Modularity in Lattices:

A Case Study on the Correspondence
between Top-Down and Bottom-Up
Analyses

Ghila Castelnuovo Tel Aviv University

Mayur Naik Georgia Institute of Technology
Noam Rinetzky Tel Aviv University

Mooly Sagiv Tel Aviv University

Hongseok Yang University of Oxford

SAS’15 10-September-2015



Research problem

" A precise (heap)



Research problem

" A precise (heap)

?
. Context-independent
" Top-Down: Context-dependent

o

i BOLDLY
GO WHERE

NO MAN

| HAS GONE
* BEFORE @




Research problem

" A precise (heap)

?

Context-independent
" Top-Down: Context-dependent

Vargl, g2, ...

dah(){
| i)
fc )

e}

I N

5
£ &

" BOL
GO WHERE

iah/ fod [ ... NO MAN
for L foo() ) HAS GONE

= ) " BEFORE 8




Research problem

" A precise compositional (heap) analysis

v'"Compositional
" Bottom-Up: Context-independent
" Top-Down: Context-dependent

Vargl, g2, ...

L

dah()
foo()
foo()

o}
bar(){

dah() foo(){ ...
foo() foo()
. )

L




Research problem
" A precise (heap)

" Precise?



Research problem

" A precise compositional (heap) analysis

" Precise?
" Precise enough for a particular client?




Challenges

= Accounting for all calling contexts
" Soundness

® Precision
= Scalability

= Size of procedure summaries

= Cost of summary instantiation



Contributions

[Ghiya & Hendren,’96]*
" Lightweight heap analysis
» Used for parallelization

" Provably as precise as the top-down version
* Top-down analysis sound (by abstract interpretation)
" Implies soundness

" Experimental evaluation

" Bottom-up scales much better than the top-down
 Little loss of precision compared to original analysis

*Slightly modified version of the original analysis



This paper is a mere glimpse ...

= Ghila Castelnuovo’s Master Thesis:

Modular lattices for compositional
Interprocedural Analysis

" Framework of compositional analysis

" Guaranteed precision relative to top-down analysis

Available at: http://www.cs.tau.ac.il/Castelnuovo.Ghila-MSc.Thesis. pdf



| I-based compositional analysis

“... Mission: To explore strange new worlds, to
seek out new life and new civilizations, to
boldly go where no one has gone before.”

=
‘Q‘m nu\—m(

(Startingin baby steps...)



| I-based compositional analysis

[St](d) =d I C;

" Transformers defined using ||

= C.is an element in the domain



Composition by adaptation

[st1; st2]|(d) = (d LI C,) LI C,

" Transformers defined using |
" C. is an elementin the domain

= Recall: L] is commutative, associative, idempotent

Adapt the result of analyzing d
instead of analyzingd [ | d” !

[pOI*(d i d”)=[pOI#d) L &’



Connection analysis (CA)

static main () {
1, z = new h;
12 W = new h2
13 u = new h3
l, Vv = new hy
ly u.f =
1l 1if(.) z.f =w
}
AreZ and W

connected?

sorolikolc
~DE) | OO

a

u \

On0

{{

hAw,z}}

AreZ and U
connected?



Interprocedural CA can be expensive...

# of calling 1
contexts:

main () {

X = new h;
Y = new h,
pl()




Compositional CA (simplified)

= Partition abstract domain

® | |-based transformers

=> Compositionality by adaptation



CA: Partition abstract domain

* D = (Partition(V),= ) ~ (Equiv(V), =)
= Partition(V) Set of partitioning of V
= Equiv(V) Set of equivalencerelations overV

= [ Refinement

o%O
@‘a




CA: Abstract transformers (simplified)

[St](d) =d I C;

" Transformers defined using ||
= C is a constant partition, e.g., C, ¢, = U, ,={{w,u}, {z}, {v

* [x = nullT¥(d) = d [w.f=ul" 5
= [x =new]*(d)=d

s [x.f=y]#d) =dJU
" [x=y[*d) =dLU,
= [x =y.fl{(d) =d LU,

Xy




CA: Abstract transformers (simplified)

[st](d) =d LI C

" Transformers defined using |
= C is a constant partition, e.g., C,., =U,,, = {{w,u}, {z},

Vi)

[x = nullf(d) = d lw=ul* oo
[x = new]#(d)=d

[x.f y]#(d) =d LU,

[x=y[(d) =dUU,

[x =y.fl*(d) =d LU,




CA: Abstract transformers

(Moving on towards the real thing...)



