore, as we noted in Section 5, [[P ]](s) includes incomplete
program computations. This allows us to conclude that τ ′ ∈ [[P ]](s).

We now show that τ ′′ is valid, again referring to cases (a-c). Let T =
txof(ψb, H1ψ); then T ∈ H ′1ψ by the choice of ψb and by Definition 4(iii) we get (1).
Hence, for threads t falling into cases (a) or (b), τ ′|t does not contain aborted transac-
tions that are also in H ′1ψ. For threads t falling into case (c), an aborted transaction by
t included into H ′1ψ can only be the last one in τ ′|t. Finally, above we established that
(H ′1ψ)|t0 does not contain aborted transactions. Hence, transactions in τ ′ whose status
is changed from aborted to committed when switching to τ ′′ do not have any actions
following them in τ ′. Furthermore, [[P ]](s) allows committing or aborting transactions



arbitrarily. This allows us to conclude that τ ′′ ∈ [[P ]](s). For the same reason, we get
τψ ∈ [[P ]](s).

Finally, we show that history(τψ)|¬abortedtx = Hc
ψ . It is sufficient to show that

history(τ ′′)|¬abortedtx = H ′′1ψ; since τψ = τ ′′Hcc and Hcc contains only committed
actions, this would imply

history(τψ)|¬abortedtx = history(τ ′′Hcc)|¬abortedtx =
history(τ ′′)|¬abortedtxHcc = H ′′1ψH

cc = Hc
ψ.

By the choice of τ It for t 6= t0, every transaction in (H ′1ψ)|t is also in τ It . Hence,
H ′1ψ is a subsequence of history(τ ′). By the definition of τ ′′ and H ′′1 , H ′′1ψ is a subse-
quence of history(τ ′′). Then since H ′′1ψ does not contain aborted transactions, H ′′1ψ is
a subsequence of history(τ ′′)|¬abortedtx.

Thus, to prove history(τ ′′)|¬abortedtx = H ′′1ψ it remains to show that every non-
aborted transaction in history(τ ′′) is in H ′′1ψ. Since the construction of τ ′′ from τ ′

changes the status of only those transactions that belong to H ′1ψ, it is sufficient to show
that every non-aborted transaction in history(τ ′) is in H ′1ψ. Here we only consider the
case when such a transaction is by a thread t 6= t0 and τ ′|t = τNt 6= ε; we cover the
other cases in Appendix D. Let χNt be the last action in τNt and T = txof(ψb, H1ψ) ∈
H ′1ψ. Then by Definition 4(iii) we get (1). Since χNt comes before ψb in H1ψ, any
transaction T ′ in τ ′|t is such that T ′ ≺H1ψ T , which together with (1) implies the
required. This concludes the proof that history(τ ′′)|¬abortedtx = H ′′1ψ. ut

We now give the other lemmas necessary for the proof. Definition 6 matches a his-
tory of TC with one of TA using the opacity relation, possibly after transforming the
former with cTMSpast. The following lemma is used to transform a trace of P ac-
cordingly. The lemma shows that, if we consider only traces where aborted transactions
abort immediately (i.e., are of the form (_, _, txbegin) (_, _, aborted)), then the opacity
relation implies observational refinement with respect to observing non-transactional
actions and thread-local trace projections. This result is a simple adjustment of the one
about the sufficiency of opacity for observational refinement to our setting [8, Theorem
16] (it was proved in [8] for a language where local variables are not rolled back upon a
transaction abort; this difference, however, does not matter if aborted transactions abort
immediately).

Lemma 2. Consider τ ∈ [[P ]](s) such that all the aborted transactions in τ abort
immediately. Let S be such that history(τ) vop S. Then there exists τ ′ ∈ [[P ]](s) such
that history(τ ′) = S, τ |¬trans = τ ′|¬trans and ∀t. τ ′|t = τ |t.

Let τ |¬abortact be the trace obtained from τ by removing all actions inside aborted
transactions, so that every such transaction aborts immediately. We can benefit from
Lemma 2 because local variables are rolled back if a transaction aborts, and, hence,
applying ·|¬abortact to a trace preserves its validity.

Proposition 1. ∀τ. τ ∈ [[P ]](s) =⇒ τ |¬abortact ∈ [[P ]](s).

Finally, Definition 6 matches only histories of committed transactions, but the histo-
ries of the traces in Lemma 2 also contain aborted transactions. Fortunately, the follow-
ing lemma allows us to add empty aborted transactions into the abstract history while
preserving the opacity relation.



Lemma 3. Let H be a history where all aborted transactions abort immediately and
S be such that H|¬abortedtx vop S. There exists a history S′ ∈ addab(S) such that
H vop S

′.

Definition 6(i), Proposition 1 and Lemmas 2 and 3 can be used to prove that the
TMS relation preserves non-transactional actions and thread-local observable behavior
of threads whose last action is not a fault.

Lemma 4. If TC vtms TA and TA satisfies CLP1 and CLP2, then

∀τ ∈ [[P, TC ]](s).∃τ ′ ∈ [[P, TA]](s). (τ ′|¬trans = τ |¬trans) ∧ (∀t. (τ ′|t)|obs = (τ |t)|obs).

Proof of Theorem 1(i). Given Lemma 4, we only need to establish the preservation
of faults inside transactions. Consider τ0 ∈ [[P, TC ]](s) such that τ0 = τ1ψτ2χ, where
χ = (_, t0, fault) is transactional and ψ is the last TM interface action by thread t0.
Then τ2|t0 consists of transactional actions and thus does not contain accesses to global
variables. Hence, τ = τ1ψ(τ2|t0)χ ∈ [[P, TC ]](s). By our assumption, TC vtms TA.
Then there exists Hc

ψ ∈ cTMSpast(history(τ)) and S ∈ TA such that Hc
ψ vop S. By

Lemma 1, for some trace τψ we have τψ ∈ [[P ]](s), history(τψ)|¬abortedtx = Hc
ψ and

τψ|t0 = τ |t0 . By Proposition 1, τψ|¬abortact ∈ [[P ]](s). Using Lemma 3, we get a history
S′ such that history(τψ|¬abortact) vop S

′ and S′ ∈ addab(S). Since S ∈ TA and TA is
closed under immediate aborts (CLP1), we get S′ ∈ TA. Hence, by Lemma 2, for some
τ ′ ∈ [[P, TA]](s) we have τ ′|t0 = τψ|t0 = τ |t0 = _χ, as required. ut

6.2 Proof Sketch for Theorem 1(ii) (Necessity)

Consider TC and TA such that TC � TA and TA satisfies the closure conditions stated in
the theorem. To show that for any H0 ∈ TC we have H0 vtms TA, we have to establish
conditions (i) and (ii) from Definition 6. We sketch the more interesting case of (ii), in
which H0 = H1ψH2 = HH2 ∈ TC , where ψ is a response action by a thread t0 that is
not a committed or aborted action. We need to find Hc ∈ cTMSpast(H) and S ∈ TA
such that Hc vop S.

