
Lecture 2 : Interactive Proofs in EasyCrypt

July 16th, 2013

The Ambient Logic

EasyCrypt ambient logic is a general higher-order logic.

In this talk
I How define facts about user defined operators
I How to prove them when automatic techniques do not work

Plan

1 The EasyCrypt Core Language

2 Interactive Proofs

3 Tacticals

4 Conclusion

Types

EasyCrypt is a typed language:
I It comes with a set of core types

unit, bool, int, real, tuple, lists ...

Some of these types are polymorphic (type constructor)
I Possibility to create type aliases

type α u = α ∗ α
type v = int u
type w = int list

I Possibility to create abstract types
type t
type α u

Types

EasyCrypt is a typed language:
I It comes with a set of core types

unit, bool, int, real, tuple, lists ...

Some of these types are polymorphic (type constructor)
I Possibility to create type aliases

type α u = α ∗ α
type v = int u
type w = int list

I Possibility to create abstract types
type t
type α u

Types

EasyCrypt is a typed language:
I It comes with a set of core types

unit, bool, int, real, tuple, lists ...

Some of these types are polymorphic (type constructor)
I Possibility to create type aliases

type α u = α ∗ α
type v = int u
type w = int list

I Possibility to create abstract types
type t
type α u

Types

EasyCrypt is a typed language:
I It comes with a set of core types

unit, bool, int, real, tuple, lists ...

Some of these types are polymorphic (type constructor)
I Possibility to create type aliases

type α u = α ∗ α
type v = int u
type w = int list

I Possibility to create abstract types
type t
type α u

Expressions - Functional language

EasyCrypt comes with a functional language:
I concrete operators:

op f1 (b : bool) (x y : int) = b ? (x − y) : (x + y).
op f2 (xs : int list) (x : int) = map (lambda (z : int), z + x) xs.
op f3 (xs : ’a list) = fold (lambda v _, v + 1) 0 xs.

I abstract operators:
map : (α→ β) → α list → β list
fold : (α→ β) → α list → β list

Expressions - Functional language

EasyCrypt comes with a functional language:
I concrete operators:

op f1 (b : bool) (x y : int) = b ? (x − y) : (x + y).
op f2 (xs : int list) (x : int) = map (lambda (z : int), z + x) xs.
op f3 (xs : ’a list) = fold (lambda v _, v + 1) 0 xs.

I abstract operators:
map : (α→ β) → α list → β list
fold : (α→ β) → α list → β list

Expressions - Functional language

EasyCrypt comes with a functional language:
I concrete operators:

op f1 (b : bool) (x y : int) = b ? (x − y) : (x + y).
op f2 (xs : int list) (x : int) = map (lambda (z : int), z + x) xs.
op f3 (xs : ’a list) = fold (lambda v _, v + 1) 0 xs.

I abstract operators:
map : (α→ β) → α list → β list
fold : (α→ β) → α list → β list

Predicates / Formulas

I Predicates are boolean operators:

op mypred : int → int → bool.

I These predicates can be defined:

pred mypred (x y : int) = (0 ≤ x) ∧ (0 ≤ y) ∧ (2 ∗ x ≤ y)

I Formulas constructors:

forall (x : t),φ (∀(x : t),φ) exists (x : t),φ (∃(x : t),φ)
φ1/\φ2 (φ1∧φ2) φ1\/φ2 (φ1∨φ2)
φ1=>φ2 (φ1⇒φ2) φ1<=>φ2 (φ1⇔φ2)
!φ (¬φ) + dedicated formulas for p(R)HL

Axioms / Lemmas

I Formulas for operators axiomatization:
op count : ’a list −> int.

axiom count_nil : count [] = 0.
axiom count_cons : forall (x : ’a) (xs : ’a list),

count (x :: xs) = 1 + (count xs).
I Formulas for stating facts:

lemma fact (x y : int): x ≤ 0 → y ≤ 0 → 0 ≤ x ∗ y.

Axioms / Lemmas

I Formulas for operators axiomatization:
op count : ’a list −> int.

axiom count_nil : count [] = 0.
axiom count_cons : forall (x : ’a) (xs : ’a list),

count (x :: xs) = 1 + (count xs).
I Formulas for stating facts:

lemma fact (x y : int): x ≤ 0 → y ≤ 0 → 0 ≤ x ∗ y.

