Reasoning about Eventual Consistency
and Replicated Data Types

Alexey Gotsman

IMDEA Software Institute

MSR-IMDEA Collaboration Workshop, 04.04.14

Joint work with Sebastian Burckhardt (Microsoft Research),
Hongseok Yang (Oxford) and Marek Zawirski (UPMC & INRIA)

Shared-memory concurrency

Java™ Platform
Overview) Class Use Tree Deprecated Index Help - iy

PREV PACKAGE NEXT PACKAGE FRAMES NOFRAMES All Classes

Package java.util.concurrent

Utility classes commonly useful in concurrent programming.

See:
Description
|
Interface Summary
~Any- o
BlockingDeque<E>
BlockingQuene<E> Intel
Callable<V> Threading Building Blocks =
A ® TBB)
CompletionService<V> ~ Intel
task (o DOWNLOAD NOW
" 421 5 !
ConcurrentMap<K,V> A nay 4.2 Update 3 9 ‘
Navi N V> A cof
Delayed A mil
Executor Ano .
—— Task Parallel Library (TPL)
one ¢
Future<V> Aru NET Framework 4.5 Other Versions ~ 35 out of 45 rated this helpful - Rate this topic
RejectedExecutionHandler A haf
anabl Y> ' Az The Task Parallel Library (TPL) is a set of public types and APIs in the System.Threading and
RunnableScheduledFuture<V> |A sof System.Threading.Tasks namespaces. The purpose of the TPL is to make developers more productive by
ScheduledExecutorService An g simplifying the process of adding parallelism and concurrency to applications. The TPL scales the degree of
ScheduledFuture<Vs> A del concurrency dynamically to most efficiently use all the processors that are available. In addition, the TPL
ThreadFactory ey handles the partitioning of the work, the schgdulmg 9f threads on the anfAQPnnl, cancellation support,
state management, and other low-level details. By using TPL, you can maximize the performance of your
code while focusing on the work that your program is designed to accomplish.
Class Sllmmal'}' Intro to Intel® TBB parallel_for Starting with the .NET Framework 4, the TPL is the preferred way to write multithreaded and parallel code.
AbstractExecutorService However, not all code is suitable for parallelization; for example, if a loop performs only a small amount of
ArrayBlockingQueue<E> work on each iteration, or it doesn't run for many iterations, then the overhead of parallelization can cause
. M T TR — the code to run more slowly. Furthermore, parallelization like any multithreaded code adds complexity to
- ‘ your program execution. Although the TPL simplifies multithreaded scenarios, we recommend that you have
ConcurrentLinkedQueue<E> —— a basic understanding of threading concepts, for example, locks, deadlocks, and race conditions, so that

ConcurrentSkipListMap<K,.V>
ConcurrentSkinListSet<E>

you can use the TPL effectively.

Distributed systems

Distributed systems

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

| @ Amazon.co.uk: Low Prices in Ele... | +

A

& O a2 www.amazon.co.uk e | (29~ Google Q) K

amazon.w.uk Your Amazoncouk TodaysDeals Gift Cards Help January Deals ’

Shop by Sear Al v Hello. Sign In 0 Wish
Department ~ ™ A H Your Account v -\.-!Baskat v List v

;Compras desde Espana? = Vst e
Shopping from Spain? - anlaz‘o!}eemsmno January Deals *:......

Amazon MP3 Cloud Player Kindle LOVEFILM Appstore for Android Audible o
Two-Hour Flying Lesson

Meet the

—dimily

£99 (was “299)

» See the deal amazoniocal T

-

7

Kindle Kindle Pdp-':rwh]le Kxnclc Firc HD
» £69 » from £109 » from £159

» Kindle Accessories

Amazon Family Trade-n Clothing Store Amazon Prime Subscribe & Save
THE AMAZON CLOTHING STORE
o
Y ¥
" ore (G A
Shop our sophisticated
]

dress edit from Sugarhill Boutigue,
Eva Franco, Fornarina and more.

