‘Cause I'm strong enough:
Reasoning about consistency
choices in distributed systems

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Joint work with
Hongseok Yang (Oxford), Carla Ferreira (U Nova Lisboa),
Mahsa Najafzadeh, Marc Shapiro (INRIA)

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

J @ Amazon.co.uk: Low Prices in Ele... ‘ - |
<4 & M A www.amazon.co.uk e | (2§~ Google Q) B
ama;on.@m‘k Your Amazon.couk Today's Deals Gift Cards Help Januar y DeaIS > Shog now
——
Shop by = Hello. Sign In 0 Wish
Department v s n Your Account v VBasm v List v

;Compras desde Espaiia? /. Vst

- amazones R ¥
Shopping from Spain? \v/ “! 3 DescObrelo January DeaIS > Shop now

Amazon MP3 Cloud Player Kindle LOVEFILM Appstore for Android Audidle .
Two-Hour Flying Lesson

Meet the

£99 (was “299)

| VA — al

®00 Google
|4 » 2] + B hups@ www.google.com
(0 HE Apple Yahoo! GoogleMaps YouTube Wikipedia News ™ Popular ¥

» See the deal amazoniocal

SHAMBALLA
BRACELETS

+You Gmail Images

Welcome to Facebook - Log In, Sign Up or Learn More
< + Kl brps & www.facebook.com

(I0 =3 Apple Yahoo! GCoogle Maps YouTube Wikipedia News Y Popular ™~

GO gle facebook

Email or Phone

Sign Up
Connect with friends and the It’s free and alw;
world around you on Facebook.

Google Search I'm Foeling Lucky

First name

Email
See photos and updates from friends in News Feed.

Re-enter ema

Share what’s new in your life on your Timeline. New passworc

i+ [l

Birthday

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

, @ Amazon.co.uk: Low Prices in Ele... -

.

A www.amazon.co.uk C | (2§~ Google Q

amazon.co.uk Your Amazon.couk Today's Deals Gift Cards Help January Deals ’ RO

All w Hello. Sign in 0 Wish
Department v Searsh | A a Your Account v -\.-!Basket v List v

;Compras desde Espana? s Vsu He x
Shopping from Spain? & 2mazones January Deals :.....

800

- 8 https §

GO gle facebook

Data is replicated across

multiple nodes

Email or Phone

Sign Up

Connect with friends and the It’s free and alw:

Google Search I Foaiing Lucky world around you on Facebook.

See photos and updates from friends in News Feed.

Share what’s new in your life on your Timeline.

Birthday

ing latency

, minimis

)
@)
-
(4]
.
v
O
s’
<
Q
P’
(Vg
(qv]
2
a

With thousands of machines inside

e
\ o
P—

‘ Load-balancing, fault-tolerance l

Replicas on mobile devices

Offline use

U

® Strong consistency model: the system behaves
as if it processes requests serially on a
centralised database

U

® Strong consistency model: the system behaves
as if it processes requests serially on a
centralised database

® Requires synchronisation: contact other
replicas when processing a request

® |ncreased latency

® Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]

® |ncreased latency

® FEither streng-Censisteney or Availability in the

presence of network Partitions [CAP theorem]

® Weak consistency models

Eventually consistent databases

A [&

deposit(100) —0u 1

® No synchronisation: process an update locally,
propagate effects to other replicas later

® \Weakens consistency: deposit seen with a
delay

Integrity invariants

® Account balance is non-negative
® Only registered students are enrolled into a course

® The winner of an auction is the highest bidder

Eventual consistency often too weak to
preserve invariants

Integrity invariants

® Account balance is non-negative
® Only registered students are enrolled into a course

