MITLL/NRL Panel Discussion:
Understanding Provability and
Truth in EasyCrypt

Alley Stoughton

First EasyCrypt Workshop
University of Pennsylvania
July 19, 2013

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the Director of Naitional Intelligence under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author, and are not necessarily endorsed by the United States Government.

Approved for public release—distribution is unlimited

@ Introduction

 When learning EasyCrypt, my biggest challenge was developing
good intuitions about whether a goal or claim was:

— false or
— true but not provable or
— provable

* | think this was because:

— Apart from Santiago Zanella’s thesis, the available papers and
documentation gave only a rough explanation of truth (model
theory)

— It’s nontrivial to apply the model theory in Santiago’s thesis to
actual EasyCrypt

* I’'m going to illustrate my learning process by considering
several examples

EasyCrypt Workshop - 2 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Random Shuffling

The first two examples involve random shuffling of lists:

fun Shuffle(xs : int 1list) : int list = {
var ys : int list;
var i, X : int;
ys = [1;
while (xs <> [1) {
i=1[0 .. length(xs) - 1];
x = proj(nth(xs, 1));
xs = rm(xs, 1);
yS = X :: YyS;
3

return ys;

EasyCrypt Workshop - 3 LINCOLN LABORATORY
Alley Stoughton 07/19/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] Shuffling in UCI Client Proof

* Ignoring extraneous detail, we were trying to prove

xs = A1Q);
b = A2(xs);

equivalent to

xs = A1Q);
ys = Shuffle(xs);
b = A2(Cys);

- But this is false: e.g., AZ can test whether argument is equal to
XS

EasyCrypt Workshop - 4 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Shuffling Lists with Same Elements

* In contrast, is

(xs, ys) = ALQ;

zs = Inter(xs, ys); (* maintains order of xs *)
ws = Shuffle(zs);

b = A2(ws);

equivalent to

(xs, ys) = A1Q;

zs = Inter(ys, xs); (* maintains order of ys *)
ws = Shuffle(zs);

b = A2(ws);

?

EasyCrypt Workshop - 5 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Proof Crux

pre = ={ys} && IsShuffleOf(xs{1}, xs{2}) && xs{l1l} <> []
stmtl =1 : 1 =1[0 .. length(xs) - 1];
stmt2 =1 : 1 =[0 .. length(xs) - 1];
post = let xs_R = rm(xs{2}, i{2}) in

let xs_L = rm(xs{1}, i{1}) in
(xs_L <> [1) = (xs_R <> [&
proj(nth(xs{1}, 1{1})) :: ys{1} =
proj(nth(xs{2}, i{2})) :: ys{2} &&
IsShuffleOf(xs_L, xs_R)

* This is handled by

rnd (i -> fst(findPerm(xs{1}, xs{2}))[11),
(1 -> snd(findPerm(xs{1}, xs{2}))[1]).

AL LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Permutation Problem

« If p is a permutationon {&, ..., bnd - 1},is

m = empty_map; 1 = 0;
while (i < bnd) {

m[i] = {0, 1}; 1 =1 + 1;
}

equivalent to

m = empty_map; 1 = 0;
while (1 < bnd) {

mp[il] = {0, 1}; 1 =1 + 1;
}

?

EasyCrypt Workshop - 7 LINCOLN LABORATORY
Alley Stoughton 07/19/13

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Permutation Problem

 If we introduce an oracle for filling an element of our map, we
can solve our problem using lazy random sampling

fun O(n : int) : unit = {
1f (!'in_dom(Cn, m)) {
m(n] = {0, 1};
3
3

EasyCrypt Workshop - 8 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Permutation Problem

e We transition to:

m = empty_map;

j =0;

while (j < bnd) {
0(3);
j=73+1;

}

i = 0;

while (1 < bnd) {
OCp[iDD;

1=1+1;

* This works, since the second while loop is redundant

EasyCrypt Workshop - 9 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Permutation Problem

 Then we use lazy random sampling to swap the while loops:

m = empty_map;

1= 0;

while (i < bnd) {
0Cp[ilD;
1=1+1;

}

j = 0;

while (j < bnd) {
0(3);
J =13+ 1

}

 The second while loop is then redundant, and the first can be
turned into our target.

EasyCrypt Workshop - 10 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Permutation Problem

 But we’d like to be able to transition from

m = empty_map; 1 = 0;
while (i < bnd) {

m[i] = {0, 1}; 1 =1 + 1;
}

to

m = empty_map; 1 = 0;
while (1 < bnd) {

mp[il] = {0, 1}; 1 =1 + 1;
}

within a single equivalence proof

EasyCrypt Workshop - 11 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Mismatched Random Assignments

pre = ={xs, n} && n{l} >= 0 && m{2} >= 0
stmtl =1 : while (n > 0) {

1=1[1..n];

XS = XS ++ [1];

h=n-1;

}

stmt2 =1 : while (n + m > 0) {

1=[1..n+ ml;

if (1 <=n) {xs=xs + [1]; n=n-1; }
elsem=m - 1;
}

post ={xs}

* This is true, but seems not to be provable

 pRHL seems wrong framework for proof

EasyCrypt Workshop - 12 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Conclusions

* Need Coqg foundation for EasyCrypt
- Used to understand truth

- Right level for some proofs
« Clear informal explanation of model theory also important

* Need abstraction mechanism able to take whole-game, multi-
step proofs and turn them into tactics

EasyCrypt Workshop - 13 LINCOLN LABORATORY

Alley Stoughton 07/19/13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

