Parameterised
Linearisability
Andrea Cerone

Joint work with Alexey Gotsman and Hongseok Yang

ICALP - Copenhagen, July 8th, 2014

DEPARTMENT OF

&d COMPUTER
OXFORD SCIENCE

A Simple Example

e Converting a sequential data structure into a
concurrent one

LOCK lock;
do_push(z):
lock.acquire();
int retval = push(z);
lock.release();
return retval;

Trivial Solution:

A Simple Example

e Converting a sequential data structure into a
concurrent one

--

LOCK lock;
do_push(z):
lock.acquire();
int retval = push(z);
lock.release();
return retval;

Trivial Solution:

» Works for any implementation of push

® put it's inefficient (we can do much better...)

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

0 t1 dopush(5)
1 | :

: to dopush(7)i
L1 push(5) | :

t2 pUSh(7) %

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

0 t1 dopush(5)
1 | :

: to dopush(7)i
L1 push(5) | :

to Push(;) @

t2 WINS

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

0 t1 dopulsh(5) : |
1 | E |
E t2 dopysh (7):
t1 push(5) | I.P.U.S.'h.(?).l IPUShmI % |
to push(7) @
toWins

+~
v
<

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

L1 push(5)

t2 pUSh(7) /

t1 dOpuIsh(5) : |
| i |

t2 dopysh (7):

| | | RS He I%I

v @push,popnot implemented in FCq 5 (abstract methods)

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

t1 push(5)

tQ push(7)/

t1 dOpuISh(5) : |
| i |

t2 dopysh (7):

| | | RS He I%I

v @push,popnot implemented in FC.; .. (abstract methods)

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

| | 5 |
to dopush(7)i () n(7)
I pus pus _

L1 push(5) / I E I I I I % I
tQ push(7) / El\

: It appears to behave as the

' naive
t3 v ‘pUSh ,Popn solution ct methods)

Second Order Libraries

Public methods define the operations made
available to clients

Abstract methods (without implementation)
can be declared

L:M — M

call public C lient public method
method returns

call ,
. public abstract
public abstract M method returns

method '
....... > _Ibrary .o co P
Parameter

A

Second Order Libraries

Public methods define the operations made
available to clients

Abstract methods (without implementation)
can be declared

L:M — M

Code for methods

Client public method declared here is defined
returns

call public
method

call
public abstract
method

public abstract
method returns

\4

, Library
Parameter

oo P

Second Order Libraries

Public methods define the operations made
available to clients

Abstract methods (without implementation)
can be declared

L:M — M

Code for methods

call public Client puplic method declared here is defined
method returns

Methods with no

code associated

call
public abstract
method

@ : -
othod returns

oo P

\4

, Library —
Parameter

Second Order Libraries

Public methods define the operations made
available to clients

Abstract methods (without implementation)

e dcla’red S

L:M — M
. Code for methods
call public Client puplic method declared here is defined

method returns

Methods with no
code associated

call
public abstract
method

@ : -
othod returns

oo P

\4

_ibrary —
Parameter

Second Order Libraries

Public methods define the operations made
available to clients o

Abstract methods (without implementation)

e dcla’red S

L:M — M
. Code for methods
call public Client puplic method declared here is defined

method returns

Methods with no
code associated

call
public abstract
method

@ : -
othod returns

oo P

\4

_ibrary —
Parameter

Library Parameter Instantiation

The implementation of abstract methods can be specified
by another library

Ly: M — M Ly: M — M"

Client Client

Library Library
Parameter Parameter

Library Parameter Instantiation

The implementation of abstract methods can be specified
by another library

LlOLQZM%MN

Client

Library
> Parameter- - e

Observational Refinement

4)

| : only calls public methods
Program: let L in[CRjisssfiCos - > | implemented in [,

_ J

L has no abstract methods

Observational Refinement:

inclusion of client traces, for every possible client
and every possible library parameter

L1 Eobs Lo : VCLVL :) — M.Obs(let (LLyo L) in Cl) C Obs(let (Lyo L) in Cl)

Observational Refinement

4)

| : only calls public methods
Program: let L in[CRjisssfiCos - > | implemented in [,

_ J

L has no abstract methods

Observational Refinement:

inclusion of client traces, for every possible client
and every possible library parameter

