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•  When learning EasyCrypt, my biggest challenge was developing 
good intuitions about whether a goal or claim was: 
–  false or 
–  true but not provable or 
–  provable 

•  I think this was because: 
–  Apart from Santiago Zanella’s thesis, the available papers and 

documentation gave only a rough explanation of truth (model 
theory) 

–  It’s nontrivial to apply the model theory in Santiago’s thesis to 
actual EasyCrypt 

•  I’m going to illustrate my learning process by considering 
several examples 

Introduction 
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The first two examples involve random shuffling of lists: 
 
  fun Shuffle(xs : int list) : int list = {	
    var ys : int list;	
    var i, x : int;	
    ys = [];	
    while (xs <> []) {	
      i = [0 .. length(xs) - 1];	
      x = proj(nth(xs, i));	
      xs = rm(xs, i);	
      ys = x :: ys;	
    }	
    return ys;	
  }	

Random Shuffling 
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•  Ignoring extraneous detail, we were trying to prove 
	
  xs = A1();	
  b = A2(xs);	

	

-  equivalent to 
	
  xs = A1();	
  ys = Shuffle(xs);	
  b = A2(ys);	
	

•  But this is false: e.g., A2 can test whether argument is equal to 
xs 

	

Shuffling in UCI Client Proof 
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•  In contrast, is 
	
  (xs, ys) = A1();	
  zs = Inter(xs, ys);  (* maintains order of xs *)	
  ws = Shuffle(zs);	
  b = A2(ws);	
	

-  equivalent to 
	
  (xs, ys) = A1();	
  zs = Inter(ys, xs);  (* maintains order of ys *)	
  ws = Shuffle(zs);	
  b = A2(ws);	
	

-  ? 
	

Shuffling Lists with Same Elements 
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   pre   = ={ys} && IsShuffleOf(xs{1}, xs{2}) && xs{1} <> []	
  stmt1 = 1 : i = [0 .. length(xs) - 1];	
  stmt2 = 1 : i = [0 .. length(xs) - 1];	
  post  = let xs_R = rm(xs{2}, i{2}) in	
          let xs_L = rm(xs{1}, i{1}) in	
          (xs_L <> []) = (xs_R <> []) &&	
          proj(nth(xs{1}, i{1})) :: ys{1} =	
          proj(nth(xs{2}, i{2})) :: ys{2} &&	
          IsShuffleOf(xs_L, xs_R)	
	

•  This is handled by 
 
  rnd (i -> fst(findPerm(xs{1}, xs{2}))[i]),	
      (i -> snd(findPerm(xs{1}, xs{2}))[i]).	
	

 

Proof Crux 
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•  If p is a permutation on {0, ..., bnd - 1}, is 
	
  m = empty_map; i = 0;	
  while (i < bnd) {	
    m[i] = {0, 1}; i = i + 1;	
  }	
	
-  equivalent to 
   
  m = empty_map; i = 0;	
  while (i < bnd) {	
    m[p[i]] = {0, 1}; i = i + 1;	
  }	
	
-  ? 

Permutation Problem 
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•  If we introduce an oracle for filling an element of our map, we 
can solve our problem using lazy random sampling 

  
  fun O(n : int) : unit = {	
    if (!in_dom(n, m)) {	
      m[n] = {0, 1};	
    }	
  } 	

Permutation Problem 
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•  We transition to: 
  	
  m = empty_map;	
  j = 0;	
  while (j < bnd) {	
    O(j);	
    j = j + 1;	
  }	
  i = 0;	
  while (i < bnd) {	
    O(p[i]);	
    i = i + 1;	
  }	
	

•  This works, since the second while loop is redundant  

Permutation Problem 
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•  Then we use lazy random sampling to swap the while loops: 
  	
  m = empty_map;	
  i = 0;	
  while (i < bnd) {	
    O(p[i]);	
    i = i + 1;	
  }	
  j = 0;	
  while (j < bnd) {	
    O(j);	
    j = j + 1;	
  }	
	

•  The second while loop is then redundant, and the first can be 
turned into our target. 

Permutation Problem 
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•  But we’d like to be able to transition from 
	
  m = empty_map; i = 0;	
  while (i < bnd) {	
    m[i] = {0, 1}; i = i + 1;	
  }	
	
-  to 
   
  m = empty_map; i = 0;	
  while (i < bnd) {	
    m[p[i]] = {0, 1}; i = i + 1;	
  }	
	

- within a single equivalence proof 

Permutation Problem 
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  pre   = ={xs, n} && n{1} >= 0 && m{2} >= 0	
  stmt1 = 1 : while (n > 0) {	
                i = [1 .. n];	
                xs = xs ++ [i];	
                n = n - 1;	
              }	
  stmt2 = 1 : while (n + m > 0) {	
                i = [1 .. n + m];	
                if (i <= n) { xs = xs ++ [i]; n = n – 1; }	
                else m = m - 1;	
              }	
  post  = ={xs}	
	

•  This is true, but seems not to be provable 

•  pRHL seems wrong framework for proof 
 

Mismatched Random Assignments 
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•  Need Coq foundation for EasyCrypt 
-  Used to understand truth 
-  Right level for some proofs 

•  Clear informal explanation of model theory also important 
•  Need abstraction mechanism able to take whole-game, multi-

step proofs and turn them into tactics 

Conclusions 