»Shop Dresses

»Shop All Clothing

What Other Customers Are Looking At Right Now

Petr gy A

B,{,r,uk

-l _earinn >

Geo-replicated databases

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency

Geo-replicated databases

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency

Geo-replicated databases

- O m gy,
——- ..
- ~
- ~
‘ﬂ ..
- ~

- " |cart.add(book)

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency

—

Strong consistency

! !

| !
’.) T ®
ey 7

L - ‘cart.add(book) '

® Database behaves like a single replica

® |mplementation: ensure replicas are in sync =>

wait until other replicas get updated
— — 01

Strong consistency

P / \Q *
L e A
; cart. add(book

® Database behaves like a single replica

® |mplementation: ensure replicas are in sync =>

wait until other replicas get updated
e —————————————————————————————————————

Strong consistency

/ \Q)
cart. add(book

® Problem: high latency, can’t tolerate network
partitions

® CAP theorem:impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

—“'].
4 j I Wz
- e - ‘cart add(book)!
[
[

rﬁ’__ - \“
e

® Problem: high latency, can’t tolerate network
partitions

® CAP theorem:impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

-
. = @ -
- - ' L
oy < —- =~ ‘cart.add(book)'
. ,,
|

® Problem: high latency, can’t tolerate network
partitions

® CAP theorem:impossible to get all of strong
Consistency, Availability, Partition-tolerance

Strong consistency

i — o

- - - WL

- R - ‘cart add(book)!
]
]

® Problem: high latency, can’t tolerate network
partitions

® CAP theorem:impossible to get all of streng
Censisteney, Availability, Partition-tolerance

® Update your replica now, propagate to others later

® Weak consistency: exhibits anomalies

yr_’__ . "‘

VVeak consistency

ML
‘r—~ .
\ "l

‘ cart.add(book) '

® Update your replica now, propagate to others later

® Weak consistency: exhibits anomalies

VVeak consistency

: 2 - &Q) A

L .
- ‘ cart.add(book) !
_% Q\

N
cart.read()

® Update your replica now, propagate to others later

® Weak consistency: exhibits anomalies

VVeak consistency

‘—

3s zg!
1 — - “ ij

i _

& I
| cart.add(book)
cart.read() : J|

\
‘cart.read() ; @' L\,\

® Update your replica now, propagate to others later

® Weak consistency: exhibits anomalies

VVeak consistency

- - O
--- -y,
" J

2 fingt)
i ‘}/ “ Lx)l

y :
\ : cart.add(book)
cart.read() : J|

‘cart.read() :@. Q
® Also an issue with mobile devices: operate when

disconnected

WWeak consistency

in shared memory

® Processors and programming languages
don’t provide strong consistency: weak
memory models

® A multiprocessor is really a distributed
system: cache-coherence protocol

® Hot topic now, but first had to define
the memory models

The Semantics of x86-CC Multiprocessor Machine Code

Scott Owens'

Susmit Sarkar! Peter Sewell'! Francesco Zappa Nardelli?
Tom Ridge! Thomas Braibant? Magnus O. Myreen'
*University of Cambridge ?INRIA

Jade Alglave?

Abstract

Multiprocessors are 1
do not provide the seql
sumed by most work (
they have subtle relax
described only in ami
confusion.
We develop a rigol
multiprocessor progr.
laxed memory model,
mantics against actu
examples, and give
terisation of our axi
that are (in some pr
in HOL that their
also contrast the x86
ARM behaviour,
This provides a soli

and a sound fonndau]

analysis, and compila

Categories and S
Data Stream Architec
cessors; 1.1.3 |Cond|
gramming; F.3.1 [Spf
about Programs)
General Terms Dof
tion, Theory, Verificat|

Keywords Relaxed

1. Introductio

Problem Multip

acting on a shared m
1960s, but have sudd
years: laptops, desk

or 16 cores, and the t
to continue, Meanwhi
current systems has gi
last 40 years on seman
work has almost alwaj
share a soquentially of
multiprocessors typicy
ory models, Internally|

Permissbon to make digiy
for persosal or classrooe|
coples are not made or diy
and that copees bear this
To copy otherwise, to rep|
1o lists, requires prior spd
POPLY, January 18-2
Copyright & 2009 ACM

A Better x86 Memory Model: x86-TSO

Scott Owens

Susmit Sarkar Peter Sewell
University of Cambridge

Abstr
tent m|
tion, |
ambig)
targedy
orous
ificatidg
to act
We d
from

an axi
Both
the
valid
wit
more

1 Introd

Most previoy|
assumes seq
memory occy
corporate mj
single-thread
haviour of o
sors, given ty
proc:0 and §
as in the prof

iwp2.3.a/]

poi:0

noil

The Semantics of Power and ARM Multiprocessor

Jade Alglave?

Susmit Sarkar!

Machine Code

Samin Ishtiaq®
Francesco Zappa Nardelli?

Anthony Fox!
Peter Sewell’

Magnus O. Myreen'

'University of

Abstract

We develop a rigorous semantacs for
processor programs, including their
and the behaviour of reasonable fr
tion sets, The semantics s me
assistant,

This should provide a good 2
and formal verification of low-leve
consistent architectures, and, toget
tics, for the design and compilation
languages.

