Transaction Chopping
for Parallel Snapshot Isolation

Andrea Cerone,
Alexey Gotsman

Hongseok Yang

DEPARTMENT OF

b d COMPUTER
ouitl SCIENCE

JISC - Tokyo - October 8th, 2015

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more
J @ Amazon.co.uk: Low Prices in Ele... L+ |

<4 & O A2 www.amazon.co.uk & | (2§~ Google Q)

ama;onﬁﬂl‘k Your Amazon.couk Today'sDeals GiftCards Help Januar y Deals >i_‘“_u~

Shop by Al v Hello. Sign In 0 Wish
Department v W T a Your Adcount v | Yo/Basket v | List +

;Compras desde Espaiia? /. Vst

) amazon.es ‘*;ffi"- _:7’1_
ShC'.'}fJInG from Spain? kvl Sy DesciObrelo Jal luary D ea'S > Shop now

Amazon MP3 Cloud Player Kindle LOVEFILM Appstore for Android Audidle .
Two-Hour Flying Lesson

Meet the

£99 (was “299)

| VA - i

®00 Google
|« » 2| + B nups@ www.google.com
(0 HE Apple Yahoo! GoogleMaps YouTube Wikipedia News ™ Popular ¥

» See the deal amazonocal

SHAMBALLA
BRACELETS

+You Gmail Images

Welcome to Facebook - Log In, Sign Up or Learn More
< + K1 bups & www.facebook.com

(I0 =3 Apple Yahoo! GCoogle Maps YouTube Wikipedia News Y Popular ¥

GO Sle facebook

Email or Phone

Sign Up
Connect with friends and the It’s free and alw;
world around you on Facebook.

Google Search I'm Feeling Lucky

First name

Email
See photos and updates from friends in News Feed.

Re-enter ema

Share what’s new in your life on your Timeline. New passworc

it]

Birthday

@ Amazon.co.uk: Low Prices in Ele

a www.amazon.co.uk & | (2§~ Google Q
amazonCO.Uk Your Amazon.couk Today'sDeals GiftCards Help January Deals
Shop by Al - Hello. S 0 Wish
Department ~ Search a Your Account v -\.-.,Basket v List ~

;Compras desde Espana? (= Ysua
Shopping from Spain? - amazo!‘o;e,fm January Deals .

Amazon MP3 Cloud Player K LOVEFILM Appstore for Android Audible

Data is replicated
across multiple nodes

Sign Up
Connect with friends and the It’s free and alw:
e et world around you on Facebook.

See photos and updates from friends in News Feed.

Share what’s new in your life on your Timeline.

Birthday

ing latency

, minimis

)
@)
-
(4]
.
v
O
s’
<
Q
P’
(Vg
(qv]
2
a

With thousands of machines inside

[wa-
-/
P—

‘ Fault-tolerance, load-balancing l

U

® Serialisability: the system behaves like a serial
processor of transactions on a centralised
database

® Requires synchronisation: expensive

Rethinking consistency in large-scale

q
i v : toica .
Scalable Atomi Joseph M. Hellerstein, lon S
. i JO
© Alan Fekete*, Al G‘l? Srjnsl:r;iversity of Sydney |
Pete

Highly Available Transactions: Virtues and Limitations
—

Peter Bailis, Aaron Davidson, Alan Feketet At~

S *on stoi
S—— X replicated SYStEMS "on stoics
| storage for 980
tional S
Transac

: L1 :
Harat Jinyand
‘ -~ Qilicon
X an’
Yair Sovr

Eventually Consistent Transactiong
* Nev

/
—— Sebastian Burckharg!

.» and MOO]y Sagl'VQ {

» Daan Lejjen!, Manye] Fihndrich!

1 °
Microsoft Research

\ ” TC"AViV UnjverSity

rammers
The database gives weaker guarantees to prog

Weak Consistency Models

@ Performance boost

® require less synchronisation between replicas

Weak Consistency Models

@ Performance boost

® require less synchronisation between replicas

Q Anomalous behaviour

® executions which are not allowed by a
serialisable database

® reasoning techniques for serialisable databases
do not apply

Challenges

® Are applications OK with the proposed
consistency models!?

Do the non-serialisable behaviours exposed
violate correctness?

® can we boost the performances of an
application without violating its correctness!?

Are we overpaying in performance penalties?

Challenges

® Are applications OK with the proposed
consistency models!?

Do the non-serialisable behaviours exposed
violate correctness?

®| can we boost the performances of an
application without violating its correctness!?

Are we overpaying in performance penalties?

