
A Hitchhiker’s Guide to Reinventing a Prolog Machine

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

CICLOPS’17

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 1 / 33

Outline

1 Deriving the execution algorithm

2 The heap representation as executable code

3 Execution as iterated clause unfolding

4 The execution algorithm

5 Exposing the answers of a logic engine to the implementation language

6 Multi-argument indexing: a modular add-on

7 Ready to run: some performance tests

8 Summary and conclusions

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 2 / 33

Prolog: the two-clause meta-interpreter

The meta-interpreter metaint/1 uses a (difference)-list view of prolog clauses.

metaint([]). % no more goals left, succeed
metaint([G|Gs]):- % unify the first goal with the head of a clause

cls([G|Bs],Gs), % build a new list of goals from the body of the
% clause extended with the remaining goals as tail

metaint(Bs). % interpret the extended body

clauses are represented as facts of the form cls/2

the first argument representing the head of the clause + a list of body goals

clauses are terminated with a variable, also the second argument of cls/2.

cls([add(0,X,X) |Tail],Tail).
cls([add(s(X),Y,s(Z)), add(X,Y,Z) |Tail],Tail).
cls([goal(R), add(s(s(0)),s(s(0)),R) |Tail],Tail).

?- metaint([goal(R)]).
R = s(s(s(s(0)))) .

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 3 / 33

Deriving the execution algorithm

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 4 / 33

The equational form of terms and clauses

An equation like

T=add(s(X),Y,s(Z)

can be rewritten as a conjunction of 3 equations as follows

T=add(SX,Y,SZ),SX=s(X),SZ=s(Z)

When applying this to a clause like

C=[add(s(X),Y,s(Z)), add(X,Y,Z)]

it can be transformed to a conjunction derived from each member of the list

C=[H,B],H=add(SX,Y,SZ),SX=s(X),SZ=s(Z), B=add(X,Y,Z)

The list of variables ([H,B] in this case) can be seen as as a toplevel
skeleton abstracting away the main components of a Horn clause: the variable
referencing the head followed by 0 or more references to the elements of the
conjunction forming the body of the clause.

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 5 / 33

The “natural language equivalent” of the equational form

As the recursive tree structure of a Prolog term has been flattened, it makes
sense to express it as an equivalent “natural language” sentence.

add SX Y SZ if SX holds s X and SZ holds s Z and add X Y Z.

note and the correspondence between the keywords “if” and “and” to
Prolog’s “:-” clause neck and “,” conjunction symbols

Note also the correspondence between the keyword “holds” and the
use of Prolog’s “=” to express a unification operation between a variable
and a flattened Prolog term

the toplevel skeleton of the clause can be kept implicit as it is easily
recoverable

this is our “assembler language” to be read in directly by the loader of a
runtime system

a simple tokenizer splitting into words sentences delimited by “.” is all
that is needed to complete a parser for this English-style “assembler
language”

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 6 / 33

Example

Prolog code:

add(0,X,X).
add(s(X),Y,s(Z)):-add(X,Y,Z).

goal(R):-add(s(s(0)),s(s(0)),R).

Natural language-style assembler code:

add 0 X X .
add _0 Y _1 and _0 holds s X and _1 holds s Z if add X Y Z .

goal R if add _0 _1 R and
_0 holds s _2 and
_2 holds s 0 and
_1 holds s _3 and
_3 holds s 0 .

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 7 / 33

The heap representation as
executable code

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 8 / 33

Representing terms in a Java-based runtime

we instruct our tokenizer to recognize variables, symbols and (small)
integers as primitive data types

we develop a Java-based interpreter in which we represent our Prolog
terms top-down

Java’s primitive int type is used for tagged words

in a C implementation one might want to chose long long instead of
int to take advantage of the 64 bit address space

we instruct our parser to extract as much information as possible by
marking each word with a relevant tag

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 9 / 33

The top-down representation of terms

add(s(X),Y,s(Z)):-add(X,Y,Z).

compiles to

add _0 Y _1 and _0 holds s X and _1 holds s Z if add X Y Z .

on the heap (starting in this case at address 5):

