Mini-APP: Proving a Simple
Private Information Retrieval
Protocol Secure in EasyCrypt

Alley Stoughton

First EasyCrypt Summer School
University of Pennsylvania
July 18, 2013

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the Director of National Intelligence under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author, and are not necessarily endorsed by the United States Government.

Approved for public release—distribution is unlimited

@ Acknowledgements

It’s a pleasure to acknowledge helpful discussions with:

« SPAR Formal Methods Team

Jonathan Herzog (MIT Lincoln Laboratory), Aaron D. Jaggard (Naval
Research Laboratory), Jonathan Katz (University of Maryland),
Catherine Meadows (Naval Research Laboratory), Adam Petcher (MIT
Lincoln Laboratory);

 MIT Lincoln Laboratory SPAR Team

Emily Shen, Mayank Varia, Arkady Yerukhimovich;

« EasyCrypt Team

Gilles Barthes, Frangois Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, Pierre-Yves Strub, Santiago Zanella-Béguelin.

A artn oTae 2 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] SPAR Formal Methods Project

» As part of the IARPA SPAR Project, the SPAR Formal Methods
Team undertook the verification in EasyCrypt of the APP
Protocol developed by the University of California, Irvine.

« The UCI APP Protocol is a three party Private Information
Retrieval (PIR) protocol.

* Its verification required our learning about—or developing—
various sophisticated techniques:

— constraining oracle use by adversaries;

— reasoning up to failure;

— working with complex relational invariants;
— loop fission;

— eager/lazy random sampling.

EasyCrypt Summer School - 3 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Genesis of Mini-APP

- Because of the complexity of the UCI APP protocol, it was sub-
optimal to be learning/developing these techniques in the
context of the full UCI APP proofs.

« Consequently, | began working on proving the security of a
simpler protocol—which I’'ve named Mini-APP—in parallel with
my work on the UCI Isolated Box proof.

EasyCrypt Summer School - 4 LINCOLN LAB ORATORY

Alley Stoughton 07/18/1
ey Stoughton O7/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] Mini-APP Protocol

Mini-APP is a three-party PIR protocol:

 The Server takes in a database consisting of a list of attributes,
hashes each attribute, producing a hashed database, and sends
the hashed database to the Third Party (TP).

« The Client works its way through a list of queries—also

attributes—hashing each query, and asking the TP for the
number of occurrences of this hash tag in the hashed database.

tag
db hdb { qrys
count 2

EasyCrypt Summer School - 5 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Random Oracle

« Hash tags are bit strings, all of the same length.

« Hashing is done using a random oracle, consisting of a map to
which new attribute/tag pairs are added, dynamically.

* It is consistent with our axioms that there are many fewer hash
tags than attributes.

« Because of the possibility of hash collisions, the results
computed by the Client may include false positives.

 E.g., if the database consists of attributes x and y, but x and y hash
to the same hash tag, then the count for query x will be 2 not 1.

EasyCrypt Summer School - 6 LINCOLN LAB ORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Real and Ideal Games

 We formalize the security of the Client’s view of the protocol
using a pair of cryptographic games.

 The “real” game is based on the protocol as described above.
 The “ideal” game is based on a variant of the protocol in which:

- the query counts are in perfect agreement with the database, and

- it’s obvious that nothing other than the results is leaked from the
database to the client.

EasyCrypt Summer School - 7 LINCOLN LAB ORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Adversary Model

 Our games are parameterized by an adversary with access to
the random oracle.

* Both real and ideal games begin with an initial call to the
adversary in which the adversary picks a database and list of
queries (possibly hashing various attributes in the process).

« Both games end with a final call to the adversary, in which the
adversary is called with the Client view: a record of what the
Client saw during the game. The adversary returns a boolean
judgment (possibly hashing various attributes in the process),
and this boolean is returned as the result of the game.

* The Client view of the protocol is said to be secure iff the
adversary can’t distinguish the real and ideal games, i.e., the
probabilities of the games returning true differ by a negligible
amount.

EasyCrypt Summer School - 8 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Infeasible Adversaries

 Because EasyCrypt
- allows for computationally infeasible adversaries, and

- the adversary has access to the oracle at the beginning of the game,

unless we restrict the adversary, it will be able to distinguish
the real and ideal games.

 For example, the initial call to the adversary can hash attributes
until it finds a pair (x, y) of attributes hashing to the same hash
tag, and then return [x, y| as the database and [x] as the list of
queries.

 Alternatively, the initial call could return a database consisting
of more distinct attributes than there are hash tags, plus a list of
queries equal to the database (thus making the protocol itself
cause and exploit a hash collision).