® The winner of an auction is the highest bidder

Eventual consistency often too weak to
preserve invariants

Invariant: balance = 0

£ 8
A £

balance = 100 balance = 100

Invariant: balance = 0

balance = 100

withdraw(100) : ¢/

&

balance = 100

balance = 0

withdraw(100) : ¢/ |

balance = 0

Invariant: balance = 0

A

balance = 100

withdraw(100) : ¢/

18

balance = 100

balance = 0

withdraw(100) : ¢/ |

balance = 0

balance = -100

Invariant: balance = 0

A 18

balance = 100 balance = 100

| withdraw(100) : ¢/ |

balance = 0

withdraw(100) : ¢/

balance = 0

a . balance = -100
|dep05|t(IOO |

Consistency choices

® Choose consistency level for each operation:

» Withdrawals strongly consistent

» Deposits eventually consistent

® Databases:

» Commercial: Amazon DynamoDB,
Microsoft DocumentDB, Basho Riak

» Research: Li* 2012, Terry™ 2013, Balegas™ 2015

® Pay for stronger semantics with latency,
possible unavailability and money

Consistency choices

Problem: hard to figure out the minimum
consistency sufficient to maintain correctness

Contribution: proof rule and tool for checking
integrity invariants under given consistency
choices

Consistency mode]

® Generic model with consistency choices

® Not implemented, but can encode many
existing models that are:

RedBlue consistency [Li* 2012],
reservation locks [Balegas™ 2015],

barallel snapshot isolation [Sovran™ 201 1], ...

® Declarative formal semantics in the paper

Anomalies of eventual consistency

A |

1
|
o

deposit(100)

notify(done)

Anomalies of eventual consistency

- -
| J | J
RS &
deposit(100) \

notify(done)

»‘

getNotif() : done

balance() : 0

Anomalies of eventual consistency

A I 08
deposit(100) |\‘ :

l Causal dependency

notify(done)

*‘

® (Causal consistency: causally getNotif() : done
dependent messages
delivered in order

® Still no synchronisation balance() : 0

Operation semantics

-

!
0)

op

]:OP]]vaI

Replica states: 0 € State

Return value: [op]va € State = Value

Operation semantics

-
-

-
=

g
O
i [OPler(a) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effects: [opJles € State — (State — State)

Operation semantics

i —\] i —\]
- -
O ;
i [OPler(cr) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effects: [oples € State — (State — State)

Operation semantics

—

¥ §

O
i [OP (o) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effects: [op]es € State — (State — State)

Operation semantics

i —\] i —\]
- -
O ;
oP |- [OPler(a) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effects: [opJles € State — (State — State)

Operation semantics

— —

R ¥ R 2
- -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)
State = Z

[balance()[va(O) = O

[balance()]er(O) = AC.O

Operation semantics

il “} il “}
e 2 e 2
O :
°P |- [OPle(0))
[op]val E
[oples(T)(T)

[deposit(100)]e(0) = AC’. (0" + 100)

Operation semantics

— —_—

U } U }
- -
O :
°P |- [OPle(0) 50
]:OP]]val -
[oples(T)(T)

[deposit(100)]e(0) = AC’. (0" + 100)

Operation semantics

— —

il]J i]J
- -
O :
oP |- [OPle(0) 50
]:OP]]val -
|50

[deposit(100)]e(0) = AC’. (0" + 100)

[deposit(100)]e(0) = AC’. (0 + 100)

[deposit(100)]e(0) = AC’. (0 + 100)

v —

il
-
v

balance = 0

deposit(50)

v —

il
-
v

balance = 0

deposit(100)

[deposit(100)]e(0) = AC’. (0 + 100)

— —

- -
J J

. 2 -

balance = 0 balance = 0
AG'. 50 AG’. 100
deposit(50)) Ldeposit(lOO)
<« —>

balance = 50 balance = 100

[deposit(100)]e(0) = AC’. (0 + 100)

LJ LJ

balance = balance =

Ao’. 50 Ao’. 100

deposit(50) deposit(100)

<
balance = 50

—

balance = 100

balance = 100 balance = 50

Replicas diverge!

