
The never died:
Automata theory for reversing
modern CPUs

RootedCON - March 2020

vwzq.net cgvwzq github.com/cgvwzq

2

About me

I’m Pepe Vila (a.k.a. cgvwzq)

PhD student at the IMDEA Software Institute

Worked as security consultant and pentester

Intern at Facebook and Microsoft Research

I used to mess with browsers and JavaScript...

...but fell into the side channel’s rabbit hole

4

Motivation

Remember last year’s “Cache and syphilis”?

dafuq is this pattern :S

Knowing the cache replacement policy useful for finding eviction sets,

but also for optimal eviction strategies in rowhammer,
or high bandwidth covert channels

5

Motivation

Similarly, it dedicates to BIP all the sets for which the complement of the offset equals
the constituency identifying bits. Thus for the baseline cache with 1024 sets, if 32 sets
are to be dedicated to both LRU and BIP, then complement-select dedicates set 0 and
every 33rd set to LRU, and Set 31 and every 31st set to BIP. The sets dedicated to LRU
can be identified using a five bit comparator for the bits [4:0] to bits [9:5] of the set
index. Similarly, the sets dedicated to BIP can be identified using another five bit
comparator that compares the complement of bits [4:0] of the set index to bits [9:5] of
the set index

A primer on Hardware Caches

6

4-cycles

12-cycles

41-cycles

150-cycles

32KB 8 ways

256KB 4 ways

8MB 16 ways

(data from Kaby Lake i7-8550U CPU)

16GB

private per
physical core

shared

La
te

nc
y

C
apacity

A primer on Hardware Caches

7

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

A primer on Hardware Caches

8

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

A primer on Hardware Caches

9

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

A primer on Hardware Caches

10

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1

block 0

1

2

3

...

Memory

CPU

memory address

=
HIT

A primer on Hardware Caches

11

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * associativity)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1

block 0

1

2

3

...

Memory

CPU

memory address

=
HIT

64 bytes of data

fast access time

A primer on Hardware Caches

12

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * associativity)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

A primer on Hardware Caches

13

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * associativity)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS

A primer on Hardware Caches

14

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * associativity)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS
replacement policy

evicts one block

A primer on Hardware Caches

15

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * associativity)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS

insert new block

64 bytes of data
slow access time

A primer on Hardware Caches

16

● Cache set partition exploits programs’ spatial locality

● Replacement policy decides which blocks to evict exploiting programs’ temporal locality

● What does a replacement policy look like?

○ First Input First Output (FIFO), Least Recently Used (LRU), Pseudo-LRU, etc.

○ These examples keep track of the order or ages of blocks, and evict oldest one

● More complex policies nowadays, but same idea: maintain some metadata or control state

Caches as Mealy machines

● Natural abstraction for an individual cache set

● Input alphabet = set of memory blocks, e.g. {a,b,c}
mapping to the same cache set

● Output alphabet = {H, M} (hit or miss) for the
observable result of accessing a given block

● Every state represents the content of the cache set
plus its control state (or metadata)

Example: 2-way FIFO cache with 3 blocks {a,b,c}

17

Previous work

18

Previous work

Others Abel & Reineke Rueda’s MS

Automatic NO YES YES

Supported class
of policies Individual Permutation-based Deterministic

On real hardware YES YES NO

Scalability NO YES NO

Human readable NO NO NO

Correctness NO YES NO

19

20

Our approach
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
le

ar
ni

ng

Po
lic

y
ab

st
ra

ct
io

n

H
ar

dw
ar

e
in

te
rf

ac
e

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

21

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

1234

Our approach
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
le

ar
ni

ng

Po
lic

y
ab

st
ra

ct
io

n

H
ar

dw
ar

e
in

te
rf

ac
e

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

22

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

1234

Previous work vs. our approach

Others Abel & Reineke Rueda’s MS Our

Automatic NO YES YES YES

Supported class
of policies Individual Permutation-based Deterministic Deterministic

On real hardware YES YES NO YES

Scalability NO YES NO YES

Human readable NO NO NO YES

Correctness NO YES NO YES

23

CacheQuery: a hardware interface

C
ac

he
Q

ue
ry f30 f40 f50 f30

f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

24

Pr
og

ra
m

 s
yn

th
es

is

A
ut

om
at

a
le

ar
ni

ng

Po
lic

y
ab

st
ra

ct
io

n

Template

Explanation

h(0) h(1) m()

_ _ 0

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

CacheQuery: a hardware interface

● Frees the user from low-level details like set mapping, timing, cache filtering, code
generation, and system’s interferences.