EasyCrypt Summer School - 9 LINCOLN LAB ORATORY

Alley Stoughton 07/18/1
ey Stoughton O7/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Limiting the Adversary

« Consequently, we

- limit the number of distinct oracle calls that the adversary may
make in its initial call, and

- limit the sizes of the database and lists of queries that the
adversary may return,

in such a way that

- the initial adversary call has a negligible chance of forcing a
collision, and

- there is a negligible probability of a collision occurring during the
execution of the protocol itself.

 When the adversary doesn’t play by the rules, it loses the game.

 But we must prove that the protocol itself keeps within its
budget of distinct oracle calls.

EasyCrypt Summer School - 10 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ EasyCrypt Proof Overview

« It will take us fifteen transitions to get from the real game
(GReal) to the ideal game (GIdeal).

« We'll start by giving some necessary definitions.
 Then, we’ll consider GReal and GIdeal in detail.

* Finally, we’ll look at highlights of the intermediate games and
transition proofs.

* During the following lab session, you’ll explore the case study
proof in more detail.

EasyCrypt Summer School - 11 LINCOLN LABORATORY
Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Attributes and Tags

type attr.

type attrs_counts = (attr, int)map.

op tagLen : int.

axiom TaglLen : tagLen >= Q.

clone Word as Tag with op length = taglLen.
type tag = Tag.word.

op tagDistr : tag distr = Tag.Dword.dword.

EasyCrypt Summer School - 12 LINCOLN LABORATORY

Alley Stoughton 07/18/13
ey stoughton MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Oracles

type hash_map = (attr, tag)map.

op budget : int.

axiom Budget : 1 <= budget <= 2 A taglen.

op collBound : real = (budget * (budget - 1))%r / (2 A tagLen)%r.

module type OR = {
fun init() : unit
fun bhash(Cattr : attr) : tag
fun hash(attr : attr) : tag
fun suff(n : int) : bool

}.

EasyCrypt Summer School - 13 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Standard Oracle

module Or : OR = {
var mp : hash_map
var ctr : int
var over . bool

fun init() : unit = {
mp = Map.empty;
ctr = 0;
over = false;

EasyCrypt Summer School - 14 LINCOLN LABORATORY

Aley Stougtion OT1TEIS MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Standard Oracle

fun bhash(attr : attr) : tag = {
if (!(in_dom attr mp)) {
mp.[attr] = $tagDistr;
if (ctr < budget) {
ctr = ctr + 1;

}
else {
over = true;
}
}
return proj mp.[attr];

}

EasyCrypt Summer School - 15 LINCOLN LABORATORY

Aley Stoughton G71EIS MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Standard Oracle

fun hash(attr : attr) : tag = {
if (!(in_dom attr mp)) {
mp.[attr] = $tagDistr;
}
return proj mp.[attr];
3

fun suff(n : int) : bool = {
return !over /\ n <= budget - ctr;

¥
¥

EasyCrypt Summer School - 16 LINCOLN LABORATORY

Hlley Stovgrion Grreft MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Types, Adversaries and Games

type db = attr list.
type grys = attr list.
type hdb = tag list.
type view = (attr * tag * int)list.
module type ADV(O : OR) = {
fun pre() : db * grys {* 0.bhash}

fun post(view : view) : bool {0.hash}
}.

module type GAME = {
fun main() : bool

}.

EasyCrypt Summer School - 17 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

Real Game

module GReal(Adv
fun serverInit(db :

var 1 : int;

var attr : attr;

var tag : tag;

var hdb : tag list;

hdb = [];

1=0;

while (i < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
hdb = hdb ++ [tag];
1=1+1;

3

return hdb;

: ADV) : GAME = {
db) : hdb = {

EasyCrypt Summer School - 18
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Real Game

fun tpQueryResponse(tag : tag, hdb : hdb) : int = {
var i, n : int;
n = 0;
1 = 0;
while (i < length hdb) {
if (proj(nth hdb i) = tag) {

n=n+1,;
1i=1+1;
return n;

EasyCrypt Summer School - 19

Alley Stoughton 07/18/13 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Real Game

fun clientQueryLoop(grys : grys, hdb : hdb) : view = {

var view : view;

var i, n . int;

var tag : tag;

var qry : attr;

view = [];

1=0;

while (1 < length qgrys) {
ary = proj(nth grys i);
tag = Or.hash(gry);
n = tpQueryResponse(tag, hdb);
view = view ++ [(gry, tag, n)];
1=1+1;

3

return view;

EasyCrypt Summer School - 20 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Real Game

fun view(grys : qrys, db : db) : view = {
var view : view;
var hdb : hdb;
hdb = serverInit(db);
view = clientQueryLoop(grys, hdb);
return view;

module A = Adv(Or)

fun main() : bool = {
var db : db;
var qrys : grys;
var view : view;
var b, suff : bool;

A LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Real Game

Or.initQ);
(db, grys) = A.pre(Q);
suff = Or.suff(length db + length qrys);
if (suff) {

view = view(grys, db);
}
else {

view = [];
}
b = A.post(view);
return b;

EasyCrypt Summer School - 22 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

module GIdeal(Adv : ADV) : GAME = {
fun computeAnswers(qgrys : grys, db : db) : attrs_counts = {
var grysCounts : attrs_counts;
var i : int;
var attr : attr;

EasyCrypt Summer School - 23 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

grysCounts = Map.empty;
1=0;
while (1 < length db) {
attr = proj(nth db 1i);
if (mem attr qrys) {
if (in_dom attr qgrysCounts) {
grysCounts. [attr] = proj grysCounts.[attr] + 1;
¥
else {
grysCounts. [attr] = 1;
¥
}
1=1+1;
3

return grysCounts;

}

EasyCrypt Summer School - 24 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

fun simulator(grys : grys, grysCounts : attrs_counts) : view = {
var view : view;
var i, n . int;
var tag : tag;
var qry : attr;

EasyCrypt Summer School - 25 LINCOLN LABORATORY

All h 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

view = [];
1=0;
while (1 < length qgrys) {
ary = proj(nth grys 1i);
tag = Or.hash(gry);
if (in_dom qgry grysCounts) {
n = proj qrysCounts.[gry]l;

}
else {
nh = 0;
}
view = view ++ [(gry, tag, n)];
1=1+1;
}
return view;

}

EasyCrypt Summer School - 26 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

fun view(grys : qrys, db : db) : view = {
var view : view;
var grysCounts : attrs_counts;
grysCounts = computeAnswers(qgrys, db);

view = simulator(qrys, grysCounts);
return view;

module A = Adv(Or)

fun main() : bool = {
var db : db;
var qrys : grys;
var view : view;
var b, suff : bool;

M e vang % LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ideal Game

Or.initQ);
(db, grys) = A.pre(Q);
suff = Or.suff(length db + length qrys);
if (suff) {

view = view(grys, db);
}
else {

view = [];
}
b = A.post(view);
return b;

EasyCrypt Summer School - 28 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Proof Goal

 We will prove that distance between the real and ideal games is
negligible, i.e., that the absolute value of the difference of the
probabilities of the real and idea games returning true is
negligible.

» Since the view constructed by the simulator in the ideal game
only depends on the query counts, and not on any other
information derived from the database, this will tell us that the
Client view of the protocol is secure.

EasyCrypt Summer School - 29 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Injective Oracle

* To transition from the real game—with false positives stemming
from hash collisions—to the ideal game—in which attribute
counts are accurate, we transition to an intermediate game in
which:

- the functions of the game do budgeted hashing; and

- the oracle’s map stays injective (collision free), as long the game
stays within budget.

* Subsegently, we must transition back to using the standard
oracle, and to using unbudgeted hashing in the games.

« Each application of our version of the Switching Lemma results
in a distance between games bounded by col 1Bound:
(budget * (budget - 1))%r / (2 A tagLen)%r.

 We assume collBound has been tuned to be negligible.

EasyCrypt Summer School - 30 LINCOLN LAB ORATORY

All tought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Proof Body

section.

declare module Adv : ADV{Or}.

lemma GReal_GIdeal &m :
(forall (0 <: OR{Adv}),
islossless 0.bhash => islossless Adv(0).pre) =>
(forall (0O <: OR{Adv}),
islossless 0.hash => islossless Adv(0).post) =>
" |Pr[GReal(Adv).main() @ & : res] -
PrGIdeal(Adv).main() @ & : res]| <= 2%r * collBound.
proof .

ged.

EasyCrypt Summer School - 31 LINCOLN LABORATORY

Alley Stought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Proof Body

end section.
print GReal_GIdeal.

lemma GReal_GIdeal :
forall (Adv <: ADV{Or}) &m,
(forall (0 <: OR{Adv}),
i1slossless O0.bhash => islossless Adv(0).pre) =>
(forall (0O <: OR{Adv}),
islossless 0.hash => islossless Adv(0).post) =>
“IPr[GReal(Adv).main() @ &n : res] -
PrGIdeal(Adv).main() @ & : res]l <= 2%r * collBound.

* Inside the section, our intermediate games aren’t parameterized
by Adv—they simply refer to it.

