'Cause I'm strong enough: Reasoning about consistency choices in distributed systems

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Joint work with Hongseok Yang (Oxford), Carla Ferreira (U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)

Data centres across the world

With thousands of machines inside

Load-balancing, fault-tolerance

Replicas on mobile devices

Offline use

 Strong consistency model: the system behaves as if it processes requests serially on a centralised database

- Strong consistency model: the system behaves as if it processes requests serially on a centralised database
- Requires synchronisation: contact other replicas when processing a request

- Increased latency
- Either strong Consistency or Availability in the presence of network Partitions [CAP theorem]

- Increased latency
- Either strong Consistency or Availability in the presence of network Partitions [CAP theorem]
- Weak consistency models

Eventually consistent databases

- No synchronisation: process an update locally, propagate effects to other replicas later
- Weakens consistency: deposit seen with a delay

Integrity invariants

- Account balance is non-negative
- Only registered students are enrolled into a course
- The winner of an auction is the highest bidder

Eventual consistency often too weak to preserve invariants

Integrity invariants

- Account balance is non-negative
- Only registered students are enrolled into a course
- The winner of an auction is the highest bidder

Eventual consistency often too weak to preserve invariants

balance = 100

balance = 100

withdraw(100):

balance = 0

balance = 100

withdraw(100):

balance = 0

balance = 100

balance = 100

withdraw(100):

withdraw(100):

balance = 0

balance = 0

balance = -100

balance = 100

balance = 100

withdraw(100):

withdraw(100):

balance = 0

balance = 0

balance = -100

deposit(100)

Consistency choices

- Choose consistency level for each operation:
 - Withdrawals strongly consistent
 - Deposits eventually consistent
- Databases:
 - Commercial: Amazon DynamoDB,
 Microsoft DocumentDB, Basho Riak
 - Research: Li⁺ 2012, Terry⁺ 2013, Balegas⁺ 2015
- Pay for stronger semantics with latency, possible unavailability and money

Consistency choices

Problem: hard to figure out the minimum consistency sufficient to maintain correctness

Contribution: proof rule and tool for checking integrity invariants under given consistency choices

Consistency model

- Generic model with consistency choices
- Not implemented, but can encode many existing models that are:

```
RedBlue consistency [Li<sup>+</sup> 2012], reservation locks [Balegas<sup>+</sup> 2015], parallel snapshot isolation [Sovran<sup>+</sup> 2011], ...
```

Declarative formal semantics in the paper

Anomalies of eventual consistency

deposit(100)

!

notify(done)

Anomalies of eventual consistency

Anomalies of eventual consistency

O

[op]val

Replica states: $\sigma \in State$

Return value: $[op]_{val} \in State \rightarrow Value$

Replica states: $\sigma \in State$

Return value: $[op]_{val} \in State \rightarrow Value$

Replica states: $\sigma \in State$

Return value: $[op]_{val} \in State \rightarrow Value$

Replica states: $\sigma \in State$

Return value: $[op]_{val} \in State \rightarrow Value$

Replica states: $\sigma \in State$

Return value: $[op]_{val} \in State \rightarrow Value$

State = Z

[balance()]_{val}(
$$\sigma$$
) = σ

[balance()]_{eff}(σ) = $\lambda \sigma$. σ

$$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma' + 100)$$

$$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma' + 100)$$

$$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma' + 100)$$

 $[deposit(100)]_{eff}(\sigma) = \lambda \sigma'.(\sigma + 100)$

$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma + 100)$

balance = 0

deposit(50)

balance = 0

deposit(100)

$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma + 100)$

$$[deposit(100)]_{eff}(\sigma) = \lambda \sigma'. (\sigma + 100)$$

Replicas diverge!

Ensuring convergence

• Effects of operations have to commute:

```
[op]_{eff} \in State \rightarrow (State \rightarrow State)
\forall op_1, op_2, \sigma_1, \sigma_2. \ [op_1]_{eff}(\sigma_1) ; [op_2]_{eff}(\sigma_2) = [op_2]_{eff}(\sigma_2) ; [op_1]_{eff}(\sigma_1)
```

