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Replicas on mobile devices

Offline use
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® Strong consistency model: the system behaves
as if it processes requests serially on a
centralised database
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® Strong consistency model: the system behaves
as if it processes requests serially on a
centralised database

® Requires synchronisation: contact other
replicas when processing a request



® |ncreased latency

® Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]



® |ncreased latency

® FEither streng-Censisteney or Availability in the

presence of network Partitions [CAP theorem]

® Weak consistency models



Eventually consistent databases
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deposit(100) —0u 1

® No synchronisation: process an update locally,
propagate effects to other replicas later

® \Weakens consistency: deposit seen with a
delay



Integrity invariants

® Account balance is non-negative
® Only registered students are enrolled into a course

® The winner of an auction is the highest bidder

Eventual consistency often too weak to
preserve invariants
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® The winner of an auction is the highest bidder

Eventual consistency often too weak to
preserve invariants
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Consistency choices

® Choose consistency level for each operation:

» Withdrawals strongly consistent

» Deposits eventually consistent

® Databases:

» Commercial: Amazon DynamoDB,
Microsoft DocumentDB, Basho Riak

» Research: Li* 2012, Terry™ 2013, Balegas™ 2015

® Pay for stronger semantics with latency,
possible unavailability and money



Consistency choices

Problem: hard to figure out the minimum
consistency sufficient to maintain correctness

Contribution: proof rule and tool for checking
integrity invariants under given consistency
choices



Consistency mode]

® Generic model with consistency choices

® Not implemented, but can encode many
existing models that are:

RedBlue consistency [Li* 2012],
reservation locks [Balegas™ 2015],

barallel snapshot isolation [Sovran™ 201 1], ...

® Declarative formal semantics in the paper



Anomalies of eventual consistency
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Anomalies of eventual consistency
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getNotif() : done

balance() : 0




Anomalies of eventual consistency

A I 08
deposit(100) |\‘ :

l Causal dependency

notify(done)

*‘

® (Causal consistency: causally getNotif() : done
dependent messages
delivered in order

® Still no synchronisation balance() : 0
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[deposit(100)]e(0) = AC’. (0 + 100)

— —

- -
J J

. 2 -

balance = 0 balance = 0
AG'. 50 AG’. 100
deposit(50) ) Ldeposit(lOO)
<« —>

balance = 50 balance = 100



[deposit(100)]e(0) = AC’. (0 + 100)
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balance = balance =

Ao’. 50 Ao’. 100

deposit(50) deposit(100)
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Replicas diverge!



Ensuring convergence

® Effects of operations have to commute:

[ople € State — (State — State)

Vopi,0p2, 01, 02. [opile(O1) ; [op2lef(02) =
[op2]eif(O2) ; [opi]e(O1)

® Replicated data types (CRDTs) [Shapiro™ 201 I7]:
ready-made commutative implementations
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Operation semantics
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[withdraw(100)]es(0) =
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Strengthening consistency

Token system = locks on steroids:

® Token ={T|,T2,...}

® Symmetric conflict relation X C Token % Token

Examples:

® Mutual exclusion lock:
Token = {lock}; lock X lock

® Readers-writer lock:
Token ={RW};, X W, WX _



® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other
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® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other
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® Each operation acquires a set of tokens:
[opliok € State = P(Token)

® Operations acquiring conflicting tokens
cannot be unaware of each other
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T2 € [[OPZ]]tok

® Requires synchronisation in implementations



lock X lock

balance = 100 balance = 100

| withdraw(100) : ¢/ |

{lock}




[—] lock ™ lock [—]

balance = 100 balance = 100

withdraw(100) : ¢/

{lock}

withdraw(100) : ?

{lock}

Anything | don’t
know about!



U lock X lock U

balance = 100 balance = 100
withdraw(100) : ¢/ §
{lock} i

balance = 0

withdraw(100) : 2 |
{lock}




U lock X lock U

balance = 100 balance = 100
withdraw(100) : ¢/ §
{lock} i

balance = 0

withdraw(100) : X |
{lock}




lock X lock

balance = 100 balance = 100

withdraw(100) : ¢/
{lock}

balance = 0
deposit(100) | withdraw(100) : X |
%,

{lock}

Deposits proceed without synchronisation
Is the invariant preserved?
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[oples(O)(O') € T?

e Effect applied in a different state!