EasyCrypt Summer School - 32 LINCOLN LABORATORY

All tought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] GReal 9 G1

* In the transition from GReal to G1, we switch to using budgeted
hashing in serverlInit and clientQueryLoop, and we inline
tpQueryResponse in clientQueryLoop :

fun clientQueryLoop(grys : grys, hdb : hdb) : view = {
var view : view;

var i, j, n : int;

var tag : tag;

var qry : attr;

view = [];

1=0;

EasyCrypt Summer School - 33 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] GReal & G1

while (i < length qgrys) {
qry = proj(nth grys 1i);

tag = Or.bhash(qry);
] = 0;
nh = 0;

while (j < length hdb) {

if (proj(nth hdb j) = tag) {
n=n+1;

}
j=73+1;
¥
view = view ++ [(gqry, tag, n)];
1=1+1;

3

return view;

}

EasyCrypt Summer School - 34 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G1> G2 G D> G4

* In the next three transitions, we leave our game the same, but
change our oracle, moving to an oracle, OrInj, whose map will
be injective as long as only bhash is called and the budget is
respected:

- G2—O0rInst;
- G3—0rInj';
- G4—O0rlInj.

EasyCrypt Summer School - 35 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ OrInst

local module OrInst : OR = {
var mp : hash_map
var ctr : int
var over . bool
var range : tag set
var coll : bool

fun init(Q) : unit = {
mp = Map.empty;
ctr = 0;
over = false;
range = FSet.empty;
coll = false;

EasyCrypt Summer School - 36 LINCOLN LABORATORY
Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ OrInst

fun bhash(attr : attr) : tag = {
var tag : tag;
i1f (!(in_dom attr mp)) {
if (ctr < budget) {
tag = $tagDistr;

mp.[attr] = tag;
range = add tag range;
ctr = ctr + 1;
3
else {
mp.[attr] = $tagDistr;
over = true;
3
3
return proj mp.[attr];
}

EasyCrypt Summer School - 37
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ OrInst

fun hash(attr : attr) : tag = {
if (!(in_dom attr mp)) {
mp.[attr] = $tagDistr;
}
return proj mp.[attr];
3

fun suff(n : int) : bool = {
return !over /\ n <= budget - ctr;

3
}.

EasyCrypt Summer School - 38
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ OrInst = OrInj’ = Orlnj

if (mem tag range /\ card range <= ctr) { OrInst
coll = true;

¥

if (mem tag range /\ card range <= ctr) { Or'Inj '

coll = true;
tag = $tagDistr \ range;
3

if (mem tag range) { OrInj
coll = true;
tag = $tagDistr \ range;

3

EasyCrypt Summer School - 39 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Collision Lemma

module type ADV'(0 : OR) = {
fun main() : bool {* 0.bhash 0.hash 0.suff}

}.

local module Coll(Adv' : ADV') = {
module A' = Adv'(OrInst)
fun main() : bool = {
var b : bool;
OrInst.initQ);
b =A".mainQ);
return b;

local lemma Collision (Adv' <: ADV'{OrInst}) &m :
Pr[CollCAdv').main() @ &m : OrlInst.coll] <= collBound

EasyCrypt Summer School - 40 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Switching Lemma

local module Switchl(Adv' : ADV') = {
module A' = Adv'(OrInst)
fun main() : bool = {
var b : bool;
OrInst.init(); b = A'.main(); return b;
3
}.

local module Switch2(Adv' : ADV') = {
module A' = Adv'(OrInj')
fun main() : bool = {
var b : bool;
OrInj'.init(); b = A'.main(); return b;
3
}.

EasyCrypt Summer School - 41
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Switching Lemma

local lemma Switch_main(Adv' <: ADV'{OrInst, OrInj'}) :
(forall (0 <: OR{Adv'}),
i1slossless O0.bhash => islossless 0.hash => islossless O.suff =>
islossless Adv'(0).main) =>

equiv
[Switchl(Adv').main ~ Switch2(Adv').main :
true ==>

OrInst.coll{1l} = OrInj'.coll{2} /\
('0rInst.coll{1} => ={res})].

local lemma Switch (Adv' <: ADV'{OrInst, OrInj'}) &m :
(forall (0 <: OR{Adv'}),
i1slossless O0.bhash => islossless 0.hash => islossless O.suff =>
islossless Adv'(0).main) =>
“IPr[Switchl(Adv').main() @ &n : res] -
PrSwitch2(Adv').main() @ &n : res]l <=
PriSwitchl(Adv').main() @ &n : OrlInst.coll].

EasyCrypt Summer School - 42 LINCOLN LABORATORY

All h 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Instantiation of Collision and Switch

 We use instantiation of the Collision and Switching Lemmas,
getting us to:

local lemma GReal_G4 &m :
(forall (0 <: OR{Adv}),
islossless O0.bhash => islossless Adv(0).pre) =>
(forall (0 <: OR{Adv}),
islossless 0.hash => islossless Adv(0).post) =>
“IPr[GReal(Adv).main() @ & : res] - Pr[G4.main() @ &m : res]l <=
col1lBound.

EasyCrypt Summer School - 43 LINCOLN LABORATORY

All tought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

 In the next transition, we make use of the fact that—if the game
keeps within budget—the oracle will remain injective, i.e.,
collision free.