 Replicated data types (CRDTs) [Shapiro* 2011]: ready-made commutative implementations


```
[withdraw(100)]<sub>eff</sub>(\sigma) = if \sigma \ge 100 then (\lambda \sigma'. \sigma' - 100) else (\lambda \sigma'. \sigma')
```



```
[withdraw(100)]<sub>eff</sub>(\sigma) = if \sigma \ge 100 then (\lambda \sigma'. \sigma' - 100) else (\lambda \sigma'. \sigma')
```



```
[withdraw(100)]<sub>eff</sub>(\sigma) = if \sigma \ge 100 then (\lambda \sigma'. \sigma' - 100) else (\lambda \sigma'. \sigma')
```



```
[withdraw(100)]<sub>eff</sub>(\sigma) = if \sigma \ge 100 then (\lambda \sigma'. \sigma' - 100) else (\lambda \sigma'. \sigma')
```


balance = 100

balance = 100

λσ'. σ' - 100

withdraw(100):

balance = 0

[withdraw(100)]]_{eff}(
$$\sigma$$
) = if $\sigma \ge 100$ then ($\lambda \sigma'$. σ' - 100) else ($\lambda \sigma'$. σ')

balance = 100

balance = 100

[withdraw(100)]_{eff}(σ) = if $\sigma \ge 100$ then ($\lambda \sigma'$. σ' - 100) else ($\lambda \sigma'$. σ')

Strengthening consistency

Token system ≈ locks on steroids:

- Token = $\{\tau_1, \tau_2, ...\}$
- Symmetric conflict relation ⋈ ⊆ Token × Token

Examples:

- Mutual exclusion lock:
 Token = {lock}; lock ⋈ lock
- Readers-writer lock: Token = $\{R, W\}$; $\bowtie W$; $\bowtie W$

• Each operation acquires a set of tokens: $[op]_{tok} \in State \rightarrow \mathcal{P}(Token)$

 Operations acquiring conflicting tokens cannot be unaware of each other Each operation acquires a set of tokens:

$$[op]_{tok} \in State \rightarrow \mathcal{P}(Token)$$

 Operations acquiring conflicting tokens cannot be unaware of each other

• Each operation acquires a set of tokens: $[op]_{tok} \in State \rightarrow \mathcal{P}(Token)$

 Operations acquiring conflicting tokens cannot be unaware of each other

Each operation acquires a set of tokens:
 [op]_{tok} ∈ State → P(Token)

 Operations acquiring conflicting tokens cannot be unaware of each other

Requires synchronisation in implementations

lock ⋈ lock

balance = 100

balance = 100

withdraw(100):

{lock}

lock ⋈ lock

balance = 100

00

balance = 100

withdraw(100):

{lock}

withdraw(100):?

{lock}

Anything I don't know about?

Deposits proceed without synchronisation Is the invariant preserved?

Check it's preserved after executing op

- Effect applied in a different state!
- Need to constrain possible σ' given σ

- Effect applied in a different state!
- Need to constrain possible σ' given σ
- Rely-guarantee reasoning: make assumptions about how states of other replicas can change

Guarantee relations

Acquire a token \rightarrow acquire a permission to change states in a particular way

• $\forall \tau$. $G(\tau) \subseteq State \times State$: changes allowed if acquiring τ

• $G_0 \subseteq State \times State$: changes allowed always

Guarantee relations

Acquire a token \rightarrow acquire a permission to change states in a particular way

• $\forall \tau$. $G(\tau) \subseteq State \times State$: changes allowed if acquiring τ

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

• $G_0 \subseteq State \times State$: changes allowed always

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \geq \sigma_1\}$$

$$\begin{split} \exists \mathsf{G}, \mathsf{G}_0. \ \forall \mathsf{op}. \\ \forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in (\mathsf{G}_0 \ \cup \ \mathsf{G}((\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma))^{\bot}))^* \\ & \Longrightarrow \ \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma') \in I \ \land \\ & (\sigma', \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma')) \in \mathsf{G}_0 \ \cup \ \mathsf{G}(\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma)) \end{split}$$

Need to find guarantees as part of the proof

 $(\sigma', [op]_{eff}(\sigma)(\sigma')) \in G_0 \cup G([op]_{tok}(\sigma))$

Check I is preserved after applying op's effect

Guarantee that op's effect conforms to G and G₀

op's effect does state changes allowed always or ...

 $(\sigma', [op]_{eff}(\sigma)(\sigma')) \in G_0 \cup G([op]_{tok}(\sigma))$

...changes allowed by the tokens op acquires

 $(\sigma', [op]_{eff}(\sigma)(\sigma')) \in G_0 \cup G([op]_{tok}(\sigma))$

Rely on σ and σ' correlated using G and G_0

Multiple operations may change state

Concurrent operations make changes allowed always or...

$$\begin{split} \exists \mathsf{G}, \mathsf{G}_0. \ \forall \mathsf{op}. \\ \forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in (\mathsf{G}_0 \ \cup \ \mathsf{G}((\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma))^{\perp}))^* \\ & \Longrightarrow \ \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma') \in I \ \land \\ & (\sigma', \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma')) \in \mathsf{G}_0 \ \cup \ \mathsf{G}(\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma)) \end{split}$$