To this end, we construct a program PH (as we explain further below) where every
thread t performs the sequence of transactions specified in H|t. The program monitors
certain properties of the TM behavior, e.g., checking that the return values obtained
from methods of transactional objects in committed transactions correspond to those
in H and that the real-time order between actions includes that in H . If these proper-
ties hold, thread t0 ends by executing the fault command. Let s be a state with all
variables set to distinguished values. We next construct a trace τ ∈ [[PH , TC ]](s) such
that history(τ) = H and t0 faults in τ . By Definition 7, there exists τ ′ ∈ [[PH , TA]](s)
such that t0 faults in τ ′. However, the program PH is constructed so that t0 can fault
in τ ′ only if the properties of the TM behaviour the program monitors hold, and thus
H is related to history(τ ′) in a certain way. This relationship allows us to construct
Hc ∈ cTMSpast(H) from H and S ∈ TA from history(τ ′) such that Hc vop S.

In more detail, thread t0 in PH monitors the return status of every transaction and
the return values obtained inside the atomic blocks corresponding to transactions com-
mitted in H|t0 and the (live) transaction of ψ. If there is a mismatch with H|t0 , this is
recorded in a special local variable. At the end of the transaction of ψ, t0 checks the
variable and faults if the TM behavior matched H|t0 . This construction is motivated by



the fact that faulting is the only observation Definition 7 allows us to make about the
behavior of the live transaction of ψ. Since the definition does not correlate actions by
threads t other than t0 between τ and τ ′, such threads monitor TM behavior differently:
if there is a mismatch with H|t, a thread t faults immediately. Since a trace can have
at most one fault and t0 faults in τ ′, this ensures that any committed transaction in τ ′

behaves as in H .
To check whether an execution of PH complies with the real-time order in H , for

each transaction in H , we introduce a global variable g, which is initially 0 and is set
to 1 by the thread executing the transaction right after the transaction completes, by
a command following the corresponding atomic block. Before starting a transaction,
each thread checks whether all transactions preceding this one in the real-time order
in H have finished by reading the corresponding g variables. Thread t0 records the
outcome in the special local variable checked at the end; all other threads fault upon
detecting a mismatch.

LetH ′ = history(τ ′). This construction of PH allows us to infer that: (i) the projec-
tion of H ′|t0 to committed transactions and txof(ψ,H ′) is equal to the corresponding
projection ofH|t0 ; (ii) for all other threads t a similar relationship holds for the prefix of
H ′|t ending with the last transaction preceding txof(ψ,H ′) in the real-time order; (iii)
the real-time order in H ′ includes that in H . Transactions concurrent with txof(ψ,H ′)
in H ′ may behave differently from H . However, checks done by PH inside these trans-
actions ensure that, if such a transaction T is visible in H ′, then the return values inside
T match those in H . The checks on the global variables g done right before T also
ensure that all transactions preceding T in the real-time order in H commit or abort in
H ′ as prescribed by H . This relationship between H and H ′ allows us to establish the
requirements of Definition 6(ii). ut

7 Related Work

When presenting TMS [5], Doherty et al. discuss why it allows programmers to think
only of serial executions of their programs, in which the actions of a transaction ap-
pear consecutively. This discussion—corresponding to our sufficiency result—is infor-
mal, since the paper lacks a formal model for programs and their semantics. Most of
it explains how Definition 6(i) ensures the correctness of committed transactions. The
discussion of the most challenging case of live transactions—corresponding to Def-
inition 6(ii) and our Lemma 1—is one paragraph long. It only roughly sketches the
construction of a trace with an abstract history allowed by TMS and does not give any
reasoning for why this trace is a valid one, but only claims that constraints in Defi-
nition 6(ii) ensure this. This reasoning is very delicate, as indicated by our proof of
Lemma 1, which carefully selects which actions to erase when transforming the trace.
Moreover, Doherty et al. do not try to argue that TMS is the weakest condition possible,
as we established by our necessity result.

Another TM consistency condition, weaker than opacity but incomparable to TMS,
is virtual world consistency (VWC) [3]. Like TMS, VWC allows every operation in
a live or aborted transaction to be justified by a separate abstract history. However, it
places different constraints on the choice of abstract histories, which do not take into
account the real-time order between actions. Because of this, VWC does not imply
observational refinement for our programming language: taking into account the real-



time order is necessary when threads can communicate via global variables outside
transactions.

Our earlier paper [8] laid the groundwork for relating TM consistency and observa-
tional refinement, and it includes a detailed comparison with related work on opacity
and observational refinement. The present paper considers a much more challenging
case of a language where local variables are rolled back upon an abort. To handle this
case, we developed new techniques, such as establishing the live transaction insensitiv-
ity property (Lemma 1) to prove sufficiency and proposing monitor programs for the
nontrivial constraints used in the TMS definition to prove necessity. Similarly to [8] and
other papers using observational refinement to study consistency conditions [13, 14],
we reformulate TMS so that it is not restricted to a particular abstract TM TA. This
generality, not allowed by the original TMS definition, has two benefits. First, our re-
formulation can be used to compare two TM implementations, e.g., an optimized and
an unoptimized one. Second, dealing with the general definition forces us to explic-
itly state the closure properties required from the abstract TM, rather than having them
follow implicitly from its atomic behavior.
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A Restrictions on Variable Accesses

To formalise restrictions on accesses to variables by primitive commands, we partition
the set PComm−{fault} into 2m classes: PComm−{fault} =

⊎m
t=1(LPcommt ]

GPcommt). The intention is that commands from LPcommt can access only the local
variables of thread t (LVart); commands from GPcommt can additionally access global
variables (LVart]GVar). We formalize these restrictions in Appendix C. To ensure that
a thread t does not access local variables of other threads, we require that the thread
cannot mention such variables in the conditions of if and while commands and can
only use primitive commands from LPcommt ] GPcommt.

