Relational Views Framework

for Proving Linearizability
(of concurrent libraries)

Artem Khyzha Alexey Gotsman Matthew Parkinson

Concurrent libraries

® Encapsulate efficient concurrent algorithms

- Java:java.util.concurrent
- C++:Intel Threading Building Blocks

- C#: System.Collections.Concurrent

® |mplement stacks, queues, skip lists, hash tables, etc

® |t is not easy to understand why they are correct

Concurrent library specification

® A standard correctness criterion — linearizability

Implementation

concrete
library

Il

Specification

abstract

library

Concurrent library specification

Non-blocking stack Atomic stack ADT

struct Node {

Node *next; int val;
} *Top;
. : Sequence §;
void push(int v) {
Node *t, *x;

X = new Node;

Il

void push(int v) {

atomic {S=v :S;}

}

x->val = v;
do {
t = Top;
X->hext = t;
} while(!CAS(&Top,t,x)); }

Contextual refinement

o |[fL C L, then C(L) can recreate
executions of C(L).

® |t is sound to replace a library with its
specification in reasoning about its client.

® Proofs about C(L) work for C(L).

Linearizability

t I . tl,call push(42) tl, ret push(42) tl, call isEmpty() tl, ret isEmpty(yes)

t2 t2, call pop() t2, ret pop(42) t2, call push(7) t2, ret push(7)

® Client observes events t, call m(a)
and t, ret m(r)

® A history — a trace of events

tl:

t2:

tl:

t2:

Linearizability

tl, call push(42) tl, ret push(42)

t2, call pop()

t2, ret pop(42)

C

tl, call push(42) tl, ret push(42)

t2, call pop()

t2, ret pop(42)

tl, call isEmpty() tl, ret isEmpty(yes)

t2, call push(7) t2, ret push(7)

tl, call isEmpty() tl, ret isEmpty(yes)

t2, call push(7) t2, ret push(7)

Relational Views Framework

* Recipe:
* linearization points-based proof method

* Views Framework for thread-modular
reasoning about concurrency

A simple and generic logic for proving
linearizability

Views Framework

® TheViews Framework is a generalisation of
Hoare-style program logics for concurrency.

® Framework can be instantiated into existing
logics by adjusting parameters.

Views Framework

Rely-
Guarantee

Local Rely-

Deny- Guarantee

Guarantee

Concurrent
Abstract
Predicates

Separation
logic

Views Framework

® TheViews Framework is a generalisation of
Hoare-style program logics for concurrency.

® Framework can be instantiated into existing
logics by adjusting parameters.

® We extend the original framework to support
proving properties of pairs of programs

struct Node {

Node *next; int val;

Linearization points | 5

- I . tl,call push(42b tl, ret push(42) void push(int v) {
o i : NOde >kt, *X;

X = new Node;

t2 t2, call pop() t2, ret pop(42) x->val =v;
t = Top;

X->nhext = t;

* implemented methods take | while(ICAS(&Top.tx):

effect instantly

Sequence §;
, tl, call push(42) tl, ret push(42)
] R @ s

t2, call pop() t2, ret pop(42)

t2: EETEEPEE o q }

void push(int v) {
atomic { S=v-S§;}

struct Node {

Node *next; int val;

Linearizability gy

T I . tl,call push(42b tl, ret push(42) void push(int v) {
o i : NOde >kt, *X;

X = new Node;

t2 t2, call pop() t2, ret pop(42) X->val = v;
t = Top;

X->next =t
} while(!CAS(&Top,t,x)); }

Linearization
point

Sequence §;
tl, call push(42)

t2, call pop() t2, ret pop(42)

tl, ret push(42)

void push(int v) {
atomic {S=v-S;}

}

Proving linearizability

tl, ltl,callm(a) . tl,retm(r)l

Facts to prove:

tl, call M(a) three MR) @ there is an LP in m

tI:I ---------- ‘ ------------ 1

® it is passed once

® return values of m
and M are the same

Proving linearizability

tl. ltl,callm(a) . tl,retm(r)l

Facts to prove:

tl, call M(a) three MR) @ there is an LP in m

tI:I ---------- ‘ ------------ 1

Two forms of auxiliary state:

® it is passed once

® return values of m
® a state of the spec and M are the same

® one-time permission to
pass a LP — a token

Specifying methods
o { |([todo(M)]r) } m { I([done(M)]:) }

* m starts in (s, O, tokens) sat. |([todo(M)]),

* uses [todo(M)]: as a permission to pass an LP

» finishes in (s’, 0, tokens’) sat. |([done(M)];)

Relational views

® A set of views — assertions in a logic

([todo(M)]y), I([done(M)]:)

