
Parameterised!
Linearisability

Andrea Cerone
Joint work with Alexey Gotsman and Hongseok Yang

ICALP - Copenhagen, July 8th, 2014

A Simple Example

Converting a sequential data structure into a
concurrent one

Trivial Solution:

A Simple Example

Converting a sequential data structure into a
concurrent one

Trivial Solution:

but it’s inefficient (we can do much better…)

Works for any implementation of push

Flat Combiners (Hendler et al, 2010)

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

t1 dopush(5)

t2 dopush(7)

push(7)

push(5)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

t1 dopush(5)

t2 dopush(7)

t2wins

push(7)

push(5)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

t1 dopush(5)

t2 dopush(7)
push(5)

push(7)

push(5)

t2 dopush(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

push(5) push(7)

t2wins

t1 dopush(5)

t2 dopush(7)
push(5)

t2 dopush(7)
push(5) push(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

push(7)

push(5)

push pop , not implemented in (abstract methods) FCstack

t1 dopush(5)

t2 dopush(7)
push(5)

t2 dopush(7)
push(5) push(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

push(7)

push(5)

Guaranteed to have correct behaviour for (almost) any implementation
of abstract methods

push pop , not implemented in (abstract methods) FCstack

t1 dopush(5)

t2 dopush(7)
push(5)

t2 dopush(7)
push(5) push(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

push(7)

push(5)

Guaranteed to have correct behaviour for (almost) any implementation
of abstract methods

push pop , not implemented in (abstract methods) FCstack

It appears to behave as the
naive

solution

Second Order Libraries

Abstract methods (without implementation)
can be declared

Clientcall public
method

public method
returns

Library
Parameter

call
abstract
method

abstract
method
returns

call
public abstract

method

public abstract
method returns

Public methods define the operations made
available to clients

L : M 0 ! M

Second Order Libraries

Abstract methods (without implementation)
can be declared

Clientcall public
method

public method
returns

Library
Parameter

call
abstract
method

abstract
method
returns

call
public abstract

method

public abstract
method returns

Code for methods
declared here is defined

Public methods define the operations made
available to clients

L : M 0 ! M

Second Order Libraries

Abstract methods (without implementation)
can be declared

Clientcall public
method

public method
returns

Library
Parameter

call
abstract
method

abstract
method
returns

call
public abstract

method

public abstract
method returns

Code for methods
declared here is defined

Methods with no
code associated

Public methods define the operations made
available to clients

L : M 0 ! M

Second Order Libraries

Abstract methods (without implementation)
can be declared

Clientcall public
method

public method
returns

Library
Parameter

call
abstract
method

abstract
method
returns

call
public abstract

method

public abstract
method returns

Code for methods
declared here is defined

Methods with no
code associated

Public methods define the operations made
available to clients

L : M 0 ! M

Second Order Libraries

Abstract methods (without implementation)
can be declared

Clientcall public
method

public method
returns

Library
Parameter

call
abstract
method

abstract
method
returns

call
public abstract

method

public abstract
method returns

Code for methods
declared here is defined

Methods with no
code associated

Public methods define the operations made
available to clients

L : M 0 ! M

Library Parameter Instantiation

The implementation of abstract methods can be specified!
by another library

Client

Library
Parameter

L1 : M 0 ! M 00

Client

Library
Parameter

L2 : M ! M 0

Library Parameter Instantiation

Client

Library
ParameterLibrary
Parameter

L1 � L2 : M ! M 00

The implementation of abstract methods can be specified!
by another library

Observational Refinement

Program: let L in C1k· · · kCn
only calls public methods
implemented in L

Observational Refinement:
inclusion of client traces, for every possible client
and every possible library parameter

L1 L2v
obs

: 8Cl.8L : ; ! M.Obs(let (� L) in Cl) ✓ Obs(let (� L) in Cl)L1 L2

L has no abstract methods

Observational Refinement

Program: let L in C1k· · · kCn
only calls public methods
implemented in L

Observational Refinement:
inclusion of client traces, for every possible client
and every possible library parameter

L1 L2v
obs

: 8Cl.8L : ; ! M.Obs(let (� L) in Cl) ✓ Obs(let (� L) in Cl)L1 L2

L has no abstract methods

Quantification over clients and library parameters
A proof technique is needed

Specifying the behaviour of libraries

L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Actions:
Observable behaviour of

