
Reasoning about Eventual Consistency
and Replicated Data Types

Joint work with Sebastian Burckhardt (Microsoft Research),
Hongseok Yang (Oxford) and Marek Zawirski (UPMC & INRIA)

Alexey Gotsman

IMDEA Software Institute

MSR-IMDEA Collaboration Workshop, 04.04.14

Shared-memory concurrency

Distributed systems

Distributed systems

Geo-replicated databases

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

Geo-replicated databases

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

✘

Geo-replicated databases

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

cart.add(book)

Strong consistency

cart.add(book)

• Database behaves like a single replica

• Implementation: ensure replicas are in sync ➔
wait until other replicas get updated

cart.add(book)

• Database behaves like a single replica

• Implementation: ensure replicas are in sync ➔
wait until other replicas get updated

Strong consistency

cart.add(book)

• Problem: high latency, can’t tolerate network
partitions

• CAP theorem: impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

cart.add(book)

• Problem: high latency, can’t tolerate network
partitions

• CAP theorem: impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

cart.add(book)

• Problem: high latency, can’t tolerate network
partitions

• CAP theorem: impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

cart.add(book)

• Problem: high latency, can’t tolerate network
partitions

• CAP theorem: impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

cart.add(book)

• Update your replica now, propagate to others later

• Weak consistency: exhibits anomalies

Weak consistency

cart.add(book)

• Update your replica now, propagate to others later

• Weak consistency: exhibits anomalies

Weak consistency

cart.read() : ∅

cart.add(book)

• Update your replica now, propagate to others later

• Weak consistency: exhibits anomalies

Weak consistency

cart.read() : ∅

✘

cart.add(book)

cart.read() : ∅

• Update your replica now, propagate to others later

• Weak consistency: exhibits anomalies

Weak consistency

cart.read() : ∅

✘

cart.add(book)

cart.read() : ∅

Weak consistency

• Also an issue with mobile devices: operate when
disconnected

in shared memory

• Processors and programming languages
don’t provide strong consistency: weak
memory models

• A multiprocessor is really a distributed
system: cache-coherence protocol

• Hot topic now, but first had to define
the memory models

Weak consistency

If no new updates are
made to the database,
then replicas will
eventually reach a
consistent state

If no new updates are
made to the database,
then replicas will
eventually reach a
consistent state

But updates never
stop!

So what does this tell
database clients?

50 shades of eventual consistency

50 shades of eventual consistency

Pileus

TouchDevelop

50 shades of eventual consistency

Pileus

TouchDevelop

+ Stronger guarantees and programming
interfaces with nontrivial semantics

- Low-level semantics definitions or none at all:
hard to reason about database behaviour

Key issues beyond ‘eventual’

1. Which anomalies can we see before this?
E.g., does a user always see his own actions?

2. Which state will replicas converge to?
Users can make conflicting updates.
How does the database resolve the conflicts?

If updates stop, replicas will eventually reach
the same state

set.add(laptop) set.remove(book)

set = {book}

Set ~ Shopping cart

set.add(laptop) set.remove(book)

set = {book}

set.remove(book)

{set = {laptop}} {set = {laptop}}

set.add(laptop)

Operations commute ➔ eventual consistency OK

Set ~ Shopping cart

exchange
information

set.add(book)

set = {book}

Set ~ Shopping cart

set.remove(book)

set.add(book) Conflict!

Should the remove cancel the concurrent add?
Depends on application requirements

set = {book}

Set ~ Shopping cart

set.remove(book)

Remove wins: set = ∅

Add wins: set = {book}

Last writer wins:

set.add(book)

choose based on operation
time-stamps

Conflict!

set = {book}

Set ~ Shopping cart

set.remove(book)

Remove wins: set = ∅

Add wins: set = {book}

Last writer wins:

set.add(book)

choose based on operation
time-stamps

Conflict!

set = {book}

Set ~ Shopping cart

set.remove(book)

Replicated data types

Object ➔ Type ➔ Conflict resolution policy

• Many data types: registers, counters, graphs,
lists, file systems [Shapiro+ 2011]

