
UPM Computer Security Date: October 18, 2023

Cryptography Module - Homework

Deadline: October 27, 2023

(1) Randomized encryption is not enough (6 Points)

In class we discussed that a deterministic encryption scheme cannot be secure in the IND-CPA
sense. Also, we saw that for this reason the ECB mode of operation is not IND-CPA secure. In this
problem you will prove that simply randomizing an encryption method is not sufficient to make
the encryption IND-CPA secure.

Let EK : {0, 1}n → {0, 1}n be a blockcipher which supports inputs of n bits, and consider the
following randomized version of ECB:

• RandECB-Encrypt(K,M): the algorithm takes as input the key K and a message M consisting
of L blocks of n bits each, M = M1||M2||M3|| · · · ||ML, and performs the following steps:

– Sample a random n-bit string IV ← {0, 1}n;
– For i = 1 to L:

– Compute Ci ← EK(IV ⊕Mi);

– Output IV ||C1|| · · · ||CL.

(a) (1 point) Show a decryption algorithm for this encryption, and prove its correctness.

(b) (5 points) Show an IND-CPA attack against the scheme. Namely, describe an algorithm
which: chooses two specific messages of two blocks each, M = M1||M2 and M ′ = M ′

1||M ′
2;

receives a ciphertext C∗ = (IV ∗||C∗
1 ||C∗

2 ) that is computed as either RandECB-Encrypt(K,M)
or RandECB-Encrypt(K,M ′); and efficiently determines which is the case. Concretely, how
can you choose M and M ′? What test can you do on C∗?

(2) Encryption is not a secure MAC method (4 points)

In class we discussed that using a secure encryption as a method to generate MACs may not
guarantee integrity. In this problem you are asked to prove that this is the case for the OFB mode
of operation.

Let EK : {0, 1}n → {0, 1}n be a blockcipher which supports inputs of n bits, and consider the
OFB encryption method that we studied in class. For a message M of length 2n, OFB with EK

works as follows.

• OFBEncrypt(K,M): on input the key K and a message M consisting of two blocks of n bits
each, M = M1||M2, choose IV ← {0, 1}n uniformly at random, compute

C1 ← EK(IV )⊕M1, C2 ← EK(EK(IV ))⊕M2

and return (IV, C1, C2).
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• OFBDecrypt(K, (IV, C1, C2)): on input the key K and a ciphertext (IV, C1, C2), compute

M1 ← EK(IV )⊕ C1, M2 ← EK(EK(IV ))⊕ C2

and return (M1,M2).

Next, consider the following MAC candidate scheme

• MAC(K,M): output T ← OFBEncrypt(K,M);

• V erify(K,M, T ): output ‘accept’ iff M = OFBDecrypt(K,T ).

and consider an attacker who sees a MAC T on a message M .

Describe an attack algorithm that, without the knowledge of the secret key K, can create a valid
MAC on any other message M∗ (different from M). Justify the correctness of the attack. Namely,
describe an algorithm that on input a message M and a valid MAC T = (IV, C1, C2) for it, outputs
a valid MAC T ∗ = (IV ∗, C∗

1 , C
∗
2 ) for a given message M∗.

Attack(M,T,M∗):

(3) Security of Hash-and-Sign Digital Signatures (6 points)

Let Σ = (Sign, V er) be a digital signature that supports messages of fixed length ℓ, i.e., any
M ∈ {0, 1}ℓ. As we have seen in the class, we can use Σ to construct a scheme for arbitrarily
long messages – i.e., any M ∈ {0, 1}∗ – by combining it with a collision-resistant hash function
H : {0, 1}∗ → {0, 1}ℓ.

Precisely, the new digital signature scheme for arbitrary messages is Σ∗ = (Sign∗, V er∗) where
the signing and verification algorithms are defined as follows:

Sign∗(sk,M) := Sign(sk,H(M))

V er∗(pk,M, σ) := V er(pk,H(M), σ)

The security claim is that Σ∗ is a secure digital signature scheme (for messages in {0, 1}∗) if: Σ
is a secure digital signature (for messages in {0, 1}ℓ), and H is a collision-resistant hash function.

a) (4 points) Suppose that the hash function H used in the construction of Σ∗ is not collision
resistant. How can you break the security (unforgeability) of Σ∗? Describe an attack against
the security of Σ∗, and justify why the attack works. (Hint: The attacker can obtain one
signature (produced using Sign∗) on a message M1 of its choice, and then it must produce
a forgery, that is a valid signature on a new message M2 ̸= M1. Recall that this adversary
must use the fact that the collision-resistance of H can be broken.)

b) (1 point) Suppose that in the digital signature scheme Σ∗ above we use some function H that
when applied to messages that have more than ℓ bits, say (x1, x2, x3, . . . , xm) with m > ℓ,
then

H(x1, x2, x3, . . . , xm) = (x1, x2, . . . , xℓ−1, xℓ ⊕ xℓ+1 ⊕ ...⊕ xm)

To be more clear
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– Define the first ℓ− 1 bits of the output to be the first ℓ− 1 bits of the input.

– Define the last bit of the output to be the XOR of the remaining bits of the input.

Regardless of how H is defined for messages of ℓ bits or less, H can not be collision resistant
(and then the digital signature scheme Σ∗ cannot be secure because of part a)). Why is it
not collision resistant?

c) (1 point) Suppose instead we use some function H that when applied to messages that have
ℓ bits or less, pads the message with zeros until we get ℓ bits and then outputs that string.
That is, whenever m ≤ ℓ:

H(x1, x2, . . . , xm) = (x1, x2, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
ℓ−m zeros

)

Assume ℓ is at least 2. Regardless of how H is defined for more than ℓ bits, H can not be
collision resistant (and then the digital signature scheme Σ∗ cannot be secure). Why is it not
collision resistant?

(4) Authenticated communication (4 points)

Suppose that Bob has a public key pkBob certified by a certification authority (where he knows
the corresponding secret key skBob) trusted by both Alice and Bob, but Alice does not have such
a certified key pair. We assume that Bob’s key can be used both for public key encryption and
for digital signatures. Alice wants to communicate with Bob through an insecure channel where
Eve can see and modify messages. In order to have faster communication, Alice wants to use a
symmetric key encryption scheme to encrypt messages. Alice and Bob come up with the following
protocol:

Alice: Chooses a key K and encrypts K under Bob’s public key pkBob, i.e., she sends c =
Enc(K, pkBob)

Bob: Decrypts the key K using his secret key (i.e. K = Dec(c, skBob)) and sends the message
m = ‘‘received’’ signed with his secret key, i.e. he computes σ = Sign(m, skBob) and sends
(m,σ) to Alice.

Alice: Verifies the signed message by Bob by applying V er(m,σ, pkBob). If this outputs 1, she
will start to use K to send encrypted messages to Bob with the symmetric key encryption scheme.

(a) (2 points) Can Bob be sure that it is Alice who is sending the message c?

(b) (2 points) Suppose that Bob has executed the same protocol before with Amanda. When
Alice and Bob execute this protocol, can Alice be sure that she has received the message m
from Bob, even though the verification of its signature outputs 1?
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