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Abstract. New decision proccdures for the covering and boundedness proslems for vector
addition systems are obtained. These procedures require at most space 2" '°* " {or some constant
c. The procedures nearly achieve recently established lower bounds on the amount of space
inherently required to solve these problems, and so are much more efficient than previously
known non-primitive-recursive decision orocedures.

1. Intreduction

Petri nets and vector addition systems have been studied as modeis of asynch-
ronous processes, with attempts to understand the mathematical properties of these
systems. Efficient decision procedures are presented here for the covering problem
and for the borndedness problem for vector addition systems.

These procedures operate in space cxponential in the size of the input. By some
lower bound results of Lipton [2, 5], the space complexity of these procedures is
nearly optimal. Karp and Milier [4] have previously shown that both of these
problems are de:idable, but their procedures do not operate in even primitive
recursive space.

2. Notation and definitions

We let Z represent the integers, N the nonegative integers, and N the positive
integers. If v € Z* (k e N") is a vector, then by v (i) we mean the i place of ¢, for
Isi<k If vy, vzel", then we define v, + v, to be that vector » € Z* such that
v(i)=v;0)+v()foralli, 1si<k; v,—v,isdeiined similarly. We say that i, =,
if v1(i)=<-va(i)forall i, 1<i<k. If v;< v, but v, # v, then we write v, <v,. We say
that v is nonnegative if ve Nk We use 0 to denote the zero-vector, where the
dimension will be clear from tiic context.
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224 C. Rackoff

Definition 2.1. A vector addition system consists of a dimension k e N*, and a pair
(v, A) where v € Z* is the start vector, and A = Z* is a finite set called the addition
set. A finite sequence of vectors wy, wa, ..., Wy € Z* is said to be a path in (v, A) of
length m if w;=v and if w;,;—w;e A foralli 1<i<m.If hereisa pathin (n. A)
ending in weN¥, with only nonnegative vectors on it, then we say thai w &
reachable in (v, A); R(v, A)={weNF*: w is reachable in (v, A)} is called the
reachability set of (v, A).

C(v, A)={w e N*: for some v; € R(v, A), w<wv,} is called the coverability set of
(v, A).

Since we will be considering the complexity of algorithms for problems involving
vector addition systems, it is necessary to have a precise idea of the size of such a
system. We will say that the size of a vector is the sum of the lengths of the binary
representations of the components (where the length of 0 is 1). The size of a finite
set of vectors is the sum of the sizes of the members.

The covering problem for vectcr addition systems is to determine for system
(v, A) and vector v;eN*, if v;e C(v, A). In Section 3 we present a decision
procedure for this problem which operates in space 2" '°*" (for some constant c) as
a function of the length of input.

The boundedness problem is to determine for system (v, A) if R(v, A) is finite.
The decision procedure presented in Section 4 for this problem also operates in
space 2" 8",

Lipton [5] has shown that for some constant d >0, neither of these problems can
be decided in space 2‘”7', and hence cur procedures are close to being optimal in
their use of storage. Lipton’s lower bounds are valid even if ouc¢ only considers
input whose vectors have components of value —1, 0, or 1.

Remark 2.2. Actually Lipton shows a lower bound of 2% for a slightly different
formulation of these problems; this translates to a lower bound of 2% for our
formulation.

3. The covering problem

Let A be a fixed addition set of size <» and dimension k <n; let v; € N* be a
fixed vector of size <n. We will show that for any v € N¥, in order to find a
v2€ R(v, A) such that v,=v,, it suffices to look at paths in (v, A) of length

en logn
<2 .

Definition 3.1. Let w € Z¥, let 0</ < k. Then we say that w is. i-bounded if w(j)=0
for l<j<i If re N" is such that 0< w(j)<r for 1=<j</, then we say that w is i~
bounded. Let p=w;, w,..., w, be a sequence of members of Z*. We say p is
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i-bounded (i--r bounded) if every member of p is i-bounded (i--r bounded). If
wa(j)=v1(j) for 1 <j=<i then we say that p is an i-covering sequence.

For each veZX define m{i,v) to be the length of the shortest i-bounded,
i-overing path in (v, A), if at least one such path exists; if no such path exists,
define (i, v)=0. Now define f(i)=max{m(i, v): ve Z*}. (Note that f depends
implicitly on the values of A and v,, which are held fix>d.)

