
Individual Position Slides:

Jonathan Katz
(University of Maryland)

(Apologies I can’t be here in person)

Impedance mismatch

• I’d like to echo what Jon Herzog said (though in slightly
different terms)
– Most of the protocol analysis in EasyCrypt had nothing to do with

“cryptography”; instead, it involved manipulating data structures

• But…it’s hard to “blame” EasyCrypt
– The protocols in question were “cryptographically simple” but

“data structure”-heavy

– In particular:
• Relatively small fraction of the proofs relied on computational assumptions

• Definitions themselves were complex

– Not clear that these are the types of protocols EasyCrypt should
be targeting

• What are the crypto primitives/proofs that EC should be targeting?

Impedance mismatch

• Nevertheless, would be nice if EasyCrypt offered better

support for “modularity”

– This is how cryptographers build complex protocols

– This is how cryptographers reason about complex protocols

– This is how cryptographers prove security of complex protocols

• Not clear (to me) whether instantiation will fully address

this

Other comments

• A “wish list” for EasyCrypt

• Some musings on formal verification in general

• Theme: A formal proof is only as good as…

– …your hidden assumptions

– …your definitions/cryptographic assumptions

– …your axioms

– …how faithfully your EC code captures your implementation

Running time

• EasyCrypt has no way to reason about running time
– Nothing prevents a reduction from computing discrete logarithms

– Nothing prevents a (human) proof verifier from believing such a
proof

• Is this an issue?
– Practically speaking?

• Not in general (but there is always the chance of unintentional error)

• For some proofs, however, analysis of the running time of the reduction is
non-trivial (e.g., zero-knowledge simulators)

– Formally speaking? Yes

• Unclear how to encode the notion of “polynomial time” in
EasyCrypt, which does not deal with asymptotics at all

Definitions/assumptions

• In the course of doing a reductionist security proof, it can

become difficult (non-obvious) to verify that you are

proving the right thing/reducing to the right assumptions

• Would be extremely useful to have a library of “standard

assumptions” included as part of the EasyCrypt

distribution, that could be accessed as “black boxed”

– Proofs would reduce to the Diffie-Hellman assumption, rather

than my (possibly buggy) version of the Diffie-Hellman

assumption

– I would prove CPA-security, rather than my (possibly buggy)

version of CPA-security

Axioms

• Incorrect/inconsistent axioms can allow you to prove

anything

• Unclear what to do about this in general

– Verifying all axioms in Coq does not seem viable

• Two partial suggestions

– Periodically check whether possible to prove 0=1

• Alert user in that case

– Include “standard axioms” on strings, groups, etc. as part of

EasyCrypt distribution

• Manual review; could be verified in Coq over time

Protocol vs. implementation

• Would be nice to know that the protocol you are proving

secure matches the protocol you are implementing

• Future research directions:*
– Compiler from, e.g., (subset of) C code to EasyCrypt code

– Provide better “syntactic sugar” in EasyCrypt

• Would also reduce the burden on the user

* This may already be done; I am not sure

Protocol vs. implementation

• In fact, even if one is careful there can be a mismatch

between the protocol you are proving secure and the

protocol implementation

• Example:

– In EasyCrypt, group elements might have type group

– In your implementation, group strings might be byte arrays

– These are not the same thing!
• E.g., anything of type group is guaranteed to be a group element, but not

every byte array is necessarily a valid encoding of a group element; cf.

small-subgroup attacks

• Other examples, too

Parting thoughts

• Crypto protocols/proofs becoming ever more complex

– Unfortunately, many proofs never written at “journal-quality” level

– (Many proofs never written at any reasonable level)

– Unfortunately, most proofs never verified before publication

– (Many proofs never verified at all)

• “Would be nice if all published crypto papers came with

machine-verified proofs of security”

– We are not even close to making this viable (yet)

• What are the proofs that EasyCrypt should be targeting?