® Need to constrain possible 0’ given O

® Rely-guarantee reasoning: make assumptions
about how states of other replicas can change



Guarantee relations

Acquire a token =¥ acquire a permission to
change states in a particular way

® vT.G(T) C State X State: changes allowed if
acquiring T

® (5o C State X State: changes allowed always



Guarantee relations

Acquire a token =¥ acquire a permission to
change states in a particular way

® vT.G(T) C State X State: changes allowed if
acquiring T

G(lock) = {(01,02) | 02 < O}

® (5o C State X State: changes allowed always

Go = {(01,02) | 02 = Oy}
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Need to find guarantees as part of the proof



[Op.ﬂeff(O')

[oples(T)(T)
3G, Go. Vop.

vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(0)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Check 7J is preserved after applying op’s effect
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[oples(T)(T)
3G, Go. Vop.

vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0%, [opler(0)(07)) € Go U G([oplkok(T))

Guarantee that op’s effect conforms to G and Go
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[oples(T)(T)
3G, Go. Vop.

vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(07, [oplef(0)(T") € Go U G([opliok(O))

...changes allowed by the tokens op acquires
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vo,0. 0e ] A (0,0 € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(0, [ople(0)(07)) € Go U G([oplkok(0))

Rely on 0 and O” correlated using G and Go
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[oples(T)(T)
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vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*))*
= [opler(O)(T') € T A
(0, [ople(0)(07)) € Go U G([oplkok(0))

Multiple operations may change state
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vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
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Concurrent operations make changes allowed always or...
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[oples(T)(T)

3G, Go. Vop.
vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(0)(C) € T A
(0", [ople(0)(07)) € Go U G([opliek(O))

... changes allowed by guarantees for tokens that
don’t conflict with those of op as per X



J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0. 0e ] A (0,0) € (Go U G(([opliok(T))*1))*
= [opler(O)(T') € T A
(07, [ople#(T)(07)) € Go U G([opliok(O))
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Go={(01,02) | 02 = O}

op = withdraw(|00)

%
vo,0. oe ] A (0,0 € (Go U G(([oplok(0))D))*

= [opler(0)(T') € I lock M lock
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Go=1(01,02) | 02 2 01}
op = withdraw(100)

Go
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J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. cel A (0,0 € G
= [opler(0)(C) € 1



J={o| o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. el A (0,0 GE'S
= [opler(0)(C) € 1

Balance at a destination replica as high as
balance at the origin replica
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op = withdraw(|00)
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Go={(01,02) | 02 = O}
op = withdraw(|00)
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J={o| 0o =0}
G(lock) = {(01,02) | 02 < O}
Go={(01,02) | 02 = O}
op = withdraw(|00)

vo,0’. oe ] A (0,0 € G§

= [[OP]]eff()(O") cJ

If there was enough money at the origin replica,
there will be enough money at a destination replica



Soundness

® Proved soundness of the proof rule

® Nontrivial: depends on causal consistency
and effect commutativity

® Soundness by compilation into an event-
based proof rule: uses structures for
specifying eventual consistency [POPL 4]



Prototype tool

® Automates the proof rule
® Discharges verification conditions using SMT

® (Case studies: fragments of several web
applications



Conclusion

® | ots of logics for shared-memory concurrency

Owicki-Gries [1976]

Rely-guarantee [Jones 1983, Pnueli 1985]

Concurrent separation logic [O’Hearn 2004]
RGSep/SAGL [Vafeiadis+ 2007, Feng+ 2007]
Concurrent abstract predicates [Dinsdale-Young+ 2010]
Higher-order CAP [Svendsen+ 201 3]

CaReSL [Turon+ 201 3]

Fine-grained concurrent separation logic [Nanevski+ 2014]
Iris [Jung+ 2015]
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Conclusion

® | ots of logics for shared-memory concurrency

® Almost none for distributed systems



Conclusion

Lots of logics for shared-memory concurrency
Almost none for distributed systems

Clean, modular reasoning principles still
applicable: rely-guarantee reasoning

Starting point for research in distributed
systems verification



