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Library Parameter Instantiation

Client

Library  
ParameterLibrary  
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L1 � L2 : M ! M 00

The implementation of abstract methods can be specified!
by another library
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inclusion of client traces, for every possible client
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L1 L2v
obs

: 8Cl.8L : ; ! M.Obs(let ( � L) in Cl) ✓ Obs(let ( � L) in Cl)L1 L2

L has no abstract methods

Quantification over clients and library parameters 
A proof technique is needed
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L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))
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Encapsulated Linearisability
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Contextuality of Encapsulated Linearisability

Theorem: for libraries with no public abstract methods!
encapsulated linearisability is preserved by !

instantiation of library parameters

Corollary: for libraries with no public abstract methods!
encapsulated linearisability implies !

observational refinement!
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a single thread handles all concurrent requests

FC# : {mi}i2I ! {domi}i2I

calls to abstract methods regulated by a global lock

int mi(){return getTid(); }

t1 : domi(); k t2 : domi();

Instantiating the library parameter

Instantiating the Client

FC#using :

t1 : domi(); k t2 : domi();

always returns t1 always returns t2

t1 : domi(); k t2 : domi();

can return t1can returnt2

using :FC
FC 6vObs FC#

FC 6v FC#

=)



Properties Satisfied by Flat Combiners

FC# linearises FC

if the library parameter does not use thread local information

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

2

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

( , !call m(z))

( , ?return m(z0))

t1

t1 =)
t2

t2

( , !call m(z))

( , ?return m(z0))
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Verification of Flat Combiners

Goal: FC vRt FC#

Construct the set of histories JFCK
Code analysis =) State Transition System
Individuation of properties satisfied by h 2 JFCK

h 2 JFCK 7! h0

Changing threads in abstract calls and returns 
to match corresponding requests from client

h0 7! h00

h0|ClAct v h00|ClAct h0|AbsAct = h00|AbsAct

h00 2 JFC#KShow that



Contextuality of Up-to Linearisability

Lin : M ! M 0

R relates sequences of actions belonging to M 0 \M
G relates sequences of actions belonging to M

✓
R
G

◆

-closure: defines how closure properties of library
parameters have to be changed when a inner library  
is instantiated

Client

Library 
Parameter

Lin

rearranging this part of a history !
according to R

causes this part of the history to 
be rearranged according to G
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Remarks on Observational Refinement

Bonus Slide!
Observational Refinement!

= !
May-Testing

General Linearisability  
=  

Histories Inclusion

So What About Must Testing?

Gotsman et al. 2012: Liveness Preserving Atomicity Abstraction
Observational Refinement for Liveness Properties (1st order)
Sound Proof Technique via a Variant of Linearisability

Main Observables: calls/returns, divergence, deadlocks

It remains to be seen whether the results scale to 2nd order


