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A Simple Example

e Converting a sequential data structure into a
concurrent one

-------------------------------------------------------------------------------------------

LOCK lock;
do_push(z):
lock.acquire();
int retval = push(z);
lock.release();
return retval;

Trivial Solution:

-------------------------------------------------------------------------------------------
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e Converting a sequential data structure into a
concurrent one

------------------------------------------------------------------------------------------

LOCK lock;
do_push(z):
lock.acquire();
int retval = push(z);
lock.release();
return retval;

Trivial Solution:

-------------------------------------------------------------------------------------------

» Works for any implementation of push

® put it's inefficient (we can do much better...)
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Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

| | 5 |
to dopush(7)i () n(7)
I pus pus _

L1 push(5) / I E I .......... I I .......... I % I
tQ push(7) / El\

: It appears to behave as the
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Second Order Libraries

Public methods define the operations made
available to clients

Abstract methods (without implementation)
can be declared

L:M — M
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. public abstract
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Observational Refinement
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4 )

| : only calls public methods
Program: let L in[CRjisssfiCos - > | implemented in [,

\_ J

L has no abstract methods

Observational Refinement:

inclusion of client traces, for every possible client
and every possible library parameter

Ly Eobs Liy: VCI.VL : ) — M.Obs(let (Lo L) in Cl) C Obs(let (Lo L) in Cl)

Quantification over clients and library parameters
A proof technique is needed
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Specifying the behaviour of libraries

Types for Libraries Client
L:- M — M (¢, ?7call m(z)) (¢, Ireturn m(z2))

Actions:
Observable behaviour of
Libraries

(Different entitities execute in different
memory spaces)

Histories: - N
(t,2call mi(2)) (¢, lcall m/(2)) (¢, 7return m/(2)) (¢, lreturn my(24)) | |mp|e|r:{nuer:1r:iendgCode
(ta, 7call ma(22)) (to, lreturn mo(25)) e Execution of

Abstract Method
\_ _J
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~

|L] : histories generated by a library

\(arbitrary behaviour of client and library parameter))

Client

Takes place (¢, lreturn m(z))

non-deterministically
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(General) Linearisability
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(General) Linearisability

— h,

- ® ho preserves thread-local subhistories of 21

+ the following order of pairs of actions:
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Encapsulated Linearisability

L:M =M M AM =0

hiEecho : ® ha preserves thread-local subhistories of h
+ the following order of pairs of actions:
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Contextuality of Encapsulated Linearisability

Theorem: for libraries with no public abstract methods
encapsulated linearisability is preserved by
instantiation of library parameters

Corollary: for libraries with no public abstract methods
encapsulated linearisability implies
observational refinement
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Properties Satisfied by Flat Combiners

FCy linearises FC
if the library parameter does not use thread local information

4 4 )
(tz,?call mz(ZQ))\ (tg,?Ca” m2(22))
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| : » L = 21 /
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Up-to Linearisability and Observational Refinement

M — M, M NM=(

R : binary relation between sequences of calls and
returns to methods in M’

hiEgr ho: e hl‘OACt — h2|CIAct @ hl‘AbsActR hZ‘AbsAct

(a variant of contextuality holds for L1 )
Soundness: L1 Lr Ly —— L Cais Lo

only R- closed library parameters are considered

FC Cg, FC* = FCLCX' FC*

—obs

Rt - equivalence of histories up-to thread identifiers
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Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

Stack provides methods push, pop to clients
FCeiaek - @CCESS 10 methods in Stack regulated by dopush ,dopop

0 tl dopush(5) :
| | 5 |
to dopush

{1 push(5) |

to PUSh(7)\/ FC — R FC#

—obs

3 Y @push,popnot i methods)
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Verification of Flat Combiners

® Construct the set of histories [ F'C]

Goal: FC LR, FC#

— Code analysis = State Transition System

-~ |ndivid
o he |FC

uation of properties satisfied by h € |FC]
| — B/

— Chang

ng threads in abstract calls and returns

to match corresponding requests from client

*h — R’

— h'|ciact

/

C A7 |ciac — h'|absact = P | AbsAct

» Show that h" € [FC4]



Contextuality of Up-to Linearisability

Library

Parameter

rearranging this part of a history
according to

(

causes this part of the history to
be rearranged according to (

J

-

N\

R relates sequences of actions belonging to M’/ \ M
G relates sequences of actions belonging to m

\

J

(g) -closure: defines how closure properties of library
parameters have to be changed when a inner library

IS Instantiated
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Remarks on Observational Refinement

Observational Refinement |

May-Testing
General Linearisability

Histories Inclusion :

So What About Must Testing?

® Gotsman et al. 2012: Liveness Preserving Atomicity Abstraction

— Observational Refinement for Liveness Properties (1st order)

— Sound Proof Technique via a Variant of Linearisability
Main Observables: calls/returns, divergence, deadlocks

® [t remains to be seen whether the results scale to 2nd order



