
Seguridad Informática Fall 2023

Homework Module 4

Marco Guarnieri
IMDEA Software Institute

Guidelines

This homework is due by Tuesday, January 9th, 2024 23:59:59 GMT+1.

Please send your solutions in PDF format to marco.guarnieri@imdea.org.
Any solution received after the deadline will receive a failing grade.

No collaboration is permitted on this assignment. Any cheating (e.g., sub-
mitting another person’s work as your own or permitting your work to be
copied) will automatically result in a failing grade.

Problem 1: Control-flow Side Channels (5 points)

Consider the following programs A and B, where secret and input are
Boolean arrays of the same size n. The array secret contains an unknown
secret and the array input contains user-provided input. Note that program
A just ignores input. Assume that in both programs, each line of code takes
one unit of time (1 cycle) to execute. In both cases, the adversary knows the
size n of the arrays and its goal is inferring as much information as possible
about secret.

Program A:

for j=0 to n-1

if secret[j]==1

do something

return

Program B:

for j=0 to n-1

if secret[j]==input[j]

do something

return

Consider an adversary C that provides input and measures the correspond-
ing absolute execution time of the programs (i.e., C can measure the number
of cycles taken to execute the program from beginning to termination).

(a) (1 point) What does adversary C learn about secret in one execution
of program A? What does C learn in multiple executions?

1



(b) (1 point) What does adversary C learn about secret in one execution
of program B? What does C learn in multiple executions?

Consider now an adversary D that can only compare the execution times of
each program on different inputs. That is, the adversary can only observe
whether the execution time on one input is bigger, smaller, or equal, to that
on another input, but D cannot measure the absolute execution time.

(c) (1 point) What does adversary D learn about secret in multiple exe-
cutions of program A?

(d) (1 point) What does adversary D learn about secret in multiple exe-
cutions of program B?

(e) (1 point) Describe in words the attack of adversary D against program
B.

Problem 2: Cache-based Timing Channels (3 points)

Consider a 1MB 4-way set associative cache with cache line size of 32B that
is shared between an adversary and a victim process.

(a) (1 point) How many cache sets does this cache have?

(b) (1 point) What does the adversary learn about the victim’s computa-
tion by flushing an address x from the cache at time t and measuring
the time it takes to reload x at time t′ > t? (Assume that there is no
virtual memory.)

(c) (1 point) Give an example victim program that leaks the value of a
Boolean variable y via this channel.

Problem 3: Constant-time (2 points)

The recommended countermeasure against timing attacks on cryptographic
algorithms is to follow the “constant-time” coding discipline.

(a) (1 point) Describe the syntactic requirements that define constant-time
code.

(b) (1 point) Which of these requirements are violated by the programs of
Exercise 1?

2



Problem 4: Non-interference (6 points)

Consider a simple loop-free programming language and an attacker that can
observe the initial and final values of all and only the public variables. In the
following, we denote public variables as pb_x, pb_y, pb_z, . . . and private
variables as pr_x, pr_y, pr_z, . . . Note that all variables store only natural
numbers. Note also that % is the remainder operator, == is the equality
operator, and =! is the inequality operator.

1. (2 points) Consider the following program:

pr_x = pr_x +((pr_x+1)%3);

pb_y = ((pr_x %3) == 0);

Does the program satisfy non-interference? If yes, describe why non-
interference holds. If no, provide an example illustrating a non-interference
violation.

2. (2 points) Consider the following program:

if (pb_x == pr_y * 3)

pb_x = 15;

else

if (pb_x == pr_y * 2)

pb_x = 42;

else

skip;

Does the program satisfy non-interference? If yes, describe why non-
interference holds. If no, provide an example illustrating a non-interference
violation.

3. (2 points) Consider the following program:

pb_x = pr_y;

if (pr_y % 2 == 0)

pb_x = pb_x +1;

else

pb_x = pb_x +2;

pb_z = pb_x % 2;

pb_x = 0;

3



Does the program satisfy non-interference? If yes, describe why non-
interference holds. If no, provide an example illustrating a non-interference
violation.

Problem 5: Branch prediction (6 points)

Consider the following program:

int foo (int data[]){

int sum = 0;

for (int i=0, i < 8, i++) {

if (data[i] < 50)

sum += data[i];

}

return sum;

}

Consider two processors P1 and P2 that are identical except for their
branch prediction unit. In particular, P1 is equipped with a 1-bit dynamic
branch predictor whereas P2 is equipped with a 2-bit dynamic branch pre-
dictor. The internal counter of both predictors is initially set to 0. For
simplicity, ignore the effects of branch prediction on the condition of the
for-loop and focus only on branch prediction on the if-statement. Answer
the following questions:

1. (2 points) For data = {100, 62, 93, 42, 95, 13, 80, 65}, which
processor does result in less mispredictions and is, therefore, faster in
computing foo(data)? Explain your answer.

2. (2 points) For data = {10, 15, 60, 18, 70, 100, 11, 80}, which
processor does result in less mispredictions and is, therefore, faster in
computing foo(data)? Explain your answer.

3. (2 points) Is there any preprocessing operation that you can do on
data that preserves the result of foo and speeds up the computation
(on average) for both P1 and P2? If yes, explain the pre-processing
step and describe how it affects the computation. If no, describe why
this is not possible.

Problem 6: Speculative execution attacks (3 points)

1. (1 point) Give an example of a snippet of code vulnerable to Spectre
V1 attacks and describe how the attack works.

4



2. (1 point) Give an example of a hardware-level mitigation against Spec-
tre V1 attacks.

3. (1 point) Give an example of a software-level mitigation against Spec-
tre V1 attacks.

5