● Accepts sequences of blocks decorated with an optional tag: ? indicates access should
be profiled, ! indicates that block should be invalidated, no tag means access.

● Support for macros:

○ @ expansion, _ wildcard, power operator, etc.

○ E.g. For assoc=4: @ x _? expands to

■ (a b c d) x [a b c d]?, which expands to
■ {a b c d x a?, a b c d x b?, a b c d x c?, a b c d x d?}
■ and returns {M, H, H, H}

25

CacheQuery: demo

● Disable system’s noise

● REPL interactive session

● Target specific level and set

● Ask arbitrary queries

26

Polca: a cache automaton abstraction
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
le

ar
ni

ng

P
ol

ca

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

27

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

● Why not learn directly from the cache?

○ Redundancy → Replacement policy is agnostic of the specific content

○ Policy’s logic should depend only on the control state (metadata)

○ Cache’s content management increases automata complexity and learning cost

● We abstract the replacement policy from the cache content management!

Polca: a cache automaton abstraction

28

Polca: a cache automaton abstraction

29

P
ol

ca
 =

 M
ap

pe
r

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

Abstract
automaton

Replacement
policy

Concrete
automaton

Cache
management

keep track
of content

Input: {h(0), h(1), ..., h(n-1), m()} {A, B, C, ….}

Output: {_, 0, 1, …, n-1} {H, M}

● Example of concrete cache automaton for 2-ways LRU
with fixed input alphabet {a,b,c} and output {H,M}

● Example of corresponding abstract policy automaton,
using input alphabet {h(0), h(1), m()} and output
{_,0,1}

● 12 vs. 2 states → much easier to learn!

● reduction of (associativity+1)! in most cases

Polca: a cache automaton abstraction

30

LearnLib: an automata learning framework
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
Le

ar
ni

ng

Po
lc

a

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

31

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

Automata learning

● Dana Angluin’s L* algorithm:

“Learning regular sets from queries and counterexamples” (1987)

● Student-Teacher protocol. Student asks 2 types of questions to the teacher:

○ membership - Is a word ‘w’ in the target language ‘U’? Yes / No
→ interaction with SUL (System Under Learning)

○ equivalence - Does the automaton accept language ‘U’? Yes / counterexample
→ needs access to a specification or oracle

● Find the minimal automaton for U with polynomial cost in the number of states of the
automaton and the length of longest counterexample

32

L* by example
● Teacher knows language U = {aa, bb} (alphabet Σ={a, b})

● Student asks if ‘ɛ’, ‘a’, and ‘b’ are in U and obtains the following Observation Table:

ɛ

ɛ 0

a 0

b 0

Set of strings S, represents the states

S . Σ

● Table entries: (s,e) = 1 iff uv∈U - summarizes all membership queries

● From an observation table we can directly construct an automaton if table is
○ closed - ∀t∈S.Σ ∃s∈S row(t) = row(s)
○ consistent - ∀s1,s2 s.t. row(s1) = row(s2) → ∀a∈Σ row(s1.a) = row(s2.a)

33

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ

ɛ 0

a 0

b 0

Observation Table:

34

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ

ɛ 0

a 0

b 0

Observation Table:

It is closed and consistent
Hypothesis: empty language!

Teacher says NO and returns: ce = aa

We need to extend S with ‘ce’ and all its prefixes

35

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ

ɛ 0

a 0

aa ?

b 0

ab ?

aaa ?

aab ?

Observation Table:

perform a more membership queries

36

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ

ɛ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

Observation Table:

new table is closed, but not consistent

row(ɛ) = row(a), but row(ɛ.a) != row(a.a)

to fix it, we need to add the difference
to the table by increasing column

37

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ a

ɛ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

Observation Table:

now it is closed and consistent

we make a new hypothesis, but
teacher says NO: ce = bb

38

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example

(source: https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf)

ɛ a b

ɛ 0 0 0

a 0 1 0

aa 1 0 0

b 0 0 1

bb 1 0 0

ab 0 0 0

aaa 0 0 0

aab 0 0 0

ba 0 0 0

bba 0 0 0

bbb 0 0 0

Observation Table:

table is closed and
consistent, let’s see if
hypothesis is correct not?

nope ce = babb

39

https://www.csa.iisc.ac.in/~deepakd/atc-2015/L_Star_Algo.pdf

L* by example
● With one more step, we finally find the automaton accepting U = {aa,bb}

● The algorithm ensures that on every hypothesis the automaton is minimal.