EasyCrypt Summer School - 44 LINCOLN LAB ORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

local module G5 = {
fun serverInit(db : db) : hdb * attrs_counts = {
var i : int;
var attr : attr,;
var tag : tag;
var hdb : tag list;
var attrsCounts : attrs_counts;
attrsCounts = Map.empty;
1 = 0;
hdb = [];

EasyCrypt Summer School - 45 LINCOLN LABORATORY
Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

while (i < length db) {
attr = proj(nth db 1);
tag = OrInj.bhash(attr);
hdb = hdb ++ [tag];
if (in_dom attr attrsCounts) {
attrsCounts.[attr] = proj attrsCounts.[attr] + 1;

}
else {
attrsCounts.[attr] = 1;
3
1=14+1;
}
return Chdb, attrsCounts);

}

EasyCrypt Summer School - 46 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

fun clientQueryLoop
(hdb : hdb, gqrys : qrys, attrsCounts : attrs_counts) : view = {
var view : view;
var i, n : int;
var tag : tag;
var qry : attr;
view = [];
1=0;

EasyCrypt Summer School - 47 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@ G4 = G5

while (i < length grys) {
qry = proj(nth grys 1i);
tag = OrlInj.bhash(qry);
if (in_dom qgry attrsCounts) {
n = proj attrsCounts.[qry];

}
else {
n = 0;
}
view = view ++ [(qry, tag, n)];
1i=1+1;
}
return view;

}

EasyCrypt Summer School - 48 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

fun view(grys : qrys, db : db) : view = {
var view : view;
var hdb : hdb;
var attrsCounts : attrs_counts;
(hdb, attrsCounts) = serverlInit(db);

view = clientQueryLoopChdb, grys, attrsCounts);
return view;

EasyCrypt Summer School - 49

Alley Stoughton 07/18/13 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

* To prove this transition, we make use of a relational invariant:

— the parts of db and grys yet to be processed, glob OrInj and hdb
are equal in the two games;

- OrInj.mp, and OrInj.range are consistent and injective;
- card OrInj.range =0rlInj.ctr;
- 10rInj.over;

- the sum of the parts of db and gqrys yet to be processed is no more
than budget — OrlInj.ctr;

- hdb, OrInj.mp and attrsCounts (only in G5) are consistent.

EasyCrypt Summer School - 50 LINCOLN LABORATORY

All tought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

pred Inj (mp : ('a, 'bD)map) (ran : 'b set) =
(forall (y : 'b), in_rng y mp <=> mem y ran) /\
(forall (x1 : "'a, x2 : 'a),
in_dom x1 mp => in_dom x2 mp =>
proj mp.[x1] = proj mp.[x2] =>
x1l = x2).

« humOccsUpTo x ys i is the number of occurrences of x in the
first i elements of ys; it's 0,ifi < ©® ori > length ys:

op numOccsUpTo : 'a -> 'a list -> int -> int.

EasyCrypt Summer School - 51 LINCOLN LABORATORY

Alley Stoughton 07/18/13
ey stoughton MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

pred AttrsCounts
C(hdb : hdb) (mp : hash_map) (attrsCounts : attrs_counts) =

(forall (tag : tag),

mem tag hdb => in_rng tag mp) /\
(forall (attr : attr),

lin_dom attr attrsCounts =>

Iin_dom attr mp \/

numOccsUpTo (proj mp.[attr]) hdb (length hdb) = @) /\
(forall (attr : attr),

in_dom attr attrsCounts =>

in_dom attr mp /\

numOccsUpTo (proj mp.[attr]) hdb (length hdb) =

proj attrsCounts.[attr]).

EasyCrypt Summer School - 52 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G4 D G5

 For example:

local lemma G4_G5_serverlnit :

forall (grys : grys),
equiv

[G4.serverInit ~ G5.serverInit :

={db, glob OrInj} /\ OrInj.ctr{l} = card OrInj.range{l} /\
Inj OrInj.mp{1} OrInj.range{l} /\ 10rInj.over{l} /\
length db{1} + length qrys <= budget - OrInj.ctr{l} ==>
={glob OrInj} /\ res{l} = fst res{2} /\

OrInj.ctr{l} = card OrlInj.range{l} /\

Inj OrInj.mp{1} OrInj.range{l} /\ !0rInj.over{l} /\
AttrsCounts (fst res{2}) OrInj.mp{l1} (snd res{2}) /\
length qrys <= budget - OrInj.ctr{l}].

EasyCrypt Summer School - 53 LINCOLN LABORATORY

All h 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G5 9 G6 > G7 > G8

« Having made use of injectivity, we now move back to using our
standard oracle, Or—this takes us to G8&.