Categories and Subject Deserd
Data Stream Architectures (Multtpr]
coessors; D.1.3 [Concurrent Prognd
gramming: F.3.1 [Specifying and)
about Programs|

General Terms Documentation,
tion, Theory, Verification

Keywords Relaxed Memory Mo
erPC, ARM

Understanding POWER Multiprocessors

Susmit Sarkar! Peter Sewell

"University of Cambridge

Abstract

Exploiting today’s multiprocessors requires high-
performance and correct concurrent systems code (op-
timising compilers, language runtimes, OS kernels, ete.),
which in turn requires a good understanding of the
observable processor behaviour that can be relied on.
Unfortunately this critical hardware/software interface is
not at all clear for several current multiprocessors,

In this paper we characterise the behaviour of IBM
POWER multiprocessors, which have a subtle and highly
relaxed memory model (ARM multiprocessors have a very
similar architecture in this respect). We have conducted ex-
tensive experiments on several generations of processors:
POWER G5, 5, 6, and 7. Based on these, on published de-
tails of the microarchitectures, and on discussions with IBM
stafl, we give an abstract-machine semantics that abstracts

Jade Alglave®*
20xford University

Luc Maranget® Derek Williams*
JINRIA ‘IBM Austin

many years had aggressive implementations, providing high
performance but exposing a very relaxed memory model,
one that requires careful use of dependencies and memory
barriers to enforee ordering in concurrent code. A priori, one
might expect the behaviour of a multiprocessor to be suffi-
ciently well-defined by the vendor architecture documenta-
tion, here the Power ISA v2.06 specification [Pow(%)|, For the
sequential behaviour of instructions, that is very often true.
For concurrent code, however, the observable behaviour of
Power multiprocessors is extremely subtle, as we shall see,
and the guarantees given by the vendor specification are
not always clear. We therefore set out to discover the ac-
tual processor behaviour and to define a rigorous and usable
semantics, as a foundation for future system building and
research.

The programmer-observable relaxed-memory behaviour

= o ans et ean aamaaas aaaaaeeas o o ol afle caaadl oaas nanaaan

The Semantics of x86-CC Multiprocessor Machine Code

Scott Owens'

Susmit Sarkar! Peter Sewell'! Francesco Zappa Nardelli?
Tom Ridge! Thomas Braibant? Magnus O. Myreen'
*University of Cambridge ?INRIA

Jade Alglave?

Abstract

Multiprocessors are 1
do not provide the seql
sumed by most work (
they have subtle relax
described only in ami
confusion.
We develop a rigol
multiprocessor progr.
laxed memory model,
mantics against actu
examples, and give
terisation of our axi
that are (in some pr
in HOL that their
also contrast the x86
ARM behaviour,
This provides a soli

and a sound fonndau]

analysis, and compila

Categories and S
Data Stream Architec
cessors; 1.1.3 |Cond|
gramming; F.3.1 [Spf
about Programs)
General Terms Dof
tion, Theory, Verificat|

Keywords Relaxed

1. Introductio

Problem Multip

acting on a shared m
1960s, but have sudd
years: laptops, desk

or 16 cores, and the t
to continue, Meanwhi
current systems has gi
last 40 years on seman
work has almost alwaj
share a soquentially of
multiprocessors typicy
ory models, Internally|

Permissbon to make digiy
for persosal or classrooe|
coples are not made or diy
and that copees bear this
To copy otherwise, to rep|
1o lists, requires prior spd
POPLY, January 18-2
Copyright & 2009 ACM

A Better x86 Memory Model: x86-TSO

Scott Owens

Susmit Sarkar Peter Sewell
University of Cambridge

Abstr
tent m|
tion, |
ambig)
targedy
orous
ificatidg
to act
We d
from

an axi
Both
the
valid
wit
more

1 Introd

Most previoy|
assumes seq
memory occy
corporate mj
single-thread
haviour of o
sors, given ty
proc:0 and §
as in the prof

iwp2.3.a/]

poi:0

noil

The Semantics of Power and ARM Multiprocessor

Jade Alglave?

Susmit Sarkar!

Machine Code

Samin Ishtiaq®
Francesco Zappa Nardelli?

Anthony Fox!
Peter Sewell’

Magnus O. Myreen'

'University of

Abstract

We develop a rigorous semantacs for
processor programs, including their
and the behaviour of reasonable fr
tion sets, The semantics s me
assistant,

This should provide a good 2
and formal verification of low-leve
consistent architectures, and, toget
tics, for the design and compilation
languages.