Libraries
(Different entitities execute in different

memory spaces)

Specifying the behaviour of libraries

L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Actions:
Observable behaviour of

Libraries
(Different entitities execute in different

memory spaces)

(t, ?call m(z)) (t, !return m(z))Interactions with the client m 2 M \M 0

Specifying the behaviour of libraries

L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Actions:
Observable behaviour of

Libraries
(Different entitities execute in different

memory spaces)

(t, ?call m(z)) (t, !return m(z))Interactions with the client m 2 M \M 0

(t, !call m0(z)) (t, ?return m0(z))
Interactions with the
library parameter m 2 M 0

Specifying the behaviour of libraries

L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Actions:
Observable behaviour of

Libraries
(Different entitities execute in different

memory spaces)

(t, ?call m(z)) (t, !return m(z))Interactions with the client m 2 M \M 0

(t, !call m0(z)) (t, ?return m0(z))
Interactions with the
library parameter m 2 M 0

Abstract methods invoked by the client (not observable) m 2 M \M 0

Specifying the behaviour of libraries

L : M 0 ! M
Types for Libraries Client

(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Histories:
(t, ?call m1(z)) (t, !call m0(z)) (t, ?return m0(z)) (t0, !return m1(z

0
1))

(t2, !return m2(z
0
2))(t2, ?call m2(z2))

Implemented Code
Running

Execution of
Abstract Method

Actions:
Observable behaviour of

Libraries
(Different entitities execute in different

memory spaces)

Denotational Semantics of Libraries

JLK : histories generated by a library
(arbitrary behaviour of client and library parameter)

Client
(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Denotational Semantics of Libraries

JLK : histories generated by a library
(arbitrary behaviour of client and library parameter)

Client
(t, ?call m(z))

(t, !call m0(z))

(t, !return m(z))

(t, ?return m0(z))

M \M 0

M 0(t, call m00(z)) (t, return m00(z))

Takes place !
non-deterministically

Chosen !
non-deterministically

(General) Linearisability

h1 v h2 : preserves thread-local subhistories of h1h2

+ the following order of pairs of actions:

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

(General) Linearisability

h1 v h2 : preserves thread-local subhistories of h1h2

+ the following order of pairs of actions:

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

2
(t2, ?return m2(z2))

(t1, !call m1(z1))

x := z1

(t2, ?return m2(z2))

(t1, !call m1(z1))

argt2 = x

4
(t2, ?return m2(z2))

(t1, !return m1(z1))

x := z1

(t2, ?return m2(z2))

(t1, !return m1(z1))

argt1 = x

3
(t2, ?call m2(z2))

(t1, !call m1(z1))

x := z1

argt1 = x

(t1, !call m1(z1))

(t2, ?call m2(z2))

(General) Linearisability

h1 v h2 : preserves thread-local subhistories of h1h2

+ the following order of pairs of actions:

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

2
(t2, ?return m2(z2))

(t1, !call m1(z1))

x := z1

(t2, ?return m2(z2))

(t1, !call m1(z1))

argt2 = x

4
(t2, ?return m2(z2))

(t1, !return m1(z1))

x := z1

(t2, ?return m2(z2))

(t1, !return m1(z1))

argt1 = x

3
(t2, ?call m2(z2))

(t1, !call m1(z1))

x := z1

argt1 = x

(t1, !call m1(z1))

(t2, ?call m2(z2))

Client Needs to !

Call Abstract Methods

Encapsulated Linearisability

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

2
(t2, ?return m2(z2))

(t1, !call m1(z1))

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

x := z1

(t2, ?return m2(z2))

(t1, !call m1(z1))

argt2 = x

h1 h2 : preserves thread-local subhistories of h1h2

+ the following order of pairs of actions:
ve

L : M 0 ! M M 0 \M = ;

Contextuality of Linearisability

Theorem: Lin : M ! M 0

=)
L1 L2 : M 0 ! M 00,

vL1 L2

Client

Library
Parameter

Client

Library
Parameter

v

L1 L2(� Lin) v (� Lin)
L1

L1 L2

Contextuality of Linearisability

Theorem: Lin : M ! M 0

=)
L1 L2 : M 0 ! M 00,

vL1 L2

Client

Library
Parameter

Client

Library
Parameter

v

L1 L2(� Lin) v (� Lin)
L1

L1 L2

Library
Parameter

Library
Parameter

LinLin

Contextuality of Linearisability

Theorem: Lin : M ! M 0

=)
L1 L2 : M 0 ! M 00,

vL1 L2

Client

Library
Parameter

Client

Library
Parameter

v

L1 L2(� Lin) v (� Lin)

