Lecture 2 : Interactive Proofs in EasyCrypt

July 16th, 2013

The Ambient Logic

EasyCrypt ambient logic is a general higher-order logic.

In this talk

» How define facts about user defined operators

» How to prove them when automatic techniques do not work

Plan

e The EasyCrypt Core Language

@ Interactive Proofs

© Tacticals

@ Conclusion

Types

EasyCrypt is a typed language:

Types

EasyCrypt is a typed language:
» It comes with a set of core types
unit, bool, int, real, tuple, lists ...

Some of these types are polymorphic (type constructor)

Types

EasyCrypt is a typed language:
» It comes with a set of core types
unit, bool, int, real, tuple, lists ...
Some of these types are polymorphic (type constructor)

» Possibility to create type aliases
type aou = oax*x«
type v =intu
type w = int list

Types

EasyCrypt is a typed language:
» It comes with a set of core types
unit, bool, int, real, tuple, lists ...
Some of these types are polymorphic (type constructor)

» Possibility to create type aliases

type aou = oax*x«
type v =intu
type w = int list

» Possibility to create abstract types
type t
type au

Expressions - Functional language

EasyCrypt comes with a functional language:

Expressions - Functional language

EasyCrypt comes with a functional language:

» concrete operators:

op f1 (b:bool) (xy:int) =b?(x—y):(x+y).

op f2 (xs : int list) (x : int) = map (lambda (z : int), z + x) xs.

op f3 (xs : 'a list) = fold (Jambdav _, v + 1) 0 xs.

Expressions - Functional language

EasyCrypt comes with a functional language:
» concrete operators:

op f1 (b:bool) (xy:int) =b?(x—y):(x+y).
op f2 (xs : int list) (x : int) = map (lambda (z : int), z + x) xs.
op f3 (xs : 'a list) = fold (Jambdav _, v + 1) 0 xs.

» abstract operators:

map : (o —) — alist — (3 list
fold : («—) — alist — [list

Predicates / Formulas

» Predicates are boolean operators:
op mypred : int — int — bool.

» These predicates can be defined:
pred mypred (xy :int) = (0 <x) A (0 <y) A (2xx<y)

» Formulas constructors:

forall (x : t),¢ (V(x:t),¢) exists (x : t), ¢ (I(x:t),¢)
¢1/\ 2 (@11 $2) P1\/ 2 @1V ¢2)
Pp1=> ¢ (1= $2) P1<=> ¢ (P14 ¢2)

+ dedicated formulas for p(R)HL

o (—¢)

Axioms / Lemmas

» Formulas for operators axiomatization:
op count : 'a list —> int.
axiom count_nil : count [] = 0.

axiom count_cons : forall (x : 'a) (xs : 'a list),
count (x :: xs) = 1 + (count xs).

Axioms / Lemmas

» Formulas for operators axiomatization:

op count : 'a list —> int.

axiom count_nil : count [] = 0.
axiom count_cons : forall (x : 'a) (xs : 'a list),
count (x :: xs) = 1 + (count xs).

» Formulas for stating facts:

lemma fact (xy :int): x <0 —-y<0—0<xxy.

Plan

@ Interactive Proofs

Stating a theorem

lemma mylemma bl b2 b3 :
(b1 = b2) = (b2 = b3) = bl = b3.
proof. (x proof starts here x)

Stating a theorem

lemma mylemma bl b2 b3 :
(b1 = b2) = (b2 = b3) = bl = b3.
proof. (x proof starts here x)

bl : bool
b2 : bool } local hypotheses (context)
b3 : bool

(b1 = b2) = (b2 = b3) = bl = b3 } goal
~—

assumptions conclusion

Stating a theorem

lemma mylemma bl b2 b3 :
(b1 = b2) = (b2 = b3) = bl = b3.
proof. (x proof starts here x)

bl : bool
b2 : bool } local hypotheses (context)
b3 : bool

(b1 = b2) = (b2 = b3) = bl = b3 } goal
~—

assumptions conclusion

Progress is done via tactics that allows the simplification,
decomposition into subgoals, or the resolution of the goal.

Continuing the proof

lemma mylemma bl b2 b3 : ...
proof.
intros= hbl12.

bl : bool
b2 : bool
b3 : bool
hbl2 : bl = b2

(b2 = b3) = bl = b3

Continuing the proof

lemma mylemma bl b2 b3 : ...
proof.
intros= hb12 bh23 hbl.

bl : bool
b2 : bool
b3 : bool
hbl2 : bl = b2
hb23 : b2 = b3
hbl : bl

b3

Continuing the proof

lemma mylemma bl b2 b3 : ...
proof.
intros= hb12 bh23 hbl.
apply hb23.

bl : bool
b2 : bool
b3 : bool
hbl2 : bl = b2
hb23 : b2 = b3
hbl : bl

b2

Continuing the proof

lemma mylemma bl b2 b3 : ...

proof.

intros= hb12 bh23 hbl.

apply hb23.

apply hb12.
bl : bool
b2 : bool
b3 : bool
hbl2 : bl = b2
hb23 : b2 = b3
hbl : bl

bl

Continuing the proof

lemma mylemma bl b2 b3 : ...
proof.
intros= hbl2 bh23 hbl.
apply hb23.
apply hb12.
assumption.

