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Weak consistency

• Also an issue with mobile devices: operate when 
disconnected



in shared memory

• Processors and programming languages 
don’t provide strong consistency: weak 
memory models

• A multiprocessor is really a distributed 
system: cache-coherence protocol

• Hot topic now, but first had to define 
the memory models

Weak consistency
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If no new updates are 
made to the database, 
then replicas will 
eventually reach a 
consistent state

But updates never 
stop!

So what does this tell 
database clients?
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50 shades of eventual consistency

Pileus

TouchDevelop

+ Stronger guarantees and programming 
interfaces with nontrivial semantics

- Low-level semantics definitions or none at all: 
hard to reason about database behaviour



Key issues beyond ‘eventual’

1. Which anomalies can we see before this?   
E.g., does a user always see his own actions?

2. Which state will replicas converge to?     
Users can make conflicting updates.          
How does the database resolve the conflicts?

If updates stop, replicas will eventually reach 
the same state
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set.remove(book)

{set = {laptop}} {set = {laptop}}

set.add(laptop)

Operations commute ➔ eventual consistency OK

Set ~ Shopping cart

exchange 
information
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set.add(book) Conflict!

Should the remove cancel the concurrent add? 
Depends on application requirements

set = {book}

Set ~ Shopping cart

set.remove(book)
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Replicated data types

Object    ➔    Type   ➔ Conflict resolution policy

• Many data types: registers, counters, graphs, 
lists, file systems [Shapiro+ 2011]

• Nontrivial implementations

aka CRDTs, cloud types

So far: implementation is your specification



• Define the semantics of eventually 
consistent databases

• Develop tools for reasoning about their 
behaviour

• Improve programmability and efficiency

Use formal techniques to:

Long-term goal
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• Optimality:
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‣ Method for proving lower bounds on metadata 
space requirements

• Applications to nontrivial data types

Results [POPL’14]
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Consistency 
axioms

Results [POPL’14]



Sequential data type semantics

Strong consistency ➔ operations are totally 
ordered:

set.read() :  ∅

set.add(book)

set.remove(book)

Compute the result by applying operations in 
sequence



set.add(book)

set.read() : ?

Delivered?

Replicated data type semantics

Only updates that have been delivered to the replica 
performing the operation are important



set.add(book)
Delivered?

Replicated data type semantics

Abstract by the visibility relation on operations (acyclic, ...)

Visible?
set.read() : ?



set.add(book)
Delivered?

Replicated data type semantics

Abstract by the visibility relation on operations (acyclic, ...)

Visible?

vis

read() : ?

set.add(book) set.remove(book)
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set.remove(book)
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set.add(book)

vis

set.add(book)
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vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the 
visibility relation between them + some other things

Add-wins set

set.read() : ?



If you saw it, it’s not a conflict
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set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

F: context(op) → return value(op)

Context: all updates visible to the operation and the 
visibility relation between them + some other things

Add-wins set



F: cancel all adds seen by a remove

set.remove(book)
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vis

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ∅

F: context(op) → return value(op)

Context: all updates visible to the operation and the 
visibility relation between them + some other things

vis

Add-wins set

F: cancel all adds seen by a remove



Almost arbitrary: little control over when updates are 
visible to other replicas
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Almost arbitrary: little control over when updates are 
visible to other replicas

set.add(book)

But may guarantee that they don’t change unpredictably 
between operations = anomalies disallowed

?

set.read()

program 
order vis

: {book}

Where does vis come from?

Consistency 
axioms



vis

Abstract executions: (E, po, vis)

set.add(book)

set.read() : ∅

set.add(laptop)

set.read() : {book,laptop}

Client 1 Client 2

vis

• All operations in a database run, on all objects

• Operations grouped by clients and arranged in 
program order

program 
order

program 
order
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set.add(book)
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set.add(laptop)

set.read() : {book,laptop}

vis

Determines the context of every operation:

program 
order

program 
order

Context(op) = projection onto events visible to op

return value(op) = F(Context(op))
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set.add(book)

set.read() : ∅

set.add(laptop)

set.read() : {book,laptop}

vis
program 

order
program 

order

Determines the context of every operation:

Context(op) = projection onto events visible to op

return value(op) = F(Context(op))

Abstract executions: (E, po, vis)



Consistency axioms

vis

set.add(book) set.add(laptop)

set.read() : {book,laptop}

vis
program 

order
program 

order

set.read() : ∅

• Consistency axioms disallow anomalies by 
constraining executions

• Read Your Writes:  po ∩ same-object ⊆ vis

• Principle: strengthen consistency by mandating that 
more edges be included into vis
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vis

set.add(book)

set.read() : {book}

set.add(laptop)

set.read() : {book,laptop}

visvis
program 

order
program 

order

• Consistency axioms disallow anomalies by 
constraining executions

• Read Your Writes:  po ∩ same-object ⊆ vis

• Principle: strengthen consistency by mandating that 
more edges be included into vis
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Basic eventual consistency

Session guarantees

Per-object causal 
consistency

Causal consistency

Strong consistency

≈ 2011 C/C++ relaxed

≈ 2011 C/C++ release/acquire

• Our specifications similar to weak memory 
model definitions

• Eventual consistency axioms for registers ≈ 
C/C++ memory model



(E, po, vis)

Specification summary
Conflict resolution policies            ➔          Data type spec

Anomalies                                    ➔          Consistency axioms
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Events (E, po) allowed iff

∃ execution (E, po, vis) 

satisfying data type specs 
and axioms
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Implementation challenge: remove behaves 
differently wrt different adds of the same element

