
Lecture 5: Structuring Proofs – Sections and
Theories

July 17, 2013

Instantiation

I Concrete schemes and abstract adversaries
I Reuse existing proofs when realizing cryptographic

assumptions? (e.g., one-way trapdoor with RSA)
I Sections hide proof artifacts from final theorems,

automatically infer restrictions on adversaries, and
generalize theorems with module quantification.

I Cloning avoids user-level code duplication by instantiating
abstract types and operators with concrete values, creating
module copies with disjoint memories.

Sections
section.

declare module Adv : A{Prop,Hyp}.

local module G1 = {
var count:int (∗ some state ∗)
fun main() = { (∗ uses A ∗) }

}.

local module Dist : D = { (∗ uses A ∗) }

local equiv Prop_G1:
[Prop(A).main ~ G1.main: true ==> ={res}].

local equiv G1_Hyp:
[G1.main ~ Hyp(D).main: true ==> ={res}].

lemma &m final: exists (Dist<:D),
Pr[Prop(A).main() @ m: res] = Pr[Hyp(D).main() @ m: res].

end section.

Sections

I Inside the section, declared modules are independent from
modules defined (declared) after it.

I print axiom final.

yields (after the section is closed)

lemma final (Adv:>A{Prop,Hyp}) &m:
exists (Dist:>D),

Pr[Prop(A).main() @ &m: res] = Pr[Hyp(D).main() @ &m:res].

I Declared modules become parameters to lemmas.
I Local lemmas disappear.
I Local modules disappear and restrictions can be dropped.

Usages of Sections

I Simplify proofs by inferring adversary restrictions and
quantifications.

module G(Adv:A) = { ... }.

lemma foo (Adv<:A{G}):
equiv [Pr[G(A).f() ~ ...].

section.
declare Adv<:A.
module G = { ... }.

lemma foo:
equiv [Pr[G.f() ~ ...].

end section.

I Generalize theorem statements by hiding proof artifacts.
Adversary restrictions,
Intermediate games,
Intermediate equivs, lemmas and proofs.

Theories: Generalities

Theories provide an additional layer of generalization:
I declared abstract types yield “polymorphism”,
I declared constants and operators yield “universal

quantifications”,
I in forms that EasyCrypt cannot reason about...
I ... but that allow efficient code reuse.

Theories: A simple example

theory Monoid.
type t.

op one: t.
op (∗): t −> t −> t.

axiom mul1m (x : t): one ∗ x = x.
axiom mulm1 (x : t): x ∗ one = x.
axiom mulmA (x y z : t): (x ∗ y) ∗ z = x ∗ (y ∗ z).

end Monoid.

Cloning: A simple example

require import Int.
clone Monoid as MInt with

type t <− int,
op one = 1,
op (∗) <− (∗)
proof ∗ by smt.

print theory MInt. (∗ yields ∗)

theory MInt.
op one: int = 1.

lemma mul1m (x : int): one ∗ x = x.
lemma mulm1 (x : int): x ∗ one = x.
lemma mulmA (x y z : int): (x ∗ y) ∗ z = x ∗ (y ∗ z).

end MInt.

Theories: Cloning and Realization

When cloning, you can:
I define (=) or override (<−)

abstract types,
abstract operators (and constants),

I define abstract sub-theories,
All declared types and operators are abstract,
the theory contains only axioms (no lemmas).

I discharge some (or all) axioms
by giving a single proof for all axioms (usually smt),
or by giving individual proofs.

Theories: Cloning modules

I You can clone theories that contain modules.
I You get an exact copy of the module that works in a

separate memory space.
I This is useful for code reuse and may have unforeseen

applications in proofs.

Cloning: An example

theory ROM.
module RO = {

var m: (word,word) map

fun init(): unit = {
m = empty;

}

fun h(x:word): word = {
if (!in_dom x m) m.[x] =

$dword;
return m.[x];

}
}.

end ROM.

theory ROM’.
module RO = {

var m: (word,word) map

fun init(): unit = {
m = empty;

}

fun h(x:word): word = {
if (!in_dom x m) m.[x] =

$dword;
return m.[x];

}
}.

end ROM’.

Or just use clone ROM as ROM’.

Cloning: Some notes

I Cloning a theory that declares abstract types creates new,
distinct abstract types unless you define or override them.

I Cloning is not especially suited to equipping existing
theories with new algebraic structures.

I When used carelessly, cloning can cause SMT to give up.

Summary

Several ways to generalize proofs and theorems:
I Automatically infer module dependencies and adversary

restrictions using sections.
I Abstract away the proof and its artifacts and keep only the

relevant theorems and hypotheses using local modules
and lemmas.

I Perform crypto proofs on abstract modules and operators
before instantiating them using theories and cloning.

Lecture 5.5: Describing Distributions

July 17, 2013

Distributions

I Discrete sub-distributions (also know as “counting”)
I µ : α distr→ (α→ bool)→ real.

Example

op uniform: bool distr.

axiom uniform_def (p: bool −> bool):
mu uniform p = (1%r / 2%r) ∗ charfun p true +

(1%r / 2%r) ∗ charfun p false.

Derived Operators

Derived Operators

(∗ Probability of a particular element ∗)
op mu_x (d:’a distr) (x:’a): real = mu d ((=) x).

(∗ Total weight of the distribution ∗)
op weight (d:’a distr): real = mu d (lambda _, true).

(∗ Support of a distribution ∗)
op in_supp (x:’a) (d:’a distr): bool = 0%r < mu d x.

(∗ Point−wise equality ∗)
pred (==) (d1:’a distr) (d2:’a distr) = mu_x d1 == mu_x d2.

General Axioms on Distributions

General Axioms

(∗ mu d p is always within the unit interval ∗)
axiom mu_bounded (d:’a distr) (p:’a −> bool):

0%r <= mu d p <= 1%r.

(∗ The probability of the false event is 0 ∗)
axiom mu_false (d:’a distr): mu d (lambda _, false) = 0%r.

(∗ Probability of a disjunction of events ∗)
axiom mu_or (d:’a distr) (p q:’a −> bool):

mu d (cpOr p q) = mu d p + mu d q − mu d (cpAnd p q).

(∗ Point−wise equality is equality ∗)
axiom pw_eq (d d’:’a distr):

d == d’ => d = d’.

Some remarks
I These can be used to prove rewriting lemmas on mu that

can be used with rewrite Pr.

Example (rewrite Pr mu_or)
Pr[f, m : A \/ B]

↓
Pr[f, m : A] + Pr[f, m : B] − Pr[f, m : A /\ B]

I It is better, if possible, to define distributions using mu and
prove simplification lemmas for mu_x, weight and in_supp.

Example

lemma in_supp_def (b:bool): in_supp b uniform.

lemma uniform_x_def (b:bool): mu_x uniform b = 1%r / 2%r.

lemma lossless : weight uniform = 1%r.

Summary

I A way of axiomatically defining discrete distributions.
I Very powerful rewriting results on probability expressions.
I Some sanity checks available.