B Formal Definition of Traces

Definition 8 (Traces). A trace τ is a finite sequence of actions, satisfying the following
conditions:

(i) every action in τ has a unique identifier: if τ = τ1(a1, _, _)τ2(a2, _, _)τ3 then
a1 6= a2.

(ii) no action follows a fault: if τ = τ ′ϕ then τ ′ does not contain a fault action.
(iii) request and response actions are properly matched: for every thread t,

history(τ)|t consists of alternating request and corresponding response actions,
starting from a request action;

(iv) for every thread t, τ |t cannot contain a request action immediately followed by a
primitive action;

(v) actions denoting the beginning and end of transactions are properly matched: for
every thread t, in the projection of τ |t to txbegin, committed and aborted actions,
txbegin alternates with committed or aborted, starting from txbegin;

(vi) call and ret actions occur only inside transactions: for every thread t, if τ |t =
τ1ψτ2 for a call or ret action ψ, then τ1 = τ ′1ψ

′τ ′′1 for some txbegin action ψ′,
and τ ′1 and τ ′′1 such that τ ′′1 does not contain committed or aborted actions;

(vii) commands in τ do not access local variables of other threads: if (_, t, c) ∈ τ then
c ∈ LPcommt ] GPcommt ] {fault};

(viii) commands in τ do not access global variables inside a transaction: if
τ = τ1 (_, t, c) τ2 for c ∈ GPcommt, then it is not the case that τ1 =
τ ′1 (_, t, txbegin) τ ′′1 , where τ ′′1 does not contain committed or aborted actions.

C Formal Definition of the Semantics of the Programming
Language

This section formally defines the set [[P ]](s). It is computed in two stages. First, we
compute a set A(P ) of traces that resolves all issues regarding sequential control flow
and interleaving. Intuitively, if one thinks of each thread Ct in P as a control-flow
graph, then A(P ) contains all possible interleavings of paths in the graphs of Ct, t ∈
ThreadID starting from their initial nodes. The set A(P ) is a superset of all the traces
that can actually be executed: e.g., if a thread executes the command “x := 1; if (x =
1) y := 1 else y := 2” where x, y are local variables, then A(P ) will contain a trace
where y := 2 is executed instead of y := 1. To filter out such nonsensical traces, we



A′(c)t = {(_, t, c)}
A′(C1;C2)t = {τ1 τ2 | τ1 ∈ A′(C1)t ∧ τ2 ∈ A′(C2)t}
A′(if (b) then C1 else C2)t = {(_, t, assume(b)) τ1 | τ1 ∈ A′(C1)t} ∪

{(_, t, assume(¬b)) τ2 | τ2 ∈ A′(C2)t}
A′(while (b) do C)t = {((_, t, assume(b)) (A′(C)t))∗ (_, t, assume(¬b))}
A′(x := o.f(e))t =
{(_, t, assume(e = n)) (_, t, call o.f(n)) (_, t, ret(n′) o.f) (_, t, x := n′) | n, n′ ∈ Z} ∪

{(_, t, assume(e = n)) (_, t, call o.f(n)) (_, t, aborted) | n ∈ Z}
A′(x := atomic {C})t = {(_, t, txbegin) (_, t, aborted) (_, t, x := aborted)} ∪
{(_, t, txbegin) (_, t,OK) τ (_, t, aborted) (_, t, x := aborted) |

τ (_, t, aborted) τ ′ ∈ A′(C)t ∧ (_, t, aborted) 6∈ τ} ∪
{(_, t, txbegin) (_, t,OK) τ (_, t, txcommit) (_, t, r) (_, t, x := r) | τ ∈ A′(C)t ∧

(_, t, aborted) 6∈ τ ∧ (r = committed ∨ r = aborted)}
A′(C1 ‖ . . . ‖ Cm) = prefix(

⋃
{interleave(τ1, . . . , τm) | ∀t. 1 ≤ t ≤ m =⇒ τt ∈ A′(Ct)t})

A(P ) = A′(P ) ∩ Trace

Fig. 4. The definition of A(P ).

evaluate every trace to determine whether it is valid, i.e., whether its control flow is
consistent with the effect of its actions on program variables. This is formalized by a
function eval : State×Trace→ P(State)∪ { } that, given an initial state and a trace,
produces the set of states resulting from executing the actions in the trace, an empty set
if the trace is invalid, or a special state  if the trace contains a fault action. Thus,
[[P ]](s) = {τ ∈ A(P ) | eval(s, τ) 6= ∅}.

When defining the semantics, we encode the evaluation of conditions in if and
while statements with assume commands. More specifically, we expect that the sets
LPcommt contain special primitive commands assume(b), where b is a Boolean ex-
pression over local variables of thread t, defining the condition. We state their semantics
formally below; informally, assume(b) does nothing if b holds in the current program
state, and stops the computation otherwise. Thus, it allows the computation to proceed
only if b holds. The assume commands are only used in defining the semantics of the
programming language; hence, we forbid threads from using them directly.

The trace set A(P ). The function A′(·) in Figure 4 maps commands and programs
to sequences of actions they may produce. Technically, A′(·) might contain sequences
that are not traces, e.g., because they do not have unique identifiers or continue beyond a
fault command. This is resolved by intersecting the setA′(P ) with the set of all traces
to define A(P ). A′(C)t gives the set of action sequences produced by a command C
when it is executed by thread t. To define A′(P ), we first compute the set of all the
interleavings of action sequences produced by the threads constituting P . Formally,
τ ∈ interleave(τ1, . . . , τm) if and only if every action in τ is performed by some thread
t ∈ {1, . . . ,m}, and τ |t = τt for every thread t ∈ {1, . . . ,m}. We then let A′(P )
be the set of all prefixes of the resulting sequences, as denoted by the prefix operator.



We take prefix closure here to account for incomplete program computations as well as
those in which the scheduler preempts a thread forever.