Plan

1 The EasyCrypt Core Language

2 Interactive Proofs

3 Tacticals

4 Conclusion

Stating a theorem

lemma mylemma b1 b2 b3 :
(b1 ⇒ b2) ⇒ (b2 ⇒ b3) ⇒ b1 ⇒ b3.

proof. (∗ proof starts here ∗)

b1 : bool
b2 : bool
b3 : bool

 local hypotheses (context)

(b1⇒ b2)⇒ (b2⇒ b3)⇒ b1⇒ b3 } goal︸ ︷︷ ︸ ︸︷︷︸
assumptions conclusion

Progress is done via tactics that allows the simplification,
decomposition into subgoals, or the resolution of the goal.

Stating a theorem

lemma mylemma b1 b2 b3 :
(b1 ⇒ b2) ⇒ (b2 ⇒ b3) ⇒ b1 ⇒ b3.

proof. (∗ proof starts here ∗)

b1 : bool
b2 : bool
b3 : bool

 local hypotheses (context)

(b1⇒ b2)⇒ (b2⇒ b3)⇒ b1⇒ b3 } goal︸ ︷︷ ︸ ︸︷︷︸
assumptions conclusion

Progress is done via tactics that allows the simplification,
decomposition into subgoals, or the resolution of the goal.

Stating a theorem

lemma mylemma b1 b2 b3 :
(b1 ⇒ b2) ⇒ (b2 ⇒ b3) ⇒ b1 ⇒ b3.

proof. (∗ proof starts here ∗)

b1 : bool
b2 : bool
b3 : bool

 local hypotheses (context)

(b1⇒ b2)⇒ (b2⇒ b3)⇒ b1⇒ b3 } goal︸ ︷︷ ︸ ︸︷︷︸
assumptions conclusion

Progress is done via tactics that allows the simplification,
decomposition into subgoals, or the resolution of the goal.

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12.

b1 : bool
b2 : bool
b3 : bool
hb12 : b1 ⇒ b2

(b2 ⇒ b3) ⇒ b1 ⇒ b3

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12 bh23 hb1.

b1 : bool
b2 : bool
b3 : bool
hb12 : b1 ⇒ b2
hb23 : b2 ⇒ b3
hb1 : b1

b3

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12 bh23 hb1.
apply hb23.

b1 : bool
b2 : bool
b3 : bool
hb12 : b1 ⇒ b2
hb23 : b2 ⇒ b3
hb1 : b1

b2

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12 bh23 hb1.
apply hb23.
apply hb12.

b1 : bool
b2 : bool
b3 : bool
hb12 : b1 ⇒ b2
hb23 : b2 ⇒ b3
hb1 : b1

b1

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12 bh23 hb1.
apply hb23.
apply hb12.
assumption.

Proof completed

Continuing the proof

lemma mylemma b1 b2 b3 : ...
proof.
intros⇒ hb12 bh23 hb1.
apply hb23.
apply hb12.
assumption.

qed.

Propositional logic

I b1 ⇒ b2 ⇒ b3

As a goal [intros⇒ b1 b2]

As an hypothesis [apply]

Propositional logic

I b1 ⇒ b2 ⇒ b3

As a goal [intros⇒ b1 b2]

b1 ⇒ b2 ⇒ b3
↪→

b1 : bool
b2 : bool

b3

As an hypothesis [apply]

Propositional logic

I b1 ⇒ b2 ⇒ b3

As a goal [intros⇒ b1 b2]

As an hypothesis [apply]

h : b1 ⇒ b2 ⇒ b3
b3

↪→

1.
h : b1 ⇒ b2 ⇒ b3

b1
2.

h : b1 ⇒ b2 ⇒ b3
b2

Propositional logic - connectors
I Conjunction: a ∧ b

As a goal [split] (prove a ∧ b)

As an hypothesis [elim ab] (destruct a ∧ b in a and b)

Propositional logic - connectors
I Conjunction: a ∧ b

As a goal [split] (prove a ∧ b)

a ∧ b
↪→ 1.

a
2.

b

As an hypothesis [elim ab] (destruct a ∧ b in a and b)

Propositional logic - connectors
I Conjunction: a ∧ b

As a goal [split] (prove a ∧ b)

a ∧ b
↪→ 1.