For any v e Z*, v, C(v, A) if and only if there is a k-bounded, k-covering path
in (v, A). We will obtain an upper bound on f(i) by induction on i; clearly it is only
f(k%) that we are ultimately interested in.

Remark 3.2. The reader more familiar with Petri nets than vector addition systems
will want to think of a vector in Z* as a (generalized) marking. A vector being
i-bounded or i--r bounded rorresponds to a submarking being bounded in a
particular way.

Lemma 3.3. f(0)= 1.
Proof. Trivial. [
Lenwira 3.4, f(i + 1)< Q"f()) ' +£@0) for 0<i<k.

Proof. T.et ve 2, let 0<i<k be such that there is an (i +1)-bounded (i +1)-
covering path in (v, A).

Case 1: There is an (i +1)--(2"f(i)) bounded, (i + 1)-covering path in (v, A).

Then there must be an (i +1)--(2"f(i)) bounded, (i + 1)-covering path in (v, A)
where no two vectors agree on all the first / + 1 places; the length of such a sequence
is <2 ()"

Case 2: Otherwise.

Then there is an (i + 1)-bounded, (i + 1)-covering path in (v, A) which is nor
(i +1)--(2"f{ )) bound.d. Then there ~xist sequences p;, p; such that p;p, is an
(f + 1)-bounded, (i + 1j-covering path in (». A), and p; is (i +1)--(2"f(i}) bounded.
and p, begins with a vector w which is not (i +1)--(2"f(i)) bounded; say without loss
of generality that w(i +1)=2"f(i). Clearly, as in case 1, we can choosc g, 1o be o
length =< (27F() .

Since p» is an i-bounded. i-covering path in (w, A). we know that there ¢xists a
path p; of length <f{j) in (w, A) which is also i-bounded and i-covering. Note
now that by definition of the size of a vector, all the places in ali the vectors in
Aulv, are of absolute value <2". Since w(i+1)=2"f(i) and p3 is of length
<f(i), we can conclude that p; is (i+1)-bounded and (i +1)-covering.
Hence, p,p> is an (i+1)-bounded, (i+1)-covering path in {z, A) ol length

<@ T+, O
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Theorem 3.5. The covering problem can be decided in space 2°"'*** for some
constant c.

Proof. Let (v, A) be a vector add tion system of size <n and dimension 0<k <,
and let v; € N* be a vector of sizi: <n. Define g(0)= 2" and g(i +1)= (g(}))’" for
0<i<k<n; then we see from l.emmas 3.3 and 3.4 that f(i)<g(i for O0<i=«k,
and hence f(k)<g(k)= 26" <22 ™" for some constant c. Hence, we can
conclude that v; € C(v, A) if and »nly if there is some k-bounded, k-covering path
in (v, A) of length <27 ™" (where ¢ is some constant independent of n). We czn
compute that the size of any vectcr on such a path is <2%*'°®" for some constznt d.

Hence there is a nondeterministic procedure which ‘‘guesses” a k-bounded,
k-covering path, accepting if and only if one is found, and which operates in space
29n1ozn By a weli-known theorem of Savitch [8], there is a deterministic algorithm
for the covering problem which operates in space 2°"'°®" for some constant c.

The boundedness problem

Defirition 4.1. Let kcN" and let p = w,, ws, ..., w,, be a sequence of vectors in
Z*, m > 1. Then p is said to be self-covering if w; <w,, for some j, 1<j<m.

Lemma 4.2 (Karp and Miller [4]). Let (v, A) be 4a vector addition system. Then
R(v, A) is infinite if and only if there is a k-bounded, self-covering path in (v, A).

The decision procedure for boundedness suggested by Karp and Miller is as
follows: Given (v, A), attempt to enumerate all of R{v, A), and at the same time
attempt to find a k-bounded, self-covering path; exactly one of these processes
must eventually halt, telling us whether or not R(v, A) is finite. Ti= trouble with
this procedure is that if R{(v, A} is finite, the size of R (v, A) is not bounded above
‘by a primitive recursive {unction of the size of (v, A). Therefore their procedure
does not operate ir: primitive recursive time or space. However, we shall exhibit an
efficient upper bu.aiid un the length of the longest path one must examine in
searching for a k-bounded, self-¢overing path, and in this way obtain an a!zorithm
for boundedness which operates in only exponential space.