Categories and Subject Deserd
Data Stream Architectures (Multtpr]
coessors; D.1.3 [Concurrent Prognd
gramming: F.3.1 [Specifying and)
about Programs|

General Terms Documentation,
tion, Theory, Verification

Keywords Relaxed Memory Mo
erPC, ARM

Understanding POWER Multiprocessors

Susmit Sarkar! Peter Sewell

"University of Cambridge

Abstract

Exploiting today’s multiprocessors requires high-
performance and correct concurrent systems code (op-
timising compilers, language runtimes, OS kernels, ete.),
which in turn requires a good understanding of the
observable processor behaviour that can be relied on.
Unfortunately this critical hardware/software interface is
not at all clear for several current multiprocessors,

In this paper we characterise the behaviour of IBM
POWER multiprocessors, which have a subtle and highly
relaxed memory model (ARM multiprocessors have a very
similar architecture in this respect). We have conducted ex-
tensive experiments on several generations of processors:
POWER G5, 5, 6, and 7. Based on these, on published de-
tails of the microarchitectures, and on discussions with IBM
stafl, we give an abstract-machine semantics that abstracts

Jade Alglave®*
20xford University

Luc Maranget® Derek Williams*
JINRIA ‘IBM Austin

many years had aggressive implementations, providing high
performance but exposing a very relaxed memory model,
one that requires careful use of dependencies and memory
barriers to enforee ordering in concurrent code. A priori, one
might expect the behaviour of a multiprocessor to be suffi-
ciently well-defined by the vendor architecture documenta-
tion, here the Power ISA v2.06 specification [Pow(%)|, For the
sequential behaviour of instructions, that is very often true.
For concurrent code, however, the observable behaviour of
Power multiprocessors is extremely subtle, as we shall see,
and the guarantees given by the vendor specification are
not always clear. We therefore set out to discover the ac-
tual processor behaviour and to define a rigorous and usable
semantics, as a foundation for future system building and
research.

The programmer-observable relaxed-memory behaviour

= o ans et ean aamaaas aaaaaeeas o o ol afle caaadl oaas nanaaan

If no new updates are
made to the database,
then replicas will
eventually reach a
consistent state

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
I'his scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide

scope of these systems, we use replication techniques

ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed”™ Weblog and
was greatly improved with the help of
its readers.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases™
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency, Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.*

In the mid-1990s, with the rise of
larger Internet systems, these practic-
¢s were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

If no new updates are
made to the database,
then replicas will
eventually reach a
consistent state

But updates never
stop!

So what does this tell
database clients?

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
I'his scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide

scope of these systems, we use replication techniques

ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed”™ Weblog and
was greatly improved with the help of
its readers.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases™
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency, Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.*

In the mid-1990s, with the rise of
larger Internet systems, these practic-
¢s were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

50 s
hades of eventual consistency

Don’t Settle for Eventual:
Causal Consistency for Wide-Area Storage With COPS g

dersen:

gcalable
minsky’, and David G. An

J. Freedman®, Michael Ka
ollon University

Michael
+«al | abs, fCarnegie M

*Princeton University,

——

Wyatt Lloyd*,

< akK
am Abu-Libc;ItS.f
1

care T
h Silicop, Vall
fersity ‘

’ J
]
h \

,» and MOo]y Sagivy? ”

eV

1
Mi
Crosoft Research

M 9
_ : . Tel'AVl'\: Irr -
Conflict-tre ata Types =

S—

e Replicated D

Marc Shapiro'™”; Nuno Pregui§a2°1._ Carlos Baquero”, and Mare

ance
5 ~1r1 Universidade Nova de Lisboa, Portugal
. e 1 D(\]'f]]gal

1 [NRIA, Paris, Fr

50 shades of eventual consistency

An
insky’, and David G.
m
gcalable

ellon University

Freedman®, Michael Ka
J. i

M
-l Labs, *Carnegie
«. Michael rsity, -2
loyd*. ton Unive .
Wyatt L +princeton Unte Co ‘ :
ncs ns1stency-Based Serwce Leve] Agreemen ts
— for Clouq Storag
- > Doug]a« N
P||eu5 ahes;'bhls,' B 1 1Y, Vijayap Pmbhakarau. Ramakushna Kot
Yakrishpay Ma1cosK Aguilery Hussap, Abu- -Libde}y
Mlcroso_tt Reseawh S111co11 Va alley
Eventually Consistent Transactiong - \
| I/ .
Sebastian Burckhardtl, Daan Leijenl, Manue] Féihndrichl, and Mooly Sagiv? ata TypeS
Mlcrosoft Research