a
2.

b

As an hypothesis [elim ab] (destruct a ∧ b in a and b)

ab : a ∧ b
φ

↪→
a ⇒ b ⇒φ

Propositional logic - connectors
I Disjunction: a ∨ b

As a goal

As an hypothesis [elim ab] (case analysis on a ∨ b)

Propositional logic - connectors
I Disjunction: a ∨ b

As a goal
[left] (prove a ∨ b by proving a)

a ∨ b
↪→

a

[right] (prove a ∨ b by proving b)

a ∨ b
↪→

b

As an hypothesis [elim ab] (case analysis on a ∨ b)

Propositional logic - connectors
I Disjunction: a ∨ b

As a goal
[left] (prove a ∨ b by proving a)

a ∨ b
↪→

a

[right] (prove a ∨ b by proving b)

a ∨ b
↪→

b

As an hypothesis [elim ab] (case analysis on a ∨ b)

ab : a ∨ b
φ

↪→ 1.
a ⇒φ

2.
b ⇒φ

Propositional logic - existential
I Existential: exists x : t,φ (x)

As a goal [exists v] (prove goal by giving a witness)

As an hypothesis [elim h] (extract a witness)

Propositional logic - existential
I Existential: exists x : t,φ (x)

As a goal [exists v] (prove goal by giving a witness)

exists x : t,φ (x)
↪→

φ (v)

As an hypothesis [elim h] (extract a witness)

Propositional logic - existential
I Existential: exists x : t,φ (x)

As a goal [exists v] (prove goal by giving a witness)

exists x : t,φ (x)
↪→

φ (v)

As an hypothesis [elim h] (extract a witness)

h : exists x : t,φ (x)
φ ’

↪→
forall (v : t),φ (v) ⇒φ ’

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

a : bool
b : bool
a ⊕ b = (a ∧ !b) || (!a ∧ b)

(case a) leads to

1.

a : bool
b : bool
a ⇒ true ⊕ b = (true ∧ !b) ∨ (!true ∧ b)

2.

a : bool
b : bool
!a ⇒ false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

a : bool
b : bool
a ⊕ b = (a ∧ !b) || (!a ∧ b)

(case a) leads to

1.

a : bool
b : bool
a ⇒ true ⊕ b = (true ∧ !b) ∨ (!true ∧ b)

2.

a : bool
b : bool
!a ⇒ false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

a : bool
b : bool
a ⊕ b = (a ∧ !b) || (!a ∧ b)

(case a) leads to

1.

a : bool
b : bool
a ⇒ true ⊕ b = (true ∧ !b) ∨ (!true ∧ b)

2.

a : bool
b : bool
!a ⇒ false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

Identification up to computations

EasyCrypt comes with a set of simplification rules.

a : bool
b : bool
false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

simplify leads to

a : bool
b : bool
b = b

that can be easily solved by reflexivity.

Identification up to computations

EasyCrypt comes with a set of simplification rules.

a : bool
b : bool
false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

simplify leads to

a : bool
b : bool
b = b

that can be easily solved by reflexivity.

Identification up to computations

Computations include
I functions applications reduction
I operators body inlining
I logical operators tautology (a ∧ false → false)

Terms that are equal up to computations are
considered as identical

a : bool
b : bool
!a ⇒ false ⊕ b = (false ∧ !b) ∨ (!false ∧ b)

can be directly solved by reflexivity.

Rewrite - replace equals by equals

The tactic rewrite replaces a subterm a of the goal
by an equal one b. It takes a proof of a = b or a ⇔ b.

rewrite h

h : a = b
P a

↪→
h : a = b

P b

Rewrite - replace equals by equals

The tactic rewrite replaces a subterm a of the goal
by an equal one b. It takes a proof of a = b or a ⇔ b.

rewrite h

h : a = b
P a

↪→
h : a = b

P b

Rewrite - replace equals by equals

rewrite comes in different flavor:
I rewrite −h : from right to left

I rewrite mh where m is a multiplier
? as many times as possible
! as many times as possible, at least one
n? at most n times
n! exactly n times

I rewrite {o}h where o is a sequence of positive integers

Rewrites the oth occurrences only.