A′(c)t returns a singleton set with the action corresponding to the primitive com-
mand c (primitive commands execute atomically). A′(C1;C2)t concatenates all pos-
sible action sequences corresponding to C1 with those corresponding to C2. The set
of action sequences of a conditional considers cases where either branch is taken. We
record the decision using an assume action; at the evaluation stage, this allows us to en-
sure that this decision is consistent with the program state. The set of action sequences
for a loop is defined using the Kleene closure operator ∗ to produce all possible unfold-
ings of the loop body. Again, we record branching decisions using assume actions.

The set of action sequences of a method invocation x := f(e) includes both se-
quences where the method executes successfully and where the current transaction is
aborted. The former set is constructed by nondeterministically choosing two integers
n and n′ to describe the parameter n and the return value n′ for the method call. To
ensure that e indeed evaluates to n, we insert assume(e = n) before the call action, and
to ensure that x gets the return value n′, we add the assignment x := n′ after the ret
action. Note that some of the choices here might not be feasible: the chosen nmight not
be the value of the parameter expression e when the method is invoked, or the method
might never return n′ when called with n. Such infeasible choices are filtered out at
the following stages of the semantics definition: the former in the definition of [[P ]](s)
by the use of evaluation and the semantics of assume, and the latter in the definition of
[[P, T ]](s) by selecting the sequences from [[P ]](s) that interact with the transactional
memory correctly. The set of action sequences of x := atomic {C} contains those in
which C is aborted in the middle of its execution (at an object operation or right af-
ter it begins) and those in which C executes until completion and then the transaction
commits or aborts.

Semantics of primitive commands. To define evaluation, we assume a semantics of
every command c ∈ PComm − {fault}, given by a function [[c]] that defines how the
program state is transformed by executing c. As we noted before, different classes of
primitive commands are supposed to access only certain subsets of variables. To ensure
that this is indeed the case, we define [[c]] as a function of only those variables that c is
allowed to access. Namely, the semantics of c ∈ LPcommt is given by

[[c]] : (LVart → Z)→ P(LVart → Z).

The semantics of c ∈ GPcommt is given by

[[c]] : ((LVart ] GVar)→ Z)→ P((LVart ] GVar)→ Z).

Note that we allow c to be non-deterministic.
For a valuation q of variables that c is allowed to access, [[c]](q) yields the set of

their valuations that can be obtained by executing c from a state with variable values q.
For example, an assignment command x := g has the following semantics:

[[x := g]](q) = {q[g 7→ q(g)]} .



We define the semantics of assume commands following the informal explanation given
at the beginning of this section: for example,

[[assume(x = n)]](q) =

{
{q}, if q(x) = n;

∅, otherwise.
(2)

Thus, when the condition in assume does not hold of q, the command stops the compu-
tation by not producing any output.

We lift functions [[c]] to full states by keeping the variables that c is not allowed to
access unmodified and producing  if c faults. For example, if c ∈ LPcommt, then

[[c]](s) = {s|LVar\LVart ] q | q ∈ [[c]](s|LVart)},

where s|V is the restriction of s to variables in V . Finally, we let

[[fault]](s) =  ,

so that the only way a program can fault is by executing the fault command.

Trace evaluation. Using the semantics of primitive commands, we first define the eval-
uation of a single action on a given state:

eval : State× Action→ P(State) ∪ { }
eval(s, (_, t, c)) = [[c]](s);

eval(s, ψ) = {s}.

Note that this does not change the state s as a result of TM interface actions, since
their return values are assigned to local variables by separate actions introduced when
generating A(P ). We then lift eval to traces as follows:

eval : State× Trace→ P(State) ∪ { }

eval(s, τ) =

{
∅, if τ = τ ′ϕ ∧ eval(s, τ ′) = ∅;
evalna(s, τ |¬abortact), otherwise,

where

evalna(s, τ) =

{
{s}, if τ = ε;

{s′′ ∈ eval(s′, ϕ) | s′ ∈ evalna(s, τ ′)}, if τ = τ ′ϕ.

The set of states resulting from evaluating trace τ from state s is effectively computed
by the helper function evalna(s, τ), which ignores actions inside aborted transactions to
model local variable roll-back. However, ignoring the contents of aborted transactions
completely poses a risk that we might consider traces including sequences of actions
inside aborted transactions that yield an empty set of states. To mitigate this, eval(s, τ)
recursively evaluates every prefix of τ , thus ensuring that sequences of actions inside
aborted transaction are valid.

As we explained in Section 5, we define [[P ]](s) as the set of those traces fromA(P )
that can be evaluated from s without getting stuck, as formalized by eval. Note that this



definition enables the semantics of assume defined by (2) to filter out traces that make
branching decisions inconsistent with the program state. For example, consider again
the program “x := 1; if (x = 1) y := 1 else y := 2”. The set A(P ) includes traces
where both branches are explored. However, due to the semantics of the assume actions
added to the traces according to Figure 4, only the trace executing y := 1 will result in
a nonempty set of final states after the evaluation and, therefore, only this trace will be
included into [[P ]](s).

D Additional Proofs

D.1 Remaining Cases from the Proof of Lemma 1

– t 6= t0 is such that τ ′|t = τ It 6= ε. Let ψIt be the last action in τ It . Let T =
txof(ψIt , H1ψ). By the choice of τ It we have T ∈ H ′1ψ; then by Definition 4(iii)
we get (1). Since any transaction T ′ in history(τ ′|t) is either T or is such that
T ′ ≺(H1ψ)|t T , this implies the required.

– t = t0. Let T = txof(ψ,H1ψ) ∈ H ′1ψ. Then by Definition 4(iii) we get (1). Since
any transaction T ′ in history(τ ′|t0) is either T or is such that T ′ ≺(H1ψ)|t0 T , this
implies the required.

D.2 Proof of Lemma 3

Let n be the number of aborted transactions in H . To construct the desired S′, we
inductively construct a sequence of histories Si, i = 0..n such that

|aborted(Si)| = i; Si ∈ addab(S); {ψ | ψ ∈ Si} ⊆ {ψ | ψ ∈ H};
∀ψ1, ψ2 ∈ Si. ψ1 ≺H ψ2 =⇒ ψ1 ≺Si

ψ2.
(3)

We then let S′ = Sn, so that H vop S
′.