Parallel Snapshot Isolation;
Specification and Transaction Chopping

Transaction chopping

@ Static Analysis Technique

Determines whether a transaction in a
program can be chopped into a
sequence of transactions

@ Improves performance
Smaller transactions lead to less conflicts

& Sound criterion for serialisable database
| | Shashaetal. 1995

“5»_/

& Soundness is consistency level dependant

Soundness under PSI does not follow directly
from the proof for serialisable DB

PS
Operational Model

/—'“ — /—'A e — ,/’—”‘ \,‘

|]
| | J

| |

|
Qv T v L »
X, Y X, Y X, Y

® Database consists of replicas storing objects
® Every object at every replica

® (Clients issue transactions to be executed at
replicas

=

y b -

4) 4
start(t) I | start(t2)
X.write(post) x.write(other post)
y.write(comment) _abort(t2)
commit(t))

_ v

® Write write conflict detection (concurrent
transactions do not write to one same object)

4 N 4
start(t) start(t2)
X.write(post) x.write(other post)
y.write(comment) _abort(ty)
commit(t))
_ _ -
start(ts)
deliver y.read(empty)
ti: x.write(post); - commit(ts)
y.write(comment) '
i tart(t
Upon commit: send all tx start(t)
dates to other replicas y-read(comment)
Upda P _ commit(ts)

K"—\
7 R

4)
start(t)
X.write(post)

_ commit(t |.))

e -)
start(t)
y.write(comment)

\ / '

" start(t3)

| y.read(comment)
Message delivery: x.read()

causality is preserved commit(ts)
_

P —— K’—_\
, J J
:

I _ < =
4) E
start(t)

X.write(post)

| commit(ti)

J\
e)

start(ty)

y.write(comment)

" start(t3)

y.read(comment)

Message delivery: x.read(post)
causality is preserved commit(ts)

x.write() y.write(l)

Long fork

Disallowed by classical
snapshot isolation

J
|
i

x.write() y.write(l)

r

x.read(|)

y.read(0)

Long fork X written

Disallowed by classical before y
snapshot isolation

(-

L‘h——\——/’

- -

(") 4)

x.write() y.write(l)

(

x.read(|)

-

y.read(l)

y.read(0)

Long fork X written

Disallowed by classical before y

snapshot isolation

x.read(0)

y written
before x

Problems of the Operational Model

® |mplementation Dependent

® Difficult to reason about

An alternative: Abstract Model

® Exploits the relationships between events

From operational model to abstract executions

, S
l l

- -

4) (")
start(t) start(t2)
X.write(post) x.write(other post)
y.write(comment) _abort(t2))
commit(t)

_

deliver [start(ts)
y.read(empty)
_ commit(ts)

Abstraction from) 5 .
DB events and start(t4)

. -read(comment
aborted transactions 4 ()
_commit(ts)

From operational model to abstract executions

4)

X.write(post)

y.write(comment)

_ 4 ~N

deliver

y.read(empty)

_

Abstraction from) 5 .
DB events and
aborted transactions

y.read(comment)

\ Y,

From operational model to abstract executions

4)
X.write(post)
~)CO
y.write(comment)
. deliver |)
y.read(empty)
CO : per-replica order \
g W,

of execution of events
CO

~U : Same transaction relation 1 j A
y.read(comment)

\ Y,

From operational model to abstract executions

4)

x.write(post)
~)CO

y.write(comment) —_

hb

9 y (")

y.read(empty)
CO : per-replica order \

. _
of execution of events

. |co
eﬂf:either egf : j A
or when f executes its replica y.read(comment)

has received the effects of € L)

From operational model to abstract executions

4)

S

X.write(post) hb
h bl ~)CO

y.write(comment) —_

hb

< y (")

y.read(empty)
CO : per-replica order \

of execution of events) ;
hb| : |co

hb : Co :
eﬁflelthel‘ eﬁf \ j)
\4
or when f executes its replica y.read(comment)

has received the effects of € L)

Abstract model of PSI:
obtained by constraining hb

eco C hb x.write(post)
ehb* C hb / | hb
y.write(comment)
hb l h

y.read(comment)
\ 1 hb

x.read(post)

HB is transitive: causality is preserved

Abstract model of PSI:

obtained by constraining hb

eco C hb

*hb™ C hb

X.write(post)

y.write(comment)

e ~;(hb\ ~);~C hb

hb

y.read(comment)

x.read(post)

Atomicity: either none or all the events
of a transaction are observed by another one

Abstract model of PSI:

obtained by constraining hb

eco C hb

*hb™ C hb

e ~;(hb\ ~);~C hb

X.write(post) y.write(comment)
hb hb
y.read(comment) x.read(post)

Atomicity: either none or all the events
of a transaction are observed by another one

Abstract model of PSI:
obtained by constraining hb

eco C hb

ehb™ C hb x.write(n)
e~; (hb\ ~);~C hb hbi? hb

o Vx.Ve, f € Writes,. x.write(m)

e:f\/egf\/fge

Writes on the same object
are related by hb
Write write
conflict detection:

Abstract model of PSI:
obtained by constraining hb

eco C hb
.hbl C hb x.write([)
o | hb
o ~;(hb\ ~);~C hb x.write(2) x.read(3)
. hb hb
e Vx.Ve, f € Writes,. x.wrilte (3) /

e:f\/egf\/fge

® op(e) = x.read(n) = op(f) = x.write(n)
where f is the last write on xhappening before e

read operations fetch their value from the
most recent write

Correctness of the specification

Soundness:

every concrete execution is encoded in an
abstract one that satisfies the given properties