: TC] Aviv 171 -

— n

. 1.:1.4
Zawirski
Marek

ar
0111(;’\
5 Nuno Preg

France
arc Shqplro 1A, Pt
|OUChDeve|Op Mar :

1
Portuga
Lisboa,

rsidade No\a d? Peetiioal
9 ~11TT 1Inive

50 shades of eventual consistency

Dot S ide-Area Storage with COPS |

Wyatl Lloyd*, Michael J. Free

*Princeton University,

—

Pileus

Sebastian Burckhard! .
W Danl - 4= Stronger guarantees and programming

1

. interfaces with nontrivial semantics

—

- Low-level semantics definitions or none at all:

TouchDeveld hard to reason about database behaviour

Key issues beyond ‘eventual’

If updates stop, replicas will eventually reach
the same state

|. Which anomalies can we see before this?
E.g., does a user always see his own actions!

2. Which state will replicas converge to!
Users can make conflicting updates.
How does the database resolve the conflicts!?

Set ~ Shopping cart
- -

@ LJ/ set = {book} Lv/ Q

set.add(laptop) set.rembve(book)

Set ~ Shopping cart

D set = {book} F
set.addilaptop) set.rem;)ve(book)

set.remove(book)“ exchange ™ set.add(laptop)
: information 5

(set = {laptop}) (set = {laptop})

Operations commute => eventual consistency OK

Set ~ Shopping cart
- -

@ L/ set = {book} L_/ Q

set.add(book) set.rembve(book)

Set ~ Shopping cart

@ E set = {book} U

1 -~
4 n

set.add(book) Conflict! set.rembve(book)

Should the remove cancel the concurrent add?

Depends on application requirements

Set ~ Shopping cart

-

g *°

set.add(book)

Remove wins:

Add wins:

Last writer wins:

set = {book}

-

.

Al

Conflict! set.rembve(book)

set =

set = {book}

choose based on operation

time-stamps

Set ~ Shopping cart

/"_\ /’—\

| | set = {book} | |

set.add(book) Conflict! set.rembve(book)

{ ‘ ’

’

Remove wins: set= @

Add wins: set = {book}

Last writer wins: choose based on operation
time-stamps

Replicated data types
aka CRDTs, cloud types

Object => Type => Conflict resolution policy

® Many data types: registers, counters, graphs,
lists, file systems [Shapiro+ 201 1]

® Nontrivial implementations

Replicated data types
aka CRDTs, cloud types

Object => Type => Conflict resolution policy

® Many data types: registers, counters, graphs,
lists, file systems [Shapiro+ 201 1]

® Nontrivial implementations

So far: implementation is your specification

Long-term goal

Use formal techniques to:

® Define the semantics of eventually
consistent databases

® Develop tools for reasoning about their
behaviour

® |Improve programmability and efficiency

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

® Verification: framework for proving correctness
of replicated data type implementations

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

® Verification: framework for proving correctness
of replicated data type implementations

® Optimality:
» Data types maintain metadata for conflict resolution

» Method for proving lower bounds on metadata
space requirements

Results [POPL | 4]

Specification:

» Conflict resolution ~ replicated data types

» Anomalies

Verification: framework for proving correctness
of replicated data type implementations

Optimality:
» Data types maintain metadata for conflict resolution

» Method for proving lower bounds on metadata
space requirements

Applications to nontrivial data types

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

Replicated data
type specifications

Results [POPL | 4]

® Specification:

» Conflict resolution ~ replicated data types

» Anomalies

/

Consistency Replicated data
axioms type specifications

Sequential data type semantics

Strong consistency => operations are totally
ordered:

set.add(book)

l

set.remove(book)

l

set.read() : @

Compute the result by applying operations in
sequence

Replicated data type semantics

g H I a

Delivered?

set.add(book) >

set.read() :?

Only updates that have been delivered to the replica
performing the operation are important

Replicated data type semantics

@ 22 - L\’\
5 Delivered?
set.add(book) >
Visible?

set.read() :?

Abstract by the visibility relation on operations (acyclic, ...)

Rel: set.add(book)

set.add(book) set.remove(book)

v
f set.remove(book) = \ /
| VIS VIS

set.read() : ? read() :!?

set.add(book) ' >

Visible!? '
set.read() :?

Abstract by the visibility relation on operations (acyclic, ...)