For i = 0, we take S0 = S, and all the requirements in (3) hold vacuously. Assume
a history Si satisfying (3) was constructed; we get Si+1 from Si by the following con-
struction. Let H = H1ψbH2ψaH3, where ψb = (_, t, txbegin), ψa = (_, t, aborted),
H2|t = ε and

¬∃ψ′. ψ′ = (_, _, txbegin) ∈ H1 ∧ txof(ψ′, H) ∈ aborted(H) ∧ ψ′ 6∈ Si.

That is, out of all aborted transactions in H that are not in Si, ψbψa is the one with the
earliest txbegin. We now consider two cases.
Case I: H1 does not contain a committed or an aborted action.

In this case, let Si+1 = ψbψaSi. We only need to show that for any ψ′ ∈ Si we
have ψ′ ≺H ψb =⇒ ψ′ ≺Si+1 ψb and ψa ≺H ψ′ =⇒ ψa ≺Si+1 ψ

′. The latter
holds by the construction of Si+1. To show the former, observe that, since H1 does
not contain a committed or aborted action, it cannot contain actions by thread t.
Hence, we cannot have ψ′ ≺H ψb for any ψ′.

Case II: H1 contains a committed or an aborted action.
Let ψ be the last committed or aborted action in Si that is also in H1 and let
Si = S′ψS′′. We then let Si+1 = S′ψψbψaS

′′. We again need to show that for any
ψ′ ∈ Si we have ψ′ ≺H ψb =⇒ ψ′ ≺Si+1

ψb and ψa ≺H ψ′ =⇒ ψa ≺Si+1
ψ′.



Assume ψ′ ≺H ψb for some ψ′ ∈ Si; then ψ′ ∈ H1. By the choice of ψb and
ψa, all the committed and aborted actions in H1 are in Si, and by the choice of
ψ, all such actions are in S′ψ. Hence, if ψ′ is a committed or an aborted action,
then ψ′ ∈ S′ψ and, hence, ψ′ ≺Si+1

ψb. If ψ′ is by thread t, then it is either a
committed or an aborted action (and, hence, ψ′ ≺Si+1

ψb) or it precedes such an
action ψ′′ ∈ Si by t in H1: ψ′ ≺H1

ψ′′. Then ψ′ ≺Si+1
ψ′′ and ψ′′ ≺Si+1

ψb,
which implies ψ′ ≺Si+1 ψb.
Now assume ψa ≺H ψ′ for some ψ′ ∈ Si; then ψ′ ∈ H3. If ψ′ is a txbegin action,
then ψ ≺H ψ′. Hence, ψ ≺Si ψ

′, i.e., ψ′ ∈ S′′, which implies ψa ≺Si+1 ψ
′. If

ψ′ is by thread t, then it is either a txbegin action (and, hence, ψa ≺Si+1
ψ′) or it

follows such an action ψ′′ ∈ Si by thread t in H3: ψ′′ ≺H3
ψ′. Then ψ′′ ≺Si+1

ψ′

and ψa ≺Si+1
ψ′′, which implies ψa ≺Si+1

ψ′.
ut

D.3 Proof of Lemma 4

Let H = history(τ). By assumption, TC vtms TA. Hence, there exist histories Hc ∈
comp(H|¬live) and S ∈ TA such that Hc|com vop S. Then Hc = (H|¬live)H ′ for
some H ′. Let τ c be the trace obtained from τ in the same way as Hc is obtained from
H: τ c = τ0H

′, where τ0 is obtained from τ by discarding all live transactions; thus,
history(τ c) = Hc. It is easy to see that τ c ∈ [[P ]](s). Besides, τ c|¬trans = τ |¬trans and
(τ |t)|obs is a prefix of (τ c|t)|obs for any t. Let τna = τ c|¬abortact. By Proposition 1
we get τna ∈ [[P ]](s). Since (Hc|¬abortact)|¬abortedtx = Hc|com vop S, by Lemma 3,
for some history S′ we have history(τna) = Hc|¬abortact vop S

′ and S′ ∈ addab(S).
Since S ∈ TA and TA is closed under immediate aborts (CLP1), we have S′ ∈ TA. We
have τna ∈ [[P ]](s); hence, by Lemma 2, there exists a trace τ ′′ ∈ [[P ]](s) such that
history(τ ′′) = S′ ∈ TA,

τ ′′|¬trans = τna|¬trans = τ c|¬trans = τ |¬trans,

and τ ′′|t = τna|t for any t. Let τ ′ be the history obtained from τ ′′ by discarding the
actions in Hc, which are last actions by the corresponding threads. Then

τ ′|¬trans = τ ′′|¬trans = τ |¬trans,

τ ′ ∈ [[P ]](s) and, since TA is closed under removing transaction responses (CLP2),
history(τ ′) ∈ TA. Given τ ′′|t = τna|t, it is also easy to check that (τ ′|t)|obs = (τ |t)|obs,
as required. ut

D.4 Proof of Theorem 1(ii) (Necessity)

Let τ�i denote the prefix of a trace τ containing i actions.

Definition 9. Two traces τ and τ ′ are equivalent up to action identifiers, denoted τ ≡
τ ′, if |τ | = |τ ′| and for every i = 1..|τ |, actions τ(i) and τ ′(i) may differ only in their
action identifiers.

Theorem 1(ii) follows from Lemmas 5 and 6 stated and proved below.



Lemma 5. Let TC and TA be TMs such that TC � TA, and TA satisfies CLP3 and
CLP4. Then

∀H ∈ TC .∃Hc ∈ comp(H|¬live), S ∈ TA. Hc|com vop S.

Proof. Let us choose an integer value u 6= 1 which does not appear in H . We use the
following shorthands:

– We let m be the largest thread identifier occurring in H .
– We denote by kt the number of transactions started by thread t in H , i.e., the num-

ber of (_, t, txbegin) actions in H .
– We partition H|t into kt subsequences: H|t = Ht

1 . . . H
t
kt , where Ht

i is comprised
of the actions in the i-th transaction of t. Specifically, Ht

i (1) = (_, t, txbegin).
– We let cti be the outcome of the i-th transaction of thread t, i.e., cti = committed or
cti = aborted. If the transaction is not completed, cti is undefined.

– We denote by qti the number of call actions of thread t in its i-th transaction, i.e., in
Ht
i .