Ly Eobs Liy: VCI.VL :) — M.Obs(let (Lo L) in Cl) C Obs(let (Lo L) in Cl)

Quantification over clients and library parameters
A proof technique is needed

Specifying the behaviour of libraries

Types for Libraries Client
L:- M — M (¢, ?7call m(z)) (¢, Ireturn m(z2))

Actions:
Observable behaviour of
Libraries

(Different entitities execute in different
memory spaces)

Specifying the behaviour of libraries

Types for Libraries Client

L:- M — M 1 (¢, ?7call m(z)) (¢, Ireturn m(z2))
Actions:
Observable behaviour of
Libraries (call ()

(Different entitities execute in different
memory spaces)

Interactions with the client (t, 7call m(z)) (¢,!return m(2)) m € M\ M

Specifying the behaviour of libraries

Types for Libraries Client
L:- M — M (¢, 7call m(z)) (¢, lreturn m(z))
Actions:
Observable behaviour of
Libraries (call ()

(Different entitities execute in different
memory spaces)

Interactions with the client (t, 7call m(z)) (¢,!return m(2)) m € M\ M

Interactions with the

t, lcall m/ t, ret / /
library parameter (t,lcall m(z)) (£ freturn m(2)) m e M

Specifying the behaviour of libraries

Types for Libraries Client
L:- M — M (¢, ?7call m(z)) (¢, Ireturn m(z2))
Actions:
Observable behaviour of
Libraries

(Different entitities execute in different
memory spaces)

Interactions with the client (t, 7call m(z)) (¢,!return m(2)) m € M\ M

Interactions with the

t, lcall m/ t, ret / /
library parameter (t,lcall m(z)) (£ freturn m(2)) m e M

Abstract methods invoked by the client (not observable) me MnNM

Specifying the behaviour of libraries

Types for Libraries Client
L:- M — M (¢, ?7call m(z)) (¢, Ireturn m(z2))

Actions:
Observable behaviour of
Libraries

(Different entitities execute in different
memory spaces)

Histories: - N
(t,2call mi(2)) (¢, lcall m/(2)) (¢, 7return m/(2)) (¢, lreturn my(24)) | |mp|e|r:{nuer:1r:iendgCode
(ta, 7call ma(22)) (to, lreturn mo(25)) e Execution of

Abstract Method
_ _J

Denotational Semantics of Libraries

~

|L] : histories generated by a library

\(arbitrary behaviour of client and library parameter))

Client
(¢, ?call m(z)) (¢, lreturn m(z))

Denotational Semantics of Libraries

~

|L] : histories generated by a library

\(arbitrary behaviour of client and library parameter))

Client

Takes place (¢, lreturn m(z))

non-deterministically

Chosen
non-deterministically

(General) Linearisability

hi1 & hy : @ hy preserves thread-local subhistories of /1
+ the following order of pairs of actions:

4 R - A
(ta, 7call ma(22)) (t2, 7call ma(22))

. arg, = x > |
1 /l 2
' > T = 21 /

1
L (1, Ireturn mq(21))) \(tl, Ireturn m1(21))

(General) Linearisability

hi1 & hy : @ hy preserves thread-local subhistories of /1
+ the following order of pairs of actions:

(") 4)

(ta, 7call ma(22)) (t2, 7call ma(22))
1 /: / A8, = X >
: . : > L = 2]
(t1,!return mq (1)) (1, !return mq(z1))
. J . J
4) 4
(t2, Treturn may(22)) arg,, =« (t2, Treturn ma(22))
,,,,,,,,,,,,,,,,,, | L > |
2 / Y >l Zl/
tq, !call t1,!call mq(z
(1, mi(z1))) (t1 1(21)) y
4) 4 -
(t2, 7call ma(22)) arg, =z (t2, ?call ma(22))
3 | |/t.1 } !
/ e T 20T
(t1,!call mq(21)) (t1,!call m1(z1)))
-
(t2, 7return mo(22)) arg,, = (t2, 7return mo(22))
4 R :/v >=
/ Xr = Z
| ! SR Ly
\(tl’ Ireturn mq(21)) y (t1,!return my(21)) y

(General) Linearisability

— h,

- ® ho preserves thread-local subhistories of 21

+ the following order of pairs of actions:

4)
(tg, ?call mQ(ZQ))

/ |

(t1, !retu m mi (z1))
. _/

4)
(t2, 7return mo(22))

-

\
(tg,?Ca” m2(22))
arg,, =< > |
: o Z1/
(1, !return mq(z1)))

-

Encapsulated Linearisability

L:M =M M AM =0

hiEecho : ® ha preserves thread-local subhistories of h
+ the following order of pairs of actions:

() 4)
(tz, ?call mg(ZQ)) (tQ, ?call mQ(Zg))
1 /= Arge, = >
' > L= 21 /
(t1, Ireturn mi(z1)) (¢4, !returln m1(z1))
_ v J
4) 4

2 (tz,‘?return: ma(z2)) | / arth :x > |
-/ 1- e B

(1), call my (21)) (t1, call my (21))

\

Contextuality of Linearisability

Theorem: Ly L>: M — M" Ly:M— M
LT Lo > (Li0o Liy) C (Lyo Liy)

Client Client

Library
Parameter

Library
Parameter

Contextuality of Linearisability

Theorem: Ly L>: M — M" Ly:M— M
LT Lo > (Li0o Liy) C (Lyo Liy)

Client Client

Library Library
Parameter Parameter

Contextuality of Linearisability

Theorem: Ly L>: M — M" Ly:M— M
LT Lo > (Li0o Liy) C (Lyo Liy)

Client Client

Library
Parameter

Corollary: L

Contextuality of Encapsulated Linearisability

Theorem: for libraries with no public abstract methods
encapsulated linearisability is preserved by
instantiation of library parameters

Corollary: for libraries with no public abstract methods
encapsulated linearisability implies
observational refinement

Linearisability does not suffice for Flat Combiners

FC : {m@'}z‘el — {domi}iEI

a single thread handles all concurrent requests

FCy {m;}icr — {dom, tier

calls to abstract methods regulated by a global lock

Instantiating the library parameter
int m;(){return getTid(); }

Instantiating the Client
t1 1 doy, (); || t2 : dop, ();

Linearisability does not suffice for Flat Combiners

FC : {m@'}z‘el — {domi}iEI

a single thread handles all concurrent requests

FCy {m;}icr — {dom, tier

calls to abstract methods regulated by a global lock

Instantiating the library parameter
int m;(){return getTid(); }

Instantiating the Client
t1 1 doy, (); || t2 : dop, ();

-

_

using FC# Z

t1 :dom, (); || 22 - dog, ();

always returnsti always returns to

J

-

using FC :

t1 :dom, (); || 22 - dog, ();

can return t» can return t1

~\

J

Linearisability does not suffice for Flat Combiners

FC : {mi}ig — {domi}iEI

a single thread handles all concurrent requests

FCy {m;}icr — {dom, tier

calls to abstract methods regulated by a global lock

Instantiating the library parameter
int m;(){return getTid(); }

Instantiating the Client
t1 2 dom, (); || t2 : dom, ();

4)
FC Zops FCy
—
FC Z FCy
_ J

-

_

using FC# Z

t1 :dom, (); || 22 - dog, ();

always returnsti always returns to

J

-

using FC :

t1 :dom, (); || 22 - dog, ();

can return t» can return t1

~

J

Properties Satisfied by Flat Combiners

FCy linearises FC
if the library parameter does not use thread local information

4 4)
(tz,?call mz(ZQ))\ (tg,?Ca” m2(22))
1 /l Wbt =¥ >
| : » L = 21 /
| (t1,!return my(21))) \(tl, Ireturn mq(21)))
4 N 4)

(t2, 7return m(z"))

o (T1, 7return m(z"))
P { : I A {

(t1,!call m(2)) (t2,!call m(2))
_ / _ J

Up-to Linearisability and Observational Refinement

M — M, M NM=(

R : binary relation between sequences of calls and
returns to methods in M’

hiCr ha: o hilaac E holciace @ hilabsact R 7ol Absact

Up-to Linearisability and Observational Refinement

M — M, M NM=(

R : binary relation between sequences of calls and
returns to methods in M’

