
Relational Views Framework
for Proving Linearizability

Artem Khyzha Alexey Gotsman Matthew Parkinson

(of concurrent libraries)

Concurrent libraries

• Encapsulate efficient concurrent algorithms

- Java: java.util.concurrent

- C++: Intel Threading Building Blocks

- C#: System.Collections.Concurrent

• Implement stacks, queues, skip lists, hash tables, etc

• It is not easy to understand why they are correct

concrete
library

Concurrent library specification

• A standard correctness criterion — linearizability

abstract
library

⊑
Implementation Specification

struct Node {
 Node *next; int val;
} *Top;

void push(int v) {
 Node *t, *x;
 x = new Node;
 x->val = v;
 do {
 t = Top;
 x->next = t;
 } while(!CAS(&Top,t,x)); }

Concurrent library specification

Sequence S;

void push(int v) {
 atomic { S = v :: S; }
}

Non-blocking stack Atomic stack ADT

⊑

• If L ⊑ L’, then C(L’) can recreate
executions of C(L).

• It is sound to replace a library with its
specification in reasoning about its client.

• Proofs about C(L’) work for C(L).

• EXAMPLE OF THE PROPERTY.

Contextual refinement

H t1:

t2:

 Linearizability
t1, call push(42) t1, call isEmpty()

t2, call pop() t2, call push(7)

t1, ret push(42)

t2, ret pop(42)

t1, ret isEmpty(yes)

t2, ret push(7)

• Client observes events t, call m(a)

 and t, ret m(r)

• A history — a trace of events

H t1:

t2:

H’ t1:

t2:

t1, call push(42) t1, call isEmpty()

t2, call pop() t2, call push(7)

t1, ret push(42)

t2, ret pop(42)

t1, ret isEmpty(yes)

t2, ret push(7)

 Linearizability
t1, call push(42) t1, call isEmpty()

t2, call pop() t2, call push(7)

t1, ret push(42)

t2, ret pop(42)

t1, ret isEmpty(yes)

t2, ret push(7){

{

}

}
⊆

Relational Views Framework

• Recipe:

• linearization points-based proof method

• Views Framework for thread-modular
reasoning about concurrency

A simple and generic logic for proving
linearizability

Views Framework

• The Views Framework is a generalisation of
Hoare-style program logics for concurrency.

• Framework can be instantiated into existing
logics by adjusting parameters.

• Our contribution — adjusting the framework
for proving linearizability.

Views Framework

Local Rely-
GuaranteeDeny-

Guarantee

Concurrent
Abstract

Predicates

Separation
logic

RGSep

Owicki-Gries
Rely-

Guarantee

Views Framework

• The Views Framework is a generalisation of
Hoare-style program logics for concurrency.

• Framework can be instantiated into existing
logics by adjusting parameters.

• We extend the original framework to support
proving properties of pairs of programs

H t1:

t2:

t1, isEmpty()

t2, push(7)

t1, ret(yes)

t2, push(7)

H’ t1:

t2:

t1, isEmpty()

t2, push(7)

t1, ret(yes)

t2, push(7)

struct Node {
 Node *next; int val;
} *Top;

void push(int v) {
 Node *t, *x;
 x = new Node;
 x->val = v;
 do {
 t = Top;
 x->next = t;
 } while(!CAS(&Top,t,x)); }

Sequence S;

void push(int v) {
 atomic { S = v⋅S; }

}

t1, call push(42)

t2, call pop()

t1, ret push(42)

t2, ret pop(42)

t1, call push(42)

t2, call pop()

t1, ret push(42)

t2, ret pop(42)

• implemented methods take
effect instantly

 Linearization points

H t1:

t2:

t1, isEmpty()

t2, push(7)

t1, ret(yes)

t2, push(7)

H’ t1:

t2:

t1, isEmpty()

t2, push(7)

t1, ret(yes)

t2, push(7)

struct Node {
 Node *next; int val;
} *Top;

void push(int v) {
 Node *t, *x;
 x = new Node;
 x->val = v;
 do {
 t = Top;
 x->next = t;
 } while(!CAS(&Top,t,x)); }

Sequence S;

void push(int v) {
 atomic { S = v⋅S; }

}

 Linearizability

t1, call push(42)

t2, call pop()

t1, ret push(42)

t2, ret pop(42)

t1, call push(42)

t2, call pop()

t1, ret push(42)

t2, ret pop(42)

Linearization
point

Linearization
point

H t1:

H’ t1:

 Proving linearizability

t1, call M(a) t1, ret M(R)

t1, call m(a) t1, ret m(r)