• Nontrivial implementations

aka CRDTs, cloud types

Replicated data types

Object ➔ Type ➔ Conflict resolution policy

• Many data types: registers, counters, graphs,
lists, file systems [Shapiro+ 2011]

• Nontrivial implementations

aka CRDTs, cloud types

So far: implementation is your specification

• Define the semantics of eventually
consistent databases

• Develop tools for reasoning about their
behaviour

• Improve programmability and efficiency

Use formal techniques to:

Long-term goal

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

• Verification: framework for proving correctness
of replicated data type implementations

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

• Verification: framework for proving correctness
of replicated data type implementations

• Optimality:
‣ Data types maintain metadata for conflict resolution

‣ Method for proving lower bounds on metadata
space requirements

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

• Verification: framework for proving correctness
of replicated data type implementations

• Optimality:
‣ Data types maintain metadata for conflict resolution

‣ Method for proving lower bounds on metadata
space requirements

• Applications to nontrivial data types

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

Replicated data
type specifications

Results [POPL’14]

• Specification:
‣ Conflict resolution ~ replicated data types

‣ Anomalies

Replicated data
type specifications

Consistency
axioms

Results [POPL’14]

Sequential data type semantics

Strong consistency ➔ operations are totally
ordered:

set.read() : ∅

set.add(book)

set.remove(book)

Compute the result by applying operations in
sequence

set.add(book)

set.read() : ?

Delivered?

Replicated data type semantics

Only updates that have been delivered to the replica
performing the operation are important

set.add(book)
Delivered?

Replicated data type semantics

Abstract by the visibility relation on operations (acyclic, ...)

Visible?
set.read() : ?

set.add(book)
Delivered?

Replicated data type semantics

Abstract by the visibility relation on operations (acyclic, ...)

Visible?

vis

read() : ?

set.add(book) set.remove(book)

vis
➔

set.read() : ?

set.add(book)

set.remove(book)

set.read() : ?

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ?

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Replicated data type specification

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ?

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Replicated data type specification

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ?

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Replicated data type specification

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Add-wins set

set.read() : ?

If you saw it, it’s not a conflict

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Add-wins set

set.read() : ?

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Add-wins set

set.read() : ?

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Add-wins set

F: cancel all adds seen by a remove

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Add-wins set

vis

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ∅

F: context(op) → return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

vis

Add-wins set

F: cancel all adds seen by a remove

Almost arbitrary: little control over when updates are
visible to other replicas

set.add(book) ?

Where does vis come from?

Almost arbitrary: little control over when updates are
visible to other replicas

set.add(book)

But may guarantee that they don’t change unpredictably
between operations = anomalies disallowed

?

set.read()

program
order vis

: {book}

Where does vis come from?

Consistency
axioms

vis

Abstract executions: (E, po, vis)

set.add(book)

set.read() : ∅

set.add(laptop)

set.read() : {book,laptop}

Client 1 Client 2

vis

• All operations in a database run, on all objects

• Operations grouped by clients and arranged in
program order

program
order

program
order

vis

Abstract executions: (E, po, vis)

set.add(book)

set.read() : ∅

set.add(laptop)

set.read() : {book,laptop}

vis

Determines the context of every operation:

program
order

program
order

Context(op) = projection onto events visible to op

return value(op) = F(Context(op))

vis

set.add(book)

set.read() : ∅

set.add(laptop)

set.read() : {book,laptop}

vis
program

order
program

order

Determines the context of every operation:

Context(op) = projection onto events visible to op

return value(op) = F(Context(op))

Abstract executions: (E, po, vis)

Consistency axioms

vis

set.add(book) set.add(laptop)

set.read() : {book,laptop}

vis
program

order
program

order

set.read() : ∅

• Consistency axioms disallow anomalies by
constraining executions

• Read Your Writes: po ∩ same-object ⊆ vis

• Principle: strengthen consistency by mandating that
more edges be included into vis

Consistency axioms

vis

set.add(book)

set.read() : {book}

set.add(laptop)

set.read() : {book,laptop}

visvis
program

order
program

order

• Consistency axioms disallow anomalies by
constraining executions

• Read Your Writes: po ∩ same-object ⊆ vis

• Principle: strengthen consistency by mandating that
more edges be included into vis

