
Transaction Chopping
for Parallel Snapshot Isolation

DISC - Tokyo - October 8th, 2015

Andrea Cerone,
Alexey Gotsman Hongseok Yang

Data is replicated
across multiple nodes

Data centres across the world

Disaster-tolerance, minimising latency

With thousands of machines inside

Fault-tolerance, load-balancing

• Serialisability: the system behaves like a serial
processor of transactions on a centralised
database

≈

• Requires synchronisation: expensive

Rethinking consistency in large-scale

The database gives weaker guarantees to programmers

Weak Consistency Models

Performance boost

• require less synchronisation between replicas

Weak Consistency Models

Performance boost

• require less synchronisation between replicas

Anomalous behaviour

• executions which are not allowed by a
serialisable database

• reasoning techniques for serialisable databases
do not apply

• Are applications OK with the proposed
consistency models?

Do the non-serialisable behaviours exposed
violate correctness?

• can we boost the performances of an
application without violating its correctness?

Are we overpaying in performance penalties?

Challenges

• Are applications OK with the proposed
consistency models?

Do the non-serialisable behaviours exposed
violate correctness?

• can we boost the performances of an
application without violating its correctness?

Are we overpaying in performance penalties?

Challenges

Parallel Snapshot Isolation:
Specification and Transaction Chopping

Improves performance
Smaller transactions lead to less conflicts

Sound criterion for serialisable database
Shasha et al. 1995

Soundness is consistency level dependant

Static Analysis Technique
Determines whether a transaction in a
program can be chopped into a
sequence of transactions

Transaction chopping

Soundness under PSI does not follow directly
from the proof for serialisable DB

• Database consists of replicas storing objects

• Every object at every replica

• Clients issue transactions to be executed at
replicas

x, y x, y x, y

PSI
Operational Model

start(t1)
x.write(post)
y.write(comment)
commit(t1)

start(t2)
x.write(other post)
abort(t2)

• Write write conflict detection (concurrent
transactions do not write to one same object)

deliver

Upon commit: send all tx
updates to other replicas

start(t1)
x.write(post)
y.write(comment)
commit(t1)

start(t2)
x.write(other post)
abort(t2)

start(t3)
y.read(empty)
commit(t3)

start(t4)
y.read(comment)
commit(t4)

t1: x.write(post);
y.write(comment)

Message delivery:
causality is preserved

start(t1)
x.write(post)
commit(t1)

start(t3)
y.read(comment)
x.read()
commit(t3)

start(t2)
y.write(comment)
commit(t2)

Message delivery:
causality is preserved

start(t1)
x.write(post)
commit(t1)

start(t3)
y.read(comment)
x.read()
commit(t3)

start(t2)
y.write(comment)
commit(t2)

post

x.write(1) y.write(1)

Long fork

Disallowed by classical
snapshot isolation

x.write(1) y.write(1)

x.read(1)

y.read(0)

x written
before y

Long fork

Disallowed by classical
snapshot isolation

x.write(1) y.write(1)

x.read(1)

y.read(0)

x written
before y

y written
before x

y.read(1)

x.read(0)

Long fork

Disallowed by classical
snapshot isolation

Problems of the Operational Model

• Implementation Dependent

• Difficult to reason about

An alternative: Abstract Model

• Exploits the relationships between events

From operational model to abstract executions

deliver

start(t1)
x.write(post)
y.write(comment)
commit(t1)

start(t2)
x.write(other post)
abort(t2)

start(t3)
y.read(empty)
commit(t3)

start(t4)
y.read(comment)
commit(t4)

Abstraction from
DB events and

aborted transactions

From operational model to abstract executions

deliver

x.write(post)

y.write(comment)

y.read(empty)

y.read(comment)

Abstraction from
DB events and

aborted transactions

From operational model to abstract executions

deliver

x.write(post)

y.write(comment)

y.read(empty)

y.read(comment)

⇠ co

co

co

: per-replica order
of execution of events

⇠ : same transaction relation

From operational model to abstract executions

x.write(post)

y.write(comment)

y.read(empty)

y.read(comment)

⇠ co

co

co

: per-replica order
of execution of events

e
hb�! f : either e

co�! f
or when f executes its replica

has received the effects of e

hb

From operational model to abstract executions

x.write(post)

y.write(comment)

y.read(empty)

y.read(comment)

⇠ co

co

co

: per-replica order
of execution of events

e
hb�! f : either e

co�! f
or when f executes its replica

has received the effects of e

hb

hb

hb

hb

hb+ ✓ hb

Abstract model of PSI:
obtained by constraining hb hb

hb

hb

x.write(post)

y.write(comment)

y.read(comment)

hb

hb

x.read(post)

co ✓ hb

HB is transitive: causality is preserved

hb+ ✓ hb

Atomicity: either none or all the events
of a transaction are observed by another one

⇠; (hb \⇠);⇠✓ hb

co ✓ hb

x.write(post) y.write(comment)

y.read(comment) x.read(post)

hb

Abstract model of PSI:
obtained by constraining hb hb

hb+ ✓ hb

Atomicity: either none or all the events
of a transaction are observed by another one

⇠; (hb \⇠);⇠✓ hb

co ✓ hb

x.write(post) y.write(comment)

y.read(comment) x.read(post)

hbhb

Abstract model of PSI:
obtained by constraining hb hb

hb hb

Writes on the same object
are related by hb

Write write
conflict detection:

hb

8x.8e, f 2 Writes
x

.