It is interesting to note [2, 6] that the problem of determining for two vector
addition systems (v, A) and (v', A") of the same dimension, if R(v, .1) is finite and
equal to R(v', A'), can not be done in.primitive recursive space. Thus, one can
decide relatively easily if a reachability set is finite; but to decide if two finite
reachability sets are equal, ore cannot do much better in the worst case than o
enumerate botk sets. These results should be comrared with the resi. 1t of Hack [3]
that given two systems (v, A) and (v', A’) (not necessarily bounded), it is ur-
decidable whether or not R(v, A)=R(v', A").



The covering and boundedness Problems 227
Now let A be a fixed addition set of size n > 1 and dimension k <.

Definition 4.3. Let 0<i < k. For each v e Z", define m'(i, v) to be the length of the
shortest i-bounded, self-covering path in (v, A), if at least one saca path exists; if no
such path exists, define m'(i, v) = 0. Now define g(i) = max{m'(i, v): v e Z*}.

As before, we will obtain an upper bound on g(i) by induction on i, although it is
g(k) that we are ultimately interested in. Both the base and induction step are
harder than in Section 3, and both will depend on Lemma 4.5. To prove Lemma
4.5, we first need a result of Borosh and Treybis on the size of solutions to linear
programming problems.

Lemma 4.4 ([1)). Letd,, d-=N", et Bbe a d, X d integer matrix and letbbe a d, X 1
integer matrix. Let d = d be an upper bound on the absolute values of the integers in
B and b. Say that there exists a vector v € N which is a solution to the equation set
By =b.

Then for some constant c independent of d, d,, a., there exists a vector v € N such
that Bv = and such that v(i)<d® for ail i, 1 <1< d>.

Lemma 4.5. Let 0<i<k, veZ* r>1 such that there is an i--r bounded. self-
covering path in (v, A). Then there is an i--r bounded, self-covering path in (v, A) of
length <r"™ for some constant ¢ independent of n, 1, r.

Proof. Let i, v, r be as in the lemma, and consider a minimal length /--r bounded,
self-covering path in (v, A); we can write this vy, 02, ..., Uy Wi, Wau o oo, Wiy,
where w;<w,,.

For a vector w e Z*, define T(w)eZ' by (T(w))(/}=wtl) for I<i<i. (In case
i=0, T(w)is the civpty vecior, that is, the unique membc - of Z".) Because of our
minimiality condiidon, T(v1), T(va), . . ., T(v,,) must all be distinct. Heace mo<r".

The iaca of the rest of the proof is as follows: To get a bound on m;, we will see
that the sequence T(w,), T(w2),..., T(wm,) car be rearranged to consist, essen-
tially, of a sequence of bounded length, together with (possibly many) simple loops
of boundad length hanpging off of it; we then use Lemma 4.4 to obtain an upper
bouad 01 the number « sunpie loops necessary o create an [~-» bounded, self-
covering path.

We now introduce some notation. An A-sequence 1s a finite nonempty sequence
of membters of A. Let s =a,, 4., ....a, be an A-sequence. By SUM(5) we mean
ar+ar---+an, I weZ then by Q(w, s) we mean the scquence w1,/ +a., w i
a\+as,...,w+ay+az+- - +an; cicarly the difference betweern the first and last
vectors of Q(w, s)is Sum(s). If x € Z', then O(x, s)is the sequence . x + T(ay) x +
T@)+T(ay),...,x+T{a)+T(a)+ - Tla,) If xeZ' and Ox.s) is i--r
bounded, we say that s is valid for x.
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Say that x€Z', and s is an A-sequence such that Q(x, s)=x, X1, ..., Xyn iS i--F
bounded, x = x,,, and x;, # x;, for any 1<j; <j,<m; then we call Q(x, 5) a simple
x-loop, or just a simple loop, and we call SUM(s) an x-loap value, or just a loop
value.