[5]a:4 [6]c:add [7]r:10 [8]v:8 [9]r:13 [10]a:2 [11]c:s [12]v:12
[13]a:2 [14]c:s [15]v:15 [16]a:4 [17]c:add [18]u:12 [19]u:8
[20]u:15

distinct tags of first occurrences (tagged “v:”) and subsequent
occurrences of variables (tagged “u:”).
references (tagged “r:”) always point to arrays starting with their length
marked with tag “a:”
cells tagged as array length contain the arity of the corresponding
function symbol incremented by 1
the “skeleton” of the clause in the previous example is shown as:

r:5 :- [r:16]

the head of this clause starts at address 5 and its (one-element) body
follows at address 16

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 10 / 33

Clauses as descriptors of heap cells

the parser places the cells composing a clause directly to the heap

a descriptor (defined by the small class Clause) is created and
collected to the array called “clauses” by the parser

an object of type Clause contains the following fields:

int base: the base of the heap where the cells for the clause start
int len: the length of the code of the clause i.e., number of the heap
cells the clause occupies
int neck: the length of the head and thus the offset where the first body
element starts (or the end of the clause if none)
int[] gs: the toplevel skeleton of a clause containing references to the
location of its head and then body elements
int[] xs: the index vector containing dereferenced constants, numbers
or array sizes as extracted from the outermost term of the head of the
clause, with 0 values marking variable positions.

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 11 / 33

Execution as iterated clause
unfolding

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 12 / 33

The key intuition: we emulate (procedurally) the
meta-interpreter

as the meta-interpreter shows it, Prolog’s execution algorithm can be
seen as iterated unfolding of a goal with heads of matching clauses

if unification is successful, we extend the list of goals with the elements of
the body of the clause, to be solved first

thus indexing, meant to speed-up the selection of matching clauses, is
orthogonal to the core unification and goal reduction algorithm

as we do not assume anymore that predicate symbols are non-variables,
it makes sense to design indexing as a distinct algorithm

we need a convenient way to plug it in as a refinement of our iterated
unfolding mechanism (we will use Java 8 streams for that)

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 13 / 33

Unification, trailing and pre-unification clause filtering

unification descends recursively and binds variables to terms in
corresponding positions ⇒ full unification can be expensive!

our relatively rich tag system reduces significantly the need to call the full
unification algorithm

pre-unification: ⇒ we need to filter out non-unifiable clauses quickly

“unification instructions” can be seen as closely corresponding to the tags
of the cells on the heap, identified in our case with the “code” segment of
the clauses

we will look first at some low-level aspects of unification, that tend to be
among the most frequently called operations of a Prolog machine

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 14 / 33

The pre-unification step: detecting matching clauses without
copying to the heap

one can filter matching clauses by comparing the outermost array of the
current goal with the outermost array of a clause head

the xs register array: a copy of the outermost array of the goal element
we are working with, holding dereferenced elements in it

used to reject clauses that mismatch it in positions holding symbols,
numbers or references to array-lengths

we use for this the prototype of a clause head without starting to place
new terms on the heap

dereferencing is avoided when working with material from the
heap-represented clauses, as our tags will tell us that first occurrences of
variables do not need it at all, and that other
variable-to-variable-references need it exactly once as a getRef step

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 15 / 33

Unification and trailing

as we unfolded to registers the outermost array of the current goal
(corresponding to a predicate’s arguments) we will start by unifying them,
when needed, with the corresponding arguments of a matching clause

a dynamically growing and shrinking int stack is used to eliminate
recursion by the otherwise standard unification algorithm

trailing: to emulate procedurally the execution of the two clause
meta-interpreter, we need to keep and “undo list” (the trail) for variable
bindings to be undone on backtracking

to avoid unnecessary work, variables at higher addresses are bound to
those at lower addresses on the heap and after binding, variables are
trailed when lower then the heap level corresponding to the current goal

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 16 / 33

Fast “linear” term relocation

we implement a fast relocation loop that speculatively places the clause
head (including its subterms) on the heap

this “single instruction multiple data” operation can benefit from parallel
execution!