Replicated data type specification

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

/vi;\
set.add(book) set.add(book) set.remove(book)

Vis Vis Vis

v

set.read() :?

Replicated data type specification

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

/vi;\
set.add(book) set.add(book) set.remove(book)

Vis Vis Vis

v

set.read() :?

Replicated data type specification

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Vis

set.add(book) ' set.add(book) | | set.remove(book) |

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

Vis

set.add(book) ' set.add(book) | | set.remove(book) |

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

v

set.read() :?

If you saw it, it’'s not a conflict

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

~— . ™

| set.add(book) | setadd(beok) " [set.remove(book)]

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}

F: cancel all adds seen by a remove

Add-wins set

F: context(op) — return value(op)

Context: all updates visible to the operation and the
visibility relation between them + some other things

— s =
setaddibogk) setadd{boolk) set.remove(book)

Vis Vis Vis

set.read() : @

F: cancel all adds seen by a remove

Where does vis come from!

Almost arbitrary: little control over when updates are
visible to other replicas

_— — —

1 -

R -
8 e v e v

set.add(book) ---------- > ?

Where does vis come from!

Almost arbitrary: little control over when updates are
visible to other replicas

— — —

{] -

l L l L
-- e v Qv
&

set.add(book) ---------- > ?

program .
d VIS]
R Consistency
set.read() : {book} axioms

But may guarantee that they don’t change unpredictably
between operations = anomalies disallowed

Abstract executions: (E, po, vis)

set.add(book) set.add(laptop)
program program) vis
order vis order
set.read() : @ set.read() : {book,laptop}

® All operations in a database run, on all objects

® Operations grouped by clients and arranged in
program order

Abstract executions: (E, po, vis)

set.add(book) set.add(laptop)
program program)vis
order vis order
set.read() : @ iset.read() : {book,laptop}|

Determines the context of every operation:
Context(op) = projection onto events visible to op

return value(op) = F(Context(op))

Abstract executions: (E, po, vis)

set.add(book) set.add(laptop)
program program)vis
order vis order
set.read() : @ set.read() : {book,laptop}

Determines the context of every operation:
Context(op) = projection onto events visible to op

return value(op) = F(Context(op))

Consistency axioms

set.add(book) set.add(laptop)
program program) vis
order vis order
set.read() : @ set.read() : {book,laptop}

® Consistency axioms disallow anomalies by
constraining executions

® Read Your Writes: po n same-object C vis

® Principle: strengthen consistency by mandating that
more edges be included into vis

Consistency axioms

set.add(book) set.add(laptop)
program)vis program)vis
order vis order
set.read() : {book} set.read() : {book,laptop}

® Consistency axioms disallow anomalies by
constraining executions

® Read Your Writes: po n same-object C vis

® Principle: strengthen consistency by mandating that
more edges be included into vis

Basic eventual consistency

Session guarantees

Per-object causal
consistency

Causal consistency

Strong consistency

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS
SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session
VISWE: Va,b.a = b = obj(a) = obj(b)
ARWE: Va,b.a = b = obj(a) = obj(b).

ar is transitive and irreflexive, and
ar| is a total order foralla € A

vis—1(a)

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))

EVENTUAL: _
Ya € A.~(3 infinitely many b € A.sameobj(a,b) A ~(a — b))
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis: soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis: soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo”) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Basic eventi

Session guarantees

Per-object causal
consistency

~ 201 | C/C++ relaxed

Causal consistency
~ 2011 C/C++ release/acquire

Strong consistency

® Our specifications similar to weak memory
model definitions

® Eventual consistency axioms for registers =
C/C++ memory model

Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™

Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. nval(a) = Fiype(a)(cone(a))
EVENTUAL:
Ya € A.-(3 infinitely many b € A.sameobj(a,b) A ~(a LA b))

THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis: soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis: soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo”) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Specification summary

Conflict resolution policies -> Data type spec

Anomalies -> Consistency axioms

-> (E, po, vis)

Specification summary

Conflict resolution policies -> Data type spec

Anomalies -> Consistency axioms

-> (E, po, vis)

@ request; request; Ll

response; response; ()
request; request;
response: response>

Specification summary

Conflict resolution policies -> Data type spec

Anomalies -> Consistency axioms

-> (E, po, vis)
— Events (E, po) allowed iff
request| request . .
1 ‘Al 3 execution (E, po, vis)
response; response; ()
request; request; satisfying data type specs
response; response; and axioms