– We let (_, t, call oti,j .f
t
i,j(n

t
i,j)) be the j-th call action of thread t in its i-th transac-

tion.
– We let (_, t, ret(rti,j) o

t
i,j .f

t
i,j) be the j-th ret action of thread t in its i-th trans-

action. If the response to (_, t, call oti,j .f
t
i,j(n

t
i,j)) is an aborted action, we let

rti,j = aborted. If there is no response to (_, t, call oti,j .f
t
i,j(n

t
i,j)), i.e., the transac-

tion is live and (_, t, call oti,j .f
t
i,j(n

t
i,j)) is its last action, then we let rti,j = u.

– We denote by lasttx(t, i, t′) the number of transactions of thread t′ in H that either
committed or aborted before the i-th transaction of thread t started, i.e., the number
of (_, t′, committed) and (_, t′, aborted) actions preceding the i-th (_, t, txbegin)
action in H .
For every thread t = 1..m we construct a straight-line command

CtH = GP t1;CP
t
1;GP t2;CP

t
2; . . . ;GP tkt ;CP

t
kt , (4)

where GP ti and CP ti are defined in Figure 5. Here the gti variables are global and all
others are local. The gti variables are used to monitor the real-time order: gti is written
only by thread t and is used to signal that the i-th transaction of thread t ended. The
variable zti,t′ is used to record whether the lasttx(t, i, t′)-th transaction of thread t′ sig-
naled that it had ended before the i-th transaction of thread t started. As lasttx(t, i, t′)
might be 0, we add a dummy variable gt0 for every thread t. Later in the proof we ex-
ecute the program from a state in which gt0 is initialized to 1. The variable wti records
whether the i-th transaction of thread t committed or aborted. The variables yti,j record
the return value of the j-th object method invocation in the i-th transaction of thread t.

Thus, the command GP ti;CP
t
i begins by reading the signals of the last transaction

of every thread that, according to H , should end before the i-th transaction of thread
t starts. It then performs an atomic block in which it invokes the sequence of object
method invocations induced by Ht

i . After the atomic block ends, the command signals
the end of the transaction. We define the program PH as follows:

PH = C1
H ‖ . . . ‖ CmH . (5)

We now construct a particular trace τ of PH . We build τ by first constructing a trace
τ t for every sequential command CtH and then interleaving the traces τ1, . . . , τm in a



GP t
i = zti,1 := g1lasttx(t,i,1); if(z

t
i,1 6= 1) then fault;

. . .

zti,m := gmlasttx(t,i,m); if(z
t
i,m 6= 1) then fault

– If Ht
i is a committed transaction or aborted and visible transaction, then

CP t
i = wt

i := atomic { yti,1 := oti,1.f
t
i,1(n

t
i,1); if(y

t
i,1 6= rti,1) then fault;

. . . ;

yti,qti
:= oti,qti

.f t
i,qti

(nt
i,qti

); if(yti,qti
6= rti,qti

) then fault }
if(wt

i 6= cti) then fault else gti := 1

– If Ht
i is a live transaction or aborted and not visible transaction, then

CP t
i = wt

i := atomic { yti,1 := oti,1.f
t
i,1(n

t
i,1);

. . . ;

yti,qti
:= oti,qti

.f t
i,qti

(nt
i,qti

);

fault }

– If Ht
i is a commit-pending transaction, then

CP t
i = wt

i := atomic { yti,1 := oti,1.f
t
i,1(n

t
i,1); if(y

t
i,1 6= rti,1) then fault;

. . . ;

yti,qti
:= oti,qti

.f t
i,qti

(nt
i,qti

); if(yti,qti
6= rti,qti

) then fault }

Fig. 5. The construction of CP t
i and GP t

i for Lemma 5 and Lemma 6 (the case of t 6= t0).
For conciseness, we use an extension of the programming language with conditionals without an
“else” clause.

particular way. Consider the set of traces A(CtH)t of the sequential command CtH and
let τ t ∈ A(CtH)t be the maximal trace without any fault actions such that H|t =
history(τ t). The trace τ t exists, since by construction of CtH and the definition of the
trace set of a sequential command (Figure 4), there is a trace in A(CtH)t for every
possible parameter and return value of object method invocations and atomic blocks in
CtH ; in particular, A(CtH)t contains a trace where the parameters and return values of
object method invocations and the return values of transactions are as in H|t. We now
partition every τ t into

∣∣H|t∣∣ subsequences that we later interleave to create τ :

τ t = τ t1 . . . τ
t
|H|t|. (6)

Formally, for every i = 1..
∣∣H|t∣∣ there is exactly one TM interface action ψti in τ ti

and the conditions in Figure 6 hold. This defines τ ti uniquely and ensures that, if τ ti
ends with ψti = (_, t, txbegin), then it contains all the actions that are used to read the
global signaling variables that precede ψti in τ t. The desired trace is constructed by
interleaving the subsequences of the traces τ1, . . . , τm according to the order induced
by H . Formally,

τ = τ t1j1 . . . τ
t|H|
j|H|

, (7)



τ ti =



_ψt
i , ψt

i ∈ {(_, t, txbegin), (_, t, call o.f(n)), (_, t, txcommit)};
ψt

i , ψt
i = (_, t,OK);

ψt
i (_, t, y

t
i,_ := n), ψt

i = (_, t, ret(n) o.f) ∧ txof(ψt
i , τ

t) ∈ live(τ t);

ψt
i (_, t, y

t
i,_ := n) (_, t, assume(yti,_ = rti,_)),

ψt
i = (_, t, ret(n) o.f) ∧ txof(ψt

i , τ
t) /∈ live(τ t);

ψt
i (_, t, wi := cti) (_, t, assume(wi = cti)) (_, t, g

t
i := 1),

ψt
i ∈ {(_, t, committed), (_, t, aborted)}.

Fig. 6. The construction of τ ti for Lemma 5 and Lemma 6 (the case of t 6= t0).

whereH(i) = (_, ti, _) and ji =
∣∣(H�i )|ti

∣∣. Note that by construction history(τ) = H .
Since τ t ∈ A(CtH)t, we have τ ∈ A(PH). Let s be the state where all the lo-

cal variables are set to u and for all t, gti = 0 for i 6= 0 and gt0 = 1. By the con-
struction of τ , we have eval(s, τ) 6= ∅. Then, since history(τ) = H ∈ TC , we have
τ ∈ [[PH ]](s, TC). Since τ ∈ [[PH ]](s, TC) and TC � TA, by Definition 7 there exists a
trace τ ′ ∈ [[PH ]](s, TA) such that τ ′|¬trans = τ |¬trans and S1 = history(τ ′) ∈ TA.