● Teacher can give arbitrarily long counterexamples.

40

LearnLib handles all the learning

● LearnLib is an open source Java framework for automata learning developed at the TU
Dortmund University - https://learnlib.de/

● Angluin’s L* algorithm has been extended to Mealy machines:

○ Membership queries replaced by output queries

○ Equivalence queries approximated by test sequences for conformance testing

○ Reset sequence is bootstrapping problem, we solve it with Flush+Refill

WP-method: test sequence selection - given an upper bound
on the number of states of the System Under Learning (SUL),
guarantees equivalence 41

https://learnlib.de/

Sketch: synthesizing programs as explanations
P

ro
gr

am
 s

yn
th

es
is

A
ut

om
at

a
Le

ar
ni

ng

Po
lc

a

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

42

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

Sketch: synthesizing programs as explanations

● Automata models are great, but if we want
to understand what is really happening…

● This is only LRU with associativity 4, a fairly
simple policy.

43

Sketch: synthesizing programs as explanations

Domain knowledge or high-level view of a replacement policy:

● Each block has an associated age

● Promotion rule decides how the ages are updated upon a hit

● Replacement rule decides which block is evicted upon a miss

● Insertion rule decides the age of a new block

● Normalization rule describes how to normalize ages after/before a hit
or miss (e.g. in MRU reset used bit when all are set)

Sketch: synthesizing programs as explanations

44

Sketch: synthesizing programs as explanations
With that domain knowledge, we “sketch” a template of how replacement policies looks like:

hit (state, line) :: States×Lines → States
 state = promote(state, line)
 state = normalize(state, line)
 return state

miss (state) :: States → States×Lines
 Lines idx = -1
 state = normalize(state, idx)
 idx = evict(state)
 state[idx] = insert(state, idx)
 state = normalize(state, idx)
 return ⟨state, idx⟩

45

Sketch: synthesizing programs as explanations
With that domain knowledge, we “sketch” a template of how replacement policies looks like:

hit (state, line) :: States×Lines → States
 state = promote(state, line)
 state = normalize(state, line)
 return state

miss (state) :: States → States×Lines
 Lines idx = -1
 state = normalize(state, idx)
 idx = evict(state)
 state[idx] = insert(state, idx)
 state = normalize(state, idx)
 return ⟨state, idx⟩

Specify the grammar of the functions. For instance:

promote (state, pos) :: States×Lines → States
 States final = state
 if (??{boolExpr(state[pos])})
 final[pos] = ??{natExpr(state[pos])}
 for(i in Lines)
 if(i != pos ∧ ??{boolExpr(state[pos], state[i])})
 final[i] = ??{natExpr(state[i])}
 return final

46

Sketch: synthesizing programs as explanations
With that domain knowledge, we “sketch” a template of how replacement policies looks like:

hit (state, line) :: States×Lines → States
 state = promote(state, line)
 state = normalize(state, line)
 return state

miss (state) :: States → States×Lines
 Lines idx = -1
 state = normalize(state, idx)
 idx = evict(state)
 state[idx] = insert(state, idx)
 state = normalize(state, idx)
 return ⟨state, idx⟩

Specify the grammar of the functions. For instance:

promote (state, pos) :: States×Lines → States
 States final = state
 if (??{boolExpr(state[pos])})
 final[pos] = ??{natExpr(state[pos])}
 for(i in Lines)
 if(i != pos ∧ ??{boolExpr(state[pos], state[i])})
 final[i] = ??{natExpr(state[i])}
 return final

And encode the automaton’s output and transition functions as constraints.
47

Case Studies

48

● Learning from software simulated caches

● Learning from hardware

● Synthesizing Explanations

Case Study: Learning from
Software-Simulated Caches

● Support for a broader class of policies
than previous work

● Scale up to larger associativities than
previous work

● Number of states still grows exponentially
with associativity :(

49

Case Study: Learning from Hardware

CPU Cache level Assoc. Slices Sets per slice

i7-4790
(Haswell)

L1 8 1 64

L2 8 1 512

L3 16 4 2048

i5-6500
(Skylake)

L1 8 1 64

L2 4 1 1024

L3 12 8 1024

i7-8850U
(Kaby Lake)

L1 8 1 64

L2 4 1 1024

L3 16 8 1024

50

Case Study: Learning from Hardware

51

Challenges:

● Not all sets implement the same policy (set-duelling) → we identify leader sets