Proof completed

Continuing the proof

lemma mylemma bl b2 b3 : ...

proof.
intros= hbl2 bh23 hbl.
apply hb23.
apply hb12.
assumption.
ged.

Propositional logic

» bl = b2 = b3

Propositional logic

» bl = b2 = b3

As a goal [intros= bl b2]

bl : bool
b2 : bool

fﬁ
bl = b2 = b3 b3

Propositional logic

» bl = b2 = b3

As a goal [intros= bl b2]
As an hypothesis [apply]

h:bl =b2=">b3
b3

h:bl =b2= b3
bl

h:bl =b2=>b3

b2

Propositional logic - connectors

» Conjunction: a A b

Propositional logic - connectors

» Conjunction: a A b

As a goal [split] (prove a A b)

— 1. 2.

aAb a

Propositional logic - connectors

» Conjunction: a A b

As a goal [split] (prove a A b)

. 2.
aAb a b

As an hypothesis [elim ab] (destruct a A bin a and b)

ab:aADb
_
10} a=b=¢

Propositional logic - connectors

» Disjunction: a V b

Propositional logic - connectors

» Disjunction: a V b

As a goal
o [left] (prove a V b by proving a)

C_>
aVvb a

o [right] (prove a V b by proving b)

P
aVvb b

Propositional logic - connectors

» Disjunction: a V b

As a goal
o [left] (prove a V b by proving a)

C_>
aVvb a

o [right] (prove a V b by proving b)

P
aVvb b

As an hypothesis [elim ab] (case analysis on a VV b)

ab:aVvb
:(ﬁ . .
¢ a=¢ b=¢

Propositional logic - existential

» Existential: exists x : t, ¢ (x)

Propositional logic - existential

» Existential: exists x : t, ¢ (x)

As a goal [exists v] (prove goal by giving a witness)

s
exists x : t, ¢ (x) o (v)

Propositional logic - existential

» Existential: exists x : t, ¢ (x)

As a goal [exists v] (prove goal by giving a witness)

[N
exists x : t, ¢ (x) o (v)

As an hypothesis [elim h] (extract a witness)

h : exists x : t, ¢ (x)

C_>
¢’ forall (v : t), ¢ (v) = ¢’

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

a : bool
b : bool

a®db=(aAnlb)]|l(!anb)

Boolean case analysis

The tactic case allows to do a case analysis on any formula.

a : bool
b : bool

a®db=(aAnlb)]|l(!anb)

(case a) leads to

a : bool
b : bool

a = true & b = (true A 'b) V (!true A b)

a : bool
b : bool

la = false @ b = (false A !b) V (!false A b)

Identification up to computations

EasyCrypt comes with a set of simplification rules.

a : bool
b : bool

false ® b = (false A Ib) Vv (!false A b)

Identification up to computations

EasyCrypt comes with a set of simplification rules.

a : bool
b : bool

false ® b = (false A Ib) Vv (!false A b)

simplify leads to

a : bool
b : bool

b=>b

that can be easily solved by reflexivity.

Identification up to computations

Computations include
» functions applications reduction
» operators body inlining

» logical operators tautology (a A false — false)

Terms that are equal up to computations are
considered as identical

a : bool
b : bool

la = false & b = (false A Ib) V (!false A b)

can be directly solved by reflexivity.

Rewrite - replace equals by equals

The tactic rewrite replaces a subterm a of the goal
by an equal one b. It takes a proof of a = b or a < b.

Rewrite - replace equals by equals

The tactic rewrite replaces a subterm a of the goal
by an equal one b. It takes a proof of a = b or a < b.

rewrite h

h:a=b h:a=b
—_—="° o 977
Pa Pb

Rewrite - replace equals by equals

rewrite comes in different flavor:

Rewrite - replace equals by equals

rewrite comes in different flavor:

» rewrite —h : from right to left

Rewrite - replace equals by equals

rewrite comes in different flavor:

» rewrite —h : from right to left

» rewrite mh where m is a multiplier

? as many times as possible

! as many times as possible, at least one
n? at most n times

nl exactly n times

Rewrite - replace equals by equals

rewrite comes in different flavor:

» rewrite —h : from right to left

» rewrite mh where m is a multiplier

? as many times as possible

! as many times as possible, at least one
n? at most n times

nl exactly n times

» rewrite {o}h where o is a sequence of positive integers

h

Rewrites the ot" occurrences only.