Ensuring convergence

® Effects of operations have to commute:

[ople € State — (State — State)

Vopi,0p2, 01, 02. [opile(O1) ; [op2lef(02) =
[op2]eif(O2) ; [opi]e(O1)

® Replicated data types (CRDTs) [Shapiro™ 201 I7]:
ready-made commutative implementations

Operation semantics

— —

R ¥ -
e : !
O ;
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". ¢" - 100) else (AC". C7)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". C7)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". 07)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 > 100 then (AG". 0" - 100) else (AC”. 07)

_— o

il il
- -
e v v

balance = 100 balance = 100

/ /

withdraw/(100) :i/) Ao’.o’ - 100 Qithdraw(lOO) 4

-« —
balance = (balance = (

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)

,’/'

7 R B
. 2 . 2

balance = 100 balance = 100

withdraw(100) : ¢/

Ao’.o’ - 100 Qithdraw(lOO) 4

(7
balance = (

_)
balance = (

balance = -100

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)

Strengthening consistency

Token system = locks on steroids:

® Token ={T|,T2,...}

® Symmetric conflict relation X C Token % Token

Examples:

® Mutual exclusion lock:
Token = {lock}; lock X lock

® Readers-writer lock:
Token ={RW};, X W, WX _

® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other

® Each operation acquires a set of tokens:

[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other

—

lL } T X T
.

op|
Ti € [opi ok

[

]
b

op2

T2 € [[OPZ]]tok

® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other

lL } T X T lL }
. .
Pl
T1 € [opiTtok e
op2

T2 € [[OPZ]]tok

® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other

—_—

]

lt | T X T ‘L }
- —
OPp| \/f\f ‘‘‘‘)
T1 € [opiTtok e
op2

T2 € [[OPZ]]tok

® Requires synchronisation in implementations

lock X lock

balance = 100 balance = 100

| withdraw(100) : ¢/ |

{lock}

[—] lock ™ lock [—]

balance = 100 balance = 100

withdraw(100) : ¢/

{lock}

withdraw(100) : ?

{lock}

Anything | don’t
know about!

U lock X lock U

balance = 100 balance = 100
withdraw(100) : ¢/ §
{lock} i

balance = 0

withdraw(100) : 2 |
{lock}

U lock X lock U

balance = 100 balance = 100
withdraw(100) : ¢/ §
{lock} i

balance = 0

withdraw(100) : X |
{lock}

lock X lock

balance = 100 balance = 100

withdraw(100) : ¢/
{lock}

balance = 0
deposit(100) | withdraw(100) : X |
%,

{lock}

Deposits proceed without synchronisation
Is the invariant preserved?

t/]
.
O €] «<—— Assume invariant holds

op

«<—— Check it’s preserved after
executing op

/-
l____—/‘}

| |
-
oecl
op [OP Jlesr(0)

(')_/

—

[oples(O)(O') € T?

e Effect applied in a different state!

® Need to constrain possible 0’ given O

/-
l____—/‘}

| |
-
oecl
op [OP Jlesr(0)

(')_/

—

[oples(O)(O') € T?

e Effect applied in a different state!

® Need to constrain possible 0’ given O

® Rely-guarantee reasoning: make assumptions
about how states of other replicas can change

Guarantee relations

Acquire a token =¥ acquire a permission to
change states in a particular way

® vT.G(T) C State X State: changes allowed if
acquiring T

® (5o C State X State: changes allowed always

Guarantee relations

Acquire a token =¥ acquire a permission to
change states in a particular way

® vT.G(T) C State X State: changes allowed if
acquiring T

G(lock) = {(01,02) | 02 < O}

® (5o C State X State: changes allowed always

Go = {(01,02) | 02 = Oy}

Oop F [Op.ﬂeff(O) (')_,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(07, [ople#(T)(07)) € Go U G([opliok(O))

. :

O
Oop F [Opﬂeff(O) (')_,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Need to find guarantees as part of the proof

[Op.ﬂeff(O')

[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(0)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Check 7J is preserved after applying op’s effect

[Op.ﬂeff(O')

[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Guarantee that op’s effect conforms to G and Go

. :

O
Oop F [Opﬂeff(O‘) O' ,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

op’s effect does state changes allowed always or ...