Specification summary

Conflict resolution policies -> Data type spec

Anomalies -> Consistency axioms

/

Quick & dirty proof of correspondence with algorithms
used in systems [TR]

Specification summary

Conflict resolution policies -> Data type spec

Anomalies -> Consistency axioms

/

Quick & dirty proof of correspondence with algorithms
used in systems [TR]

Verifying data type implementations

Naive add-wins set implementation

set.add(book)

Vis

Vis

set.read() : {book}

~ .

setadd{beok) = set.remove(book)

Vis

Implementation challenge: remove behaves
differently wrt different adds of the same element

§

S = {(book,)}
set.adc.él(book)

S = {(book,: 1), (book,2)}

® FEach add creates a new element instance:
(element, unique instance id)

-

-

S = {(b.ook, 1)}

set.adc.él(book)
S = {(book,ﬁ 1), (book,2)}

set.read:() : {book}

® FEach add creates a new element instance:
(element, unique instance id)

® |nstance ids ignored when reading the set

R R
- -

S = {(book,)} S = {(book, 1)}
set.adc.él(book) set.remo:ve(book)
S = {(book,ﬁl), (book,2)} S = %

set. read:() : {book}

® Remove should remove all currently present
instances of book from S

- -

- -

S = {(book,l)},T = S = {(book,!)},T =
set.adc.él(book) set.remo:ve(book)
S = {(book,), %book,Z)},T = S=g|T = {(book, 1)}

set. read:() : {book}

® But maintain the set of tombstones T: element
instances removed

® Remove moves all instances of book inSto T

R o R
- -

S = {(book,l)},T = S = {(book,!)},T =

set.add(book) set.remove(book)

%

set.read() : {book} S=2T=1

S = {(book,), %book,Z)},T = S=0,T = {(book,)}

State-based implementation:
sends its state snapshot to other replicas

- -
- -
S = {(book,l)},T = S = {(book,!)},T =
set.adc.él(book) set.remo:ve(book)

S = {(book, 1), %book,Z)}]T = Q| S=@|T = {(book, 1)}

%

set.read:() : {book} S=2T =:{(b00k,|)}‘

State-based implementation:
sends its state snapshot to other replicas

R R
- -

S = {(book,l)},T = S = {(book,!)},T =

set.add(book) set.remove(book)

%

set.read:() : {book} ‘S = {}lT =: {(book, 1)}

S = {(book, 1)} %book,Z)},T = S=a,T = {(book, 1}

® |gnore arriving instances that are in T

- -
- -
S = {(book,l)},T = S = {(book,!)},T =
set.adc.él(book) set.remo:ve(book)

S = {(book,l),‘%book,Z)I},T = S=0,T = {(book,)}

%

set.read:() : {book} S = {](book,Z)I}:,T = {(book,)}

® |gnore arriving instances that are in T

® Add new arriving instances to S

§ §

S = {(book,l)},T = S = {(book,!)},T =

set.add(book) set.remove(book)

%

set.read:() : {book} S = {(book,2)£,T = {(book,)}

S = {(book,), %book,Z)},T = S=0,T = {(book,)}

set.re;d() : {book}

£ £

S = {(book,l)},T = S = {(book,!)},T =
set.add(book) set.remove(book)

S = {(book,), %book,Z)},T = S=0,T = {(book,)}

%

® State grows linearly with the number of removes 1)}

® Realistic implementations represent T compactly:
motivation for investigating space optimality

® We prove that space is {)(log(humber of operations))

P ———
: 1 :
J l J
« W

S = {(book,l)},T = S = {(book,!)},T =

set.add(book) set.remove(book)

%

set.read:() : {book} S = {(book,Z)i,T = {(book,)}

S = {(book,), %book,Z)},T = S=0,T = {(book,)}

set.re;d() : {book}

Impl = F

Vis VIS

set.add(book) set.remove(book)

Vis

. vis
vis

set.lread() : {book}

Impl = F

Data type correctness: Impl = F

® V concrete execution of the implementation
with any sequence of client operations

® J corresponding abstract execution satisfying
data type specifications and consistency axioms

Data type correctness: Impl = F

® V concrete execution of the implementation
with any sequence of client operations

® J corresponding abstract execution satisfying
data type specifications and consistency axioms

Data type correctness: Impl = F

® V concrete execution of the implementation
with any sequence of client operations

® J corresponding abstract execution satisfying
data type specifications and consistency axioms

® Requires reasoning about all replicas and
interactions between them

® Want to modularise reasoning: construct the
abstract execution from separate system
configuration components