new terms are built on the heap by the relocation loop in two stages: first
the clause head (including its subterms) and then, if unification succeeds,
also the body

pushHead copies and relocates the head of clause at (precomputed)
offset b from the prototype clause on the heap to the a higher area where
it is ready for unification with the current goal

similar code for pushBody

we also relocate the skeleton gs starting with the address of the first goal
so it is ready to be merged in the list of goals

a new small class Spine will keep track of those runtime components

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 17 / 33

Stretching out the Spine: the (immutable) goal stack

a Spine is a runtime abstraction of a Clause

it collects information needed for the execution of the goals originating
from it

goal elements on this immutable list are shared among alternative
branches
he small methodless Spine class declares the following fields:

int hd: head of the clause
int base: base of the heap where the clause starts
IntList gs: immutable list of the locations of the goal elements
accumulated by unfolding clauses so far
int ttop: top of the trail as it was when this clause got unified
int k: index of the last clause the top goal of the Spine has tried to
match so far
int[] regs: dereferenced goal registers
int[] xs: index elements based on regs

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 18 / 33

The execution algorithm

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 19 / 33

Our interpreter: yielding an answer and ready to resume

it starts from a Spine and works though a stream of answers, returned
to the caller one at a time, until the spines stack is empty
it returns null when no more answers are available

final Spine yield() {
while (!spines.isEmpty()) {
final Spine G = spines.peek();
if (hasClauses(G)) {
if (hasGoals(G)) {
final Spine C = unfold(G);
if (C != null) {
if (!hasGoals(C)) return C; // return answer
else spines.push(C);

} else popSpine(); // no matches
} else unwindTrail(G.ttop); // no more goals in G

} else popSpine(); // no clauses left
}
return null;

}
Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 20 / 33

– continued –

the active component of a Spine is the topmost goal in the immutable
goal stack gs contained in the Spine

when no goals are left to solve, a computed answer is yield, encapsulated
in a Spine that can be used by the caller to resume execution

when there are no more matching clauses for a given goal, the topmost
Spine is popped off

an empty Spine stack indicates the end of the execution signaled to the
caller by returning null.

a key element in the interpreter loop is to ensure that after an Engine
yields an answer, it can, if asked to, resume execution and work on
computing more answers

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 21 / 33

Resuming the interpreter loop

the class Engine defines in the method ask()
the instance variable “query” of type Spine, contains the top of the trail
as it was before evaluation of the last goal, up to where bindings of the
variables will have to be undone, before resuming execution
ask() also unpacks the actual answer term (by calling the method
exportTerm) to a tree representation of a term, consisting of
recursively embedded arrays hosting as leaves, an external
representation of symbols, numbers and variables

Object ask() {
query = yield();
if (null == query) return null;
final int res = answer(query.ttop).hd;
final Object R = exportTerm(res);
unwindTrail(query.ttop);
return R;

}

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 22 / 33

Exposing the answers of a logic
engine to the implementation

language

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 23 / 33

Answer streams

to encapsulate our answer streams in a Java 8 stream, a special
iterator-like interface called Spliterator is used

the work is done by the tryAdvance method which yields answers
while they are not equal to null, and terminates the stream otherwise

public boolean tryAdvance(Consumer<Object> action) {
Object R = ask();
boolean ok = null != R;
if (ok) action.accept(R);
return ok;

}

three more methods are required by the interface, mostly to specify when
to stop the stream and that the stream is ordered and sequential

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 24 / 33

Multi-argument indexing: a
modular add-on

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 25 / 33

The indexing algorithm

the indexing algorithm is designed as an independent add-on to be
plugged into the the main Prolog engine

for each argument position in the head of a clause it associates to each
indexable element (symbol, number or arity) the set of clauses where the
indexable element occurs in that argument position

to be thriftier on memory, argument positions go up to a maximum that
can be specified by the programmer

for deep indexing, the argument position can be generalized to be the
integer sequence defining the path leading to the indexable element in a
compound term

the clauses having variables in an indexed argument position are also
collected in a separate set for each argument position

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 26 / 33

– continued –

3 levels are used, closely following the data that we want to index

sets of clause numbers associated to each (tagged) indexable element
are backed by an IntMap implemented as a fast int-to-int hash table
(using linear probing)

an IntMap is associated to each indexable element by a HashMap

the HashMaps are placed into an array indexed by the argument position
to which they apply

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 27 / 33

– continued –

when looking for the clauses matching an element of the list of goals to
solve, for an indexing element x occurring in position i , we fetch the the
set Cx ,i of clauses associated to it