e = f _ e

hb�! f _ f

hb�! e

hb+ ✓ hb

⇠; (hb \⇠);⇠✓ hb

co ✓ hb

x.write(n)

x.write(m)

x.write(n)

x.write(m)

Abstract model of PSI:
obtained by constraining hb hb

hb

hb hb

read operations fetch their value from the
most recent write

8x.8e, f 2 Writes
x

.

e = f _ e

hb�! f _ f

hb�! e

hb+ ✓ hb

⇠; (hb \⇠);⇠✓ hb

co ✓ hb

x.write(1)

x.write(2)

x.write(3)

x.read(3)

op(e) = x.read(n) =) op(f) = x.write(n)
where f is the last write on xhappening before e

Abstract model of PSI:
obtained by constraining hb hb

Soundness:

every concrete execution is encoded in an
abstract one that satisfies the given properties

Correctness of the specification

Soundness:

every concrete execution is encoded in an
abstract one that satisfies the given properties

Completeness:
any abstract execution that satisfies the given
properties can be obtained from the encoding
of a concrete PSI one

Correctness of the specification

Transaction transfer (int n) {

TMP1 := read(acct1);

TMP2 := read(acct2);

write(acct2, TMP1 + TMP2);

tryCommit;

}

Transaction lookup1() {

TMP := read(acct1);

tryCommit;

}

transfer can be chopped in two transactions
without introducing new behaviour

Transaction deposit (int n) {

TMP := read(acct2);

write(acct1, TMP + n);

tryCommit;

}

Chain transfer’ (int n) { withdraw(n); deposit(n); }

Transaction withdraw (int n) {

TMP := read(acct1);

write(acct1, TMP - n);

tryCommit;

}

Chopping: an example

Transaction transfer (int n) {

TMP1 := read(acct1);

TMP2 := read(acct2);

write(acct2, TMP1 + TMP2);

tryCommit;

}

Transaction Mlookup() {

TMP1 := read(acct1);

TMP2 := read(acct2);

tryCommit;

}

Chain transfer’ (int n) { withdraw(n); deposit(n); }

Chopping is not always possible:

 can be used to observe
an intermediate state of the database
Mlookup

Chopping: an example

Transaction transfer (int n) {

TMP1 := read(acct1);

TMP2 := read(acct2);

write(acct2, TMP1 + TMP2);

tryCommit;

}

Transaction Mlookup() {

TMP1 := read(acct1);

TMP2 := read(acct2);

tryCommit;

}

Chain transfer’ (int n) { withdraw(n); deposit(n); }

Chopping is not always possible:

acct1 = 50

acct2 = 0

acct1 = 30

acct2 = 20

transfer(20);

 can be used to observe
an intermediate state of the database
Mlookup

Chopping: an example

Transaction transfer (int n) {

TMP1 := read(acct1);

TMP2 := read(acct2);

write(acct2, TMP1 + TMP2);

tryCommit;

}

Transaction Mlookup() {

TMP1 := read(acct1);

TMP2 := read(acct2);

tryCommit;

}

Chain transfer’ (int n) { withdraw(n); deposit(n); }

Chopping is not always possible:

acct1 = 30

acct2 = 0

acct1 = 50

acct2 = 0

acct1 = 30

acct2 = 20

withdraw(20); deposit(20);

Chopping: an example

 can be used to observe
an intermediate state of the database
Mlookup

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

transfer’:

Mlookup:

reads acct1,

reads acct2

Chopping graphs

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

transfer’:

Mlookup:

reads acct1,

reads acct2

successor/predecessor edges
for transactions in the same chain

S P

Chopping graphs

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

transfer’:

Mlookup:

reads acct1,

reads acct2

successor/predecessor edges
for transactions in the same chain

S P

potential dependencies
and anti dependencies
between transactions in

different chains

A

D

D A

Chopping graphs

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

transfer’:

Mlookup:

reads acct1,

reads acct2

S P

A

D

D A
Soundness

no cycles with at
least one and

at most one edge

Chopping criterion for PSI

Proof: relies heavily on the specification

P
A

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

transfer’:

Mlookup:

reads acct1,

reads acct2

S P

A

D

D AAP

D

Chopping criterion for PSI

no cycles with at
least one and

at most one edge

Soundness

P
A

transfer’:

S

deposit:

reads acct2,

writes acct2

withdraw:
reads acct1,
writes acct1

lookup1:

reads acct1

lookup2:

reads acct2

P

A

D

D
A

A positive example

Chopping: Serialisability VS. PSI

• The existing criterion for serialisability
can be applied in PSI databases
proof: show that the criterion for serialisability
implies the one for PSI

• But the converse is not true

Chopping: Serialisability VS. PSI

• The existing criterion for serialisability
can be applied in PSI databases
proof: show that the criterion for serialisability
implies the one for PSI

• But the converse is not true

S P S P
Tx 1: reads x

Tx 3: reads y

Tx 2: writes y

Tx 4: writes x

A

D

A

D

What to do next
(and what we have already done)

• Abstract Specification of Different
Consistency Models (CONCUR 2015)

• Robustness (Giovanni Bernardi, work in progress)
ensure that the behaviour of a program is preserved
when the consistency model is weakened

• Chopping for other consistency models
We already have a proposal for SI

Thank you!

