Probabilistic Relational Hoare Logic



Main judgments

Hoare Logicc: & = V:
hoare [ ¢ : pre ==> post]

Probabilistic Hoare Logic [c : ® = V]| = (see Lecture 6):
bd_hoare [c : pre ==>post]=r

Probabilistic Relational Hoare Logic ¢ ~ ¢, : ® = WV (pRHL):
equiv [ c1 ~ c2 : pre ==> post]

Judgments consider statements; similar ones for functions
hoare [ M.f : true ==> M.x = 2]

In this lecture, we will focus on pRHL



Some syntax

module P = {
var r: int
fun f(x:int, y:int) s int { returnr + x + y }

rﬁodule M= {
fun g(x:int, wiint) : int { return P.r + x + w}
1
lemma L1 :
equiv[P.f~M.g:
y{1} = w{2} A\ ={x, P.r} ==> ={res, P.r}].

» Tags apply to expressions
(1 + Pr+x){1} is equivalentto 1 + P.r{1} + x{1}

» Equalities are restricted to variables
={x,P.r} stands for x{1} = x{2} A P.r{1} = P.r{2}



Different kinds of rules

v

For each instruction of the language there exists a
corresponding logical rule

Most of the rules are a composition of the sequence rule
and the corresponding basic rule

Also high level rules based on program transformation
Some automation, composition of basic rules (in progress)

v

v

v



Basic rules: rule of consequence

Ccy ~ G : false = Q
Syntax: exfalso

ci~C: P = Q@ P=F Q=Q
ci~C:P=Q

Syntax:
» conseq L
» conseq (_: P’'==>Q)



Basic proof rules: case

c~C:PNA=—Q c¢c~C:PAN-A=Q
c~Cc : P=Q

Syntax: case A



Basic proof rules: skip and sequence

P=Q
skip ~ skip: P = Q

Syntax: skip

ci~c:P=R ~C:R=Q
Ci;c~Chich:P=Q

Syntax: seqij: R
» iis the length of ¢;
» jis the length of ¢/



Basic proof rules: assighment

x=e~skip: Q{x{(1) =e(1)} = Q

skip~x=e:Q{x(2) =e(2)} = Q

Syntax: wp
Applies the assignment rule as much as possible.



Example

pre = true

b=${0,1} (1)z=3
x=1 2)
y=2 (3)

post = x{1} + y{1} = z{2}

wp.

pre = true
b=${0,1} (1)

post=1+2=3




Basic proof rules: random assignment

One side rule

P = lossless d AVv € supp d, Q{x(1) := v}
x=%d~skip: P=Q

Syntax: rnd{1}

Remark: This is not the rule used in practice (relational).



Basic proof rules: random assignment

Two-sided rule
Q =Vvesuppd, Q{x(1),x'(2) :=v,f v}

x=%d~x"=%d:Q = Q

where
» fis 1-1 from supp d to supp d’
» forall x € supp d, d x = d' (f x)
Syntax:
» rnd f finv
» rnd f
» rnd



Example

pre = true
x =$[0..10] (1) x =$[2..12]

post = x{1} + 2 = x{2}

rnd (lambda x, x + 2) (lambda x, x — 2).  beta.

pre = true

post =
forall (xL xR :int), in_supp xL [0..10] => in_supp xR [2..12] =>
mu_x [0..10] xL = mu_x [2..12] (xL + 2) A
in_supp (xR — 2) [0..10] A
xL+2—-2=xLAxR—-2+2=xRA
xL+2=xL+2




Explanation

post = x{1} + 2 = x{2}
rnd (lambda x, x + 2) (lambda x, x — 2).

The function fis Ax, x + 2 and its inverse f~'is Ax, x — 2

For all xL xR in the support of [0..10] and [2..12]

» f preserves the probability of each element
mu_x [0..10] xL = mu_x [2..12] (xL + 2)

» f~! maps an element of [2..12] to an element of [0..10]
in_supp (xR — 2) [0..10]

» fis a bijection f (f~! xL) = xL and f~'(f xR) = xR
xL+2-2=xL/xR—-2+2=xR

» the original post-condition is valid for all xL and (f xL)
xL+2=xL+2

To finish the proof: skip;smt



Basic proof rules: conditional

One sided version

cc~c:Pre(l)= Q cg~c:PAr-e(l) = Q
if ethencielsecr~c: P— Q

Syntax: if{1}, if{2)

Two sided version
P=e(l) < €(2)
ct~c:Pre(l) = Q ¢ ~ci:PA-e(l) = Q
if ethen ¢; else ¢ ~ if € then cjelse ¢; : P = Q

Syntax: if

Remark : works only when the if is the first instruction



Basic proof rules: while

Two sided version (simplified):
I'=e(1) < €e@)Al
c~c:e()NeE@yNT=T
while edo ¢ ~ while & do ¢ : I' = —e(1) A—€/(2) A |

Syntax: while |

A one sided version exists



Basic proof rules: call

simplified version:

f~f:Pr= Qf

P= P {x(1),x'(2) :=e(1),€/(2)}

Vrr, Qi{res(1),res(2) :=r,r'} = Q{y{1),y'(2) :==r,r'}
y=fley~y =f(e):P=Q

where x (resp. x’) is the parameter of f (resp. f').

A one-sided version also exists (based on probabilistic hoare
logic)



Rules based on program transformations

The generic form is:

c~C P=Q
co~cd:P=Q

Where ¢y and ¢, are semantically equivalent.

C» is automatically generated by the rule.



Program transformations: swap

C1;Cs;Cg;C4NC/:P:>Q
Ci;CC3;64~C : P= Q

Side condition: ¢, and c3 are independent
Sufficient conditions

» ¢, does not write variables read by c3

» ¢3 does not write variables read by ¢,

» they do not write a common variable
They are automatically checked by the tool

Syntax:
» swap{1}ik
» swap{1}[i..jlk



Example

pre = true

b = ${0,1} (1) b’ = ${0,1}
b’ =${0,1}  (2)b =${0,1}

post = ={b, b’}

swap{2} 1 1

pre = true

b = ${0,1} (1) b = ${0,1}
b’ = ${0,1} (2) b’ = ${0,1}

post = ={b, b’}

To finish: do Irnd => //.



Other tactics based on program transformation

v

inline, rcondt, rcondf

unroll, splitwhile, (loop)fusion, (loop)fission
» Kill

eqobs_in

v

v



From functions to statements

Cr ~ Cq: P = Q{res(1),res(2) := rs(1),14(2)}
f~g:P=Q

[Fun]

» The rule allows proving a specification on functions by
proving it on their bodies

» ¢r and ¢4 correspond to the statement bodies of the
functions

» the special variables res{1},res{2} are replaced by the
return expression of the functions

Syntax: fun
Remark: this rule only works for concrete functions (see
tomorrow)



From pRHL to probabilities

f~g:P=Q P my mo Ymy me,Qmyme=Am < Bms

Pr[f,my : Al =Pr[g, m. : B]

f~g:P= Q P my mo VYmy me,Qmy me=Amy = Bmo

Pr[f,my : A] <Pr[g,m: B]

In EasyCrypt

lemma E : equiv [M.f ~N.g : P ==> Q].

lemma L : PrM.f() @ &m1 : A] = Pr[N.g() @ &m2 : B].
proof.
equiv_deno E.

Variant: equiv_deno (_: P ==> Q).



Try by yourself !