Note that T{w;), T(w>), ..., T(wn,) is the projection onto the first i places of an
i~-r bounded path starting with w,. If x, x4, .. ., x,, is a simple loop occurring as a
subsequence of T(w;), T(wz),..., T(Wm,), then if xy,...,x, is removed, the
remaining sequence will stili be the projection of an i--r bounded path starting with
wi. If this process is repeated carefully, one eventually ends up with a “short”
sequence which is the projection of an i--r bounded path starting with w, tog:ther
with a sum S € Z* of loop values for members of sequence; the difference beiween
the first and last members of the i--r bounded path so obtained, plus S, will be equai
t0 Wm, — w1 > 0. Using T.emma 4.4, we obtain a better value for S, and then reverse
the above construction by appropriately inserting simple loops in order to obtain
the projection of an i--r bounded sequence which starts with w;, and whose last
vector is >w;. :

Now define the A-sequence s;=ai, a3,...,am—1 by aj =wj.—w; for 1<j<
m.. Clearly SUM(s,)>0€Z*, and s, is valid for T(w,). Let §,=0eZ*. We will
define a sequence s1, S1, 52, S2, . . . such that for each j:

(1) Q(T(w,), s;) and Q(T(w,), s1) contain the same set of vectors (with possibly
different multiplicities); in particular, s; is a valid .A-sequence for T(w;)

(2) S;eZ*, and SUM(s;)+S; = SUM(s;).

(3) S; can be expressed as a nonnegative linea- combination of loop values for
vectors appearing on Q(T {w,), s;).

s1 and S; have already been defined, and satisfy (1), (2), and (3). Assume now
that s; and S; have besn defined, satisfying (1), (2), (3). If the length of s; is
<k + 1)%, then this construction is defined to halt; so assume 5i=a1,42,...,0n
where m=(@* +1)°, Q(T(w1),$;)=%1,X2,...,%m+1. If we think of the first
(r* +1)* members of x1, ..., Xm+1 being divided up into (r* +1) blocks of r*+1
consecutive vectors, we see that each block contains at least one vector twice, and
that in onz of the blocks none of the vectors occurs for the first time; this block
contains a simp’e loop, and the removal of this loop from x4, ..., x,.+1 would not
change the tota! sct of vectors appearing. Say that x;,..., x;, is such a simple
loop. Defire sjv1=ay az....q,-1,8...,an Clearly Q(T(w)), sj+1)=
X1, X2, .. .. Xjj—15 Xjps - - - » Xm+1 Which has the same set of vectors as those appearing
on Q(T(Wl), S,'). Define S,'_H = Sj + a;, + a;. +1 +e o+ dj,—1, SO S,‘+1 + SUM(S;’+1) =
S, +SUM(g;). Since aj,+aj,+1+- - -+a;-1 is a loop value for x;, (=x;), we can
conclude that (1), (2), (3) remain true for j +1.

Let us say that this const-uction ends with S;, s; where s;=a1,4,..., @m,
m<(r*+1)°. Then S;+SUM. 5;)=SUM(s)>0eZ*; let weN* be a vector
containing one 1 and the rest 0° such that §; + SUM(s;)= w. Let L < Z* be the set of
loop values for vectors occurring on Q(T'(w,), s;), and let £ be the matrix with
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k-rows, whose columns are the different members of L. Let b€ Z” be the column
vector w—SUM(s;). Since S;=w —-SUM(s;)=b, and S, is a nonnegative linear
combination of the members of L, the equation system By, =/ has a nonnc gative
solution, in the integers.

A locy value is just the sum of at most r* members of A, and so each place of
each member of L (and each place of B) is of absolute value' <2 “#*. L has th :refore
at most (2{2"r*)+1)* members, and so B has at most this many columns. Each
place of b is of 1bsolute value <2"(r* +1)*+1. Lettingd, =k and d =r*"", | .emma
4.4 tells us that there is some nonnegative vector y, such that By, = b and such that
the sum of the places of y, is equal to [, <r" for some constant ¢

Now let s{=s; and S{=By;. S{=w—~SUM(s}), so S|+SUM(s{)>>0eZ"; in
addition §; can be expressed as the sum of /; loop values of members of
C{T(wy), s1). Say that s{= a+.a,, ..,am and Q(T(wy). s1)=x1, X2 . ... X, .. Let
t be an A-sequence such that Q(x;,, t) is an x;, loop for some j;, 1 =), =m -1, and
such that §;—SUM(¢) can be expressed as a sum of /, — 1 loop values of membcrs of
Q(T(w)), s1). Define $:=8§-SUM(t) and s =a,,a> -+, .. 5a,.....4
Clearly s, ig valid for T(w,), and S5+ SUM(s3)=§; +SUM(s;)> () e Z.