Correctness of the specification

Soundness:

every concrete execution is encoded in an
abstract one that satisfies the given properties

Completeness:

any abstract execution that satisfies the given
properties can be obtained from the encoding
of a concrete PSI one

Chopping: an example

Transaction transfer (int n) { Transaction lookupl() A

TMP1 := read(acctl); TMP := read(acctl):
TMP2 := read(acct?2); .
tryCommit;

write(acct2, TMP1 + TMP2);
tryCommit; ¥
¥

transfer can be chopped in two transactions
without introducing new behaviour

Transaction withdraw (int n) A Transaction deposit (int n) {

TMP := read(acctl); TMP := read(acct?2);
write(acctl, TMP - n); write(acctl, TMP + n);
tryCommit; tryCommit;

} }

Chain transfer’ (int n) { withdraw(n); deposit(n); }

Chopping: an example

Chopping is not always possible:

Transaction transfer (int n) { Transactlon Mlookup() {

TMP1 := read(acctl); £ TMP1
TMP2 := read(acct?2); n
write(acct2, TMP1 + TMP2);

tryCommit;

} Iy

Chain transfer’ (1nt n) { w1thdraw(n)

MlOOkUP can be used to observe

an intermediate state of the database -

é TMP2 :
' try Jommit;

read(acctl)
read(acctQ)

dep031t(n)

¥

Chopping: an example

Chopping is not always possible:

Transaction transfer (int n) { Transactlon Mlookup() {
TMP1 := read(acctl); { TMP1 := read(acctl);

TMP2 := read(acct2); :% -
Write(acctQ, TMPl + TMPQ), TMP2 « = I‘eaCCtQ)
try Jommit;

tryCommit;

} Iy
Chain transfer’ (1nt n) { w1thdraw(n) dep031t(n) t

MlOOkuP can be used to observe
. anintermediate state of the database |

--

acctl = 50 transfer (20); acctl — 3()

--

Chopping: an example

Chopping is not always possible:

Transaction transfer (int n) { Transactlon Mlookup() {
TMP1 := read(acctl); (TMP1 := read(acctl);

TMP2 := read(acct2); :? -
urite(acct2, TMP1 + TMP2): . TMP2 := reacct2)
try Jommit;

tryCommit;

} Iy
Chain transfer’ (1nt n) { w1thdraw(n) dep031t(n) t

MlOOkuP can be used to observe
. anintermediate state of the database |

--

acctl = 50 : WlthdraW(?O), acctl = 30 dep031t(20) ; acctl = 30 :
T > bttt -
acct2 =0 : acct2=0 - acct2 =20

--

transfer’:

Chopping graphs

-

_

wlithdraw:

reads acctl,
writes acctl

deposit:

reads acct2,
writes acct?2

-

J

Mlookup:
reads acctl,
reads acct?2

transfer’:

wlithdraw:

reads acctl,
writes acctl

S

\4

deposit:

A

D

reads acct?2,
writes acct?2

Chopping graphs

Mlookup:
reads acctl,
reads acct?2

® successor/predecessor edges
for transactions in the same chain

Chopping graphs

transfer’:
withdraw: Mlookup:
D
reads acctl,{ » reads acctl,
writes acctl A reads acct?2
S P

deposit: ® successor/predecessor edges
reads acctd” for transactions in the same chain
writes acct2 ® potential dependencies

and anti dependencies
between transactions In
different chains

Chopping criterion for PSI

transfer’:

withdraw: D Mlookup:

reads acctl,{ » reads acctl,

writes acctl A reads acct?2

S P D~ A
I Soundness

deposit: no cycles with at
reads acct?2)

writes acct? least one P and

at most one A edge

Proof: relies heavily on the specification

Chopping criterion for PSI

transfer’:

withdraw: D Mlookup:

reads acctl,{ » reads acctl,

writes acctl A reads acct?2

A
S P D A
I Soundness

deposit: no cycles with at
reads acct?2,

writes acct? least one P and

at most one A edge

A positive example

lookupl:

» Treads acctl

J

transfer’:
4) 4
wilithdraw:
D
reads acctl,;
writes acctl A -
S P
deposit: -
reads acct2,
A

lookup?2:

writes acct2

* reads acct?2

_ J

_

J

Chopping: Serialisability VS. PSI

® The existing criterion for serialisability

can be applied in PSI databases
proof: show that the criterion for serialisability
implies the one for PSI

® But the converse is not true

Chopping: Serialisability VS. PSI

® The existing criterion for serialisability
can be applied in PS| databases

proof: show that the criterion for serialisability

implies the one for PSI

® But the converse is not true

Tx 1: reads x

S

A

D

N

A A Tx3:readsy

S

\4

D

Tx 2: writes y9 D D NTx 4: writes x

What to do next
(and what we have already done)

® Abstract Specification of Different
Consistency Models (CONCUR 2015)

® Robustness (Giovanni Bernardi, work in progress)
ensure that the behaviour of a program is preserved
when the consistency model is weakened

® Chopping for other consistency models
We already have a proposal for Sl

Thank you!