Consider a thread t and let T and T ′ be the i-th transactions in τ |t and τ ′|t, respec-
tively. These transactions arise from executing the same commands, and T ′ might not
exist if the commands did not execute in τ ′. We now analyze the relationship between
T and T ′. The construction in Figure 5 ensures the following:

– If T is completed, then so is T ′, since T is followed in τ by a non-transactional ac-
tion assigning to gti and τ ′|¬trans = τ |¬trans. In addition, a completed T is commit-
ted if and only if so is T ′, and in this case the checks done inside the corresponding
atomic block ensure that the return values for transactional actions inside T and T ′

match.
– If T is live, then the fault command before the end of the atomic block ensures

that T ′ is live, aborted or does not exist.
– If T is commit-pending, then T ′ may have any status or may not exist at all. How-

ever, if T is visible, then checks inside the atomic block ensure that the return values
for transactional actions inside T and T ′ match.

Let H1 = (H|¬live)|¬abortedtx and S2 = (S1|¬live)|¬abortedtx. Since S1 ∈ TA and TA
is closed under removing live and aborted transactions (CLP3), S2 ∈ TA. Let p′t, re-
spectively, p′′t be the index of last txcommit or committed action in H1|t, respectively,
S2|t; if there is no such action, the corresponding index is 0. Let pt = min(p′t, p

′′
t ).

From the above analysis it follows that (H1|t)�pt ≡ (S2|t)�pt for any t. Let S3 be
a history obtained from S2 by renaming the action identifiers such that S3 ≡ S2,
(H1|t)�pt = (S3|t)�pt and all actions in S3 that do not belong to (S2|t)�pt for some
t have identifiers that do not appear in H . Since S2 ∈ TA and TA is closed under
renaming action identifiers, we get S3 ∈ TA.

Since S3 ∈ TA and TA is closed under completing commit-pending transactions
(CLP4), we get that there exists a history S4 ∈ nicomp(S3) ∩ TA. Let S′3 be subse-
quence of S4 that contains only committed and aborted actions which do no appear
in S3; without loss of generality we can assume that identifiers of actions in S′3 do not
appear in H . Let S′′3 be the subsequence of committed actions in S3 that are not in



H1. The history (H|¬live)S′′3S′3 contains only visible transactions. We construct the de-
sired history Hc by aborting all the commit-pending transactions in (H|¬live)S′′3S′3. Let
Hc = (H|¬live)S′′3S′3Ha, whereHa consists of actions (_, t, aborted) for every thread t
ending with a commit-pending transaction in (H|¬live)S′′3S′3; these actions have unique
identifiers that do not appear inH . We have thatHc ∈ comp(H|¬live), for the following
reasons:
(i) S′′3 completes the commit-pending transactions in H that get committed in S1.

(ii) S′3 completes the commit-pending transactions in H that stay commit-pending in
S1.

(iii) Ha aborts the commit-pending transactions inH that become live or aborted in S1

or do not appear there at all.
Let S = S4|com. Since S4 ∈ TA has only completed transactions and TA is closed

under removing live and aborted transactions (CLP3), we get that S = S4|com ∈
TA. We now show Hc|com vop S, thus completing the proof. We first show that
∀t. (Hc|t)|com = S|t by considering several cases.

– H|t does not contain commit-pending transactions. Then neither does S|t, H1|t =
S3|t, and S′3 = S′′3 = Ha = ε. Hence,

(Hc|t)|com = (H1|t)|com = (S3|t)|com = (S4|t)|com = S|t.

– H|t ends with a commit-pending transaction and (S′′3S
′
3Ha)|t = S′′3 |t =

(_, t, committed). Then H1|t = (H1|t)�pt and S3|t = ((S3|t)�pt )(S
′′
3 |t). Hence,

(Hc|t)|com = ((H1|t) (S′′3 |t))|com = (((H1|t)�pt ) (S
′′
3 |t))|com =

(((S3|t)�pt ) (S
′′
3 |t))|com = (S3|t)|com = (S4|t)|com = S|t.

– H|t ends with a commit-pending transaction and (S′′3S
′
3Ha)|t = S′3|t. ThenH1|t =

S3|t. Hence,

(Hc|t)|com = ((H1|t) (S′3|t))|com = ((S3|t) (S′3|t))|com = (S4|t)|com = S|t.

– H|t ends with a commit-pending transaction and (S′′3S
′
3Ha)|t = Ha|t =

(_, t, aborted). Then ((H1|t) (Ha|t))|com = ((H1|t)�pt )|com and S3|t = (S3|t)�pt .
Hence,

(Hc|t)|com = ((H1|t) (Ha|t))|com = ((H1|t)�pt )|com =

((S3|t)�pt )|com = (S3|t)|com = (S4|t)|com = S|t.

This shows ∀t. (Hc|t)|com = S|t. Finally, for every completed transaction T in τ , the
value of gti is set to 1 after the transaction completes and is read before every transaction
T ′ that begins after the completion of T . Hence, the transaction in τ ′ corresponding to
T completes before the transaction corresponding to T ′ begins. Then the real-time order
in Hc is preserved in S, which implies Hc|com vop S. ut

Lemma 6. Let TC and TA be TMs such that TC � TA and TA satisfies CLP3 and
CLP4. Let H = H ′ψ ∈ TC , where ψ is a response action that is not a committed or
aborted action. There exist Hc ∈ cTMSpast(H) and S ∈ TA such that Hc vop S.