CA: Abstract transformers

Transformers defined using | | and []

" U,y =1y} zh AWl
" S5.=1{X}1y,z,W}}

[x =null]*(d) =d M1 S,
[x =new[*(d) =d 1S,
Xf = y]]#(d) =d L ny‘

[x =y[#(d) = (d 1 S,) LIU,,
[x =y.f[#*(d) = (d 11S,) LI Uy,

S, : Separation

: Unification

U, :

&5




CA: Abstract transformers

* Transformers defined using | | and []

" U,y = 1Y}z AW
" S5c={iXh Y,Z,W}}

[x =null]#(d) =d 1 S,

[x =new[*(d) =d 1S,
[x.f=y]#d) =d LU U,,
[x=y]#d)=(dMS,) LU,
[x =y.f[#(d) = (d 1S,) U U,

[w = u]?

r

On0

\-

® O

OO |Of

LU, .



Can we use adaptation?

" Transformers defined using || and []
« Uy = { Doy}, (2, (W)} ?

« 5, = { (), {yzw) ) WM'



Modularity in Lattices

" For adaptation: (d U d’) Md,=(d Mdy) Ld



Modularity in Lattices

" For adaptation: (d U d’) Md,=(d Mdy) Ld

" An element d, in a lattice D is right modular iff
vd,d’eD. if d'=d,
then (dUUd’)Md,=(dldy)LId

=" D is modular if all its elements are right modular

" The partition domain is NOT a modular lattice
" But it is modular enough ...



Conditionally adaptable transformers

= CA Transformers: [[st][*(d) = (d [1S,) ] U

X,y

= U, ,andS, are right-modular
= Conditionally adaptable transformers

*vd, d’€D. if d'C U,, .. and d'C S, ...
then [[st[*(d L d’) = [[st]*(d) LI o’



Compositional connection analysis

" Intra-procedural analysis is conditionally
adaptable

= Delay the operation of a join (d L d’)
= Adapt the result

" Inter-procedural analysis is unconditionally
adaptable!
=>Hence, compositional



Compositional connection analysis

(We are nowat warp 7)



Compositional connection analysis

" Procedure call are conditionally adaptable

" Represent any procedure inputsasd =1 d’
= Vst.st=(..ld,..)=>d =d,
is a particular element in the Triad Domain

" Phase | Analyze every procedure once on

" Phase Il Instantiate p(1) with information from
call context



Who is | ?

D[ IIW” Iﬂl IVJ ,Z]

8656

|d



Globals

Locals

Triad domain

" Partition domain comprised of

" G currentvalues: x, vy, x

=G input values: X, y, Z
= G auxiliary (temporary) values: x, v, z
" To compute effect of procedure calls using ||

= “Relational join”

" L Current local variables



Entering a procedure (top-down)

[entry]l(d) = (d N R¢)LL
Re = {G, {8}, %} | x G)

b6
5&

\"

©

=
Rg

F
€

|

OO

5

£é



“Entering a procedure” (bottom-up)

[entry](d) =

8656



Returning from a procedure (TD & BU)

[[rEturn:l](dexitldcall) =
(fcc%ll(dcall) Llfef(it(dexit)) |_lRéUGI

Rename



Returning from a procedure (TD & BU)

[[rEturn:l](dexitldcall) =
(fcc;ll(dcall) Ufef(it(dexit)) |—lRéUGI

R

o0 | > @® | [a0
% 56 z = new ()
€] - z.f = v
O 0% -
P N\
10 e%0 XD forefremes >

<
<
<




Returning from a procedure (TD & BU)

[[rEturn:l](dexitldcall) =
(fcc;ll(dcall) Ufef(it(dexit)) |—lRéUGI

Rename Rename
tt input t
p () { W) (W—@) a () {
% (%) 0’@ z = new()
€] - z.f = v
O W@ '
q () 9’ N\

<
O
< N
<|@
1
I
i
i
v




Returning from a procedure (TD & BU)

[[rEturn:l](dexitldcall) =
(fcc;ll(dcall) Ufef(it(dexit)) |—lRéUGI

<) =)
l@ @’@

N




Coincidence Theorem

Ip()] bottom-up

[return]([Cuns,] © [entryl(@), ) = [return]([Cous,](0)c

[p()] top-down



Where is the magic?

" The magic is in the proof!



The magic is in the proof!