Facts to prove:

• there is an LP in m

• it is passed once

• return values of m
and M are the same

H t1:

H’ t1:

 Proving linearizability

t1, call M(a) t1, ret M(R)

t1, call m(a) t1, ret m(r)

Facts to prove:

• there is an LP in m

• it is passed once

• return values of m
and M are the same

Two forms of auxiliary state:

• a state of the spec

• one-time permission to
pass a LP — a token

Specifying methods

• m starts in (s, σ, tokens) sat. I([todo(M)]t),

• uses [todo(M)]t as a permission to pass an LP

• finishes in (s’, σ’, tokens’) sat. I([done(M)]t)

⊢t { I([todo(M)]t) } m { I([done(M)]t) }

Relational views

• A set of views — assertions in a logic

I([todo(M)]t), I([done(M)]t)

• Reification — interpretation of views

(s, σ, tokens) sat. I([todo(M)]t)

• A composition operation ∗

• encodes thread-modular reasoning method

Relational views
 (inspired by separation logic)

• Views are sets of partial states w\ tokens

• Views = sets of (s, σ, tokens)

• States = heap configurations (Loc —> Val)

• Tokens = sets of [todo inc(3)]t and [done inc(7)]t

state of the impl.
c ↦ 42

abstract state
C ⤇ 42 [todo inc(7))]t

tokens

Relational views
 (inspired by separation logic)

• Views are sets of partial states w\ tokens

• represent an ownership of a part of a heap

• Composition forces views to describe disjoint parts of
a heap

p ∗ p’ = { (s⊎s’, σ⊎σ’, τ∪τ’) |
(s, σ, τ) ∈ p and (s’, σ’, τ’) ∈ p’ }

c ↦ 42 ∗ C ⤇ 42 ∗ [todo(inc(3))]t

Relational views
 (inspired by separation logic)

• Reification function:

• complements partial heap configurations
arbitrarily

⎣p⎦ = { (s ⊎ s', σ ⊎σ', τ) | (s, σ, τ) ∈ p }

Relational views: rely/guarantee

• Views are triples of (assertion, rely, guarantee)

• assertion is a set of (state, state, tokens)

• guarantee — thread’s own transitions

• rely — transitions by other threads

• ⊢t {(P, R, G)} C {(Q, R, G)}

Relational views: rely/guarantee

• Views are triples of (assertion, rely, guarantee)

• assertion is a set of (state, state, tokens)

• stability under rely is required

• Reification erases all extra information:

• ⎣(assertion, rely, guarantee)⎦ = assertion

Relational views: rely/guarantee

• Views are triples of (assertion, rely, guarantee)

• assertion is a set of (state, state, tokens)

• Encodes a parallel composition rule

• (P, R, G) ∗ (P’, R’, G’) = (P ∪ P’, R ∩ R’, G ∪ G’),
when G’ ⊆ R, G ⊆ R’

Proof rules

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JflKi}{JflÕKi}

„t {fl} – {fl

Õ} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JPKi}{JQKi}

„t {P} – {Q} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

⊩t {p} α {q}:

Proof rules

)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

„t {P} C1 {Q} „t {P} C2 {Q}
„t {P} C1 + C2 {Q}

)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

J K J K

)
„t {P} C {Q}

„t {P ú R} C {Q ú R}

)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q}

„t {P} C {P}
„t {P} C

ı {P}

Rule for atomic
commands

AND
linearization points

6 A Generic Logic for Proving Linearizability

✏: Views ◊ Int ◊ Assn

JP ú QKi = JPKi ú JQKi
JP V QKi = JPKi V JQKi
JP ‚ QKi = JPKi ‚ JQKi
J÷X. PKi =

x

nœVal

JPKi[X:n]

Figure 2 Satisfaction relation for the assertion language Assn

(PRIM)
’i. – �t {JPKi}{JQKi}

„t {P} – {Q} (SEQC)
„t {P} C1 {P Õ} „t {P Õ} C2 {Q}

„t {P} C1 ; C2 {Q}

(FRAME)
„t {P} C {Q}

„t {P ú R} C {Q ú R} (DISJ)
„t {P1} C {Q1} „t {P2} C {Q2}

„t {P1 ‚ P2} C {Q1 ‚ Q2}

(EX)
„t {P} C {Q}

„t {÷X. P} C {÷X. Q} (CHOICE)
„t {P} C1 {Q} „t {P} C2 {Q}

„t {P} C1 + C2 {Q}

(ITER)
„t {P} C {P}
„t {P} C

ı {P} (CONSEQ)
P Õ V P „t {P} C {Q} Q V QÕ

„t {P Õ} C {QÕ}

Figure 3 Proof rules

Let us assume an interpretation of logical variables i œ Int. In Figure 2, we define a function J·K· :
Assn ◊ Int æ Views that we use to interpret assertions. Interpretation of assertions is parametrised
by J·K· : VAssn ◊ Int æ Views. In order to interpret disjunction, we introduce a correspondent
operation on views and require the following properties from it:

Âp ‚ qÊ = ÂpÊ fi ÂqÊ;
(p ‚ q) ú r V (p ú r) ‚ (q ú r);
(p ú r) ‚ (q ú r) V (p ‚ q) ú r.