Rewrite - replace equals by equals

2x(a+b)=(b+a)+(a+b)

Rewrite - replace equals by equals

2x(a+b)=(b+a)+(a+b)

» rewrite {2}addnC
2x(a+b)y=(b+a)+ (b+a)

Rewrite - replace equals by equals

2x(a+b)=(b+a)+(a+b)

» rewrite {2}addnC
2x(a+b)y=(b+a)+ (b+a)

» rewrite (addnC b a)
2x(a+b)=(a+b)+(a+Db)

Rewrite - replace equals by equals

2x(a+b)=(b+a)+(a+b)

» rewrite {2}addnC
2x(a+b)y=(b+a)+ (b+a)

» rewrite (addnC b a)
2x(a+b)=(a+b)+(a+Db)

» rewrite —laddnA

2x(a+b)y=b+(a+ (a+b))

Logical cut

The tactic cut: ¢ allows to do a forward chaining

h: ... h: ... h: ...
— 1. 2.

¢’ ¢ p=9

Logical cut

The tactic cut: ¢ allows to do a forward chaining

h: ... h: ... h: ...
— 1. 2.

¢’ ¢ p=9

It is possible to give a name to the new goal (cut my: ¢)

Induction

An induction principle for a type t is any formula of the form:

V(p : t — bool), p1— ... = dn, V(x : t), psil(x) = ... = psin(x) — p x

Induction

An induction principle for a type t is any formula of the form:

V(p : t — bool), p1— ... = dn, V(x : t), psil(x) = ... = psin(x) — p x

For example, for natural numbers:

forall (p : int - t), p0 =
(forall (x :int), 0 < x=px=p(x+ 1)) =
forall (x : int), 0 < x = p x

Induction

Applying the induction principle via apply can be cumbersome.

Induction

Applying the induction principle via apply can be cumbersome.

The tactic elimT eases the applications of such principles.

P:i

int — bool — elimT ind x
0<x=Px

P :int — bool P :int — bool

PO © VY(x:int), 0 <x — P x — P (x+1)

Automation

EasyCrypt comes with some automation tactics:
» progress break the goal by repetead applications of the
introduction based tactics (split, intros, ...)
» trivial: same as progress, but try to close subgoals.

» smt: try to solve the goal calling external SMT solvers.

Plan

© Tacticals

Tacticals

Tacticals are operators on tactics.

Tacticals

Tacticals are operators on tactics.

» tl; t2
apply t1 and then t2 on all generated subgoals

Tacticals

Tacticals are operators on tactics.

» tl; t2
apply t1 and then t2 on all generated subgoals
> t; [t1]...[tn]

apply t and then each of the t; to the jth subgoal

Tacticals

Tacticals are operators on tactics.
» tl; t2
apply t1 and then t2 on all generated subgoals
> t; [t1]...|tn]
apply t and then each of the t; to the jth subgoal

» dot
repeat t as much as possible, at least one time

this tactic takes the same multiplier of rewrite
dol' t, do? t, donl e don?t

Tacticals

Tacticals are operators on tactics.

» tl; t2
apply t1 and then t2 on all generated subgoals
> t; [t1]...[tn]

apply t and then each of the t; to the jth subgoal
» dot
repeat t as much as possible, at least one time
this tactic takes the same multiplier of rewrite
dol' t, do? t, donl e don?t
> try t
try to apply t, or nothing if t cannot by applied

Tacticals

Tacticals are operators on tactics.

>

tl; t2
apply t1 and then t2 on all generated subgoals
t; [t1]...|tn]

apply t and then each of the t; to the jth subgoal
dot
repeat t as much as possible, at least one time

this tactic takes the same multiplier of rewrite
dol' t, do? t, donl e don?t

try t
try to apply t, or nothing if t cannot by applied
by t1; ...; tn

apply t1; ...; tn and then try to close all the subgoals via
trivial. fail if all the subgoals cannot be solved.

Tacticals

Tacticals are operators on tactics.
» t1; first t2

apply t1 and then t2 on the first subgoal
» t1; last t2

apply t1 and then t2 on the last subgoal
» variants: tl; first n t2, t1; last n t2

Tacticals

Tacticals are operators on tactics.

» t1; first t2

apply t1 and then t2 on the first subgoal
» t1; last t2

apply t1 and then t2 on the last subgoal
» variants: tl; first n t2, t1; last n t2
» t; first n last

apply t and then shift the n first goals to the end

Tacticals - Intros

Tacticals are operators on tactics.
» t =ipl ... ipn
apply t and then execute the introduction of ipl ... ipn

Tacticals - Intros

Tacticals are operators on tactics.
» t =ipl ... ipn
apply t and then execute the introduction of ipl ...
e t= X

introduce a name / an hypothesis
t= [ip1]...ipn]

execute ip; on the jth

subgoal
+ do a case analysis if not done by t
o t= —
introduce an equational hypothesis and rewrite it
t= {h}
clear the hypothesis h

t=//

execute trivial

ipn

Plan

@ Conclusion

trade-off between interactive / automatic proof

» EasyCrypt has now two kinds of tactics

o low-level, interactive ones
o the SMT hammer

The difficulty is to find the right trade-off between the two.

o SMT goal resolution success can be very unstable
e SMT can be very good in solving large or numerous problems
generated by p(R)HL judgments

» ged does not mark the end of the proof.

	The EasyCrypt Core Language
	Interactive Proofs
	Tacticals
	Conclusion