Continving in this way, we construct a sequence §;, Si. s, S35, s, Si,...,
eventualiv obtaining s’, S’ such that §’' = 0, SUM(s') = §| + SUM(s})>0¢ Z* ands'
is valid for T'(w). The construction takes a: niost r"" stages, eact stage increasing
the length of s; by at most r

So vy, V2,. .., Uy, Q(wy, §') is an i--r bounded self-covering path in (v, A),
where the length of Q(w,, s')< r™ for some constant 4. So m1, =< r" . mo< r*. and so
mo+ m;<r" for some constant c. [

m’

Lemma 4 €. ~(0)<<2"™ for constant ¢ from Lemma 4.5,

Proof. Let v € Z* such that there is a self-covering path in (r, A). This is trivially a
0--2 bounde?d seif-covering path, and so Lemma 4.5 tells us there 1s a 0—-2
bounded self- -overing path of length <2" in (v, A). [}

Lemma 4.7. g(i + 1)<<(2"g(i))" for all i, 1 <i <k, and for constant ¢ from Lemime
4.5.

Proof. L2t v = Z" be such that there is an (i + | )-bounded. scli-covering path in
(v, A). Case i: There is an (¢ +1)--(2"g()) bounded, self-covering path in (2 A0,

Then by Lemma 4.5, there is an (i + 1)-bounded self-covering path i (14} ol
length <{(2"g )™

Case 2: Otherwise.

Then there is an (7 + 1)-bounded, seif-covering path in (¢, ) whichis nos (7 4+ 13-~
(2"g(i))bounded, call it wy, wa, ..., w,. Letj, 1=7<<m, hc such that w, <7 w,,,. Lot 4

- ¥i

1<i<m, be the smailest number xurh thay wy iz nor 0+ 10 (27810} hounded. Let



vl,vz, . U, b= 2 shortest possible path ir: (v, A) such that v,,, agrees with w; on
the first i + 1 places, and such that vy, v, .. ., Umg—1 i8 an (i + 1)--(2"g(¢)) bounded
sequence of vectors. No two of v1, 0, ..., Um,—1 Can agree on the first i + 1 places,
fc e . sequence could be made even shorter. Hence, mo—1<(2"g(i))*".
Vi V eralxtV, say that v,,.o(z +1)= w;(z +1)=2"g(i).

- For 1<u < m, define a, € A by a, = w,..1 — w.. Using the notation of the proof of
Lemma 4.5, iet 5 be the A-sequence aj, @r+1, .. ., @m-1, % Gjs1, - - -y Am-1. Ther
'Q(v;,b,"s) is -an " (i+1)-bounded, and hence i-bounded, self-covering path in
(Ume, A). Let p be an i-bounded, self-covering path in (vm,, A) of length <(g(i).
Since vm,(i +1)=2"g(i) and since each place in each vector in A is at most 2" in
absolute value, p is in fact (i +1)-bounded. So vy, v3,..., Upy—1, P is 20 (i +1)-
bounded, self-covering path in (v, A) of length <(2"g(i))™'+g(i)=(2"g())™
(assuming c>>1). O

Theorem 4.8. The boundedness problem can be decided in space 2°"'°*" for some
constant c.

Prect. Let (v, A) be a vector addition system of size <n and dimension k, 0 < k <n.
From Lemma 4.2 R(z, A) is infinite if and only if there is a k-bounded, self-
covering path in (v, A): using an analysis like that in the proof of Theorem 3.5,
Lemma 4.6 an¢ Lemma 4.7 tell us that such a paih exists, if and only if such a path
exists of length <2° “*" for some constant c. As explained in the proof of Theorem
3.5, there is an algcrithm for determining whether such a path exists which operates
in space 2°"*®" for some constant c. [

5§, Conclusion

We have exhibited decision procedures for the covering and boundedness
problems for vector addition systems, which operat¢ in exponential space. Recently
Sacerdote and Tenney [7] have come up with a decision problem fo: the reach-
ability problem for vector addition systems: given a system (v, A) and a vector
voeN¥, is voe R(v, A)? Their procedure, however, is not primitive recursive since
it uss ; the techniques of [4] used to decide the boundedress problem.

The methods used i Section ¢ were sufficient to obtain a primitive recursive
upper bound for the boundedness problem; it is an open question, however, if they
can be applied with similar effect to the reachability probiem.
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