Corollary: =)vL1 L2 L1 L2v
obs

L1

L1 L2

Library
Parameter

Library
Parameter

LinLin

Contextuality of Encapsulated Linearisability

Theorem: for libraries with no public abstract methods!
encapsulated linearisability is preserved by !

instantiation of library parameters

Corollary: for libraries with no public abstract methods!
encapsulated linearisability implies !

observational refinement!

Linearisability does not suffice for Flat Combiners

FC : {mi}i2I ! {domi}i2I

a single thread handles all concurrent requests

FC# : {mi}i2I ! {domi}i2I

calls to abstract methods regulated by a global lock

int mi(){return getTid(); }

t1 : domi(); k t2 : domi();

Instantiating the library parameter

Instantiating the Client

Linearisability does not suffice for Flat Combiners

FC : {mi}i2I ! {domi}i2I

a single thread handles all concurrent requests

FC# : {mi}i2I ! {domi}i2I

calls to abstract methods regulated by a global lock

int mi(){return getTid(); }

t1 : domi(); k t2 : domi();

Instantiating the library parameter

Instantiating the Client

FC#using :

t1 : domi(); k t2 : domi();

always returns t1 always returns t2

t1 : domi(); k t2 : domi();

can return t1can returnt2

using :FC

Linearisability does not suffice for Flat Combiners

FC : {mi}i2I ! {domi}i2I

a single thread handles all concurrent requests

FC# : {mi}i2I ! {domi}i2I

calls to abstract methods regulated by a global lock

int mi(){return getTid(); }

t1 : domi(); k t2 : domi();

Instantiating the library parameter

Instantiating the Client

FC#using :

t1 : domi(); k t2 : domi();

always returns t1 always returns t2

t1 : domi(); k t2 : domi();

can return t1can returnt2

using :FC
FC 6vObs FC#

FC 6v FC#

=)

Properties Satisfied by Flat Combiners

FC# linearises FC

if the library parameter does not use thread local information

1
(t1, !return m1(z1))

(t2, ?call m2(z2))

2

(t1, !return m1(z1))

(t2, ?call m2(z2))

x := z1

argt2 = x

(, !call m(z))

(, ?return m(z0))

t1

t1 =)
t2

t2

(, !call m(z))

(, ?return m(z0))

Up-to Linearisability and Observational Refinement

: binary relation between sequences of calls and
returns to methods in

R
M 0 ! M,M 0 \M = ;

M 0

h1 h2 :vR h1|ClAct v h2|ClAct h2|AbsActh1|AbsActR

Up-to Linearisability and Observational Refinement

: binary relation between sequences of calls and
returns to methods in

R
M 0 ! M,M 0 \M = ;

M 0

h1 h2 :vR h1|ClAct v h2|ClAct h2|AbsActh1|AbsActR

Soundness: vR
obs

L1 L2L1 vR L2 =)
only R- closed library parameters are considered

(a variant of contextuality holds for) vR

Up-to Linearisability and Observational Refinement

: binary relation between sequences of calls and
returns to methods in

R
M 0 ! M,M 0 \M = ;

M 0

h1 h2 :vR h1|ClAct v h2|ClAct h2|AbsActh1|AbsActR

Soundness: vR
obs

L1 L2L1 vR L2 =)
only R- closed library parameters are considered

(a variant of contextuality holds for) vR

FC vRt FC
=) FC vRt

obs

FC#

Rt : equivalence of histories up-to thread identifiers

t1 dopush(5)

t2 dopush(7)
push(5)

t2 dopush(7)
push(5) push(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

push(7)

push(5)

Guaranteed to have correct behaviour for (almost) any implementation
of abstract methods

push pop , not implemented in (abstract methods) FCstack

It appears to behave as the
naive

solution

t1 dopush(5)

t2 dopush(7)
push(5)

t2 dopush(7)
push(5) push(7)

provides methodsStack
: access to methods in Stack regulated by

push,pop to clients
FCstack

,
dopush do

pop

Idea: let a single thread handle all requests

0

1

t1

...