GP t0
i = zt0i,1 := g1lasttx(t0,i,1); if(z

t0
i,1 6= 1) then mismatch := 1;

. . .

zt0i,m := gmlasttx(t0,i,m); if(z
t0
i,m 6= 1) then mismatch := 1

– For i 6= kt0 , CP t0
i is constructed as follows:

CP t0
i = wt0

i := atomic { yt0i,1 := ot0i,1.f
t0
i,1(n

t0
i,1); if(y

t0
i,1 6= rt0i,1) then mismatch := 1;

. . . ;

yt0
i,q

t0
i

:= ot0
i,q

t0
i

. f t0

i,q
t0
i

(nt0

i,q
t0
i

); if(yt0
i,q

t0
i

6= rt0
i,q

t0
i

) then mismatch := 1 }

if(wt0
i 6= ct0i ) then mismatch := 1 else gt0i := 1

– CP t0
kt0

is constructed as follows:

CP t0
kt0

= wt0
kt0

:= atomic { yt0
kt0 ,1

:= ot0
kt0 ,1

.f t0
kt0 ,1

(nt0
kt0 ,1

);

if(ytkt0 ,1 6= rtkt0 ,1) then mismatch := 1;

. . . ;

yt0
kt0 ,q

t0

kt0

:= ot0
kt0 ,q

t0

kt0

.f t0

kt0 ,q
t0

kt0

(nt0

kt0 ,q
t0

kt0

);

if(ytkt0 ,qt
kt0

6= rtkt0 ,qt
kt0

) then mismatch := 1;

if(mismatch 6= 1) then fault }

Fig. 7. The construction of CP t0
i and GP t0

i for Lemma 6. For conciseness, we use an extension
of the programming language with conditionals without an “else” clause.

Proof. We reuse the notation introduced in the proof of Lemma 5. As in that case, we
construct a program PH as defined by (5) and (4). However, the commands GP ti and
CP ti are constructed somewhat differently. Let ψ = (_, t0, _). For t 6= t0 we again
define CP ti and GP ti as shown in Figure 5; however, we define CP t0i and GP t0i as
shown in Figure 7. Thus, instead of faulting immediately upon detecting a mismatch
with the history H|t0 , thread t0 in PH sets the local variable mismatch to 1; at the
end of its execution, the thread checks the variable and faults if there has not been a
mismatch.

Similarly to the proof of Lemma 5, we construct a trace τ of PH . For t = 1..m
let τ t ∈ A(CtH)t be the maximal trace in A(CtH)t such that H|t = history(τ tc); then
τ t0 ends with a fault. We partition every τ t into subsequences τ ti as defined by (6),
but with the conditions in Figure 6 changed so that the case of t = t0 and ψt0i = ψ is
treated specially: in this case

τ ti = ψ (_, t, yti,_ := n) (_, t, assume(yti,_ = rti,_)) (_, t, assume(mismatch 6= 1)) (_, t, fault).

Then we let τ be defined by (7), so that history(τ) = H . Let s be the initial state chosen
as in Lemma 5. As before, we have τ ∈ [[PH ]](s, TC). Since τ ends with a fault by
t0 and TC � TA, by Definition 7 there exists τ ′ ∈ [[PH ]](s, TA) that also ends with a
fault by t0. Then S1 = history(τ ′) ∈ TA.



Since both τ and τ ′ end with a fault by t0, the checks inside this thread ensure
that

(H|¬abortedtx)|t0 ≡ (S1|¬abortedtx)|t0 . (8)

Consider threads t 6= t0 and t′. Let T and T1 be the i-th transactions in H|t and S1|t,
respectively and let T ′ and T ′1 be j-th transactions in H|t′ and S1|t′ (T1 and T ′1 may not
exist). The construction of PH ensures the following:

1. If T1 is visible, then so is T . Indeed, in this case T cannot be live or aborted and not
visible because of the fault command before the end of the corresponding atomic
block (Figure 5). Furthermore, because of the checks done inside the atomic block,
in this case the return values for transactional actions inside T and T ′ match.

2. If T ′ ≺H T and T1 exists, then so does T ′1, T ′1 ≺S1
T1, and T ′ is committed if and

only if so is T ′1. This is because before the transaction corresponding to T1 starts in
τ ′ there is a check that a gt

′

k variable is 1, and this variable is assigned to 1 only if
the checks for return values inside the transaction corresponding to T ′1 and for the
status of this transaction have passed.

Let S2 = (S1|ψ∪¬live)|¬abortedtx, where ·|ψ∪¬live is the projection to actions by non-
live transactions that nevertheless includes the transaction of ψ. Since S1 ∈ TA and
TA is closed under removing live and aborted transactions (CLP3), S2 ∈ TA. Since
S2 ∈ TA and TA is closed under completing commit-pending transactions (CLP4), we
get that there exists a history S3 ∈ nicomp(S2)∩TA. Let S4 = S3|ψ∪com, where ·|ψ∪com
projects to committed transactions and the transaction of ψ. Since S3 ∈ TA does not
have commit-pending transactions and TA is closed under removing live and aborted
transactions (CLP3), we get that S4 ∈ TA.

Let H1 be the subsequence of H consisting of those transactions for which the
matching transactions in S1 are included into S4. Then from item 1 above and (8) we
get that

tx(H1) ⊆ {txof(ψ,H)} ∪ visible(H).

Consider T, T ′ ∈ tx(H1) such that T ′ ≺H1
T . Then there exist matching transactions

T1, T
′
1 ∈ tx(S1). It is easy to see that T ′1 has to be committed; then by item 2 above we

get that T ′ is committed as well. Conversely, consider T ∈ tx(H1) and a committed
T ′ ∈ tx(H) such that T ′ ≺H T . Since T ∈ tx(H1), there exists a matching transaction
T1 ∈ tx(S1). Then by item 2 above there also exists a matching transaction T ′1 ∈ tx(S1)
for T ′ and T ′1 is committed. Hence, it is included into S4 and, thus, T ′ ∈ tx(H1). We
have just shown that H1 ∈ TMSpast(H).

Let Hc ∈ ccomp(com(H ′1)). Then Hc ∈ cTMSpast(H). From (8) we get
(H1|t0) ≡ (S4|t0). For t 6= t0 let pt be the index of last txcommit action in S4|t.
Then from items 1 and 2 above it follows that (H1|t)�pt ≡ (S4|t)�pt for any t. Since
S4 contains only committed transactions, this implies H1|t ≡ S4|t for any t. Let S
be the history obtained from S4 by renaming action identifiers such that for any t we
have Hc|t = S|t. Since S4 ∈ TA and TA is closed under renaming action identifiers,
we get S ∈ TA. By item 2 above, the real-time order in Hc is preserved between the
corresponding transactions in S1. This gives us Hc|com vop S, as required. ut