" Proof shows that effect of calling context can
be delayed

= Non-trivial

" But rewarding

= Key observations

" Uniform entry states
= Counterpart representation



Uniform entry states

[entry]l(d) = (d I R¢)LL Tentry](d) =

Rs = {G, {x}, {x} | x G}

P @
g8 (22 [g3
- @ -_—
10 OH&E %@ :’:
v @ v @ v
} = ¥

X
o
16838



Uniform entry states

[entry]l(d) = (d I R¢)LL Tentry](d) =
Rs = {G, {x}, {x} | x G}
p () { @) W @ @—@)
%é) ® ® o’e
T OO | 2 0@ | =| @
q(); @ o’e
v @ v @
} |_| |_| s

Rg



Uniform entry states

[entry]l(d) = (d M Re)LL

Rs = {G, {x}, {x} | x G}

® @ ® ®
0 ® 0 ®
® ® O,
L oo U |od
v ® v ©
Conditionally
adaptable U- - U



Counterpart representation

[entry]/(d) = (d

Re)L

Rs = {G, {x}, {x} | x G}

lentry]l(d) =



Counterpart representation

[entry]/(d) = (d

Re)L

Rs = {G, {x}, {x} | x G}

lentry]l(d) =



Counterpart representation

[entry]/(d) = (d

Re)L

Rs = {G, {x}, {x} | x G}

lentry]l(d) =



Counterpart representation

[entry]l(d) = (d I R¢)LL Tentry](d) =

Rs = {G, {x}, {x} | x G}

o’ﬂ
O-@ @ @) W @
O-® %@ % ® ®
H - = @O ®
POC | o’e - u g@
70 O VO ©
} u,, CR




Experimental results




Experimental results

" Compared 3 versions of connection analysis

" Original top-down

" Triad top-down Input-
* Triad bottom-up (compositional) dependent
transformers
Original ours

Merge x znull Ay znull
[[X.f — y]] Skip otherwise [[Xf = y]] { Merge



Experimental setup (DaCapo)

description methods | bytecodes

Grande2 Java Grande 237 13,724
Kernels

Grande3 Java Grande Large 1,162 75,139
apps

Antlr Parser generator 2,400 128,684

Weka Machine Learning 3,391 223,291
Library

Bloat Optimizations and 4,699 311,727
Analysis tool

= JRE 1.6; Linux; Intel Xeon 2.13GHz; 123GB RAM

" Using Chord program analysis framework



% field accesses

Experimental evaluation

Precision

* Near perfect overlap
" Only 2-5% is lost

grande? antlr
1 GEGRRRERER 1
@
0.8 OQG@@@ $ 0.8
Q wv
Q (7,]
0.6 o g 0.6
[4-}
04 @ S 04
Q P
0.2 % 0.2
0 @ T T T T I I I I 0 < I T T T ‘ T T \
0 4 8 12 16 20 24 28 32 0 10 20 30 40 50 60 70 80 90
size of connection set size of connection set

o Original top-down  Abottom-up (= modified top-down)



Experimental evaluation

Scalability
Bottom-up Original Triad
Top-down Top-down
Summaries instantiation
computation
Grande2 |0.6 sec 0.9 sec 1 sec 0.9 sec
Grande3 (43 sec 1:21 min 1:11 min 51 sec
Antlr 16 sec 30 sec 1:23 sec 25 sec
Weka 46 sec 2:48 min
Bloat 3:03 min 30 min




Experimental evaluation

weka
Scalability Y 1
g =
= Top down blows-up §g-g @
2 o.
- 0 \IIIIIIIIIIIIIIIIIIIIIIIIIIII
2 o M OW O AN LN O =\ T N O
* THRGEIRSARELE

# of incoming abstract states

grande? bloat
@ 1 G— S 2 ,,"‘_:,'
c 0.8 @ bloat*
v 0.6 (S
€ 0.4 3
Q v Pt
+“ 0.2 © Q
e o @
L] 0 - I I I I °\° 0 Q | | | | | | | | | | | | |
X 1 2 3 4 OMONMOW! O O 1N O 1
N N O S N =i < 0= N O
. ) A HH N ANAN®OOM®
# ofincoming abstract states # of incoming abstract states

Modified top-down © Original top-down Abottom-up



Related work

" General theory [Cousot & Cousot, CC'02]

" Modular analysis for logical programs
[Codish et al. POPL'03] [Giacoabazi, JLP’98]

= Abstract domain for modular analyses
[Giacoabazi et al., TCS'99]

= Condensation and modular analyses
[Giacoabazi et al. TOCL'05, TOPLAS98]

= Condensingabstract domains allow to derive bottom-up
analyses with the same precision as top-down ones

= | attice-theoretic characterization:

F(a® b) =a © F(b)



Limitations and future work

" Transfer functions are input-independent

" Limited expressivity

= Generalize to other instances
= Copy constant propagation

" Taint analysis

= Castelnuovo’s thesis has a general framework

m But it is still rather restricted



Summary

= A precise scalable heap

Vargl, g2, ...

3
4

‘ A5

| BOLDLY
GO WHERE

NO MAN

R HAS GONE
" BEFORE %

Top Down

Bottom up




Thank you!