...

...

t2

t3

Flat Combiners (Hendler et al, 2010)

push(7)

push(5)

Guaranteed to have correct behaviour for (almost) any implementation
of abstract methods

push pop , not implemented in (abstract methods) FCstack

Theorem:

FC vR
obs

FC#

Conclusions

Future Research:

Other applications (Joins, Iterators, …)
STM and Transactional Boosting
Linearisability for Higher Order Objects
Connections with other forms of HO-reasoning (e.g. CaReSL)

Conclusions

Future Research:

Other applications (Joins, Iterators, …)
STM and Transactional Boosting
Linearisability for Higher Order Objects
Connections with other forms of HO-reasoning (e.g. CaReSL)

Verification of Flat Combiners

Goal: FC vRt FC#

Verification of Flat Combiners

Goal: FC vRt FC#

Construct the set of histories JFCK
Code analysis =) State Transition System
Individuation of properties satisfied by h 2 JFCK

Verification of Flat Combiners

Goal: FC vRt FC#

Construct the set of histories JFCK
Code analysis =) State Transition System
Individuation of properties satisfied by h 2 JFCK

h 2 JFCK 7! h0

Changing threads in abstract calls and returns
to match corresponding requests from client

Verification of Flat Combiners

Goal: FC vRt FC#

Construct the set of histories JFCK
Code analysis =) State Transition System
Individuation of properties satisfied by h 2 JFCK

h 2 JFCK 7! h0

Changing threads in abstract calls and returns
to match corresponding requests from client

h0 7! h00

h0|ClAct v h00|ClAct h0|AbsAct = h00|AbsAct

Verification of Flat Combiners

Goal: FC vRt FC#

Construct the set of histories JFCK
Code analysis =) State Transition System
Individuation of properties satisfied by h 2 JFCK

h 2 JFCK 7! h0

Changing threads in abstract calls and returns
to match corresponding requests from client

h0 7! h00

h0|ClAct v h00|ClAct h0|AbsAct = h00|AbsAct

h00 2 JFC#KShow that

Contextuality of Up-to Linearisability

Lin : M ! M 0

R relates sequences of actions belonging to M 0 \M
G relates sequences of actions belonging to M

✓
R
G

◆

-closure: defines how closure properties of library
parameters have to be changed when a inner library
is instantiated

Client

Library
Parameter

Lin

rearranging this part of a history !
according to R

causes this part of the history to
be rearranged according to G

Contextuality of Up-to Linearisability

Client

Library
Parameter

LinR

G

Theorem

Lin : M ! M 0

L1 L2, : M 0 ! M 00

vRL1 L2

Lin is -closed
=)

Client

Library
Parameter

Client

Library
Parameter

vR

✓
R
G

◆

Contextuality of Up-to Linearisability

Client

Library
Parameter

LinR

G

Theorem

Lin : M ! M 0

L1 L2, : M 0 ! M 00

vRL1 L2

Lin is -closed
=) M 0 \M 00 = ;

M \M 0 = ; =)
(� Lin) vG (� Lin)L1 L2

^

Client

Library
Parameter

Client

Library
ParameterLibrary

Parameter

R

G
Library

Parameter

R

G
vG

✓
R
G

◆

Contextuality of Up-to Linearisability

Client

Library
Parameter

LinR

G

Theorem

Lin : M ! M 0

L1 L2, : M 0 ! M 00

vRL1 L2

Lin is -closed
=) M 0 \M 00 = ;

M \M 0 = ; =)
(� Lin) vG (� Lin)L1 L2

^

Client

Library
Parameter

Client

Library
ParameterLibrary

Parameter

R

G
Library

Parameter

R

G
vG

✓
R
G

◆

Remarks on Observational Refinement

Bonus Slide!
Observational Refinement!

= !
May-Testing

General Linearisability
=

Histories Inclusion

Remarks on Observational Refinement

Bonus Slide!
Observational Refinement!

= !
May-Testing

General Linearisability
=

Histories Inclusion

So What About Must Testing?

Gotsman et al. 2012: Liveness Preserving Atomicity Abstraction
Observational Refinement for Liveness Properties (1st order)
Sound Proof Technique via a Variant of Linearisability

Main Observables: calls/returns, divergence, deadlocks

It remains to be seen whether the results scale to 2nd order