● Not all leader sets are deterministic (probabilistic and adaptive policies) → :(

● L3 has too large associativities → we use Intel’s CAT to virtually reduce associativity

● Reset sequences not 100% reliable → required some manual adjustment

Case Study: Learning from Hardware

52

Case Study: Synthesizing Explanations

53

Policy States Time

FIFO 4 18ms

LRU 24 81ms

PLRU 8 -

LIP 24 4s

MRU 14 40s

SRRIP-HP 178 105h

SRRIP-FP 256 48h

New1 160 9h

New2 175 26h

int[4] hitState (int[4] state, int pos)
 int[4] final = state;
 // Promotion
 final[pos] = 0;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks except promoted one
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(i != pos)
 final[i] = final[i] + 1;
 return final;

// Replace first block with age 3 starting from the left
int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

int[4] missState (int[4] state)
 int[4] final = state;
 int replace = missIdx(state);
 // Insertion
 final[replace] = 1;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks except inserted one
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(replace != i)
 final[i] = final[i] + 1;
 return final;

Description of Skylake/Kaby Lake L2’s (New1):

Initial insertion on a flushed cache set:

int[4] s0 = {3,3,3,0};

Case Study: Synthesizing Explanations

54

Case Study: Synthesizing Explanations

int[4] hitState (int[4] state, int pos)
 int[4] final = state;
 // Promotion
 if (final[pos] > 1)
 final[pos] = 1;
 else
 final[pos] = 0;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 final[i] = final[i] + 1;
 return final;

// Replace first block with age 3 starting from the left
int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

int[4] missState (int[4] state)
 int[4] final = state;
 int replace = missIdx(state);
 // Insertion
 final[replace] = 1;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 final[i] = final[i] + 1;
 return final;

Description of Skylake/Kaby Lake L3’s (New2):

Initial insertion on a flushed cache set:

int[4] s0 = {3,3,3,3};

55

56

Conclusions

● End-to-end solution for learning deterministic hardware replacement policies

● We are able to automatically infer human-readable descriptions

● We uncover 2 previously undocumented policies used in recent Intel processors

● All our contributions are independent and ready to use in alternative workflows

57https://github.com/cgvwzq/cachequery https://github.com/cgvwzq/polca https://arxiv.org/pdf/1912.09770.pdf

Thank you for listening! Questions?

58https://github.com/cgvwzq/cachequery https://github.com/cgvwzq/polca https://arxiv.org/pdf/1912.09770.pdf

References

59

Adaptive Insertion Policies for High Performance Caching
https://researcher.watson.ibm.com/researcher/files/us-moinqureshi/papers-dip.pdf

Intel Ivy Bridge Cache Replacement Policy
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Measurement-based Modeling of the Cache Replacement Policy
http://embedded.cs.uni-saarland.de/publications/CacheModelingRTAS2013.pdf

Learning Cache Replacement Policies using Register Automata
https://uu.diva-portal.org/smash/get/diva2:678847/FULLTEXT01.pdf

https://researcher.watson.ibm.com/researcher/files/us-moinqureshi/papers-dip.pdf
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://embedded.cs.uni-saarland.de/publications/CacheModelingRTAS2013.pdf
https://uu.diva-portal.org/smash/get/diva2:678847/FULLTEXT01.pdf

Extra material

60

Extra: Adaptive Policies and Leader Sets

● We use thrashing sequences (e.g. @ M @?) on a per cache set basis to identify leader sets:

○ Haswell i7-4790:
■ sets 512 − 575 in slice 0 fixed policy susceptible to thrashing.
■ sets 768 − 831 in slice 0 fixed thrash resistant policy (seems not deterministic).
■ rest of sets follow the policy producing less misses.

○ Skylake i5-6500 and Kaby Lake i7-8550U:
■ sets whose indexes satisfy ((((set & 0x3e0) >> 5) ⊕ (set & 0x1f)) = 0x0) ∧ ((set &

0x2) = 0x0) fixed policy susceptible to thrashing (group 1)
■ rest of sets seem to use an adaptive policy
■ but sets whose indexes satisfy ((((set & 0x3e0) >> 5) ⊕ (set & 0x1f)) = 0x1f) ∧ ((set

& 0x2) = 0x2) change differently (group 2), still WIP for this

group 1: 0 33 132 165 264 297 396 429 528 561 660 693 792 825 924 957
group 2: 31 62 155 186 279 310 403 434 527 558 651 682 775 806 899 930 61