... changes allowed by guarantees for tokens that don't conflict with those of op as per M

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\begin{split} \forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in (\mathsf{G}_0 \ \cup \ \mathsf{G}((\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma))^{\bot}))^* \\ \Longrightarrow \ \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma') \in I \ \land \\ (\sigma', \llbracket \mathsf{op} \rrbracket_\mathsf{eff}(\sigma)(\sigma')) \in \mathsf{G}_0 \ \cup \ \mathsf{G}(\llbracket \mathsf{op} \rrbracket_\mathsf{tok}(\sigma)) \end{split}$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\forall \sigma, \sigma'. \ \sigma \in I \land \ (\sigma, \sigma') \in (G_0 \cup G((\llbracket op \rrbracket_{tok}(\sigma))^{\perp}))^*$$

$$\implies \llbracket op \rrbracket_{eff}(\sigma)(\sigma') \in I$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in (G_0 \cup G((\llbracket op \rrbracket_{tok}(\sigma))^{\perp}))^*$$
$$\implies \llbracket op \rrbracket_{eff}(\sigma)(\sigma') \in I$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in (G_0 \cup G((\llbracket op \rrbracket_{tok}(\sigma))^{\perp}))^*$$

$$\implies \llbracket op \rrbracket_{eff}(\sigma)(\sigma') \in I \quad lock \bowtie lock$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\forall \sigma, \sigma'. \ \sigma \in I \land (\sigma, \sigma') \in G_0^*$$
 $\implies [op]_{eff}(\sigma)(\sigma') \in I$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\sigma' \geq \sigma$$

$$\forall \sigma, \sigma'. \ \sigma \in I \land (\sigma, \sigma') \in G_0^*$$

$$\implies [op]_{eff}(\sigma)(\sigma') \in I$$

Balance at a destination replica as high as balance at the origin replica

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\sigma \geq 0 \qquad \sigma' \geq \sigma$$

$$\forall \sigma, \sigma'. \quad \sigma \in I \quad \land \quad (\sigma, \sigma') \in G_0^*$$

$$\Rightarrow [op]_{eff}(\sigma)(\sigma') \in I$$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\sigma \geq 0 \qquad \sigma' \geq \sigma$$

$$\forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in G_0^*$$

$$\Rightarrow [\sigma]_{eff}(\sigma)(\sigma') \in I$$
(if $\sigma \geq 100$ then $\sigma' - 100$ else $\sigma') \geq 0$

$$I = \{\sigma \mid \sigma \ge 0\}$$

$$G(lock) = \{(\sigma_1, \sigma_2) \mid \sigma_2 < \sigma_1\}$$

$$G_0 = \{(\sigma_1, \sigma_2) \mid \sigma_2 \ge \sigma_1\}$$

$$op = withdraw(100)$$

$$\sigma \geq 0 \qquad \sigma' \geq \sigma$$

$$\forall \sigma, \sigma'. \ \sigma \in I \ \land \ (\sigma, \sigma') \in G_0^*$$

$$\Rightarrow [op]_{eff}(\sigma)(\sigma') \in I$$
(if $\sigma \geq 100$ then $\sigma' - 100$ else $\sigma') \geq 0$

If there was enough money at the origin replica, there will be enough money at a destination replica

Soundness

- Proved soundness of the proof rule
- Nontrivial: depends on causal consistency and effect commutativity
- Soundness by compilation into an eventbased proof rule: uses structures for specifying eventual consistency [POPL'14]

Prototype tool

- Automates the proof rule
- Discharges verification conditions using SMT
- Case studies: fragments of several web applications

Conclusion

- Lots of logics for shared-memory concurrency
 - Owicki-Gries [1976]
 - Rely-guarantee [Jones 1983, Pnueli 1985]
 - Concurrent separation logic [O'Hearn 2004]
 - RGSep/SAGL [Vafeiadis+ 2007, Feng+ 2007]
 - Concurrent abstract predicates [Dinsdale-Young+ 2010]
 - Higher-order CAP [Svendsen+ 2013]
 - CaReSL [Turon+ 2013]
 - Fine-grained concurrent separation logic [Nanevski+ 2014]
 - Iris [Jung+ 2015]
 - ...

Conclusion

- Lots of logics for shared-memory concurrency
- Almost none for distributed systems

Conclusion

- Lots of logics for shared-memory concurrency
- Almost none for distributed systems
- Clean, modular reasoning principles still applicable: rely-guarantee reasoning
- Starting point for research in distributed systems verification