Replication-aware simulations

® Generalise simulation relations for abstract
data types to replicated case

® Replica state or message associated with an
abstract execution part describing events
that led to it

events the replica is A events the message
aware of carries information about
A

v

replica state m message

Simulation for add-wins set

(5,T)

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book, |)}

Simulation for add-wins set

(S, T) A

Set S: {(book,2), (laptop,3)}

Tombstones T: {(book, |)}

Simulation for add-wins set

(S, T) A

Set S: {(book,2), (laptop,3)} | |add(book)' add(laptop)’

Tombstones T: {(book, |)} add(book)2

(el,id) e SUT <> add(elt)d e A

Simulation for add-wins set

(S, T) A

Set S: {(book,2), (laptop,3)} | |add(book)' add(laptop)’
PAREN Vis

Tombstones T: [{(book, I)} add(book)? remove(book)

(el,id) e SUT <> add(elt)d e A

(elt,id) e T — remove(elt) < = add(elt)iCI

Simulation for add-wins set

(S, T) A

Set S: [{(book,2), (laptop.3)}l| |add(book)' add(laptop)’
PAREN vis

Tombstones T: {(book,)} add(book)2 remove(book)
“~..x__—7vis

(el,id) e SUT <> add(elt)d e A

(elt,id) e T — remove(elt) < = add(elt)iCI

Vis

(elt,id) € S — M add(elt)iCI > remove(elt)

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Executing an operation:

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Executing an operation:

A

A

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Executing an operation:

N —— > A’ = A + {op}
A A
} ;
o > O

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Executing an operation:

N —— > A’ = A + {op}
A A
And check
V ; res = F(Contexta(op))
o > O

Proof obligations

® Relations are preserved during a system run

® Relations imply that the abstract execution satisfies
the data type specification

Executing an operation:

A e > A’ = A + {op}
A A
And check
| * res = F(Contexta'(op))
o) > O Modular: considers the
op() : res

state of a single replica

Receiving a message

(O, m) > O
receive(m)

Receiving a message

(A, B)

v VY

(O, m) > O
receive(m)

Receiving a message

(A’ B) ----------- > A’
A A N
v VY v
(0-’ m) > O"

receive(m)

Receiving a message

(A’ B) ----------- > A’
A A N
Y VY v
(0-’ m) > O"
receive(m)

Good news: modular - consider the state of a
single replica and a message

Bad news: modularity leads to incompleteness -
loses required global information

Source of incompleteness

(A’ B) ----------- > A’

A A A :
v Vv * I
(0, m) > O whole run

® A and B parts of the same abstract execution =>
can be correlated by some invariants

» Visibility can’t contradict on events common to A and B
» Union of visibility relations in A and B itself a well-formed
visibility relation =» acyclic

® Simulation relations per-component = don’t give this

Solution: 2-stage verification

@ p Fix a class of data types implementations
with similar messaging behaviour

State-based: propagate information by sending
full replica state

» Prove key global invariants non-modularly

» Unpleasant, but done once for the class

Solution: 2-stage verification

@ p Fix a class of data types implementations
with similar messaging behaviour

State-based: propagate information by sending
full replica state

» Prove key global invariants non-modularly

» Unpleasant, but done once for the class

@ » For any implementation within the class

p Verify it modularly using replication-aware
simulations while assuming the global invariants

So|uti0n; 2-3 Technical details in the paper I

@ p Fix a class of data types implementations
with similar messaging behaviour

State-based: propagate information by sending
full replica state

» Prove key global invariants non-modularly

» Unpleasant, but done once for the class

@ » For any implementation within the class

p Verify it modularly using replication-aware
simulations while assuming the global invariants

Summary

® First techniques for reasoning about eventual
consistency and replicated data types

» Specifying the intended semantics

» Verifying replicated data type correctness

® Only the first step

» Replicated data types only one system component

» More work needed even for them: list data type,
used for collaborative editing (Office Online,
Google Docs)

Programming languages/verification
vs distributed systems

® Put eventually consistent distributed
systems onto the PL/verification agenda

® Usual paradigm: developing verification
techniques

® But also: helping systems researchers design
architectures and programming interfaces

» Tricky to figure out semantics &
implementation for complex interfaces: multiple

consistency levels, transactions

Common ground:
weak memory models

® | ot of recent work on weak memory

® Opportunity: apply weak memory
technology to distributed systems

Common ground:
weak memory models

Lot of recent work on weak memory

Opportunity: apply weak memory
technology to distributed systems

Processor and language models have
very little known motivation

Distributed systems are different:
implemented algorithms motivate
models