* In these steps we use instantiation of the Collision and
Switching Lemmas.

 We also use the Triangular Inequality.

 This take us to:

local lemma GReal_G8 &m :
(forall (0 <: OR{Adv}),
islossless 0.bhash => islossless Adv(0).pre) =>
(forall (0O <: OR{Adv}),
islossless 0.hash => islossless Adv(0).post) =>
“IPr[GReal(Adv).main() @ & : res] - Pr[G8.main() @ &mn : res]l <=
2%r * collBound.

EasyCrypt Summer School - 54 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

G8 = (9

« (9 is like G8 except:

serverInit is inlined into view;
only queries (not all attributes) are counted in the database;

clientQueryLoop is renamed to simulator and no longer takes the
hashed database as an argument;

apart from in the adversary's pre function, all hashing is done using
hash (not bhash).

EasyCrypt Summer School - 55 LINCOLN LABORATORY

Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

G8 = (9

local module G9 = {
fun simulator(grys : grys,
var view : view;
var i, n : int;
var tag : tag;
var qry : attr;
view = [];
1=0;

grysCounts

attrs_counts) : view = {

EasyCrypt Summer School - 56
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G8 > G9

while (i < length grys) {
qry = proj(nth grys 1i);
tag = Or.hash(qgry);
if (in_dom qgry grysCounts) {
n = proj qrysCounts.[qry];

}
else {
n = 0;
}
view = view ++ [(gqry, tag, n)];
1i=1+1;
}
return view;

}

EasyCrypt Summer School - 57 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G8 > G9

fun view(grys : qrys, db : db) : view = {
var view : view;
var grysCounts : attrs_counts;
var i : int;
var attr : attr;
var tag : tag;
grysCounts = Map.empty;
1 = 0;

EasyCrypt Summer School - 58 LINCOLN LABORATORY
Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G8 > G9

while (i < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
if (mem attr qrys) {
if (in_dom attr grysCounts) {
grysCounts. [attr] = proj grysCounts.[attr] + 1;
}
else {
qrysCounts. [attr] = 1;
}
}
1=1+1;
}
view = simulator(qrys, grysCounts);
return view;

}

EasyCrypt Summer School - 59 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G8 > G9

module A = Adv(0Or)

fun main() : bool = {

EasyCrypt Summer School - 60 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G9 D G10 & G11

 In the next two transitions, we prepare the while loop of view for
loop fission, and then perform loop fission.

* The preparation makes two parts—database hashing and query
counting—of the while loop independent.

EasyCrypt Summer School - 61 LINCOLN LAB ORATORY

All tought 7/18/1
ey Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G9 > G10

grysCounts = Map.empty;
1=0;
while (1 < length db) {
attr = proj(nth db i);
tag = Or.hash(attr);
attr' = proj(nth db 1);
if (mem attr' grys) {
if (in_dom attr' grysCounts) {
grysCounts.[attr'] = proj grysCounts.[attr'] + 1;
}
else {
grysCounts.[attr'] = 1;
3
}
1=1+1;
3

view = simulator(grys, grysCounts);

EasyCrypt Summer School - 62 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

G10 = G11

grysCounts = Map.empty;

1=0;

while (i < length db) {
attr = proj(nth db i);
tag = Or.hash(attr);
1i=1+1;

EasyCrypt Summer School - 63
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G10 ° G11

while (j < length db) {
attr' = proj(nth db j);
1f (mem attr' grys) {
if (in_dom attr' grysCounts) {
grysCounts.[attr'] = proj grysCounts.[attr'] + 1;
3
else {
grysCounts.[attr'] = 1;
}

}

view = simulator(grys, grysCounts);

}
j=3+1;

EasyCrypt Summer School - 64 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G11 > G12

* In the next transition, we move the query counting into its own
function, computeAnswers.

* We also switch the order in which the query counting and
database hashing are done.

fun computeAnswers(grys : grys, db : db) : attrs_counts = {
var grysCounts : attrs_counts;
var i : int;
var attr : attr;
grysCounts = Map.empty;
1 =0;

EasyCrypt Summer School - 65 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G11 > G12

while (i < length db) {
attr = proj(nth db 1);
1f (mem attr qgrys) {
if (in_dom attr grysCounts) {
grysCounts. [attr] = proj grysCounts.[attr] + 1;
}
else {
grysCounts. [attr] = 1;
}
}
1=14+1;
}

return grysCounts;

}

EasyCrypt Summer School - 66 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G11 > G12

fun view(grys : qrys, db : db) : view = {
var view : view;
var grysCounts : attrs_counts;
var i : int;
var tag : tag;
var attr : attr,;
grysCounts = computeAnswers(qrys, db);
1 = 0;
while (i < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1=1+1;
¥
view = simulator(qrys, grysCounts);
return view;

EasyCrypt Summer School - 67 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Redundant Hashing

 What remains is to move the hashing

while (1 < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1i=1+1;

}

of the database past the calls to simulator and A.post, to a
point where it will be seen to be redundant.