If Vi denotes the set of clauses having variables in position i , then any of
them can also unify with our goal element

thus we would need to compute the union of the sets Cx ,i and Vi for each
position i , and then intersect them to obtain the set of matching clauses

instead of actually compute the unions for each element of the set of
clauses corresponding to the “predicate name” (position 0), we retain only
those which are either in Cx ,i or in Vi for each i > 0

we do the same for each element for the set V0 of clauses having
variables in predicate positions (if any)

finally, we sort the resulting set of clause numbers and hand it over to the
main Prolog engine for unification and possible unfolding in case of
success

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 28 / 33

Indexing: two special cases

for very small programs (or programs having predicates with fewer
clauses then the bit size of a long)

the IntMap can be collapse to a long made to work as a bit set
alternatively, given our fast pre-unification filtering one can bypass indexing
altogether, below a threshold

for very large programs:
a more compact sparse bit set implementation or a Bloom filter-based set
would replace our IntMap backed set, except for the first “predicate
name” position, needed to enumerate the potential matches
in the case of a Bloom filter, if the estimated number of clauses is not
known in advance, a scalable Bloom filter implementation can be used
the probability of false positives can be fine-tuned as needed, while
keeping in mind that false positives will be anyway quickly eliminated by our
pre-unification head-matching step
one might want to compute the set of matching clauses lazily, using the
Java 8 streams API

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 29 / 33

Ready to run: some performance
tests

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 30 / 33

Trying out the implementation

we prototyped the design described so far as a small, slightly more than
1000 lines of generously commented Java program

available at https://github.com/ptarau/iProlog

for more details: recording https://www.youtube.com/watch?v=

SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW of
our VMSS’2016 invited tutorial

we have stayed away from Java’s object oriented features

⇒ a large Engine class hosts all the data areas

a few small classes like Clause and Spine can be easily mapped to C
structs

while implemented as an interpreter, our preliminary tests indicate, very
good performance

it is (within a factor of 2) to our Java-based systems like Jinni and Lean
Prolog that use a (fairly optimized) compiler and instruction set
is is also within a factor of 2-4 from C-based SWI-Prolog

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 31 / 33

https://github.com/ptarau/iProlog
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW

Some basic performance tests

System 11 queens perms of 11 + nrev sudoku 4x4 metaint perms
our interpreter 5.710s 5.622s 3.500s 16.556s

Lean Prolog 3.991s 5.780s 3.270s 11.559s
Styla 13.164s 14.069s 22.196s 37.800s

SWI-Prolog 1.835s 2.620s 1.336s 4.872s
LIPS 7,278,988 7,128,483 9,261,376 6,651,000

Timings and number of logical inferences per second (LIPS) (as counted by SWI-Prolog) on 4 small Prolog programs

the program 11 queens computes (without printing them out) all the solutions
of the 11-queens problem

perms of 11+nrev computes the unique permutation that is equal to the
reversed sequence of “ numbers computed by the naive reverse predicate

Sudoku 4x4 iterates over all solutions of a reduced Sudoku solver

metaint perms is a variant of the second program, that runs via a two
clause meta-interpreter

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 32 / 33

Summary and conclusions

by starting from a two line meta-interpreter, we have captured the
necessary step-by-step transformations that one needs to implement in a
procedural language that mimics it
by deriving “from scratch” a fairly efficient Prolog machine we have,
hopefully, made its design more intuitive
we have decoupled the indexing algorithm from the main execution
mechanism of our Prolog machine
we have also proposed a natural language style, human readable
intermediate language that can be loaded directly by the runtime system
using a minimalistic tokenizer and parser
the code and the heap representation became one and the same
performance of the interpreter based on our design was able to get close
enough to optimized compiled code
we believe that future ports of this design can help with the embedding of
logic programming languages as lightweight software or hardware
components

Paul Tarau (University of North Texas) A Hitchhiker’s Guide to Reinventing a Prolog Machine CICLOPS’17 33 / 33

	Deriving the execution algorithm
	The heap representation as executable code
	Execution as iterated clause unfolding
	The execution algorithm
	Exposing the answers of a logic engine to the implementation language
	Multi-argument indexing: a modular add-on
	Ready to run: some performance tests
	Summary and conclusions