Basic eventual consistency

Session guarantees

Per-object causal
consistency

Causal consistency

Strong consistency

Basic eventual consistency

Session guarantees

Per-object causal
consistency

Causal consistency

Strong consistency

≈ 2011 C/C++ relaxed

≈ 2011 C/C++ release/acquire

• Our specifications similar to weak memory
model definitions

• Eventual consistency axioms for registers ≈
C/C++ memory model

(E, po, vis)

Specification summary
Conflict resolution policies ➔ Data type spec

Anomalies ➔ Consistency axioms

➔

request1

response1

request2

response2
...

request1

response1

request2

response2
...

(E, po, vis)

Specification summary
Conflict resolution policies ➔ Data type spec

Anomalies ➔ Consistency axioms

➔

request1

response1

request2

response2
...

Events (E, po) allowed iff

∃ execution (E, po, vis)

satisfying data type specs
and axioms

Specification summary
Conflict resolution policies ➔ Data type spec

Anomalies ➔ Consistency axioms

➔ (E, po, vis)

request1

response1

request2

response2
...

Specification summary
Conflict resolution policies ➔ Data type spec

Anomalies ➔ Consistency axioms

Quick & dirty proof of correspondence with algorithms
used in systems [TR]

Specification summary
Conflict resolution policies ➔ Data type spec

Anomalies ➔ Consistency axioms

Quick & dirty proof of correspondence with algorithms
used in systems [TR]

Implementation challenge: remove behaves
differently wrt different adds of the same element

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Naive add-wins set implementation

Verifying data type implementations

set.add(book)

S = {(book,1)}

S = {(book,1), (book,2)}

• Each add creates a new element instance:
(element, unique instance id)

set.add(book)

S = {(book,1)}

• Instance ids ignored when reading the set

S = {(book,1), (book,2)}

• Each add creates a new element instance:
(element, unique instance id)

set.read() : {book}

set.add(book)

S = {(book,1)}

S = {(book,1), (book,2)}

set.read() : {book}

S = ∅

S = {(book,1)}

set.remove(book)set.remove(book)

• Remove should remove all currently present
instances of book from S

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

set.read() : {book}

• But maintain the set of tombstones T: element
instances removed

• Remove moves all instances of book in S to T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

State-based implementation:
sends its state snapshot to other replicas

S = ?, T = ?

S, T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = ?, T = {(book,1)}

State-based implementation:
sends its state snapshot to other replicas

S, T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

• Ignore arriving instances that are in T

S = {}, T = {(book,1)}

S, T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

• Ignore arriving instances that are in T

• Add new arriving instances to S

S, T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

S, T

set.read() : {book}

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}• State grows linearly with the number of removes

• Realistic implementations represent T compactly:
motivation for investigating space optimality

• We prove that space is Ω(log(number of operations))

S, T

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

S, T

set.read() : {book}

Impl ⊨ F

set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

S, T

set.read() : {book}

set.add(book)

vis

vis

vis

vis vis

Impl ⊨ F

Data type correctness: Impl ⊨ F

• ∀ concrete execution of the implementation
with any sequence of client operations

• ∃ corresponding abstract execution satisfying
data type specifications and consistency axioms

Data type correctness: Impl ⊨ F

• ∀ concrete execution of the implementation
with any sequence of client operations

• ∃ corresponding abstract execution satisfying
data type specifications and consistency axioms

Data type correctness: Impl ⊨ F

• ∀ concrete execution of the implementation
with any sequence of client operations

• ∃ corresponding abstract execution satisfying
data type specifications and consistency axioms

• Requires reasoning about all replicas and
interactions between them

• Want to modularise reasoning: construct the
abstract execution from separate system
configuration components