hiEgr ho: e hl‘OACt — h2|CIAct @ hl‘AbsActR hZ‘AbsAct

(a variant of contextuality holds for L1)
Soundness: L1 Lr Ly —— L Cais Lo

only R- closed library parameters are considered

Up-to Linearisability and Observational Refinement

M — M, M NM=(

R : binary relation between sequences of calls and
returns to methods in M’

hiEgr ho: e hl‘OACt — h2|CIAct @ hl‘AbsActR hZ‘AbsAct

(a variant of contextuality holds for L1)
Soundness: L1 Lr Ly —— L Cais Lo

only R- closed library parameters are considered

FC Cg, FC* = FCLCX' FC*

—obs

Rt - equivalence of histories up-to thread identifiers

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

| | 5 |
to dopush(7)i () n(7)
I pus pus _

L1 push(5) / I E I I I I % I
tQ push(7) / El\

: It appears to behave as the

' naive
t3 v ‘pUSh ,Popn solution ct methods)

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

0 tl dopush(5) :
| | 5 |
to dopush

{1 push(5) |

to PUSh(7)\/ FC — R FC#

—obs

3 Y @push,popnot i methods)

Conclusions

Future Research:

® Other applications (Joins, lterators, ...)
® STM and Transactional Boosting
® Linearisability for Higher Order Objects

® Connections with other forms of HO-reasoning (e.g. CaReSL)

Conclusions

Future Research:

® Other applications (Joins, lterators, ...)
® STM and Transactional Boosting

® Linearisability for Higher Order Objects

® Connections with other forms of HO-reasoning (e.g. CaReSL)

<

\.
w {V\N\\(’*&

-

Verification of Flat Combiners

Verification of Flat Combiners

Goal: FC LR, FC#

® Construct the set of histories [F'C]

— Code analysis = State Transition System
— Individuation of properties satisfied by h € [FC]

Verification of Flat Combiners

Goal: rFC LR, FC#

® Construct the set of histories [F'C]

— Code analysis = State Transition System
— Individuation of properties satisfied by h € [FC]

s he[FC]— h
— Changing threads in abstract calls and returns
to match corresponding requests from client

Verification of Flat Combiners

Goal: FC LR, FC#

® Construct the set of histories [F'C]

— Code analysis = State Transition System
— Individuation of properties satisfied by h € [FC]

s he[FC]— h
— Changing threads in abstract calls and returns
to match corresponding requests from client

° h/ N h//
/ — 1/ / /!
/) ‘CIAct — h ‘CIAct ~ h ‘AbsAct = h |AbSACt

Verification of Flat Combiners

® Construct the set of histories [F'C]

Goal: FC LR, FC#

— Code analysis = State Transition System

-~ |ndivid
o he |FC

uation of properties satisfied by h € |FC]
| — B/

— Chang

ng threads in abstract calls and returns

to match corresponding requests from client

*h — R’

— h'|ciact

/

C A7 |ciac — h'|absact = P | AbsAct

» Show that h" € [FC4]

Contextuality of Up-to Linearisability

Library

Parameter

rearranging this part of a history
according to

(

causes this part of the history to
be rearranged according to (

J

-

N\

R relates sequences of actions belonging to M’/ \ M
G relates sequences of actions belonging to m

\

J

(g) -closure: defines how closure properties of library
parameters have to be changed when a inner library

IS Instantiated

Contextuality of Up-to Linearisability

Theorem

 Linis (§)-closed

~

--

Client Client

Library Library Library

Parameter Parameter Parameter

Contextuality of Up-to Linearisability

Theorem

Lin is (g)—closed (L1o Lin) Eg (Loo Lin)

~

--

Client Client

>

Library

Parameter

Contextuality of Up-to Linearisability

Theorem

Lin is (g)—closed (L1o Lin) Eg (Loo Lin)

~

--

Client Client

>

Library

Parameter

Remarks on Observational Refinement

Observational Refinement |

May-Testing
General Linearisability

’ Histories Inclusion |

Remarks on Observational Refinement

Observational Refinement |

May-Testing
General Linearisability

Histories Inclusion :

So What About Must Testing?

® Gotsman et al. 2012: Liveness Preserving Atomicity Abstraction

— Observational Refinement for Liveness Properties (1st order)

— Sound Proof Technique via a Variant of Linearisability
Main Observables: calls/returns, divergence, deadlocks

® [t remains to be seen whether the results scale to 2nd order