* We will use lazy sampling to do this, once this is added to
the new EasyCrypt.

* First we need to put the relevant code in a new function.

EasyCrypt Summer School - 68 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G12 & G13

module A = Adv(Or)

fun viewPost(grys : grys, db : db) : bool = {
var view : view;
var qrysCounts : attrs_counts;
var i : int;
var tag : tag;
var attr : attr;
var b : bool;

EasyCrypt Summer School - 69 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G12 & G13

grysCounts = computeAnswers(qrys, db);
1=0;
while (i < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1i=1+1;
}
view = simulator(grys, grysCounts);
b = A.post(view);
return b;

EasyCrypt Summer School - 70 LINCOLN LABORATORY
Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G12 & G13

fun main() : bool = {
var db : db;
var qrys : qrys;
var Vview : view;
var b, suff : bool;
Or.initQ);
(db, grys) = A.preQ);
suff = Or.suff(length db + length qrys);
if (suff) {
b = viewPost(grys, db);
}
else {
b = A.post([1]);
}

return b;

A LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

* Now we want to use lazy sampling within the function viewAZ.

* This is not yet implemented in the new EasyCrypt, but here is
how it will go.

EasyCrypt Summer School - 72 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

grysCounts = computeAnswers(qrys, db); Eager
1= 0;
while (i < length db) {
attr = proj(nth db i);
tag = Or.hash(attr);
1=1+1;
3
view = simulator(qrys, grysCounts);
b = A.post(view);
return b;

AR LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

grysCounts = computeAnswers(qrys, db); Lazy
view = simulator(qrys, grysCounts);
b = A.post(view);
i=0;
while (1 < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1i=1+1;
¥

return b;

EasyCrypt Summer School - 74 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

 We must show that a single call of Or.hash commutes with the
database hashing.

 Precondition:
pre = ={db, Or.mp, _attr}
 Postcondition:

pre = ={db, Or.mp, _attr}

EasyCrypt Summer School - 75 LINCOLN LABORATORY
Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

- Statement 1 (Eager):

1=0;

while (i < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1=1+1;

¥

if (!in_dom _attr Or.mp) {
Or.mp.[_attr] = $tagDistr;

}

« Statement 2 (Lazy):

if (!in_dom _attr Or.mp) {

Or.mp.[_attr] = $tagDistr;

L = 0
while (i < length db) {

attr = proj(nth db 1);
tag = Or.hash(attr);
i=1+1;

EasyCrypt Summer School - 76
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

« Cases Analysis:
- in_dom _attr Or.mp;
- Iin_dom _attr Or.mp;
= Imem _attr db;
= mem _attr db.

* In the case !in_dom _attr Or.mp /\ mem _attr db, we use
splitwhile, unroll and inline to uncover the point in the
second game where Or.mp.[_attr] is chosen.

« We then use derandomize, so we can match the values chosen
in the two games.

EasyCrypt Summer School - 77 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

i=0; Eager
while (i < length db) {

attr = proj(nth db 1i);

tag = Or.hash(attr);

1=1+1;
}
if (!(in_dom _attr Or.mp)) Or.mp.[_attr] = $tagDistr;
= $tagDistr; Lazy

if (1(in_dom _attr Or.mp)) Or.mp.[_attr]
1= 0;
while (i < length db) {

attr = proj(nth db 1);

tag = Or.hash(attr);

1i=1+1;

EasyCrypt Summer School - 78 LINCOLN LABORATORY

Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

1i=0;

while (proj(nth db 1) <> _attr /\ 1 < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1=1+1;

}

while (1 < length db) {
attr = proj(nth db 1i);
if ('in_dom attr mp) Or.mp.[attr] = $tagDistr;
1i=1+1;

}

if (1(in_dom _attr Or.mp)) Or.mp.[_attr] = $tagDistr;

EasyCrypt Summer School - 79 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

if (!in_dom _attr Or.mp) Or.mp.[_attr] = $tagDistr;
1=0;
while (proj(nth db 1) <> _attr /\ 1 < length db) {
attr = proj(nth db 1i);
tag = Or.hash(attr);
1i=1+1;
}
while (i < length db) {
attr = proj(nth db 1i);
if (lin_dom attr Or.mp) Or.mp.[attr] = $tagDistr;
1=1+1;

EasyCrypt Summer School - 80 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

1i=0;

while (proj(nth db 1) <> _attr /\ 1 < length db) {
attr = proj(nth db 1);
tag = Or.hash(attr);
1=1+1;