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Naive add-wins set implementation

Verifying data type implementations
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set.add(book)

S = {(book,1)}

• Instance ids ignored when reading the set

S = {(book,1), (book,2)}

• Each add creates a new element instance: 
(element, unique instance id)

set.read() : {book}



set.add(book)

S = {(book,1)}

S = {(book,1), (book,2)}

set.read() : {book}

S = ∅

S = {(book,1)}

set.remove(book)set.remove(book)

• Remove should remove all currently present 
instances of book from S
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set.remove(book)

S = ∅, T = {(book,1)}

set.read() : {book}

• But maintain the set of tombstones T: element 
instances removed

• Remove moves all instances of book in S to T
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set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)
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S = {}, T = {(book,1)}

S, T



set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

• Ignore arriving instances that are in T

• Add new arriving instances to S

S, T
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set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}• State grows linearly with the number of removes

• Realistic implementations represent T compactly: 
motivation for investigating space optimality

• We prove that space is Ω(log(number of operations))

S, T
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Impl ⊨ F



set.add(book) set.remove(book)

S = {(book,1), (book,2)}, T = ∅

set.read() : {book}

S = {(book,1)}, T = ∅ S = {(book,1)}, T = ∅

set.remove(book)

S = ∅, T = {(book,1)}

S = {(book,2)}, T = {(book,1)}

S, T

set.read() : {book}

set.add(book)

vis

vis

vis

vis vis

Impl ⊨ F
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Data type correctness: Impl ⊨ F

• ∀ concrete execution of the implementation 
with any sequence of client operations

• ∃ corresponding abstract execution satisfying 
data type specifications and consistency axioms

• Requires reasoning about all replicas and 
interactions between them

• Want to modularise reasoning: construct the 
abstract execution from separate system 
configuration components



σ

A

replica state

events the replica is 
aware of

message

events the message 
carries information about

Replication-aware simulations

• Generalise simulation relations for abstract 
data types to replicated case

• Replica state or message associated with an 
abstract execution part describing events 
that led to it

m

A
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(S, T)

Set S:  {(book,2), (laptop,3)}

Tombstones T:  {(book,1)}

Simulation for add-wins set

remove(book)add(book)

add(book) add(laptop)1

2

3

A

(elt, id) ∈ S ∪ T add(elt)   ∈ A⟷

(elt, id) ∈ T ⟶ remove(elt)          add(elt)
vis id

vis
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(S, T)

Set S:  {(book,2), (laptop,3)}

Tombstones T:  {(book,1)}

Simulation for add-wins set

remove(book)add(book)

add(book) add(laptop)1

2

3

A

(elt, id) ∈ S ∪ T add(elt)   ∈ A⟷

(elt, id) ∈ T ⟶ remove(elt)          add(elt)
vis

(elt, id) ∈ S ⟶ ¬ add(elt)                  remove(elt)

vis id

vis

vis✘

id

id

⟷
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A

op() :  res
σ’

A’ ≈ A + {op}

And check 
res = F(ContextA’(op))

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies 
the data type specification

Proof obligations

Executing an operation:



σ

A

op() :  res
σ’

A’ ≈ A + {op}

And check 
res = F(ContextA’(op))

• Relations are preserved during a system run

• Relations imply that the abstract execution satisfies 
the data type specification

Proof obligations

Executing an operation:

Modular: considers the 
state of a single replica
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(σ, m)

(A, B)

receive(m)
σ’

A’

Good news: modular - consider the state of a 
single replica and a message

Bad news: modularity leads to incompleteness - 
loses required global information

Receiving a message



• A and B parts of the same abstract execution ➔        
can be correlated by some invariants

‣ Visibility can’t contradict on events common to A and B

‣ Union of visibility relations in A and B itself a well-formed 
visibility relation ➔ acyclic

• Simulation relations per-component ➔ don’t give this

(σ, m)

(A, B)

σ’

A’

Source of incompleteness

A
B

whole run
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‣ Fix a class of data types implementations 
with similar messaging behaviour
State-based: propagate information by sending 
full replica state

‣ Prove key global invariants non-modularly

‣ Unpleasant, but done once for the class
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Solution: 2-stage verification 

‣ Fix a class of data types implementations 
with similar messaging behaviour
State-based: propagate information by sending 
full replica state

‣ Prove key global invariants non-modularly

‣ Unpleasant, but done once for the class

1

2 ‣ For any implementation within the class 

‣ Verify it modularly using replication-aware 
simulations while assuming the global invariants

Technical details in the paper



• First techniques for reasoning about eventual 
consistency and replicated data types
‣ Specifying the intended semantics

‣ Verifying replicated data type correctness

Summary

• Only the first step
‣ Replicated data types only one system component

‣ More work needed even for them: list data type, 
used for collaborative editing (Office Online, 
Google Docs)



Programming languages/verification 
vs distributed systems

• Put eventually consistent distributed 
systems onto the PL/verification agenda

• Usual paradigm: developing verification 
techniques

• But also: helping systems researchers design 
architectures and programming interfaces 

‣ Tricky to figure out semantics & 
implementation for complex interfaces: multiple 
consistency levels, transactions
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weak memory models

• Lot of recent work on weak memory

• Opportunity: apply weak memory 
technology to distributed systems



Common ground:
weak memory models

• Lot of recent work on weak memory

• Opportunity: apply weak memory 
technology to distributed systems

• Processor and language models have 
very little known motivation

• Distributed systems are different: 
implemented algorithms motivate 
models


