
Approved for public release—distribution is unlimited

MITLL/NRL Panel Discussion:
Understanding Provability and

Truth in EasyCrypt
Alley Stoughton

 First EasyCrypt Workshop
 University of Pennsylvania

 July 19, 2013

This work is sponsored by the Director of Naitional Intelligence under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author, and are not necessarily endorsed by the United States Government.

EasyCrypt Workshop - 2
Alley Stoughton 07/19/13

•  When learning EasyCrypt, my biggest challenge was developing
good intuitions about whether a goal or claim was:
–  false or
–  true but not provable or
–  provable

•  I think this was because:
–  Apart from Santiago Zanella’s thesis, the available papers and

documentation gave only a rough explanation of truth (model
theory)

–  It’s nontrivial to apply the model theory in Santiago’s thesis to
actual EasyCrypt

•  I’m going to illustrate my learning process by considering
several examples

Introduction

EasyCrypt Workshop - 3
Alley Stoughton 07/19/13

The first two examples involve random shuffling of lists:

 fun Shuffle(xs : int list) : int list = {	
 var ys : int list;	
 var i, x : int;	
 ys = [];	
 while (xs <> []) {	
 i = [0 .. length(xs) - 1];	
 x = proj(nth(xs, i));	
 xs = rm(xs, i);	
 ys = x :: ys;	
 }	
 return ys;	
 }	

Random Shuffling

EasyCrypt Workshop - 4
Alley Stoughton 07/19/13

•  Ignoring extraneous detail, we were trying to prove
	
 xs = A1();	
 b = A2(xs);	

	

-  equivalent to
	
 xs = A1();	
 ys = Shuffle(xs);	
 b = A2(ys);	
	

•  But this is false: e.g., A2 can test whether argument is equal to
xs

	

Shuffling in UCI Client Proof

EasyCrypt Workshop - 5
Alley Stoughton 07/19/13

•  In contrast, is
	
 (xs, ys) = A1();	
 zs = Inter(xs, ys); (* maintains order of xs *)	
 ws = Shuffle(zs);	
 b = A2(ws);	
	

-  equivalent to
	
 (xs, ys) = A1();	
 zs = Inter(ys, xs); (* maintains order of ys *)	
 ws = Shuffle(zs);	
 b = A2(ws);	
	

-  ?
	

Shuffling Lists with Same Elements

EasyCrypt Workshop - 6
Alley Stoughton 07/19/13

 pre = ={ys} && IsShuffleOf(xs{1}, xs{2}) && xs{1} <> []	
 stmt1 = 1 : i = [0 .. length(xs) - 1];	
 stmt2 = 1 : i = [0 .. length(xs) - 1];	
 post = let xs_R = rm(xs{2}, i{2}) in	
 let xs_L = rm(xs{1}, i{1}) in	
 (xs_L <> []) = (xs_R <> []) &&	
 proj(nth(xs{1}, i{1})) :: ys{1} =	
 proj(nth(xs{2}, i{2})) :: ys{2} &&	
 IsShuffleOf(xs_L, xs_R)	
	

•  This is handled by

 rnd (i -> fst(findPerm(xs{1}, xs{2}))[i]),	
 (i -> snd(findPerm(xs{1}, xs{2}))[i]).	
	

Proof Crux

EasyCrypt Workshop - 7
Alley Stoughton 07/19/13

•  If p is a permutation on {0, ..., bnd - 1}, is
	
 m = empty_map; i = 0;	
 while (i < bnd) {	
 m[i] = {0, 1}; i = i + 1;	
 }	
	
-  equivalent to

 m = empty_map; i = 0;	
 while (i < bnd) {	
 m[p[i]] = {0, 1}; i = i + 1;	
 }	
	
-  ?

Permutation Problem

EasyCrypt Workshop - 8
Alley Stoughton 07/19/13

•  If we introduce an oracle for filling an element of our map, we
can solve our problem using lazy random sampling

 fun O(n : int) : unit = {	
 if (!in_dom(n, m)) {	
 m[n] = {0, 1};	
 }	
 } 	

Permutation Problem

EasyCrypt Workshop - 9
Alley Stoughton 07/19/13

•  We transition to:
 	
 m = empty_map;	
 j = 0;	
 while (j < bnd) {	
 O(j);	
 j = j + 1;	
 }	
 i = 0;	
 while (i < bnd) {	
 O(p[i]);	
 i = i + 1;	
 }	
	

•  This works, since the second while loop is redundant

Permutation Problem

EasyCrypt Workshop - 10
Alley Stoughton 07/19/13

•  Then we use lazy random sampling to swap the while loops:
 	
 m = empty_map;	
 i = 0;	
 while (i < bnd) {	
 O(p[i]);	
 i = i + 1;	
 }	
 j = 0;	
 while (j < bnd) {	
 O(j);	
 j = j + 1;	
 }	
	

•  The second while loop is then redundant, and the first can be
turned into our target.

Permutation Problem

EasyCrypt Workshop - 11
Alley Stoughton 07/19/13

•  But we’d like to be able to transition from
	
 m = empty_map; i = 0;	
 while (i < bnd) {	
 m[i] = {0, 1}; i = i + 1;	
 }	
	
-  to

 m = empty_map; i = 0;	
 while (i < bnd) {	
 m[p[i]] = {0, 1}; i = i + 1;	
 }	
	

- within a single equivalence proof

Permutation Problem

EasyCrypt Workshop - 12
Alley Stoughton 07/19/13

 pre = ={xs, n} && n{1} >= 0 && m{2} >= 0	
 stmt1 = 1 : while (n > 0) {	
 i = [1 .. n];	
 xs = xs ++ [i];	
 n = n - 1;	
 }	
 stmt2 = 1 : while (n + m > 0) {	
 i = [1 .. n + m];	
 if (i <= n) { xs = xs ++ [i]; n = n – 1; }	
 else m = m - 1;	
 }	
 post = ={xs}	
	

•  This is true, but seems not to be provable

•  pRHL seems wrong framework for proof

Mismatched Random Assignments

EasyCrypt Workshop - 13
Alley Stoughton 07/19/13

•  Need Coq foundation for EasyCrypt
-  Used to understand truth
-  Right level for some proofs

•  Clear informal explanation of model theory also important
•  Need abstraction mechanism able to take whole-game, multi-

step proofs and turn them into tactics

Conclusions