Rewrite - replace equals by equals

rewrite comes in different flavor:
I rewrite −h : from right to left

I rewrite mh where m is a multiplier
? as many times as possible
! as many times as possible, at least one
n? at most n times
n! exactly n times

I rewrite {o}h where o is a sequence of positive integers

Rewrites the oth occurrences only.

Rewrite - replace equals by equals

rewrite comes in different flavor:
I rewrite −h : from right to left

I rewrite mh where m is a multiplier
? as many times as possible
! as many times as possible, at least one
n? at most n times
n! exactly n times

I rewrite {o}h where o is a sequence of positive integers

Rewrites the oth occurrences only.

Rewrite - replace equals by equals

rewrite comes in different flavor:
I rewrite −h : from right to left

I rewrite mh where m is a multiplier
? as many times as possible
! as many times as possible, at least one
n? at most n times
n! exactly n times

I rewrite {o}h where o is a sequence of positive integers

Rewrites the oth occurrences only.

Rewrite - replace equals by equals

2 ∗ (a + b) = (b + a) + (a + b)

I rewrite {2}addnC

2 ∗ (a + b) = (b + a) + (b + a)

I rewrite (addnC b a)

2 ∗ (a + b) = (a + b) + (a + b)

I rewrite −!addnA

2 ∗ (a + b) = b + (a + (a + b))

Rewrite - replace equals by equals

2 ∗ (a + b) = (b + a) + (a + b)

I rewrite {2}addnC

2 ∗ (a + b) = (b + a) + (b + a)

I rewrite (addnC b a)

2 ∗ (a + b) = (a + b) + (a + b)

I rewrite −!addnA

2 ∗ (a + b) = b + (a + (a + b))

Rewrite - replace equals by equals

2 ∗ (a + b) = (b + a) + (a + b)

I rewrite {2}addnC

2 ∗ (a + b) = (b + a) + (b + a)

I rewrite (addnC b a)

2 ∗ (a + b) = (a + b) + (a + b)

I rewrite −!addnA

2 ∗ (a + b) = b + (a + (a + b))

Rewrite - replace equals by equals

2 ∗ (a + b) = (b + a) + (a + b)

I rewrite {2}addnC

2 ∗ (a + b) = (b + a) + (b + a)

I rewrite (addnC b a)

2 ∗ (a + b) = (a + b) + (a + b)

I rewrite −!addnA

2 ∗ (a + b) = b + (a + (a + b))

Logical cut

The tactic cut:φ allows to do a forward chaining

h: ...
φ ’

↪→ 1.
h: ...
φ

2.
h: ...
φ⇒φ ’

It is possible to give a name to the new goal (cut my:φ)

h: ...
φ ’

↪→ 1.
h: ...
φ

2.

h: ...
my:φ
φ ’

Logical cut

The tactic cut:φ allows to do a forward chaining

h: ...
φ ’

↪→ 1.
h: ...
φ

2.
h: ...
φ⇒φ ’

It is possible to give a name to the new goal (cut my:φ)

h: ...
φ ’

↪→ 1.
h: ...
φ

2.

h: ...
my:φ
φ ’

Induction

An induction principle for a type t is any formula of the form:

∀(p : t → bool),φ1→ ... →φn, ∀(x : t), psi1(x) → ... → psin(x) → p x

For example, for natural numbers:

forall (p : int → t), p 0 ⇒
(forall (x : int), 0 ≤ x ⇒ p x ⇒ p (x + 1)) ⇒
forall (x : int), 0 ≤ x ⇒ p x

Induction

An induction principle for a type t is any formula of the form:

∀(p : t → bool),φ1→ ... →φn, ∀(x : t), psi1(x) → ... → psin(x) → p x

For example, for natural numbers:

forall (p : int → t), p 0 ⇒
(forall (x : int), 0 ≤ x ⇒ p x ⇒ p (x + 1)) ⇒
forall (x : int), 0 ≤ x ⇒ p x

Induction

Applying the induction principle via apply can be cumbersome.

The tactic elimT eases the applications of such principles.

P: int → bool
0 ≤ x ⇒ P x

↪→ elimT ind x

1.
P : int → bool

P 0
2.

P : int → bool
∀(x : int), 0 ≤ x → P x → P (x+1)

Induction

Applying the induction principle via apply can be cumbersome.