}

if (1 < length db) {
attr = proj(nth db 1);
if (!in_dom attr mp) Or.mp.[attr] = $tagDistr;
1i=1+1;

}

while (1 < length db) {
attr = proj(nth db 1);
if (lin_dom attr mp) Or.mp.[attr] = $tagDistr;
1i=1+1;

}

if (!(in_dom _attr Or.mp)) Or.mp.[_attr] = $tagDistr;

EasyCrypt Summer School - 81 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

if (!in_dom _attr Or.mp) Or.mp.[_attr] = $tagDistr;

1 = 0;
while (proj(nth db 1) <> _attr /\ 1 < length db) {
attr = proj(nth db 1i);
tag = Or.hash(attr);
1i=1+1;
}
1f (1 < length db) {
attr = proj(nth db 1i);

if (lin_dom attr Or.mp) Or.mp.[attr] = $tagDistr;
1=1+1;
}
while (i < length db) {
attr = proj(nth db 1i);
if (lin_dom attr Or.mp) Or.mp.[attr] = $tagDistr;

1=1+1;

}

EasyCrypt Summer School - 82
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

_tag = $tagDistr;
1= 0;
while (proj(nth db 1) <> _attr /\ 1 < length db) {

}

if (i < length db) {
attr = proj(nth db 1);
if (!'in_dom attr mp) Or.mp.[attr] = _tag;
1i=1+1;

}

while (i < length db) {

}
if (!(in_dom _attr Or.mp)) Or.mp.[_attr] = $tagDistr;

EasyCrypt Summer School - 83 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G13 9 G14

_tag = $tagDistr;

if (lin_dom _attr Or.mp) Or.mp.[_attr] = _tag;
1=0;

while (proj(nth db i) <> _attr /\ i < length db) {

}

if (1 < length db) {
attr = proj(nth db 1);
if ('in_dom attr Or.mp) Or.mp.[attr] = $tagDistr;
1i=1+1;

}

while (1 < length db) {

EasyCrypt Summer School - 84 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G14 2 GIdedl

« Because the postcondition of the needed equivalence for Main

local 1lemma G14_GIdeal_main :
equiv[Gl4.main ~ GIdeal(Adv).main : true ==> ={res}].

we can remove the hashing of the database:

EasyCrypt Summer School - 85 LINCOLN LABORATORY

Alley Stoughton 07/18/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G14 2 GIdedl

fun view(grys : qrys, db : db) : view = {
var view : view;
var grysCounts : attrs_counts;
grysCounts = computeAnswers(qgrys, db);

view = simulator(qrys, grysCounts);
return view;

module A = Adv(Or)

AR LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] G14 2 GIdedl

fun main() : bool = {
var db : db;
var qrys : grys;
var Vview : view;
var b, suff : bool;
Or.initQ);
(db, grys) = A.pre(Q);
suff = Or.suff(length db + length qrys);
if (suff) {
view = view(grys, db);
}
else {
view = [];
}
b = A.post(view);
return b;

}

M e vang & LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Overall Conclusion

lemma GReal_GIdeal :
forall (Adv <: ADV{Or}) &m,
(forall (0 <: OR{Adv}),
islossless O0.bhash => islossless Adv(0).pre) =>
(forall (0 <: OR{Adv}),
islossless 0.hash => islossless Adv(0).post) =>
" |Pr[GReal(Adv).main() @ &m : res] -
Pr[GIdeal(Adv).main() @ & : res]| <=

2%r * collBound.

EasyCrypt Summer School - 88
Alley Stoughton 07/18/13

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Conclusions

Limiting the adversary’s use of the random oracle was subtle,
since the protocol itself depends upon the oracle working.

The Collision Lemma—proved using the Failure Event
Lemma—gave us an upper bound on the probability of hash
collisions occurring. We instantiated it twice.

We proved the Switching Lemma—moving between oracles
with and without collisions—using reasoning up to failure,
and instantiated it twice.

When moving to the game with perfect counting, we worked
with an injective—collision free—oracle, made use of a
complex relational invariant, and did careful budgeting.

Lazy random sampling played an essential role in the
transition to the ideal game.

Even such a relatively simple protocol was fairly hard work to
prove secure.

EasyCrypt Summer School - 89 LINCOLN LAB ORATORY

Alley Stoughton 07/18/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Future Work

* Prove the security of the Third Party (TP) view of Mini-APP.

* Finish applying the techniques learned/developed to more
realistic protocols, e.g., the full UCI APP protocol and SPAR
protocols.

« Discover and implement ways of reducing the difficulty of
carrying out such proofs:

— new proof techniques;

— new theories;

— new abstraction mechanisms;
— new tactics.

EasyCrypt Summer School - 90 LINCOLN LAB ORATORY
Alley Stoughton 07/18/13
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

