BA: CONCURRENCY-AWARE
LINEARIZABILITY

Nir Hemed and Noam Rinetzky
Tel Aviv University

PODC 2014

Research problem

- Linearizability uses sequential specifications to explain
the behavior of objects

- For some objects, this cannot be done!

- Our contribution: Concurrency-Aware linearizability

EE)((:P]Ear]égeer.&mhﬁmmuﬂﬁmxmnmnEdem;ﬂ

- Exchangers allow threads to pair up and swap elements

- Other examples: rendezvous, elimination modules, ...

exchange(3) ; || exchange (10) ; || exchange (7) ;

51 to t3

tl:
call(10) ret (3)

cal%(7)
t3: |

Sequential specification for Exchanger?

cal}(3) ret|(10)

tl: | |
calll(10) retl(3)
£y | |
call(7) ret (L)

£ | |
3 [|

call (3) |ret (10)

v
tl:
call (10) |ret(3)
t2:
call(7)| ret (L)

t3:

“Good specs.” intuitive, expressive,..., prefix-closed, ...

Sequential specification for Exchanger?

Sequential specifications for Exchanger are
» Too lax
* Too strict

call (3) ret(10)
tl:

“Good specs.” intuitive, expressive,..., prefix-closed, ...

Concurrency-Aware Specifications

Concurrent history Sequential History

expressive intuitive

------- . - HH HH e

Concurrency-Aware history

- CA-specification: a prefix closed set of concurrency-aware
histories

Concurrency-Aware specification for

Exchanger
cal]l.(3) ret|(10)
tl: | |
call(10) ret (3)
ty: I |
call(7) ret (1)
t3: I i I
call (3) ret (10)
tq:
call (10) / ret (3)
ty:

call (7) ret (1)

Concurrency-Aware Linearizability

- Generalizes linearizability by using CA-histories as the
specification

- Concurrency-Aware Objects are concurrent objects that
have a CA-specification

Motivation

/o

- Modularverification for data structures that use
Concurrency-Aware objects

Treiberstack

Elimination array

HSY stack [Hendler et al. SPAA ‘04]
- CA-objects are used in

. SYDChI‘OHOUS queues [Scherer et al. PPoPP ‘06]

- Scalable rendezvousing [Afek et al. DISC ‘u]
- Scalable and lock-free FIFO queues [Moir et al. SPAA ‘05]

Related work

- Linearizability [Herlihy & Wing, TOPLAS '9o]

- Set-Linearizability [Neiger, PODC ‘94]

Summary

- Linearizability: “each operation appears to

take effect instantaneously between its
invocation and response” “® g

ata
unique

point in
time

- Concurrency-Aware Linearizability: “..
possibly simultaneously”

Y O U

Concurrency-Aware Linearizability

- CAL generalizes linearizability by using CA-historiesas the
specification
- Definition (CA-linearizability) : A history H is CA-linearizable if
there existsa CA-history S such that

- H'= completionOf(H): H can be completed to a history H’ by removing
some pending invocations or by adding responses to them

- H’|; =S|; : In H’ every thread performs the same sequence of actions as in
S

* < real_time(H)) S < real-time(s) : S respects the real time order of H’

- Concurrency-Aware Objects are concurrent objects that
have a CA-specification

The problem: sequential specifications

- Concurrent objects are considered correct if their behavior
can be explained using sequential specifications
- Linearizability
- Serializability
-+ Quiescent consistency

- Simple and intuitive specifications

- Are they expressive enough?

Our contributions

- Identify a class of objects that do not have sequential
specifications

- Concurrency-Aware Objects

- Introduce Concurrency-Aware specifications

- Generalizes sequential specifications

- Present Concurrency-Aware Linearizability

- Generalizeslinearizability

Summary

Linearizability:

“each operation appears to take effect Rt
instantaneously < © ® SRS
between its invocation and response”

Concurrency-Aware Linearizability:

«

possibly simultaneously”