® Reification — interpretation of views

(s, O, tokens) sat. |([todo(M)]¢)

® A composition operation *

® encodes thread-modular reasoning method

Relational views

(inspired by separation logic)

» Views are sets of partial states w\ tokens

» Views = sets of (S, 0, tokens)
» States = heap configurations (Loc —> Val)

- Tokens = sets of [todo inc(3)]t and [done inc(7)];

state of the impl. abstract state tokens

C > 42 C e 42 [todo inc(7))];

Relational views

(inspired by separation logic)

* Views are sets of partial states w\ tokens
* represent an ownership of a part of a heap

»+ Composition forces views to describe disjoint parts of
a heap

crH 42 x C e 42 * [todo(inc(3))]t

o * p ={(s¥Ws’, oWo’, TUT) |
(s,0, T)epand(s,o, T)ep }

Relational views

(inspired by separation logic)

* Reification function:

- complements partial heap configurations
arbitrarily

Lpl ={(sWU s, oWa, 1)|(s, 0 1)ep)

Relational views: rely/guarantee

* Views are triples of (assertion, rely, guarantee)
- assertion is a set of (state, state, tokens)
» guarantee — thread’s own transitions

* rely — transitions by other threads

- H{(P, R, G)} C{(Q, R, G)}

Relational views: rely/guarantee

* Views are triples of (assertion, rely, guarantee)

- assertion is a set of (state, state, tokens)

« Reification erases all extra information:

| (assertion, rely, guarantee) | = assertion

Relational views: rely/guarantee

* Views are triples of (assertion, rely, guarantee)

- assertion is a set of (state, state, tokens)

- (PR, G) * (P,R,G)=(PUP,RNR,GUG)
when G C R,G C R’

* Encodes a parallel composition rule

Proof rules

Fe{p} X {q}: - {PYCL P} (P} O, {Q)

= AP} a {9} = {P} C1 5 Cy {9}

- {P} C {0} - {P} C1 {Q) i {P} Cr {Q)
H {P*xR} C {Q*R} = AP} C1 4+ Cy {Q}

- {P} C {Q} PP H{PLC{Q} Q=
- {dX. P} C {3X.Q} = {P'} C {Q'}
= P} C{Q1} {2} € {Qs) - {P} C {P}

F {P1V Py} C{Q1V Qs} = {P} C* {P}

Proof rules

Gt (b} {qﬁ\
4 {7)} Y {Q}/A

Rule for atomic
commands
AND

linearization points

— T T p— P ——

Rule for atomic commands

Rely-
Guarantee Local Rely-
Guarantee

i requirements
Guarantee {0 reason N g

techniques

: Concurrent
Separation A
logic Predicates

Rule for atomic commands

e {p} & {q}:

® follows a concrete semantics of X;

I X —>42 } ++x { x —> 43 }
D {x >42%1 --x {x —> 43}

Rule for atomic commands

e {p} & {q}:

® follows a concrete semantics of X;

® requires simulation by an (optional) update to
the abstract state;

I X —>42 } ++x { x —> 43 }
D {x >42%1 --x {x —> 43}

Rule for atomic commands

(s,0, T) € LpJ

(5,0, 7)€ Lql [todo(A)] € T
[done(A)] e T’

Rule for atomic commands

S (5,0, TV e Lp * r| O

(s,0,7)e Lq * r] [todo(A)] € T
[done(A)] e T’

Rule for atomic commands

forall (s, 0, T) e Lp * r |

for all state updates s —2>s’

there exists O‘—A>0" such that

in T, [todo(A)] changes to [done(A)]

orA=nop, 0=0
and (s’, 0, T) e Lq * r

— {p} & {q}

Specifying methods

—c 1 ([todo(M)]e) } m 1 I([done(M)]:) }

Fe{p}C{q}=

for all C =>C’ exists p .

Fe{p}a&{q} and

||_t{P’}C,{q}

.0, yelpl O

Specifying methods

(s,0, T) € |_pJ O
/ N A

nop I

/
nop |
N Y
’ y»
0" ™ elpl O
/
nop \

\ A
/A

\

\ ’
) A

v N Y

||—t{P}C{C|}=

for all C—2> C’ exists p’ .

Fe{p}x{q} and

Fe{p }C{q}

Soundness

- L — library/impl. L — library/spec.
* When every method is specified like this:

* ¢ {I([todo(M)]) } m { I([done(M)]:) }

» histories(L) C histories(L’)

Work in progress

() Simple logic and semantics
{) Reasoning about LPs and helping

¢ Speculation

Instantiations:

RGsep, RGsim &) CaReSL