The judgements of the program logic take the form of „t {P} C {Q}. The intended semantics
of „t {P} C {Q} is the following: if an initial configuration (‡, �, �) is described by a view
satisfying the formula P , then the execution of the command C in the thread t can be simulated
by the abstract machine with abstract primitive commands from � so that a final configuration
is described by a view satisfying the formula Q. This is a partial correctness interpretation: the
judgements say nothing about non-terminating executions.

The proof rules presented in Figure 3 are mostly standard. Among them, the PRIM rule is note-
worthy, since it is used for reasoning both about atomic steps of the sequential command and lin-
earization points in it. This is made possible by a corresponding action judgements in the premise of
the rule. The set of rules also includes the FRAME rule that implements the idea of local reasoning
from separation logic [19].

Semantics of proof judgements. To relate the proof judgements with the operational semantics, we
introduce a safety judgement safet(p, C, q).

I Definition 5 (Safety Judgement). We define safet as the greatest relation such that the following
holds whenever safet(p, C, q) does:

if C ”= skip, then ’C

Õ
, –. C

t,–≠≠æ C

Õ =∆ ÷p

Õ
. – �t {p}{p

Õ} · safet(pÕ
, C

Õ
, q), and

if C = skip, then p V q.

⊩t {p} α {q}:

Local Rely-
Guarantee

Deny-
Guarantee

Concurrent
Abstract

Predicates

Separation
logic

Rely-
Guarantee

RGSep

requirements
to reasoning
techniques

Rule for atomic commands

⊩t {p} α {q}:

Rule for atomic commands

• follows a concrete semantics of α;

{ x —> 42 } ++x { x —> 43 }
{ x —> 42 } --x { x —> 43 }

⊩t {p} α {q}:

Rule for atomic commands

• follows a concrete semantics of α;

• requires simulation by an (optional) update to
the abstract state;

{ x —> 42 } ++x { x —> 43 }
{ x —> 42 } --x { x —> 43 }

⊩t {p} α {q}:

[todo(Α)] ∈ τ
[done(Α)] ∈ τ’

Rule for atomic commands

s

s’

α

σ

σ’

(s, σ, τ) ∈⎣p⎦

(s’, σ’, τ’) ∈⎣q⎦

A nop

[todo(Α)] ∈ τ
[done(Α)] ∈ τ’

Rule for atomic commands

s

s’

α

σ

σ’

(s, σ, τ) ∈⎣p ∗ r⎦

(s’, σ’, τ’) ∈⎣q ∗ r⎦

A nop

for all (s, σ, τ) ∈⎣p ∗ r⎦
for all state updates s s’α

there exists σ σ’ such thatΑ

in τ, [todo(Α)] changes to [done(Α)]

and (s’, σ’, τ’) ∈⎣q ∗ r⎦
or A = nop, σ = σ’

Rule for atomic commands

⊢ {p} α {q}

⊩t { p } C { q } =

for all C C’ exists p’ .

⊩t { p } α { q }, and

⊩t { p’ } C’ { q }

Specifying methods

α

⊢t { I([todo(M)]t) } m { I([done(M)]t) }

Specifying methods

s

s’

α

σ(s, σ, τ) ∈⎣p⎦

(s’, σ’, τ’) ∈⎣p’⎦

Anop

s’’

α’

(s’’, σ’’, τ’’) ∈⎣p’’⎦

A’nop

σ’

σ’’

… …

nop

…

α’’ A’’

⊩t { p } C { q } =

for all C C’ exists p’ .

⊩t { p } α { q }, and

⊩t { p’ } C’ { q }

α

Soundness

• L — library/impl. L’ — library/spec.

• When every method is specified like this:

• ⊢t { I([todo(M)]t) } m { I([done(M)]t) }

• histories(L) ⊆ histories(L’)

Work in progress

• Simple logic and semantics

• Reasoning about LPs and helping

• Speculation

Instantiations:

• RGsep, RGsim CaReSL