The tactic elimT eases the applications of such principles.

P: int → bool
0 ≤ x ⇒ P x

↪→ elimT ind x

1.
P : int → bool

P 0
2.

P : int → bool
∀(x : int), 0 ≤ x → P x → P (x+1)

Automation

EasyCrypt comes with some automation tactics:
I progress break the goal by repetead applications of the

introduction based tactics (split, intros, ...)
I trivial: same as progress, but try to close subgoals.
I smt: try to solve the goal calling external SMT solvers.

Plan

1 The EasyCrypt Core Language

2 Interactive Proofs

3 Tacticals

4 Conclusion

Tacticals

Tacticals are operators on tactics.

Tacticals

Tacticals are operators on tactics.
I t1; t2

apply t1 and then t2 on all generated subgoals
I t; [t1|...|tn]

apply t and then each of the ti to the ith subgoal
I do t

repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
do! t, do? t, do n! e, do n? t

I try t
try to apply t, or nothing if t cannot by applied

I by t1; ...; tn
apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
I t1; t2

apply t1 and then t2 on all generated subgoals
I t; [t1|...|tn]

apply t and then each of the ti to the ith subgoal
I do t

repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
do! t, do? t, do n! e, do n? t

I try t
try to apply t, or nothing if t cannot by applied

I by t1; ...; tn
apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
I t1; t2

apply t1 and then t2 on all generated subgoals
I t; [t1|...|tn]

apply t and then each of the ti to the ith subgoal
I do t

repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
do! t, do? t, do n! e, do n? t

I try t
try to apply t, or nothing if t cannot by applied

I by t1; ...; tn
apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
I t1; t2

apply t1 and then t2 on all generated subgoals
I t; [t1|...|tn]

apply t and then each of the ti to the ith subgoal
I do t

repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
do! t, do? t, do n! e, do n? t

I try t
try to apply t, or nothing if t cannot by applied

I by t1; ...; tn
apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
I t1; t2

apply t1 and then t2 on all generated subgoals
I t; [t1|...|tn]

apply t and then each of the ti to the ith subgoal
I do t

repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
do! t, do? t, do n! e, do n? t

I try t
try to apply t, or nothing if t cannot by applied

I by t1; ...; tn
apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
I t1; first t2

apply t1 and then t2 on the first subgoal
I t1; last t2

apply t1 and then t2 on the last subgoal
I variants: t1; first n t2, t1; last n t2
I t; first n last

apply t and then shift the n first goals to the end

Tacticals

Tacticals are operators on tactics.
I t1; first t2

apply t1 and then t2 on the first subgoal
I t1; last t2

apply t1 and then t2 on the last subgoal
I variants: t1; first n t2, t1; last n t2
I t; first n last

apply t and then shift the n first goals to the end

Tacticals - Intros

Tacticals are operators on tactics.
I t ⇒ ip1 ... ipn

apply t and then execute the introduction of ip1 ... ipn

t⇒ x
introduce a name / an hypothesis

t⇒ [ip1|...ipn]
execute ipi on the ith subgoal
+ do a case analysis if not done by t

t⇒→
introduce an equational hypothesis and rewrite it

t⇒ {h}
clear the hypothesis h

t⇒ //
execute trivial

Tacticals - Intros

Tacticals are operators on tactics.
I t ⇒ ip1 ... ipn

apply t and then execute the introduction of ip1 ... ipn

t⇒ x
introduce a name / an hypothesis

t⇒ [ip1|...ipn]
execute ipi on the ith subgoal
+ do a case analysis if not done by t

t⇒→
introduce an equational hypothesis and rewrite it

t⇒ {h}
clear the hypothesis h

t⇒ //
execute trivial

Plan

1 The EasyCrypt Core Language

2 Interactive Proofs

3 Tacticals

4 Conclusion

trade-off between interactive / automatic proof

I EasyCrypt has now two kinds of tactics
low-level, interactive ones
the SMT hammer

The difficulty is to find the right trade-off between the two.
SMT goal resolution success can be very unstable
SMT can be very good in solving large or numerous problems
generated by p(R)HL judgments

I qed does not mark the end of the proof.

	The EasyCrypt Core Language
	Interactive Proofs
	Tacticals
	Conclusion