σ

A

replica state

events the replica is
aware of

message

events the message
carries information about

Replication-aware simulations

• Generalise simulation relations for abstract
data types to replicated case

• Replica state or message associated with an
abstract execution part describing events
that led to it

m

A

(S, T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book,1)}

Simulation for add-wins set

(S, T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book,1)}

Simulation for add-wins set

A

⟷

(S, T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book,1)}

Simulation for add-wins set

add(book)

add(book) add(laptop)1

2

3

A

(elt, id) ∈ S ∪ T add(elt) ∈ A⟷ id

⟷

(S, T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book,1)}

Simulation for add-wins set

remove(book)add(book)

add(book) add(laptop)1

2

3

A

(elt, id) ∈ S ∪ T add(elt) ∈ A⟷

(elt, id) ∈ T ⟶ remove(elt) add(elt)
vis id

vis

id

⟷

(S, T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book,1)}

Simulation for add-wins set

remove(book)add(book)

add(book) add(laptop)1

2

3

A

(elt, id) ∈ S ∪ T add(elt) ∈ A⟷

(elt, id) ∈ T ⟶ remove(elt) add(elt)
vis

(elt, id) ∈ S ⟶ ¬ add(elt) remove(elt)

vis id

vis

vis✘

id

id

⟷

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

σ
op() : res

σ’

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

Executing an operation:

σ

A

op() : res
σ’

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

Executing an operation:

σ

A

op() : res
σ’

A’ ≈ A + {op}

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

Executing an operation:

σ

A

op() : res
σ’

A’ ≈ A + {op}

And check
res = F(ContextA’(op))

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

Executing an operation:

σ

A

op() : res
σ’

A’ ≈ A + {op}

And check
res = F(ContextA’(op))

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

Executing an operation:

Modular: considers the
state of a single replica

(σ, m)
receive(m)

σ’

Receiving a message

(σ, m)

(A, B)

receive(m)
σ’

Receiving a message

(σ, m)

(A, B)

receive(m)
σ’

A’

Receiving a message

(σ, m)

(A, B)

receive(m)
σ’

A’

Good news: modular - consider the state of a
single replica and a message

Bad news: modularity leads to incompleteness -
loses required global information

Receiving a message

• A and B parts of the same abstract execution ➔
can be correlated by some invariants

‣ Visibility can’t contradict on events common to A and B

‣ Union of visibility relations in A and B itself a well-formed
visibility relation ➔ acyclic

• Simulation relations per-component ➔ don’t give this

(σ, m)

(A, B)

σ’

A’

Source of incompleteness

A
B

whole run

Solution: 2-stage verification

‣ Fix a class of data types implementations
with similar messaging behaviour
State-based: propagate information by sending
full replica state

‣ Prove key global invariants non-modularly

‣ Unpleasant, but done once for the class

1

Solution: 2-stage verification

‣ Fix a class of data types implementations
with similar messaging behaviour
State-based: propagate information by sending
full replica state

‣ Prove key global invariants non-modularly

‣ Unpleasant, but done once for the class

1

2 ‣ For any implementation within the class

‣ Verify it modularly using replication-aware
simulations while assuming the global invariants

Solution: 2-stage verification

‣ Fix a class of data types implementations
with similar messaging behaviour
State-based: propagate information by sending
full replica state

‣ Prove key global invariants non-modularly

‣ Unpleasant, but done once for the class

1

2 ‣ For any implementation within the class

‣ Verify it modularly using replication-aware
simulations while assuming the global invariants

Technical details in the paper

• First techniques for reasoning about eventual
consistency and replicated data types
‣ Specifying the intended semantics

‣ Verifying replicated data type correctness

Summary

• Only the first step
‣ Replicated data types only one system component

‣ More work needed even for them: list data type,
used for collaborative editing (Office Online,
Google Docs)

Programming languages/verification
vs distributed systems

• Put eventually consistent distributed
systems onto the PL/verification agenda

• Usual paradigm: developing verification
techniques

• But also: helping systems researchers design
architectures and programming interfaces

‣ Tricky to figure out semantics &
implementation for complex interfaces: multiple
consistency levels, transactions

Common ground:
weak memory models

• Lot of recent work on weak memory

• Opportunity: apply weak memory
technology to distributed systems

Common ground:
weak memory models

• Lot of recent work on weak memory

• Opportunity: apply weak memory
technology to distributed systems

• Processor and language models have
very little known motivation

• Distributed systems are different:
implemented algorithms motivate
models