[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(07, [oplef(0)(T") € Go U G([opliok(O))

...changes allowed by the tokens op acquires

4 L

O
Oop F [Op.ﬂeff(O) (')_,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0 € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0, [ople(0)(07)) € Go U G([oplkok(0))

Rely on 0 and O” correlated using G and Go

4 L

O
Oop F [Op.ﬂeff(O) (')_,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*))*
= [opler(O)(T') € T A
(0, [ople(0)(07)) € Go U G([oplkok(0))

Multiple operations may change state

. :

O
Oop F [Opﬂeff(O‘) O' ,
[oples(T)(T)
3G, Go. Vop.

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Concurrent operations make changes allowed always or...

1
1

o)

‘ Oop | [Op.ﬂeff(O')

(')_/

-

[oples(T)(T)

3G, Go. Vop.
vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(0)(C) € T A
(0", [ople(0)(07)) € Go U G([opliek(O))

... changes allowed by guarantees for tokens that
don’t conflict with those of op as per X

J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0. 0e] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(07, [ople#(T)(07)) € Go U G([opliok(O))

J={0|0o=0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. ae I A (0,0) € (Go U G(([opok(T))))*
= [opler(0)(C) € 1

J={0|0o=0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. ae] A (0,0) € (Go U G(([opok(T))))*
= [opler(0)(C) € 1

J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}

op = withdraw(|00)

%
vo,0. oe] A (0,0 € (Go U G(([oplok(0))D))*

= [opler(0)(T') € I lock M lock

I={o| 02 0)
G(lock) = {(01,02) | 02 < O}
Go=1(01,02) | 02 2 01}
op = withdraw(100)

Go

VO, o. . ocel A (0' 0') E(G o U G ﬂ

= [Pl @) €T ek &

J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. cel A (0,0 € G
= [opler(0)(C) € 1

J={o| o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. el A (0,0 GE'S
= [opler(0)(C) € 1

Balance at a destination replica as high as
balance at the origin replica

J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. oel A (0,0) € G
= [opler(0)(C) € 1

I={0| o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0". gl A (0,0 € G
= [[op]]eff()(O") cJ

J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. oe] A (0,0 € G§

= [[OP]]eff()(O") cJ

If there was enough money at the origin replica,
there will be enough money at a destination replica

Soundness

® Proved soundness of the proof rule

® Nontrivial: depends on causal consistency
and effect commutativity

® Soundness by compilation into an event-
based proof rule: uses structures for
specifying eventual consistency [POPL 4]

Prototype tool

® Automates the proof rule
® Discharges verification conditions using SMT

® (Case studies: fragments of several web
applications

Conclusion

® | ots of logics for shared-memory concurrency

Owicki-Gries [1976]

Rely-guarantee [Jones 1983, Pnueli 1985]

Concurrent separation logic [O’Hearn 2004]
RGSep/SAGL [Vafeiadis+ 2007, Feng+ 2007]
Concurrent abstract predicates [Dinsdale-Young+ 2010]
Higher-order CAP [Svendsen+ 201 3]

CaReSL [Turon+ 201 3]

Fine-grained concurrent separation logic [Nanevski+ 2014]
Iris [Jung+ 2015]

vV VvV VvV VvV VvV V9V VvV V9V Vv VY

Conclusion

® | ots of logics for shared-memory concurrency

® Almost none for distributed systems

Conclusion

Lots of logics for shared-memory concurrency
Almost none for distributed systems

Clean, modular reasoning principles still
applicable: rely-guarantee reasoning

Starting point for research in distributed
systems verification

